Copper indium gallium selenide based solar cells – a r

Energy and Environmental Science 10, 1306-1319 DOI: 10.1039/c7ee00826k

Citation Report

ARTICLE

#

1	CdTe _{1â^'<i>x</i>} S _{<i>x</i>} (<i>x</i> ⩽  0.05) thin films synthesiz solution deposition and annealing. Materials Research Express, 2017, 4, 115904.	ed by aqu	eous
2	Characteristics of an oxide/metal/oxide transparent conducting electrode fabricated with an intermediate Cu–Mo metal composite layer for application in efficient CIGS solar cell. RSC Advances, 2017, 7, 48113-48119.	1.7	23
3	Earth-Abundant CZTSSe Thin Film Solar Cells on Flexible Stainless Steel Foil Substrates. , 2017, , .		1
4	Investigations on the parameters limiting the performance of CdS/SnS solar cell. International Journal of Energy Research, 2018, 42, 1914-1920.	2.2	12
5	CICS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance. Solar Energy, 2018, 175, 16-24.	2.9	13
6	Bismuth doping on CuGaS2 thin films: structural and optical properties. MRS Communications, 2018, 8, 504-508.	0.8	9
7	Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil. Solar Energy, 2018, 162, 357-363.	2.9	29
8	Manufacture of photovoltaic cells with hybrid organic–inorganic bulk heterojunction. Materials and Manufacturing Processes, 2018, 33, 912-922.	2.7	5
9	Regulating the starting location of front-gradient enabled highly efficient Cu(In,Ga)Se ₂ solar cells <i>via</i> a facile thiol–amine solution approach. Journal of Materials Chemistry A, 2018, 6, 4095-4101.	5.2	23
10	Theoretical investigations on enhancement of photovoltaic efficiency of nanostructured CZTS/ZnS/ZnO based solar cell device. Journal of Materials Science: Materials in Electronics, 2018, 29, 7262-7272.	1.1	29
11	Tuning the Se Content in Cu ₂ ZnSn(S, Se) ₄ Absorber to Achieve 9.7% Solar Cell Efficiency from a Thiol/Amine-Based Solution Process. ACS Applied Energy Materials, 2018, 1, 594-601.	2.5	26
12	Electrical, structural, and topographical properties of direct current (DC) sputtered bilayer molybdenum thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 15671-15681.	1.1	8
13	A short review on the advancements in electroplating of CuInGaSe2 thin films. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	23
14	High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony. Applied Surface Science, 2018, 427, 1235-1241.	3.1	13
15	Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: A review. Solar Energy Materials and Solar Cells, 2018, 176, 49-68.	3.0	58
16	Green Atmospheric Aqueous Solution Deposition for High Performance Cu 2 ZnSn(S,Se) 4 Thin Film Solar Cells. Solar Rrl, 2018, 2, 1800233.	3.1	16

17	Cu(In,Ga)Se ₂ Films with Branched Nanorod Architectures Fabricated by Economic and Environmentally Friendly Pulse-Reverse Electrodeposition Route. ACS Sustainable Chemistry and Engineering, 2018, 6, 13787-13796.	3.2	8
18	N-Functionalized Graphene Quantum Dots with Ultrahigh Quantum Yield and Large Stokes Shift: Efficient Downconverters for CIGS Solar Cells. ACS Photonics, 2018, 5, 4637-4643.	3.2	37

2

#	Article	IF	CITATIONS
19	New insights on the chemistry of plasma-enhanced atomic layer deposition of indium oxysulfide thin films and their use as buffer layers in Cu(In,Ca)Se2 thin film solar cell. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 061510.	0.9	10
20	Modelling and Simulation of Photovoltaic Solar Cell using Silvaco TCAD and Matlab Software. , 2018, , .		6
21	Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite IGSe Tandem Solar Cells. Advanced Energy Materials, 2018, 8, 1801692.	10.2	17
22	Review on Substrate and Molybdenum Back Contact in CIGS Thin Film Solar Cell. International Journal of Photoenergy, 2018, 2018, 1-14.	1.4	43
23	Optimizing two and four-terminal CuGaSe2/CuInGaSe2 tandem solar cells for achieving high efficiencies. Optik, 2018, 175, 71-77.	1.4	9
24	Modelling of CZTS/ZnS/AZO solar cell for efficiency enhancement. , 2018, , .		4
25	Numerical modelling of CIGS/CdS solar cell. AIP Conference Proceedings, 2018, , .	0.3	1
26	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
27	Current perspectives in engineering of viable hybrid photocathodes for solar hydrogen generation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 023001.	0.7	5
28	Morphology and Photoelectric Characteristics of the Thin-Film Polycrystalline Structure SnO2-CdS/Cu(InGa)Se2-Ag. Applied Solar Energy (English Translation of Geliotekhnika), 2018, 54, 91-94.	0.2	2
29	Effect of Crystal Orientation and Conduction Band Grading of Absorber on Efficiency of Cu(In,Ga)Se ₂ Solar Cells Grown on Flexible Polyimide Foil at Low Temperature. Advanced Energy Materials, 2018, 8, 1801501.	10.2	25
30	Formation of MoO _x barrier layer under atmospheric based condition to control MoSe ₂ formation in CIGS thin film solar cell. Materials Technology, 2018, 33, 723-729.	1.5	4
31	Influence of potassium treatment on electronic properties of Cu(In _{1â^'} <i> _x) Tj ETQq0</i>	0 0 rgBT / 0.8	Overlock 10 6
51	Japanese Journal of Applied Physics, 2018, 57, 08RC13.	0.0	0
32	Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Advanced Materials, 2018, 30, e1801418.	11.1	377
33	Tris(ethylene diamine) nickel acetate as a promising precursor for hole transport layer in planar structured perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 6179-6186.	2.7	24
34	Theoretical Investigation of the Interaction of the CuInSe ₂ Absorber Material with Oxygen, Hydrogen, and Water. Journal of Physical Chemistry C, 2018, 122, 21202-21209.	1.5	8
35	Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process. Sustainable Energy and Fuels, 2018, 2, 1671-1685.	2.5	24
36	Formation mechanism and properties of nanorod-structured ZnO films prepared by pyrolysis of Zn acetate films. Vacuum, 2018, 155, 403-407.	1.6	3

		REPORT	
#	Article	IF	CITATIONS
37	A theoretical study on Sb2S3 solar cells: The path to overcome the efficiency barrier of 8%. Solar Energy Materials and Solar Cells, 2019, 201, 110123.	3.0	32
38	Evaluation of semiconducting p-type tin sulfide thin films for photodetector applications. Superlattices and Microstructures, 2019, 133, 106215.	1.4	17
39	Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4, 2147-2167.	8.8	161
40	Numerical modelling of graded bandgap CIGS solar cell for performance improvement. , 2019, , .		0
41	New Materials for Thin Film Solar Cells. , 0, , .		1
42	Fungal formation of selenium and tellurium nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 7241-7259.	1.7	77
43	Correlation between carrier recombination and valence band offset effect of graded Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110070.	3.0	27
44	Chalcogenide Materials and Derivatives for Photovoltaic Applications. Energy Technology, 2019, 7, 1900819.	1.8	53
45	Solar Cells Based on Cu(In, Ga)Se2 Thin-Film Layers. Applied Solar Energy (English Translation of) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50
46	Germanium Incorporation in Cu ₂ ZnSnS ₄ and Formation of a Sn–Ge Gradient. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900492.	0.8	17
47	Machine Learning (ML)â€Assisted Design and Fabrication for Solar Cells. Energy and Environmental Materials, 2019, 2, 280-291.	7.3	43
48	The effects of preheating temperature on CulnGaSe2/CdS interface and the device performances. Solar Energy, 2019, 194, 11-17.	2.9	13
49	Homoleptic Group 13 Trimethylsilylchalcogenolato Metalates [M(ESiMe ₃) ₄] ^{â^'} (M = Ga, In; E = S, Se): Metastable Precursors for Low-Temperature Syntheses of Chalcogenide-Based Materials. Inorganic Chemistry, 2019, 58, 15385-15392.	1.9	9
50	Tunable optoelectronic properties of radio frequency sputter-deposited Sb2Se3 thin films: Role of growth angle and thickness. Solar Energy, 2019, 194, 716-723.	2.9	4

51	Recent Progress in Carbon-Based Buffer Layers for Polymer Solar Cells. Polymers, 2019, 11, 1858.	2.0	14
52	Toward clean production of plastic perovskite solar cell: Composition-tailored perovskite absorber made from aqueous lead nitrate precursor. Nano Energy, 2019, 65, 104036.	8.2	15
53	Positron annihilation apectroscopy on colloidal CuIn1-xGaxSe2 semiconductor sanocrystals. Journal of Physics: Conference Series, 2019, 1253, 012015.	0.3	1

54 Structure and Electronic Properties of TiO2 Nanowires of Different Geometrical Shapes: An Abinitio Study. , 2019, , .

#	Article	IF	CITATIONS
55	Electronic Structure and Optical Properties of Gallium-Doped Hybrid Organic–Inorganic Lead Perovskites from First-Principles Calculations and Spectroscopic Limited Maximum Efficiencies. Journal of Physical Chemistry C, 2019, 123, 23323-23333.	1.5	15
56	Advances in solar photovoltaics: Technology review and patent trends. Renewable and Sustainable Energy Reviews, 2019, 115, 109383.	8.2	126
57	Novel Cu2BaSn(S,Se)4 thin film fabricated by solution process and its application in solar cells. Superlattices and Microstructures, 2019, 135, 106243.	1.4	4
58	Powder aerosol deposition method— novel applications in the field of sensing and energy technology. Functional Materials Letters, 2019, 12, 1930005.	0.7	38
59	Effects of substrate orientation and solution movement in chemical bath deposition on Zn(O,S) buffer layer and Cu(In,Ga)Se2 thin film solar cells. Nano Energy, 2019, 58, 427-436.	8.2	33
60	Gallium selenide clusters generated via laser desorption ionisation quadrupole ion trap timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 719-726.	0.7	2
61	Effects of compression and controlled selenization on powder-fabricated Cu(In,Ga)Se2 thin films. Applied Surface Science, 2019, 475, 158-161.	3.1	5
62	Segregation of point defects at the CuInSe2(001)/GaAs(001) interface. Solid State Communications, 2019, 299, 113652.	0.9	1
63	Detailed-balance analysis of Yb ³⁺ :CsPb(Cl _{1â^'x} Br _x) ₃ quantum-cutting layers for high-efficiency photovoltaics under real-world conditions. Energy and Environmental Science, 2019, 12, 2486-2495.	15.6	39
64	Efficient Polymeric Donor for Both Visible and Near-Infrared-Absorbing Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 4284-4291. Evidence of Limiting Effects of Fluctuating Potentials on <mml:math< td=""><td>2.5</td><td>6</td></mml:math<>	2.5	6
65	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mi>V</mml:mi><mml:mi>OC</mml:mi></mml:msub> of <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>Cu</mml:mi><mml:mo< td=""><td></td><td></td></mml:mo<></mml:math>		

			0
#	ARTICLE Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental	IF	CITATIONS
73	Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	6.6	193
74	Electrical bistability and memory switching phenomenon in Cu2FeSnS4 thin films: role of p-n junction. Journal of Solid State Electrochemistry, 2019, 23, 1307-1314.	1.2	18
77	Accessing copper-tin-sulfide nanostructures from diorganotin(IV) and copper(I) 2-pyrazinyl thiolates. Journal of Organometallic Chemistry, 2019, 887, 24-31.	0.8	12
78	Role of surface microstructure of Mo back contact on alkali atom diffusion and Ga grading in Cu(In,Ga)Se ₂ thin film solar cells. Energy Science and Engineering, 2019, 7, 754-763.	1.9	10
79	Improving CIGS thin film by evaporation of CIGS nanoparticles without phase change. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11
80	Advances in Sustainable Energy. Lecture Notes in Energy, 2019, , .	0.2	4
81	Doubleâ€Pulse Electrodeposition of CuGaS ₂ Photovoltaic Thin Film. ChemElectroChem, 2019, 6, 2998-3001.	1.7	6
82	Solar Energy, the Future Ahead. Lecture Notes in Energy, 2019, , 113-132.	0.2	3
83	Facile synthesis of sulfide-based chalcogenide as hole-transporting materials for cost-effective efficient perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 6868-6875.	1.1	28
84	Cross-characterization methods to obtain an "absolute―quantification of Cu(In,Ga)Se2 in-depth and at the surface. , 2019, , .		0
85	Simulation of CIGS based solar cells with SnO2 window layer using SCAPS-1D. , 2019, , .		0
86	Extrinsic Doping of Amine-Thiol Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin Film Photovoltaics. , 2019, , .		1
87	First Principles Investigation of Anomalous Pressure-Dependent Thermal Conductivity of Chalcopyrites. Materials, 2019, 12, 3491.	1.3	8
88	A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells. RSC Advances, 2019, 9, 30112-30124.	1.7	24
89	Influence of bromide content on iodide migration in inverted MAPb(I _{1â^'x} Br _x 3 perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 22604-22614.	5.2	42
90	Effects of Ammoniaâ€Induced Surface Modification of Cu(In,Ga)Se ₂ on Highâ€Efficiency Zn(O,S)â€Based Cu(In,Ga)Se ₂ Solar Cells. Solar Rrl, 2019, 3, 1800254.	3.1	29
91	Improvement in the performance of CIGS solar cells by introducing GaN nanowires on the absorber layer. Journal of Alloys and Compounds, 2019, 779, 643-647.	2.8	9
92	IoT Based Framework: Mathematical Modelling and Analysis of Dust Impact on Solar Panels. 3D Research, 2019, 10, 1.	1.8	7

ARTICLE IF CITATIONS # Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor 93 3.1 21 Cu2ZnSnS4 and Mo. Applied Surface Science, 2019, 471, 277-288. Copper Chalcopyrites for Solar Energy Applications. Transactions of the Indian Institute of Metals, 94 2019, 72, 271-288. Structural, morphological and optical properties of sprayed Cu2ZnSnS4 thin films by varying the 95 1.6 14 molar concentration of Zn & amp; Sn. Vacuum, 2019, 159, 341-345. Fabrication of high-performance F and Al co-doped ZnO transparent conductive films for use in 96 3.0 perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 190, 6-11. Flexible Perowskitâ€Solarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 97 1.6 27 4512-4530. Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie -290 International Edition, 2019, 58, 4466-4483. Superstructural Ordering in Hexagonal CuInSe₂ Nanoparticles. Chemistry of Materials, 99 3.2 20 2019, 31, 260-267. A Review on Reducing Grain Boundaries and Morphological Improvement of Perovskite Solar Cells 100 4.6 56 from Methodology and Materialâ€Based Perspectives. Small Methods, 2020, 4, 1900569. Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Solar 101 3.1 119 Rrl, 2020, 4, 1900257. A Short Review on Interface Engineering of Perovskite Solar Cells: A Selfâ€Assembled Monolayer and Its 3.1 Roles. Solar Rrl, 2020, 4, 1900251. Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 103 17 1.5 013002. Diketopyrrolopyrrole/perylene-diimide and thiophene based D- $\hat{I}\in A$ low bandgap polymer sensitizers for 104 application in dye sensitized solar cells. Dyes and Pigments, 2020, 174, 108032. Hybrid III-V/SiGe solar cells grown on Si substrates through reverse graded buffers. Solar Energy 105 3.0 13 Materials and Solar Cells, 2020, 205, 110246. A nanopillar-structured perovskite-based efficient semitransparent solar module for 5.2 39 power-generating window applications. Journal of Materials Chemistry A, 2020, 8, 1457-1468. Role of growth temperature in photovoltaic absorber CuSbSe2 deposition through e-beam 107 17 1.9 evaporation. Materials Science in Semiconductor Processing, 2020, 108, 104874. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy, 2020, 69, 104438. Novel inorganic electron transport layers for planar perovskite solar cells: Progress and 109 8.2 83 prospective. Nano Energy, 2020, 68, 104289. Boosting Photocurrent via Heating BiFeO₃ Materials for Enhanced Selfâ€Powered UV Photodetectors. Advanced Functional Materials, 2020, 30, 1906232.

#	Article	IF	CITATIONS
111	Solution-Processed Zn _{<i>x</i>} Cd _{1–<i>x</i>} S Buffer Layers for Vapor Transport-Deposited SnS Thin-Film Solar Cells: Achieving High Open-Circuit Voltage. ACS Applied Materials & Interfaces, 2020, 12, 7001-7009.	4.0	24
112	Adaptation of Cu(In, Ga)Se ₂ photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries. Sustainable Energy and Fuels, 2020, 4, 1135-1142.	2.5	14
113	Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 2020, 110, 100619.	16.0	270
114	Trivalent copper and indium heterometallic complex with dithiocarbamate and iodide ligands. Journal of Molecular Structure, 2020, 1204, 127478.	1.8	6
115	Photo-enhanced supercapacitive behaviour of photoactive Cu2FeSnS4 (CFTS) nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 752-761.	1.1	14
116	Thin film solar cell efficiency enhancement using a gradient doping absorbent layer. Optical Materials, 2020, 108, 110443.	1.7	6
117	A review on atomic layer deposited buffer layers for Cu(In,Ga)Se2 (CIGS) thin film solar cells: Past, present, and future. Solar Energy, 2020, 209, 515-537.	2.9	26
118	Recent Progress in Interconnection Layer for Hybrid Photovoltaic Tandems. Advanced Materials, 2020, 32, 2002196.	11.1	20
119	Size-controlling of Cu2ZnSnS4 nanoparticles: Effects of stabilizing/reducing agents on material properties. Results in Physics, 2020, 19, 103407.	2.0	6
120	Preparation of a-IZO thin films by RF magnetron sputtering for Cu (In, Ga) Se2 solar cells. Journal of Physics: Conference Series, 2020, 1549, 042036.	0.3	1
121	Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy, 2020, 207, 1146-1157.	2.9	106
122	Low-Dimensional Hybrid Indium/Antimony Halide Perovskites: Supramolecular Assembly and Electronic Properties. Journal of Physical Chemistry C, 2020, 124, 25686-25700.	1.5	23
123	Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 2020, 120, 9835-9950.	23.0	248
124	Over 11 % efficient eco-friendly kesterite solar cell: Effects of S-enriched surface of Cu2ZnSn(S,Se)4 absorber and band gap controlled (Zn,Sn)O buffer. Nano Energy, 2020, 78, 105206.	8.2	43
125	Synthesis and Characterization of Cerium Oxide Impregnated Titanium Oxide Photoanodes for Efficient Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 1365-1370.	1.5	8
126	Temperature dependence of CIGS and perovskite solar cell performance: an overview. SN Applied Sciences, 2020, 2, 1.	1.5	26
127	Optimization of Back Contact Grid Size in Al ₂ O ₃ -Rear-Passivated Ultrathin CIGS PV Cells by 2-D Simulations. IEEE Journal of Photovoltaics, 2020, 10, 1908-1917.	1.5	24
128	SnxSy MSELD stack thin films: Processing, characteristics and devices for photonic applications. Solar Energy, 2020, 211, 810-821.	2.9	3

		CITATION REPORT	
#	Article	IF	CITATIONS
129	ZnO Films Obtained by Reactive Magnetron Sputtering: Microstructure, Electrical, and Optical Characteristics. Applied Solar Energy (English Translation of Geliotekhnika), 2020, 56, 186-191.	0.2	0
130	Light Reflection Loss Reduction by Nano-Structured Gratings for Highly Efficient Next-Generation GaAs Solar Cells. Energies, 2020, 13, 4198.	1.6	7
131	2D Nanomaterial-Based Surface Plasmon Resonance Sensors for Biosensing Applications. Micromachines, 2020, 11, 779.	1.4	74
132	<i>In silico</i> investigation of Cu(In,Ga)Se ₂ -based solar cells. Physical Chemistry Chemical Physics, 2020, 22, 26682-26701.	1.3	3
133	Morphological–Electrical Property Relation in Cu(In,Ga)(S,Se) ₂ Solar Cells: Significa of Crystal Grain Growth and Band Grading by Potassium Treatment. Small, 2020, 16, e2003865.	ance 5.2	12
134	Numerical modelling of the performance-limiting factors in CZGSe solar cells. Journal Physics D: Applied Physics, 2020, 53, 385102.	1.3	7
135	Patterning GaSe by High-Powered Laser Beams. ACS Omega, 2020, 5, 10183-10190.	1.6	6
136	Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells. Journal of Materials Chemistry A, 2020, 8, 10625-10669.	5.2	162
137	Solution Processed Cu(In,Ga)(S,Se) ₂ Solar Cells with 15.25% Efficiency by Surface Sulfurization. ACS Applied Energy Materials, 2020, 3, 6785-6792.	2.5	28
138	ZnxSn1-xS thin films: A study on its tunable opto-electrical properties for application towards a hig efficient photodetector. Solar Energy, 2020, 206, 479-486.	gh 2.9	6
139	Phase separation in wurtzite CulnxGa1â^'xS2 nanoparticles. Journal of Materials Science, 2020, 55 11841-11855.	, 1.7	6
140	Large Photoresponsivity in the Amorphousâ€TiO ₂ /SrRuO ₃ Heterostruct Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000273.	ure. 1.2	3
141	Effects of Annealing on Characteristics of Cu2ZnSnSe4/CH3NH3PbI3/ZnS/IZO Nanostructures for Enhanced Photovoltaic Solar Cells. Nanomaterials, 2020, 10, 521.	1.9	13
142	Enhancement of Cu(In,Ga)Se ₂ solar cells efficiency by controlling the formation of Cu-deficient layer. Japanese Journal of Applied Physics, 2020, 59, 041003.	0.8	15
143	Analysis of moisture-induced degradation of thin-film photovoltaic module. Solar Energy Materials and Solar Cells, 2020, 210, 110488.	3.0	8
144	Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells. Journal of Energy Chemistry, 2020, 50, 9-15.	7.1	46
145	A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020, 2 227-246.	01, 2.9	243
146	<i>In situ</i> study of the film formation mechanism of organic–inorganic hybrid perovskite sola cells: controlling the solvate phase using an additive system. Journal of Materials Chemistry A, 202 8, 7695-7703.	ar O, 5.2	29

#	Article	IF	CITATIONS
147	Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. Journal of Materials Chemistry C, 2020, 8, 5873-5881.	2.7	9
148	Over 6% Efficient Cu(In,Ga)Se ₂ Solar Cell Screen-Printed from Oxides on Fluorine-Doped Tin Oxide. ACS Applied Energy Materials, 2020, 3, 3120-3126.	2.5	13
149	Successes and Opportunities for Discovery of Metal Oxide Photoanodes for Solar Fuels Generators. ACS Energy Letters, 2020, 5, 1413-1421.	8.8	30
150	Accurate Ab Initio Calculations on Various PV-Based Materials: Which Functional to Be Used?. Journal of Physical Chemistry C, 2020, 124, 8467-8478.	1.5	15
151	Renewable energies driven electrochemical wastewater/soil decontamination technologies: A critical review of fundamental concepts and applications. Applied Catalysis B: Environmental, 2020, 270, 118857.	10.8	196
152	Photovoltaic Review of all Generations: Environmental Impact and Its Market Potential. Transactions on Electrical and Electronic Materials, 2020, 21, 456-476.	1.0	30
153	Luminescence properties of pulsed laser deposited CuIn _x Ga _{1â^'x} Se ₂ films. Journal of Physics Communications, 2020, 4, 045001.	0.5	2
154	Recent Progress on Cu 2 BaSn(S x Se 1– x) 4 : From Material to Solar Cell Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000060.	0.8	4
155	Flexible and Semiâ€Transparent Ultraâ€Thin CICSe Solar Cells Prepared on Ultraâ€Thin Glass Substrate: A Key to Flexible Bifacial Photovoltaic Applications. Advanced Functional Materials, 2020, 30, 2001775.	7.8	29
156	Assessing the roles of Cu- and Ag-deficient layers in chalcopyrite-based solar cells through first principles calculations. Journal of Applied Physics, 2020, 127, .	1.1	23
157	High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy. ACS Applied Materials & Interfaces, 2020, 12, 12717-12726.	4.0	79
158	Studies on the solvent extraction of indium (III) from aqueous chloride medium using Cyphos IL 104. Materials Today: Proceedings, 2020, 30, 258-261.	0.9	4
159	Microstructural investigation of inkjet printed Cu(In,Ga)Se2 thin film solar cell with improved efficiency. Journal of Alloys and Compounds, 2020, 827, 154295.	2.8	17
160	Surface Engineering of Low-Temperature Processed Mesoporous TiO ₂ via Oxygen Plasma for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12648-12655.	4.0	33
161	Investigation of physical properties of F-and-Ga co-doped ZnO thin films grown by RF magnetron sputtering for perovskite solar cells applications. Materials Science in Semiconductor Processing, 2020, 112, 105016.	1.9	21
162	An affordable method to produce CuInS2 â€~mechano-targets' for film deposition. Semiconductor Science and Technology, 2020, 35, 045026.	1.0	8
164	Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 2020, 392, 122297.	6.5	82
165	Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 2020, 24, 303-320.	2.4	41

10

#	Article	IF	CITATIONS
166	Organic tandem solar cells with 18.6% efficiency. Solar Energy, 2020, 198, 160-166.	2.9	78
167	On the effect of structural disorders on the Urbach's tails of ternary chalcopyrite semiconductors and related ordered defect compounds. Journal of Applied Physics, 2020, 127, .	1.1	11
168	DC Magnetron-Sputtered Mo Thin Films with High Adhesion, Conductivity and Reflectance. Journal of Electronic Materials, 2020, 49, 4221-4230.	1.0	11
169	Enargite Cu ₃ PS ₄ : A Cu–Sâ€Based Thermoelectric Material with a Wurtziteâ€Derivative Structure. Advanced Functional Materials, 2020, 30, 2000973.	7.8	25
170	Characterization of lattice parameters gradient of Cu(In1-Ga)Se2 absorbing layer in thin-film solar cell by glancing incidence X-ray diffraction technique. Journal of Materials Science and Technology, 2020, 51, 193-201.	5.6	9
171	New approach for an industrial low-temperature roll-to-roll CI(G)Se hybrid sputter coevaporation deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033201.	0.9	10
172	Formation of Ga double grading in submicron Cu(In,Ga)Se ₂ solar cells by pre-depositing a CuGaSe ₂ layer. Journal of Materials Chemistry A, 2020, 8, 9760-9767.	5.2	8
173	Robust FeOOH/BiVO ₄ /Cu(In, Ga)Se ₂ tandem structure for solar-powered biocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 8496-8502.	5.2	28
174	Effects of KF and RbF treatments on Cu(In,Ga)Se2-based solar cells: A combined photoelectron spectroscopy and DFT study. Applied Surface Science, 2021, 538, 148085.	3.1	7
175	Investigations of the structural, optoelectronic and band alignment properties of Cu2ZnSnS4 prepared by hot-injection method towards low-cost photovoltaic applications. Journal of Alloys and Compounds, 2021, 854, 157093.	2.8	23
176	Study of CuSbSe2 thin films grown by pulsed laser deposition from bulk source material. Materials Science in Semiconductor Processing, 2021, 121, 105420.	1.9	11
177	Photoelectrochemical properties of Cu-Ga-Se photocathodes with compositions ranging from CuGaSe2 to CuGa3Se5. Electrochimica Acta, 2021, 367, 137183.	2.6	6
178	Curvature effects of electron-donating polymers on the device performance of non-fullerene organic solar cells. Journal of Power Sources, 2021, 482, 229045.	4.0	12
179	Morphology and phase-controlled growth of CuInS2 nanoparticles through polyol based heating up synthesis approach. Materials Science in Semiconductor Processing, 2021, 121, 105401.	1.9	17
180	Hydrothermal synthesis of tetragonal and wurtzite Cu2MnSnS4 nanostructures for multiple applications: Influence of different sulfur reactants on growth and properties. Materials Science in Semiconductor Processing, 2021, 121, 105438.	1.9	18
181	A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008621.	7.8	143
182	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	3.1	19
183	Rear interface engineering of kesterite Cu ₂ ZnSnSe ₄ solar cells by adding CuGaSe ₂ thin layers. Progress in Photovoltaics: Research and Applications, 2021, 29, 334-343.	4.4	11

#	Article	IF	CITATIONS
184	Controllable Formation of Ordered Vacancy Compound for High Efficiency Solution Processed Cu(In,Ga)Se ₂ Solar Cells. Advanced Functional Materials, 2021, 31, 2007928.	7.8	52
185	Tuning Ga Grading in Selenized Cu(In,Ga)Se ₂ Solar Cells by Formation of Ordered Vacancy Compound. Solar Rrl, 2021, 5, 2000626.	3.1	6
186	Unveiling the impact of Cu content on the physical properties and photovoltaic performance of solutionâ€processed Cu(In,Ga)Se ₂ solar cell absorber. International Journal of Energy Research, 2021, 45, 6966-6984.	2.2	5
187	Polarization-enhanced photovoltaic response and mechanisms in Ni-doped (Bi0.93Gd0.07)FeO3 ceramics for self-powered photodetector. Journal of the European Ceramic Society, 2021, 41, 1934-1944.	2.8	16
188	Low cost hot injection synthesis of wurtzite Cu2ZnSnS4 nanocrystals. Materials Today: Proceedings, 2021, 38, 1229-1232.	0.9	1
189	Investigation of Zn/Sn ratio for improving the material quality of CZTS thin films with the reduction of Cu2-xS secondary phase. Journal of Alloys and Compounds, 2021, 853, 157237.	2.8	15
190	Solar Energy Harvesting through Photovoltaic and Photoelectrochemical Means from Appositely Prepared CuInGaSe2 Absorbers on Flexible Substrates by a Low-Cost and Industrially Benign Pulse Electrodeposition Technique. Industrial & Engineering Chemistry Research, 2021, 60, 2197-2205.	1.8	2
191	Bilayer CIGS-based solar cell device for enhanced performance: a numerical approach. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	19
192	Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.	11.1	91
193	Green Synthesis of Selenium and Tellurium Nanoparticles: Current Trends, Biological Properties and Biomedical Applications. International Journal of Molecular Sciences, 2021, 22, 989.	1.8	88
194	Challenges for the future of tandem photovoltaics on the path to terawatt levels: a technology review. Energy and Environmental Science, 2021, 14, 3840-3871.	15.6	32
195	Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 15492-15502.	1.3	6
196	Optimizing kesterite solar cells from Cu ₂ ZnSnS ₄ to Cu ₂ CdGe(S,Se) ₄ . Journal of Materials Chemistry A, 2021, 9, 9882-9897.	5.2	18
197	Investigation on effects of precursor pre-heat treatments on CIGS formation using spin-coated CIG precursor. Journal of Materials Science: Materials in Electronics, 2021, 32, 1521-1527.	1.1	3
198	Alkali Dispersion in (Ag,Cu)(In,Ga)Se ₂ Thin Film Solar Cells—Insight from Theory and Experiment. ACS Applied Materials & Interfaces, 2021, 13, 7188-7199.	4.0	22
199	Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems. Light: Science and Applications, 2021, 10, 28.	7.7	53
200	Present Status of Solutionâ€Processing Routes for Cu(In,Ga)(S,Se) ₂ Solar Cell Absorbers. Advanced Energy Materials, 2021, 11, 2003743.	10.2	57
201	Recovery of gallium from yellow phosphorus flue dust by vacuum carbothermal reduction. Journal of Cleaner Production, 2021, 284, 124706.	4.6	14

#	Article		CITATIONS
202	Chalcogenidoâ€Ðimethylgallates and â€Indates DMPyr 2 [Me 2 M(μ 2 â^'E)] 2 (M=Ga, In; E=S, Se): Building Blocks for Higher and Lower Order Chalcogenidoindates. ChemistryOpen, 2021, 10, 83-91.		0
203	Identification of Excitons and Biexcitons in Sb 2 Se 3 under High Photoluminescence Excitation Density. Advanced Optical Materials, 2021, 9, 2100107.		4
204	Sputtered Ag-alloyed Cu(In, Ga)(Se, S)2 solar cells by sequential process. Solar Energy, 2021, 217, 70-77.	2.9	5
205	Photochemical Conversion of Ethanolamine-Zn ²⁺ Complex Gel under Vacuum Ultraviolet Irradiation Associated with Color-Tunable Photoluminescence. Journal of Physical Chemistry C, 2021, 125, 5417-5424.	1.5	5
206	Hot-spot generation model using electrical and thermal equivalent circuits for a copper indium gallium selenide photovoltaic module. Solar Energy, 2021, 216, 377-385.	2.9	10
207	Novel cost-effective approach to produce nano-sized contact openings in an aluminum oxide passivation layer up to 30 nm thick for CIGS solar cells. Journal Physics D: Applied Physics, 2021, 54, 234004.	1.3	4
208	Graded band gap structure of kesterite material using bilayer of CZTS and CZTSe for enhanced performance: A numerical approach. Solar Energy, 2021, 216, 601-609.	2.9	22
209	Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells via a Heterogeneous-Formation-Induced Benign p–n Junction Interface. ACS Applied Materials & Interfaces, 2021, 13, 13289-13300.	4.0	12
210	Compositional effect of antimony on physical properties of quaternary copper antimony tin sulfide nanoparticles. Solid State Communications, 2021, 326, 114175.	0.9	4
211	Interface Engineering of Cu(In,Ga)Se ₂ Solar Cells by Optimizing Cd- and Zn-Chalcogenide Alloys as the Buffer Layer. ACS Applied Materials & Interfaces, 2021, 13, 15237-15245.	4.0	13
212	Thioglycolic acid assisted hydrothermal growth of SnS 2D nanosheets as catalysts for photodegradation of industrial dyes. Nanotechnology, 2021, 32, 245706.	1.3	12
213	A spectrum deconvolution method based on grey relational analysis. Results in Physics, 2021, 23, 104031.	2.0	4
214	Enhancing Surface Properties for Electrodeposited Cu(In,Ga)Se ₂ Films by (NH ₄) ₂ S Solution at Room Temperature. ACS Applied Energy Materials, 2021, 4, 3822-3831.	2.5	7
215	Large-Scale Synthesis of Semiconducting Cu(In,Ga)Se2 Nanoparticles for Screen Printing Application. Nanomaterials, 2021, 11, 1148.	1.9	10
216	Wide Bandgap Sb ₂ S ₃ Solar Cells. Advanced Functional Materials, 2021, 31, 2100265.	7.8	86
217	Solution-processed near-infrared Cu(In,Ga)(S,Se)2 photodetectors with enhanced chalcopyrite crystallization and bandgap grading structure via potassium incorporation. Scientific Reports, 2021, 11, 7820.	1.6	12
218	Structural and Electrochemical Analysis of CIGS: Cr Crystalline Nanopowders and Thin Films Deposited onto ITO Substrates. Nanomaterials, 2021, 11, 1093.	1.9	5
219	Sodium control in Ultrathin Cu(In,Ga)Se2 solar cells on transparent back contact for efficiencies beyond 12%. Solar Energy Materials and Solar Cells, 2021, 223, 110969.	3.0	18

#	Article	IF	CITATIONS
220	Unraveling the cause of degradation in Cu(In,Ga)Se ₂ photovoltaics under potential induced degradation. Nano Select, 2022, 3, 157-164.	1.9	3
221	Novel symmetrical bifacial flexible CZTSSe thin film solar cells for indoor photovoltaic applications. Nature Communications, 2021, 12, 3107.	5.8	49
222	Cationic substitutions in sphalerite from the Porgera mine, Papua New Guinea. Canadian Mineralogist, 2021, 59, 573-587.	0.3	1
223	Structure engineering of solution-processed precursor films for low temperature fabrication of Culn(S,Se)2 solar cells. Solar Energy, 2021, 220, 796-801.	2.9	3
224	Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4. Materials, 2021, 14, 3457.	1.3	5
225	Conduction Band Energy‣evel Engineering for Improving Openâ€Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells. Advanced Science, 2021, 8, e2100868.	5.6	22
226	ZnO compact layers used in third-generation photovoltaic devices: a review. Journal of Materials Science, 2021, 56, 15538-15571.	1.7	13
227	Temperature coefficient characterization of CICSSe solar cells with layer modifications. Solar Energy Materials and Solar Cells, 2021, 225, 111059.	3.0	4
228	Nickel Oxide for Perovskite Photovoltaic Cells. Advanced Photonics Research, 2021, 2, 2000178.	1.7	25
229	Recent advances and challenges in solar photovoltaic and energy storage materials: future directions in Indian perspective. JPhys Energy, 2021, 3, 034018.	2.3	10
230	Effect of MoS2 interlayer on performances of copper-barium-tin-sulfur thin film solar cells via theoretical simulation. Solar Energy, 2021, 223, 384-397.	2.9	15
231	A systematic study of how annealing conditions lead to the application-based microstructural, crystallographic, morphological, and optical features of spin-coated CdS thin-films. Optical Materials, 2021, 117, 111136.	1.7	7
232	Novel Electrodeposition Method for Cu-In-Cd-Ga Sequential Separation from Waste Solar Cell: Mechanism, Application, and Environmental Impact Assessment. Environmental Science & Technology, 2021, 55, 10724-10733.	4.6	14
234	Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 22535-22547.	1.1	14
235	Optical Properties and Electronic Structure of Copper Zinc Sulfide Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 17890-17896.	1.5	3
236	Optimization of Cu(In, Ga)Se2 (CIGSe) thin film solar cells parameters through numerical simulation and experimental study. Solar Energy, 2021, 224, 298-308.	2.9	12
237	Amorphous Zn(O,Se) buffer layer for Cu(In,Ga)Se2 thin film solar cells. Materials Science in Semiconductor Processing, 2021, 132, 105862.	1.9	1
238	Interface passivation engineering for hybrid perovskite solar cells. Materials Reports Energy, 2021, 1, 100060.	1.7	19

#	Article	IF	CITATIONS
239	Effective additive for enhancing the performance of Sb2S3 planar thin film solar cells. Journal of Materiomics, 2021, 7, 1074-1082.	2.8	10
240	3â€Ð Modeling of Ultrathin Solar Cells with Nanostructured Dielectric Passivation: Case Study of Chalcogenide Solar Cells. Advanced Theory and Simulations, 2021, 4, 2100191.	1.3	4
241	Eco-friendly and cost-efficient inks for screen-printed fabrication of copper indium gallium diselenide photoabsorber thin films. Journal of Colloid and Interface Science, 2021, 598, 388-397.	5.0	13
242	A review of primary technologies of thin-film solar cells. Engineering Research Express, 2021, 3, 032001.	0.8	42
243	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
244	MSELD SnS1â^'xSex alloy thin films towards efficient structural and bandgap engineering for photonic devices. Journal of Materials Research, 2021, 36, 3506-3518.	1.2	3
245	Optoelectronic properties of solar cell materials based on copper-zinc-tin-sulfide Cu2ZnSn(SxTe1-x)4 alloys for photovoltaic device applications. Solar Energy, 2021, 225, 851-862.	2.9	1
246	Structural geometry, electronic structure, thermo-electronic and optical properties of GaCuO ₂ and GaCu _{0.94} Fe _{0.06} O ₂ : a first principle approach of three DFT functionals. Molecular Simulation, 2021, 47, 1411-1422.	0.9	8
247	Effect of humidity on friction, wear, and plastic deformation during nanoscratch of soda lime silica glass. Journal of the American Ceramic Society, 2022, 105, 1367-1374.	1.9	4
248	A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7, 940-956.	2.8	111
249	Development of Photovoltaic Cells: A Materials Prospect and Next-Generation Futuristic Overview. Brazilian Journal of Physics, 2021, 51, 1916-1928.	0.7	6
250	Synthesis of porous UiO-66-NH2-based mixed matrix membranes with high stability, flux and separation selectivity for Ga(III). Chemical Engineering Journal, 2021, 421, 129748.	6.6	35
251	Optimizing photovoltaic conversion of solar energy. AIP Advances, 2021, 11, .	0.6	6
252	Monoclinic AgSbS2 thin films for photovoltaic applications: Computation, growth and characterization approaches. Materials Science in Semiconductor Processing, 2021, 135, 106074.	1.9	7
253	Intense sulphurization process can lead to superior heterojunction properties in Cu(In,Ga)(S,Se)2 thin-film solar cells. Nano Energy, 2021, 89, 106375.	8.2	5
254	Photovoltaic characteristics and computational simulation of samarium-ion doped Cu(In, Ga)Se2 thin films prepared via a non-vacuum coating process. Journal of Alloys and Compounds, 2021, 881, 160377.	2.8	3
255	Effect of intrinsic ZnO thickness on the performance of SnS/CdS-based thin-film solar cells. Current Applied Physics, 2021, 31, 232-238.	1.1	19
256	Key factors governing the device performance of CIGS solar cells: Insights from machine learning. Solar Energy, 2021, 228, 45-52.	2.9	14

#	Article	IF	CITATIONS
257	Prediction of optoelectronic features and efficiency for CuMX2 (M=Ga, In; X=S, Se) semiconductors using mbj+U approximation. Current Applied Physics, 2021, 32, 11-23.	1.1	1
258	A comparative study exploring the ligand binding capabilities of quarternary chalcopyrite copper indium gallium diselenide (CIGSe) nanocrystals. Journal of Molecular Structure, 2021, 1245, 131055.	1.8	1
259	Solution-processed Cd-substituted CZTS nanocrystals for sensitized liquid junction solar cells. Journal of Alloys and Compounds, 2022, 890, 161575.	2.8	9
260	A generalized theoretical approach for solar cells fill factors by using Shockley diode model and Lambert W-function: A review comparing theory and experimental data. Physica B: Condensed Matter, 2022, 624, 413427.	1.3	4
261	Thin-film photovoltaics. , 2022, , 19-37.		1
262	Structural, morphological, optical, and electronic properties of amorphous non-doped and I and Sn doped Sb2S3 nanoparticles. Materials Science in Semiconductor Processing, 2022, 137, 106196.	1.9	3
263	Effects of silver-doping on properties of Cu(In,Ga)Se2 films prepared by CuInGa precursors. Journal of Energy Chemistry, 2022, 66, 218-225.	7.1	10
264	Review on incorporation of alkali elements and their effects in Cu(In,Ca)Se2 solar cells. Journal of Materials Science and Technology, 2022, 96, 179-189.	5.6	27
265	Materials Demand of Renewable Energy Systems Until 2025. SSRN Electronic Journal, 0, , .	0.4	0
266	An economically sustainable bifunctional Ni@C catalyst in a solar-to-hydrogen device employing a CIGS submodule. Journal of Materials Chemistry A, 2021, 9, 23828-23840.	5.2	7
267	Solar Photovoltaics: Living a Technology From Research Curiosity to Reality. , 2021, , .		0
268	Formation and physical properties of the self-assembled BFO–CFO vertically aligned nanocomposite on a CFO-buffered two-dimensional flexible mica substrate. RSC Advances, 2021, 11, 15539-15545.	1.7	9
269	Enhanced stability in perovskite solar cells <i>via</i> room-temperature processing. Journal of Materials Chemistry C, 2021, 9, 14749-14756.	2.7	8
270	CIGS Thin Film Photovoltaic—Approaches and Challenges. Springer Series in Optical Sciences, 2020, , 175-218.	0.5	5
271	Microwave-sintering enhanced photovoltaic conversion in polycrystalline Nd-doped BiFeO3. Ceramics International, 2020, 46, 20963-20973.	2.3	4
272	Impact of Absorber Layer Morphology on Photovoltaic Properties in Solution-Processed Chalcopyrite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 34-47.	4.0	5
273	Photonic crystal light trapping: Beyond 30% conversion efficiency for silicon photovoltaics. APL Photonics, 2020, 5, .	3.0	29
274	Review—Solution Processing of CIGSe Solar Cells Using Simple Thiol-Amine Solvents Mixture: A Review. ECS Journal of Solid State Science and Technology, 2020, 9, 061013.	0.9	10

#	Article	IF	CITATIONS
275	The Path to Perovskite on Silicon PV. , 2018, 1, 1-8.		16
276	Reverse Osmosis Concentrate: Physicochemical Characteristics, Environmental Impact, and Technologies. Membranes, 2021, 11, 753.	1.4	13
277	Influence of Temperature Annealing on Structural and Substructural Properties of Heterojunction ZnO / Cu2ZnSnS4 Obtained by Spraying Nanoinks. , 2021, , .		0
278	Impact of buffer layers on the performance of graded CIGS solar cells: a numerical approach. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
279	Suppressing the formation of doubleâ€layer in <scp> Cu ₂ ZnSnSe ₄ </scp> () Tj ETQq International Journal of Energy Research, 2022, 46, 3686-3696.	0 0 0 rgBT 2.2	/Overlock 10 1
280	Surface Sulfurization of Cu(In,Ga)Se ₂ Solar Cells by Cosputtering In ₂ S ₃ in the One-Step Sputtering Process. ACS Applied Energy Materials, 2021, 4, 11555-11563.	2.5	2
281	Above 15% Efficient Directly Sputtered CIGS Solar Cells Enabled by a Modified Back-Contact Interface. ACS Applied Materials & Interfaces, 2021, 13, 49414-49422.	4.0	8
282	Influence of CIGS film thickness on the microstructure, bulk optoelectronic, and surface electrical properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 28618-28632.	1.1	2
283	The influence of selenium amount added into the graphite box during the selenization of solution deposited CIGSe thin films Journal of Physics: Conference Series, 2021, 2053, 012008.	0.3	0
284	Compound Semiconductor Solar Cells. Inorganic Materials Series, 2019, , 56-88.	0.5	1
285	Transfer of ordered and disordered Si nanowires onto alien substrates for the fabrication of third-generation solar cells. , 2019, , .		0
286	Potentiostat Electro-Deposited Cuprous Oxide and Cupric Oxide Thin Films for Photovoltaic Use. International Journal of Automotive and Mechanical Engineering, 2019, 16, 6624-6633.	0.5	4
288	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1
289	Ultra-thin CIGS: 2D Modelling and impactful results for optimal cell design and characterizations. , 2020, , .		0
290	Recent Developments in Fabrication and Performance of Solar Cell. Journal of Physics: Conference Series, 2021, 2044, 012150.	0.3	0
292	Analysis of a CIS based PV generator versus a multi-crystalline generator under outdoor long-term exposure. , 2021, , .		0
293	Influence of the Environment on the Parameters of CIGS-Based Photovoltaic and Photovoltaic-Thermal Converters Used in Real Conditions. Applied Solar Energy (English Translation) Tj ETQq0 0 ()r g⊠ /Ov	erbock 10 Tf !
294	Performance optimization of single graded CIGS absorber and buffer layers for high efficiency: A numerical approach. Superlattices and Microstructures, 2022, 161, 107094	1.4	11

#	Article	IF	CITATIONS
295	Ultrathin Cu(In,Ga)Se2 transparent photovoltaics: an alternative to conventional solar energy-harvesting windows. Nano Energy, 2022, 92, 106711.	8.2	10
296	Hydrothermal growth of Sb2S3 thin films on molybdenum for solar cell applications: Effect of post-deposition annealing. Journal of Alloys and Compounds, 2022, 898, 162891.	2.8	14
297	Solution-Processed Chalcogenide Photovoltaic Thin Films. , 0, , .		0
298	Crafting a Next-Generation Device Using Iron Oxide Thin Film: A Review. Crystal Growth and Design, 2021, 21, 7326-7352.	1.4	11
300	GaAsP/SiGe tandem solar cells on porous Si substrates. Solar Energy, 2021, 230, 925-934.	2.9	8
301	Large-scale aqueous synthesis of Cu(In,Ga)Se ₂ nanoparticles for photocatalytic degradation of ciprofloxacin. Dalton Transactions, 2021, 50, 16819-16828.	1.6	2
302	Defects Passivation and Crystal Growth Promotion by Solution-Processed K Doping Strategy Toward 16.02% Efficiency Cu(In,Ga)(S,Se) ₂ Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
303	Formation of MoSe2 layer and Ga grading in flexible Cu(In, Ga)Se2 solar cell via Na diffusion. Journal of Alloys and Compounds, 2022, 899, 163301.	2.8	7
304	Ultrashort pulse laser scribing of CIGS-based thin film solar cells. , 2020, , .		2
305	Performance evaluation of flexible CIGS modules based on operational data under outdoor conditions. Energy Science and Engineering, 2022, 10, 292-307.	1.9	3
306	Imperative Role of Photovoltaic and Concentrating Solar Power Technologies towards Renewable Energy Generation. International Journal of Photoenergy, 2022, 2022, 1-13.	1.4	29
307	1,8â€Octanediamine Dihydroiodideâ€Mediated Grain Boundary and Interface Passivation in Twoâ€Stepâ€Processed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	6
308	Pre-deposited alkali (Li, Na, K) chlorides layer for effective doping of CuInSSe thin films as absorber layer in solar cells. Solar Energy, 2022, 231, 694-704.	2.9	4
309	Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells. Solar, 2022, 2, 1-11.	0.9	6
310	Review on the efficiency of quantum dot sensitized solar cell: Insights into photoanodes and QD sensitizers. Dyes and Pigments, 2022, 199, 110094.	2.0	15
311	Efficient separation and purification of indium and gallium in spent Copper indium gallium diselenide (CIGS). Journal of Cleaner Production, 2022, 339, 130658.	4.6	12
312	Design and Numerical Investigation of A-Si:H-Based Thin-Film Solar Cell with ZnO as BRL Via Simulation Software. SSRN Electronic Journal, 0, , .	0.4	0
314	Problems with the Adhesion of Chemical-solution-deposited Films? Solving the Problem of CdS Thin Film Adhesion with a Very Simple and Green Chemical Procedure. Chemistry Letters, 2022, 51, 177-181.	0.7	1

#	Article	IF	CITATIONS
315	Defects passivation and crystal growth promotion by solution-processed K doping strategy toward 16.02% efficiency Cu(In,Ga)(S,Se)2 solar cells. Chemical Engineering Journal, 2022, 436, 135008.	6.6	17
316	A review on advancements, challenges, and prospective of copper and non-copper based thin-film solar cells using facile spray pyrolysis technique. Solar Energy, 2022, 234, 81-102.	2.9	45
317	A Qualitative Study of Snse Thin-Film Solar Cells Using Scaps 1d and Comparison with Experimental Results: A Pathway Towards 22.69% Efficiency. SSRN Electronic Journal, 0, , .	0.4	1
318	Real-Time Monitoring and Defect Detection of Laser Scribing Process of CIGS Solar Panels Utilizing Photodiodes. IEEE Access, 2022, 10, 29443-29450.	2.6	6
319	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	2.5	11
320	Ultrathin SnO ₂ Buffer Layer Aids in Interface and Band Engineering for Sb ₂ (S,Se) ₃ Solar Cells with over 8% Efficiency. ACS Applied Energy Materials, 2022, 5, 3022-3033.	2.5	13
321	Properties of High Efficiency Nanostructured Copper Indium Gallium Selenide Thin Film Solar Cells. EEA - Electrotehnica, Electronica, Automatica, 2022, 70, 3-12.	0.2	0
322	Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Letters, 2022, 7, 1298-1307.	8.8	128
323	Gettering in PolySi/SiO <i>_x</i> Passivating Contacts Enables Si-Based Tandem Solar Cells with High Thermal and Contamination Resilience. ACS Applied Materials & Interfaces, 2022, 14, 14342-14358.	4.0	3
324	Laser fabricated back-end interconnections on CIGS thin film solar cells using ultrashort pulsed laser radiation for BIPV applications. , 2022, , .		0
325	Preparation of Sb2Se3-based ceramics and glass-ceramics from native thin films deposited on Kapton foil. Ceramics International, 2022, 48, 17065-17075.	2.3	5
326	The impact of Ga and S concentration and gradient in Cu(In,Ga)(Se,S)2 solar cells. Optical Materials, 2022, 126, 112143.	1.7	3
327	Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates. Scientific Reports, 2022, 12, 5627.	1.6	16
328	The state of the art of Sb ₂ (S, Se) ₃ thin film solar cells: current progress and future prospect. Journal Physics D: Applied Physics, 2022, 55, 303001.	1.3	19
329	Optimization of selenization process to remove Ga-induced pin-holes in CIGS thin films. Solar Energy, 2022, 236, 175-181.	2.9	1
330	Design and optimization of highly efficient perovskite/homojunction SnS tandem solar cells using SCAPS-1D. Solar Energy, 2022, 236, 195-205.	2.9	24
331	Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics. Chemical Engineering Journal, 2022, 442, 136188.	6.6	14
332	Synergistic role of aluminium sulphate flocculation agent as bi-functional dye additive for Dye-Sensitized Solar Cell (DSSC). Optik, 2022, 258, 168945.	1.4	4

#	Article	IF	CITATIONS
333	Investigation on Cu2MgSnS4 thin film prepared by spray pyrolysis for photovoltaic and humidity sensor applications. Optical Materials, 2022, 127, 112296.	1.7	4
334	Scanning prevalent technologies to promote scalable devising of DSSCs: An emphasis on dye component precisely with a shift to ambient algal dyes. Inorganic Chemistry Communication, 2022, 139, 109368.	1.8	8
335	Dependence of the Heterogeneity of Grain Boundaries on Adjacent Grains in Perovskites and Its Impact on Photovoltage. Small, 2022, 18, e2105140.	5.2	9
336	Solutionâ€Processed Chalcopyrite Solar Cells: the Grain Growth Mechanism and the Effects of Cu/In Mole Ratio. Advanced Energy Materials, 2022, 12, .	10.2	9
337	CuInSe2-Based Near-Infrared Photodetector. Applied Sciences (Switzerland), 2022, 12, 92.	1.3	4
338	Extrinsic Doping of Inkâ€Based Cu(In,Ga)(S,Se) ₂ â€Absorbers for Photovoltaic Applications. Advanced Energy Materials, 2022, 12, .	10.2	13
339	Toward Understanding Chalcopyrite Solar Cells via Advanced Characterization Techniques. Advanced Materials Interfaces, 2022, 9, .	1.9	1
340	Electronic Structure and Spectroscopy of I–III–VI2 Nanocrystals: A Perspective. Journal of Physical Chemistry C, 2022, 126, 7364-7373.	1.5	5
341	AIE-active materials for photovoltaics. , 2022, , 427-447.		1
342	Synthesis of BaZrS ₃ Perovskite Thin Films at a Moderate Temperature on Conductive Substrates. ACS Applied Energy Materials, 2022, 5, 6335-6343.	2.5	27
343	Solvent-Free Method for Defect Reduction and Improved Performance of p-i-n Vapor-Deposited Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1903-1911.	8.8	33
344	Thin film absorber selection to pair with silicon for 1-Sun tandem photovoltaics. Solar Energy, 2022, 238, 178-188.	2.9	1
345	Over 12% Efficient CuIn(S,Se) ₂ Solar Cell with the Absorber Fabricated from Dimethylformamide Solution by Doctorâ€Blading in Ambient Air. Solar Rrl, 2022, 6, .	3.1	4
346	Surface Modification of Cu(in,Ga)Se ₂ Film with a Postâ€Deposition Treatment Using a KI Solution and Its Effect on Solar Cell Performance. Solar Rrl, 0, , 2200058.	3.1	2
347	A novel energy-resolved radiation detector based on the optimized CIGS photoelectric absorption layer. Journal of Power Sources, 2022, 536, 231520.	4.0	2
348	A Brief on Emerging Materials and Its Photovoltaic Application. , 2022, , 361-406.		3
349	Use of Rayleighâ€Rice Theory for Analysis of Ellipsometry Data on Rough CIGS Films. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700217.	0.8	2
350	A review on high performance photovoltaic cells and strategies for improving their efficiency. Frontiers in Energy, 2022, 16, 548-580.	1.2	3

#	Article		CITATIONS
351	Review: Advances in the CIGS Thin Films for Photovoltaic Applications. Smart Grid and Renewable Energy, 2022, 13, 75-87.	0.7	2
352	Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. Journal of Cleaner Production, 2022, 362, 132339.	4.6	78
353	Effects of energetic disorder in bulk heterojunction organic solar cells. Energy and Environmental Science, 2022, 15, 2806-2818.	15.6	57
354	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	10.2	27
355	Antiperovskite Sr ₃ MN and Ba ₃ MN (MÂ=ÂSb or Bi) as promising photovoltaic absorbers for thinâ€film solar cells: A firstâ€principles study. Journal of the American Ceramic Society, 2022, 105, 5807-5816.	1.9	6
356	Search of chalcopyrite materials based on hybrid density functional theory calculation. Journal of Physics Communications, 2022, 6, 065001.	0.5	1
357	Ultrathin Cu(In,Ga)Se ₂ Solar Cells with a Passivated Back Interface: A Comparative Study between Mo and In ₂ O ₃ :Sn Back Contacts. ACS Applied Energy Materials, 2022, 5, 7956-7964.	2.5	4
358	Solar Energy in Space Applications: Review and Technology Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	68
359	Photo-electrochemical performance of CIS and CICS solar thin films arranged through a novel CISe/Ga-Se bilayer electrodeposition. Materials Today: Proceedings, 2022, 66, 548-552.	0.9	0
360	Influence of argon pressure on sputter-deposited molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells on polyimide films. Solar Energy, 2022, 241, 327-334.	2.9	2
361	A qualitative study of SnSe thin film solar cells using SCAPS 1D and comparison with experimental results: A pathway towards 22.69% efficiency. Solar Energy Materials and Solar Cells, 2022, 244, 111835.	3.0	12
362	Recent advances in colorimetric and fluorescent chemosensors based on thiourea derivatives for metallic cations: A review. Dyes and Pigments, 2022, 205, 110477.	2.0	27
363	Organic Holeâ€Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	107
364	Photovoltaic Solar Cells: A Review. Applied System Innovation, 2022, 5, 67.	2.7	50
365	An outlook on zero-dimensional nanocarbons as components of DSSC. Biomass Conversion and Biorefinery, 2024, 14, 9023-9045.	2.9	1
366	Over 16% Efficient Solutionâ€Processed Cu(In,Ga)Se ₂ Solar Cells via Incorporation of Copperâ€Rich Precursor Film. Small, 2022, 18, .	5.2	6
367	High Efficiency Aqueous Solution Sprayed CIGSSe Solar Cells: Effects of Zr ⁴⁺ â€Alloyed In ₂ S ₃ Buffer and Kâ€Alloyed CIGSSe Absorber. Advanced Functional Materials, 2022, 32, .	7.8	2
368	The influence of top electrode work function on the performance of methylammonium lead iodide based perovskite solar cells having various electron transport layers. Chemical Physics Letters, 2022, 806, 140009.	1.2	8

#	Article		CITATIONS
369	Effect of substrate temperature on structural, optical, and photoelectrochemical properties of Tl ₂ S thin films fabricated using AACVD technique. Main Group Metal Chemistry, 2022, 45, 178-189.		3
370	Recent Advances in Earth Abundant and Environmentally Green Semiconducting Chalcogenide Nanomaterials for Photovoltaics Applications. Advances in Material Research and Technology, 2022, , 21-50.		1
371	Advancement in Copper Indium Gallium Diselenide (CIGS)-Based Thin-Film Solar Cells. Advances in Sustainability Science and Technology, 2022, , 5-39.	0.4	3
372	Controllable (H K 1) Preferred Orientation of Sb2s3 Thin Films Fabricated by Pulse Electrodeposition. SSRN Electronic Journal, 0, , .	0.4	Ο
373	Inheriting Sb ₂ Se ₃ Nanorods on Sb ₂ S ₃ Nanorod Arrays for Effective Light Harvesting and Charge Extraction in Solar Cells. ACS Applied Nano Materials, 2022, 5, 16082-16093.	2.4	4
374	Effect of transparent substrate on properties of CuInSe2 thin films prepared by chemical spray pyrolysis. Scientific Reports, 2022, 12, .	1.6	3
375	Au@Cu ₂ O Core–Shell and Au@Cu ₂ Se Yolk–Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2022, 14, 40771-40783.	4.0	25
376	8.0% Efficient Submicron CuIn(S,Se) ₂ Solar Cells on Sn:In ₂ O ₃ Back Contact via a Facile Solution Process. ACS Applied Energy Materials, 2022, 5, 12252-12260.	2.5	4
377	Formation of Culn _(1–<i>x</i>) Ga _{<i>x</i>} S ₂ Thin Films through a Solution Approach: Nonlinear Variation of Fermi Energy and Band Gap Bowing. Langmuir, 2022, 38, 11909-11916.	1.6	2
378	Front Transparent Passivation of CIGS-Based Solar Cells via AZO. Molecules, 2022, 27, 6285.	1.7	2
379	Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se2 Solar Cell Performance. Nanomaterials, 2022, 12, 3326.	1.9	4
380	The centre cannot hold. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 515-516.	0.2	0
381	The atomic layer deposition (ALD) synthesis of copper-tin sulfide thin films using low-cost precursors. Nanotechnology, 2022, 33, 505603.	1.3	3
382	Regulating deposition kinetics <i>via</i> a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb ₂ Se ₃ solar cells. Energy and Environmental Science, 2022, 15, 5118-5128.	15.6	77
383	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
384	Photoanode modified with nanostructures for efficiency enhancement in DSSC: a review. Carbon Letters, 2023, 33, 35-58.	3.3	2
385	Tunable long-lived exciton lifetime in single-layer two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiAlTe</mml:mi><mml:mn>2Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	ו :וסמס <td>mlımsub></td>	ml ı msub>
007	Band Gap and Defect Engineering for Highâ€Performance Cadmiumâ€free	7.0	20

7.8 29

ARTICLE IF CITATIONS # Effects of Na doping on the distribution of elements and the formation of back surface field in CIGS 387 1.1 2 absorption layer. Applied Physics A: Materials Science and Processing, 2022, 128, . Flexible kesterite thin-film solar cells under stress. Npj Flexible Electronics, 2022, 6, . 5.1 Power conversion efficiency optimization of LaFeO3 Mott insulator based solar cell with metal oxide 390 0.9 3 transport layers using SCAPS. Materials Today: Proceedings, 2023, 74, 756-762. Environment-friendly copper-based chalcogenide thin film solar cells: status and perspectives. 6.4 Materials Horizons, 2023, 10, 313-339. On current technology for light absorber materials used in highly efficient industrial solar cells. 392 8.2 9 Renewable and Sustainable Energy Reviews, 2023, 173, 113027. Photoluminescence Imaging for Industrial Quality Control during Manufacturing of Thin-Film Solar Cells. , 2022, , . A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cells. 394 1.6 14 Energies, 2022, 15, 8688. Theoretical simulation of a-Si:H-based p–i–n ultrathin-film solar cell using ZnO as a back reflector 1.3 layer (BRL) via SCAPS-1D. Journal of Computational Electronics, 0, , . Dielectric Front Passivation for Cu(In,Ga)Se₂ Solar Cells: Status and Prospect. Advanced 396 2.8 4 Energy and Sustainability Research, 2023, 4, . Structural and optical properties of copper selenide nanolayered tiles. Materials Today: Proceedings, 2023, 80, 1243-1247 Comparison and integration of CuInGaSe and perovskite solar cells. Journal of Energy Chemistry, 398 4 7.1 2023, 78, 463-475. Recent Developments and Challenges in Solar Harvesting of Photovoltaic System: A Review. Lecture 399 0.3 Notes in Mechanical Engineering, 2023, , 251-275. Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to 400 1.6 36 Sustainable Development Goals (SDGs). Sustainability, 2023, 15, 1418. A new ANN-PSO framework to chalcopyrite's energy band gaps prediction. Materials <u>Today</u> Communications, 2023, 34, 105311. Valuable metal recycling from thin film CIGS solar cells by leaching under mild conditions. Solar 402 3.0 6 Energy Materials and Solar Cells, 2023, 252, 112178. Applications in solar thin films., 2023, , 321-340. 404 Perovskite quantum dots., 2023, , 189-214. 0 The synthesis and some optical absorption investigation of the dual combined glass/FTO/a-Si/Au NPs/Au 1.1 NPs@TiO2 plasmonic structure. Journal of Materials Science: Materials in Electronics, 2023, 34, .

#	Article		CITATIONS
406	Growth of (Ag,Cu)(In,Ga)Se2 Absorbers under Band Gap Variation and Characterization with a Focus on Optical Spectroscopy. Processes, 2023, 11, 392.		0
407	Controllable (h k 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition. Solar Energy Materials and Solar Cells, 2023, 253, 112208.		3
408	Nanostructured semiconductor metal oxides for dye-sensitized solar cells. , 2023, , 223-246.		0
409	Energy conversion materials for the space solar power station. Chinese Physics B, 2023, 32, 078802.	0.7	1
410	Disentangling the effect of the hole-transporting layer, the bottom, and the top device on the fill factor in monolithic CIGSe-perovskite tandem solar cells by using spectroscopic and imaging tools. JPhys Energy, 2023, 5, 024014.	2.3	0
411	Effect of design modification on efficiency enhancement in Sb2S3 absorber based solar cell. Current Applied Physics, 2023, 49, 25-34.	1.1	4
412	Radio-frequency magnetron sputtering deposition process for In2O3:H transparent conductive oxide films for application in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2023, 774, 139840.	0.8	0
413	DFTÂ+ÂU study of electronic and optical properties of Cu3TMTe4: TMÂ=ÂV, Nb, Ta with incorporation of SOC. Materials Today: Proceedings, 2023, , .	0.9	2
414	Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu (In, Ga)Se ₂ heterointerface in Cu (In, Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2023, 31, 678-689.	4.4	3
415	Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu2ZnSnS4 Kesterite Thin Films Prepared by Electrochemical Deposition for Photovoltaic Applications. Materials, 2023, 16, 1659.	1.3	1
416	Fabrication of semi-transparent Cu(In,Ga)Se2 solar cells aided by Bromine etching. Thin Solid Films, 2023, 770, 139778.	0.8	0
417	Recent Progress of Carbonaceous Materials in Third Generation Solar Cells: DSSCs. Materials Horizons, 2023, , 165-188.	0.3	2
418	Native point defects in antiperovskite Ba ₃ SbN: a promising semiconductor for photovoltaics. Physical Chemistry Chemical Physics, 2023, 25, 9800-9806.	1.3	2
419	A comprehensive photovoltaic study on tungsten disulfide (WS2) buffer layer based CdTe solar cell. Heliyon, 2023, 9, e14438.	1.4	3
420	Potential of Iron Oxides in Photovoltaic Technology. Crystal Growth and Design, 2023, 23, 3034-3055.	1.4	2
421	Probing the Interplay between Mo Back Contact Layer Deposition Condition and MoSe2 Layer Formation at the CIGSe/Mo Hetero-Interface. Materials, 2023, 16, 2497.	1.3	3
422	Enhancement in Efficiency of CIGS Solar Cell by Using a p-Si BSF Layer. Energies, 2023, 16, 2956.	1.6	4
423	A process study of high-quality Zn(O,S) thin-film fabrication for thin-film solar cells. Clean Energy, 2023, 7, 283-292.	1.5	2

		CITATION RE	PORT	
#	Article		IF	CITATIONS
424	Analysis of EBIC time-variation using 2D simulation including charge states in V _{Se} â€ _{Cu} divacancy complex. Japanese Journal of Applied Physics, 2023, 62, SK1017.	"V	0.8	0
425	Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells. Materials, 2023, 16, 2806.		1.3	0
426	Perovskite Materials for Photovoltaics: A Review. EPJ Applied Physics, 0, , .		0.3	0
427	Organic ligands/dyes as photon-downshifting materials for clean energy. , 2023, , 265-280.			0
428	Progress in photocapacitors: A review. Functional Materials Letters, 2023, 16, .		0.7	1
429	Perspective Chapter: Technological Advances in Harnessing Energy from Renewable Sources for Water Production. , 0, , .			2
431	Performance Evaluation of CuBi ₂ O ₄ -based Thin Film Solar Cells with Non-toxic Oxide Electron and Hole Transport Materials. , 2023, , .			0
434	CulnxGa1-xS2 absorber material for thin-film solar cells. , 2023, , 239-261.			0
438	Tandem cells for unbiased photoelectrochemical water splitting. Chemical Society Reviews, 2023, 4644-4671.	52,	18.7	17
451	A facile synthesis of a copper(<scp>i</scp>) thiourea sulphate complex and its application for hig efficient chalcopyrite solar cells. Chemical Communications, 2023, 59, 9848-9851.	nly	2.2	1
452	Study of Factors Affecting the Performance of CIGS Based Thin Film Solar Cells. , 2023, , .			0
465	Numerical Analysis of Sb ₂ Se ₃ Solar Cells: Optimizing Key Parameters for Enhanced Efficiency. , 2023, , .	r		0
466	Graphene quantum dots as game-changers in solar cell technology: a review of synthetic processe and performance enhancement. Carbon Letters, 2024, 34, 445-475.	'S	3.3	1
482	High Performance Quaternary Chalcogenides for Solar Energy Conversion. , 2023, , .			0
490	CIGS-Based Solar Cells. , 2023, , 77-100.			0
491	Chemistry of Semiconductor Impurity Processing. , 2023, , 228-269.			0
508	Techno-Economic-Environmental Analysis for Net-Zero Sustainable Residential Buildings. , 2023, ,			0