CITATION REPORT List of articles citing

Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

DOI: 10.1088/2053-1583/aa6aa1 2D Materials, 2017, 4, 031011.

Source: https://exaly.com/paper-pdf/66206007/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper IF	Citations
220	Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions. 2017 , 17, 3591-3598	122
219	Electrostatic Screening of Charged Defects in Monolayer MoS. 2017 , 8, 2148-2152	35
218	Exciton broadening in WS2/graphene heterostructures. 2017 , 96,	38
217	Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. 2017 , 7, 12383	84
216	Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. 2017 , 111, 143106	106
215	Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. 2017 , 96,	98
214	Trion-Species-Resolved Quantum Beats in MoSe. 2017 , 11, 11550-11558	23
213	Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. 2017 , 17, 5229-5237	187
212	The optical response of monolayer, few-layer and bulk tungsten disulfide. 2017 , 9, 13128-13141	66
211	Charged excitons in monolayer WSe2: Experiment and theory. 2017 , 96,	137
210	Excitation energy dependence of Raman spectra of few-layer WS2. 2017 , 3, 64-70	29
209	Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces. 2018 , 10, 10379-10387	66
208	Impact of environment on dynamics of exciton complexes in a WS 2 monolayer. <i>2D Materials</i> , 2018 , 5, 031007	26
207	Colloquium: Excitons in atomically thin transition metal dichalcogenides. 2018, 90,	766
206	Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators. 2018 , 18, 3138-3146	32
205	Quantum-Confined Stark Effect in a MoS Monolayer van der Waals Heterostructure. 2018 , 18, 1070-1074	38
204	Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors. 2018 , 18, 1751-1757	121

(2018-2018)

203	MoSe_{2}. 2018 , 120, 037401	79
202	Large Excitonic Reflectivity of Monolayer MoSe_{2} Encapsulated in Hexagonal Boron Nitride. 2018 , 120, 037402	117
201	Charge Versus Energy Transfer in Atomically Thin Graphene-Transition Metal Dichalcogenide van der Waals Heterostructures. 2018 , 8,	40
200	Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure. 2018 , 18, 1402-1409	32
199	Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides. 2018 , 9, 379-396	46
198	Atomic-scale defects and electronic properties of a transferred synthesized MoS monolayer. 2018 , 29, 305703	12
197	The Dielectric Impact of Layer Distances on Exciton and Trion Binding Energies in van der Waals Heterostructures. 2018 , 18, 2725-2732	71
196	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. 2018 , 47, 3129-3151	99
195	The influence of the environment on monolayer tungsten diselenide photoluminescence. 2018 , 15, 84-97	19
194	Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. 2018, 113, 191105	18
193	2d Quantum Light-Matter Interfaces. 2018 , 91-107	
192	Introduction: 2d-Based Quantum Technologies. 2018 , 1-30	
191	Deterministic Arrays of Single-Photon Sources. 2018 , 47-70	
190	Atomically-Thin Quantum Light Emitting Diodes. 2018 , 71-89	6
189	Dependence of band structure and exciton properties of encapsulated WSe2 monolayers on the hBN-layer thickness. 2018 , 98,	29
188	Room-Temperature Valley Polarization and Coherence in Transition Metal Dichalcogenide © raphene van der Waals Heterostructures. 2018 , 5, 5047-5054	23
187	Strain tuning of excitons in monolayer WSe2. 2018 , 98,	70
186	Deterministic coupling of site-controlled quantum emitters in monolayer WSe to plasmonic nanocavities. 2018 , 13, 1137-1142	105

185	Efficient generation of neutral and charged biexcitons in encapsulated WSe monolayers. 2018 , 9, 3718	80
184	Exciton States in Monolayer MoSe2 and MoTe2 Probed by Upconversion Spectroscopy. 2018 , 8,	37
183	Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. 2018 , 2,	267
182	Zeeman Splitting and Inverted Polarization of Biexciton Emission in Monolayer WS_{2}. 2018, 121, 057402	48
181	Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride. 2018 , 11, 6227-6236	7
180	Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides. 2018 , 47, 6845-6888	139
179	Observation of exciton-phonon coupling in MoSe2 monolayers. 2018 , 98,	65
178	Two-dimensional semiconductors in the regime of strong light-matter coupling. 2018 , 9, 2695	157
177	Impact of photodoping on inter- and intralayer exciton emission in a MoS2/MoSe2/MoS2 heterostructure. 2018 , 113, 062107	7
176	Interfacially Bound Exciton State in a Hybrid Structure of Monolayer WS and InGaN Quantum Dots. 2018 , 18, 5640-5645	21
175	Nano-imaging of intersubband transitions in van der Waals quantum wells. 2018 , 13, 1035-1041	45
174	Coupling Single Photons from Discrete Quantum Emitters in WSe to Lithographically Defined Plasmonic Slot Waveguides. 2018 , 18, 6812-6819	31
173	Observation of interlayer excitons in MoSe2 single crystals. 2018 , 97,	39
172	Dielectric disorder in two-dimensional materials. 2019 , 14, 832-837	125
171	Cavity-control of interlayer excitons in van der Waals heterostructures. 2019 , 10, 3697	30
170	Enhancing Photoluminescence and Mobilities in WS Monolayers with Oleic Acid Ligands. 2019 , 19, 6299-6307	48
169	Band evolution of two-dimensional transition metal dichalcogenides under electric fields. 2019 , 115, 083104	4
168	Dynamics of cleaning, passivating and doping monolayer MoS 2 by controlled laser irradiation. <i>2D Materials</i> , 2019 , 6, 045031	24

167	Excited-State Trions in Monolayer WS_{2}. 2019 , 123, 167401	32
166	Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. 2019 , 10, 4435	92
165	Effect of Dielectric Environment on Excitonic Dynamics in Monolayer WS2. 2019 , 6, 1901307	17
164	Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties. 2019 , 11, 43480-43487	23
163	Probing and Manipulating Valley Coherence of Dark Excitons in Monolayer WSe_{2}. 2019 , 123, 096803	26
162	Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. 2019 , 10, 4172	97
161	Magnetic Proximity Coupling of Quantum Emitters in WSe to van der Waals Ferromagnets. 2019 , 19, 7301-7308	12
160	Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. 2019 , 99,	48
159	Site-selectively generated photon emitters in monolayer MoS via local helium ion irradiation. 2019 , 10, 2755	80
158	Virtual Trions in the Photoluminescence of Monolayer Transition-Metal Dichalcogenides. 2019 , 122, 217401	
-)-	Virtual Mons in the Prototominescence of Monorayer Mansicion Metal Dichateogeniaes. 2015, 122, 217 101	16
157	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019 , 19, 4371-4379	90
157	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019 , 19, 4371-4379	90
157 156	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019 , 19, 4371-4379 Disorder in van der Waals heterostructures of 2D materials. 2019 , 18, 541-549 Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room	90
157 156 155	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019 , 19, 4371-4379 Disorder in van der Waals heterostructures of 2D materials. 2019 , 18, 541-549 Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe. 2019 , 19, 4083-4090	90 209 20
157 156 155	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019, 19, 4371-4379 Disorder in van der Waals heterostructures of 2D materials. 2019, 18, 541-549 Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe. 2019, 19, 4083-4090 Chemical and structural stability of 2D layered materials. 2D Materials, 2019, 6, 042001 5.9	90 209 20
157 156 155 154	Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. 2019, 19, 4371-4379 Disorder in van der Waals heterostructures of 2D materials. 2019, 18, 541-549 Spin States Protected from Intrinsic Electron-Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe. 2019, 19, 4083-4090 Chemical and structural stability of 2D layered materials. 2D Materials, 2019, 6, 042001 5-9 Optical orientation with linearly polarized light in transition metal dichalcogenides. 2019, 99,	90 209 20 43

149	Dynamical screening in monolayer transition-metal dichalcogenides and its manifestations in the exciton spectrum. 2019 , 31, 203001	27
148	Fundamental exciton linewidth broadening in monolayer transition metal dichalcogenides. 2019 , 99,	14
147	Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN. 2019 , 122, 067401	53
146	Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. 2019 , 14, 1930009	8
145	Excitonic magneto-optics in monolayer transition metal dichalcogenides: From nanoribbons to two-dimensional response. 2019 , 100,	3
144	Refractive Index Dispersion of Hexagonal Boron Nitride in the Visible and Near-Infrared. 2019 , 256, 1800417	29
143	Zeeman spectroscopy of excitons and hybridization of electronic states in few-layer WSe 2 , MoSe 2 and MoTe 2. <i>2D Materials</i> , 2019 , 6, 015010	11
142	Optical Properties and Light-Emission Device Applications of 2-D Layered Semiconductors. 2020 , 108, 676-703	8
141	Exciton-polaritons in multilayer WSe 2 in a planar microcavity. 2D Materials, 2020 , 7, 015006 5.9	10
140	High optical quality of MoS 2 monolayers grown by chemical vapor deposition. <i>2D Materials</i> , 2020 , 7, 015011	40
139	Negative effective excitonic diffusion in monolayer transition metal dichalcogenides. 2020 , 12, 356-363	16
138	Magnetic field mixing and splitting of bright and dark excitons in monolayer MoSe 2. <i>2D Materials</i> , 2020 , 7, 015017	24
137	Spatially Resolved Photogenerated Exciton and Charge Transport in Emerging Semiconductors. 2020 , 71, 1-30	44
136	Magneto-optical Kerr effect in spin split two-dimensional massive Dirac materials. <i>2D Materials</i> , 2020 , 7, 025011	10
135	Photoinduced trion absorption in monolayer WSe2. 2020 , 20, 272-276	2
134	Excitons in bent black phosphorus nanoribbons: multiple excitonic funnels. 2020 , 7, 100096	2
133	Excitons in strain-induced one-dimensional moir[potentials at transition metal dichalcogenide heterojunctions. 2020 , 19, 1068-1073	79
132	Valley depolarization in monolayer transition-metal dichalcogenides with zone-corner acoustic phonons. 2020 , 12, 22487-22494	2

(2020-2020)

	131	Substrate effect on the photoluminescence of chemical vapor deposition transferred monolayer WSe2. 2020 , 128, 043101		10	
	130	Reduced Inhomogeneous Broadening in Hexagonal Boron Nitride-Encapsulated MoTe2 Monolayers by Thermal Treatment. 2020 , 2, 2739-2744		2	
	129	Synthesis of Ultrahigh-Quality Monolayer Molybdenum Disulfide through In Situ Defect Healing with Thiol Molecules. 2020 , 16, e2003357		12	
	128	Excitonphonon interactions in nanocavity-integrated monolayer transition metal dichalcogenides. 2020 , 4,		4	
-	127	Encapsulation Narrows and Preserves the Excitonic Homogeneous Linewidth of Exfoliated Monolayer MoSe2. 2020 , 14,		11	
	126	Advances in Functional Nanomaterials Science. 2020 , 532, 2000015		3	
:	125	Theory of the Coherent Response of Magneto-Excitons and Magneto-Biexcitons in Monolayer Transition Metal Dichalcogenides. 2020 , 102,		6	
:	124	Ground and excited state exciton polarons in monolayer MoSe. 2020 , 153, 071101		10	
	123	Temporal Evolution of Low-Temperature Phonon Sidebands in Transition Metal Dichalcogenides. 2020 , 7, 2756-2764		9	
	122	Trion induced photoluminescence of a doped MoS monolayer. 2020 , 153, 044132		11	
	121	Atomistic defects as single-photon emitters in atomically thin MoS2. 2020, 117, 070501		27	
:	120	Ab-initio investigation of preferential triangular self-formation of oxide heterostructures of monolayer [Formula: see text]. 2020 , 10, 21737		Ο	
	119	Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. <i>2D Materials</i> , 2020 , 7, 035031	5.9	15	
:	118	Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. 2020 , 2, 2333-2338		2	
	117	High-Fidelity Transfer of Chemical Vapor Deposition Grown 2D Transition Metal Dichalcogenides via Substrate Decoupling and Polymer/Small Molecule Composite. 2020 , 14, 7370-7379		12	
	116	First-Order Magnetic Phase Transition of Mobile Electrons in Monolayer MoS_{2}. 2020 , 124, 187602		10	
	115	Breathing modes in few-layer MoTe2 activated by h-BN encapsulation. 2020 , 116, 191601		5	
	114	Electrically tunable topological transport of moir[polaritons. 2020 , 65, 1555-1562		6	

113	Hexagonal Boron Nitride As an Ideal Substrate for Carbon Nanotube Photonics. 2020, 7, 1773-1779	11
112	Microscopic model of the doping dependence of linewidths in monolayer transition metal dichalcogenides. 2020 , 152, 194705	8
111	Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. 2020 , 15, 283-288	38
110	Preparation of WS2PMMA composite films for optical applications. 2020 , 8, 10805-10815	6
109	Real-space light-reflection mapping of atomically thin WSe2 flakes revealing the gradient local strain. 2020 , 7, 035904	
108	Strained bilayer WSe2 with reduced exciton-phonon coupling. 2020 , 101,	12
107	Exciton diffusion in monolayer semiconductors with suppressed disorder. 2020 , 101,	44
106	Light-matter interaction in van der Waals hetero-structures. 2020 , 32, 333002	6
105	Localized Excitons in NbSe-MoSe Heterostructures. 2020 , 14, 8528-8538	6
104	Dark trions govern the temperature-dependent optical absorption and emission of doped atomically thin semiconductors. 2020 , 101,	21
103	Optical properties of semiconducting transition metal dichalcogenide materials. 2020, 57-75	1
102	Controlling Excitons in an Atomically Thin Membrane with a Mirror. 2020 , 124, 027401	36
101	Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. 2020 , 367, 903-906	123
100	Narrow Excitonic Lines and Large-Scale Homogeneity of Transition-Metal Dichalcogenide Monolayers Grown by Molecular Beam Epitaxy on Hexagonal Boron Nitride. 2020 , 20, 3058-3066	13
99	Synthesis of High-Quality Monolayer MoS by Direct Liquid Injection. 2020 , 12, 9580-9588	6
98	Near-Unity Light Absorption in a Monolayer WS Van der Waals Heterostructure Cavity. 2020 , 20, 3545-3552	22
97	Laser annealing towards high-performance monolayer MoS and WSe field effect transistors. 2020 , 31, 30LT02	3
96	Interplay of excitonic complexes in p-doped WSe2 monolayers. 2020 , 101,	4

(2021-2020)

95	Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. 2020 , 9, 56	55
94	Enhanced Exciton-Exciton Collisions in an Ultraflat Monolayer MoSe Prepared through Deterministic Flattening. 2021 , 15, 1370-1377	1
93	Conclusion and Outlook. 2021 , 229-253	
92	Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS van der Waals Heterodevices. 2021 , 21, 1040-1046	15
91	Entering a Two-Dimensional Materials World. 2021 , 17-59	
90	Structuring Possibilities. 2021 , 209-228	
89	Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. 2021 , 12, 871	10
88	Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS Devices. 2021 , 6, 4013-4021	2
87	Control of the exciton valley dynamics in atomically thin semiconductors by tailoring the environment. 2021 , 103,	3
86	Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure. 2021 , 22, 1-12	
85	Diffusivity Reveals Three Distinct Phases of Interlayer Excitons in MoSe_{2}/WSe_{2} Heterobilayers. 2021 , 126, 106804	18
84	Site-Controlled Quantum Emitters in Monolayer MoSe. 2021 , 21, 2376-2381	10
83	MoS2 Nanosheets with Narrowest Excitonic Line Widths Grown by Flow-Less Direct Heating of Bulk Powders: Implications for Sensing and Detection. 2021 , 4, 2583-2593	2
82	Biexcitons fine structure and non-equilibrium effects in transition metal dichalcogenides monolayers from first principles. 2021 , 4,	O
81	Valley relaxation of resident electrons and holes in a monolayer semiconductor: Dependence on carrier density and the role of substrate-induced disorder. 2021 , 5,	9
80	Observation of Strong Valley Magnetic Response in Monolayer Transition Metal Dichalcogenide Alloys of MoWSe and MoWSe/WS Heterostructures. 2021 , 15, 8397-8406	2
79	2D Rare Earth Material (EuOCl) with Ultra-Narrow Photoluminescence at Room Temperature. 2021 , 17, e2100137	7
78	Stabilization of Chemical-Vapor-Deposition-Grown WS Monolayers at Elevated Temperature with Hexagonal Boron Nitride Encapsulation. 2021 , 13, 31271-31278	O

77	Impurity-Induced Emission in Re-Doped WS Monolayers. 2021 , 21, 5293-5300	1
76	Tuning absorption and emission in monolayer semiconductors: a brief survey. 2021 , 22, 1-10	
75	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. 2021 , 5,	9
74	Local field effects in ultrafast lighthatter interaction measured by pump-probe spectroscopy of monolayer MoSe2. 2021 , 10, 2717-2728	3
73	Role of dark exciton states in the relaxation dynamics of bright 1s excitons in monolayer WSe2. 2021 , 119, 093101	0
7 ²	Charge-Transfer Effect and Enhanced Photoresponsivity of WS- and MoSe-Based Field Effect Transistors with EConjugated Polyelectrolyte. 2021 , 13, 40880-40890	4
71	Twisted Light-Enhanced Photovoltaic Effect. 2021 , 15, 14822-14829	1
70	2D Metal-Organic Complex Luminescent Crystals. 2021 , 31, 2106160	3
69	Refractive Index Modulation in Monolayer Molybdenum Diselenide. 2021, 21, 7602-7608	2
68	Giant photoluminescence enhancement in MoSe monolayers treated with oleic acid ligands. 2021 , 3, 4216-4225	2
67	Technological Realization of Polariton Systems. 2020 , 139-166	3
66	Environmental Electrometry with Luminescent Carbon Nanotubes. 2018 , 18, 4136-4140	14
65	Annealing effect on photoluminescence of two dimensional WSe2/BN heterostructure. 2020 , 117, 233103	2
64	Observation of intravalley phonon scattering of 2s excitons in MoSe2 and WSe2 monolayers. 2D Materials, 2020 , 7, 045008	5
63	Optical dispersion of valley-hybridised coherent excitons with momentum-dependent valley polarisation in monolayer semiconductor. <i>2D Materials</i> , 2021 , 8, 015009	7
62	Autoionization and Dressing of Excited Excitons by Free Carriers in Monolayer WSe_{2}. 2020 , 125, 267401	8
61	Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. 2017 , 1,	55
60	Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures. 2018 , 2,	60

59	Disorder-induced broadening of excitonic resonances in transition metal dichalcogenides. 2019 , 3,		1
58	Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. 2020 , 4,		12
57	Enhanced two-photon absorption and two-photon luminescence in monolayer MoS and WS by defect repairing. 2019 , 27, 13744-13753		17
56	Radially polarized light beams from spin-forbidden dark excitons and trions in monolayer WSe2. 2020 , 10, 1273		3
55	Fine structures of valley-polarized excitonic states in monolayer transitional metal dichalcogenides. 2020 , 9, 1811-1829		7
54	Excitons in strained and suspended monolayer WSe2. 2D Materials, 2022, 9, 015002	5.9	3
53	Impurity-Induced Robust Trionic Effect in Layered Violet Phosphorus. 2101538		3
52	Density-dependent excitonic properties and dynamics in 2D heterostructures consisting of boron nitride and monolayer or few-layer tungsten diselenide. 2018 ,		
51	Radiative lifetime of free excitons in hexagonal boron nitride. 2021 , 104,		1
50	Spectral asymmetry of phonon sideband luminescence in monolayer and bilayer WSe2. 2021 , 3,		3
49	Strong exciton-photon coupling in large area MoSe2 and WSe2 heterostructures fabricated from two-dimensional materials grown by chemical vapor deposition. <i>2D Materials</i> , 2021 , 8, 011002	5.9	4
48	Optical and dielectric properties of MoO3 nanosheets for van der Waals heterostructures. 2021 , 119, 223104		2
47	Dispersive coupling between MoSeland anintegrated zero-dimensional nanocavity.		O
46	Spatiotemporally Controlled Access to Photoluminescence Dark State of 2D Monolayer Semiconductor by FRAP Microscopy. 2107551		1
45	Interlayer Interactions in 1D Van der Waals Moir Superlattices. 2021 , e2103460		5
44	Making clean electrical contacts on 2D transition metal dichalcogenides.		15
43	Charge density wave activated excitons in TiSe2MoSe2 heterostructures. 2022 , 10, 011103		1
42	Quantum photonics with layered 2D materials.		8

Negative valley polarization in doped monolayer MoSe. **2021**,

40	Vibrational Properties in Highly Strained Hexagonal Boron Nitride Bubbles 2022,	2
39	Enhanced Light-Matter Interaction in Two-Dimensional Transition Metal Dichalcogenides 2021,	4
38	Optoelectronic Properties of MoS 2 in Proximity to Carrier Selective Metal Oxides. 2102226	1
37	Exciton and Phonon Radiative Linewidths in Monolayer Boron Nitride. 2022, 12,	О
36	Room-temperature Observation of Near-intrinsic Exciton Linewidth in Monolayer WS 2022 , e2108721	2
35	Dark-Exciton Driven Energy Funneling into Dielectric Inhomogeneities in Two-Dimensional Semiconductors 2022 ,	2
34	Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. 2022 , 16, 330-336	3
33	Automated system for the detection of 2D materials using digital image processing and deep learning. 2022 , 12, 1856	1
32	Many-Body Exciton and Intervalley Correlations in Heavily Electron-Doped WSe Monolayers 2021 ,	3
31	Free Trions with Near-Unity Quantum Yield in Monolayer MoSe 2021,	2
30	Dark exciton anti-funneling in atomically thin semiconductors. 2021 , 12, 7221	2
29	2D materials-enabled optical modulators: From visible to terahertz spectral range. 2022 , 9, 021302	2
28	Radiative pattern of intralayer and interlayer excitons in two-dimensional WS/WSe heterostructure 2022 , 12, 6939	1
27	From the synthesis of hBN crystals to their use as nanosheets in van der Waals heterostructures. 2D Materials, 5.9	O
26	Theory of Excitons in Atomically Thin Semiconductors: Tight-Binding Approach 2022 , 12,	
25	Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides.	3
24	Direct Patterning of Optoelectronic Nanostructures Using Encapsulated Layered Transition Metal Dichalcogenides 2022 ,	1

23	Stacking-dependent exciton multiplicity in WSe2 bilayers. 2022, 106,	1
22	Disentangling Exciton Linewidth Broadening Factors in Transition Metal Dichalcogenide Monolayer with Electron Energy Loss Spectroscopy. 2022 , 28, 1778-1779	
21	Substrate influence on transition metal dichalcogenide monolayer exciton absorption linewidth broadening. 2022 , 6,	О
20	Magneto-optical measurements of the negatively charged 2s exciton in WSe2. 2022, 106,	
19	Disorder of Excitons and Trions in Monolayer MoSe2.	1
18	Gate-Tunable Junctions within Monolayer MoS2WS2 Lateral Heterostructures.	O
17	Superacid Treatment on Transition Metal Dichalcogenides. 2022 , 3, 034002	1
16	Ultrafast Exciton and Trion Dynamics in High-Quality Encapsulated MoS 2 Monolayers.	O
15	On-demand generation of optically active defects in monolayer WS2 by a focused helium ion beam. 2022 , 121, 183101	О
14	Ultra-Narrow Linewidth Photo-Emitters in Polymorphic Selenium Nanoflakes. 2204302	O
13	High-Performance Broadband Faraday Rotation Spectroscopy of 2D Materials and Thin Magnetic Films. 2200885	0
12	Valley-polarized hyperbolic exciton polaritons in few-layer two-dimensional semiconductors at visible frequencies. 2022 , 106,	O
11	Exciton spectroscopy and unidirectional transport in MoSe2-WSe2 lateral heterostructures encapsulated in hexagonal boron nitride. 2022 , 6,	O
10	Transient Superdiffusion of Energetic Carriers in Transition Metal Dichalcogenides Visualized by Ultrafast Pump-Probe Microscopy. 2022 , 2022,	О
9	First-principles ultrafast exciton dynamics and time-domain spectroscopies: Dark-exciton mediated valley depolarization in monolayer WSe2. 2022 , 4,	0
8	Floquet engineering of strongly driven excitons in monolayer tungsten disulfide.	1
7	Threshold-like Superlinear Accumulation of Excitons in a Gated Monolayer Transition Metal Dichalcogenide.	О
6	Ion-gel-based light-emitting devices using transition metal dichalcogenides and hexagonal boron nitride heterostructures.	O

5	Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2023 , 10, 025027	1
4	Single-Photon Emission from Two-Dimensional Materials, to a Brighter Future. 2023 , 14, 3274-3284	O
3	Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. 2023 , 14,	О
2	Tailoring the dielectric screening in WS2graphene heterostructures. 2023, 7,	О
1	Near-Intrinsic Photo- and Electroluminescence from Single-Walled Carbon Nanotube Thin Films on BCB-Passivated Surfaces.	O