Research progress on conducting polymer based superc

Nano Energy 36, 268-285

DOI: 10.1016/j.nanoen.2017.04.040

Citation Report

#	Article	IF	CITATIONS
1	Highly-Efficient Dendritic Cable Electrodes for Flexible Supercapacitive Fabric. ACS Applied Materials & Long Representation (2017), 9, 40207-40214.	4.0	21
2	Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41, 408-416.	8.2	126
3	Indole-based conjugated macromolecules as a redox-mediated electrolyte for an ultrahigh power supercapacitor. Energy and Environmental Science, 2017, 10, 2441-2449.	15.6	68
4	Syntheses and Energy Storage Applications of M <i>_x</i> Sci> _y (M = Cu, Ag,) Tj ETQc Materials, 2017, 27, 1703949.	q1 1 0.784 7 . 8	4314 rgBT /C 142
5	Nitrogenâ€Doped Hierarchical Porous Carbon Framework Derived from Waste Pig Nails for Highâ€Performance Supercapacitors. ChemElectroChem, 2017, 4, 3181-3187.	1.7	41
6	Efficient construction and enhanced capacitive properties of interfacial polymerized polyaniline nanofibers with the assistance of isopropanol in aqueous phase. Electrochimica Acta, 2017, 257, 311-320.	2.6	11
7	Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Current Opinion in Electrochemistry, 2017, 4, 133-144.	2.5	41
8	Nitrogen and oxygen-codoped carbon nanospheres for excellent specific capacitance and cyclic stability supercapacitor electrodes. Chemical Engineering Journal, 2017, 330, 1166-1173.	6.6	106
9	Facile Preparation of Varisized ZIF-8 and ZIF-8/Polypyrrole Composites for Flexible Solid-State Supercapacitor. ChemistrySelect, 2017, 2, 7530-7534.	0.7	9
10	Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy, 2017, 41, 193-200.	8.2	20
11	Electrochemical Polymerization of Functionalized Graphene Quantum Dots. Chemistry of Materials, 2017, 29, 6611-6615.	3.2	32
12	One–pot synthesis and electrochemical properties of polyaniline nanofibers through simply tuning acid–base environment of reaction medium. Electrochimica Acta, 2017, 249, 33-42.	2.6	23
13	Highâ€Performance and Breathable Polypyrrole Coated Airâ€Laid Paper for Flexible Allâ€Solidâ€State Supercapacitors. Advanced Energy Materials, 2017, 7, 1701247.	10.2	167
14	Polythiophene: From Fundamental Perspectives to Applications. Chemistry of Materials, 2017, 29, 10248-10283.	3.2	286
15	In Situ Growth of Polypyrrole onto Three-Dimensional Tubular MoS2 as an Advanced Negative Electrode Material for Supercapacitor. Electrochimica Acta, 2017, 246, 615-624.	2.6	95
16	Thermally reduced graphene oxide/polymelamine formaldehyde nanocomposite as a high specific capacitance electrochemical supercapacitor electrode. Journal of Materials Chemistry A, 2018, 6, 6045-6053.	5.2	20
17	Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode. RSC Advances, 2018, 8, 13393-13400.	1.7	10
18	Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9245-9256.	5.2	156

#	ARTICLE	IF	CITATIONS
19	Halloysite nanotubes favored facile deposition of nickel disulfide on NiMn oxides nanosheets for high-performance energy storage. Electrochimica Acta, 2018, 273, 349-357.	2.6	10
20	Interpenetrated and Polythreaded Co ^{II} -Organic Frameworks as a Supercapacitor Electrode Material with Ultrahigh Capacity and Excellent Energy Delivery Efficiency. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9104-9115.	4.0	43
21	Environment-Modulated Crystallization of Cu ₂ O and CuO Nanowires by Electrospinning and Their Charge Storage Properties. Langmuir, 2018, 34, 1873-1882.	1.6	54
22	Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. RSC Advances, 2018, 8, 3462-3469.	1.7	128
23	Enhancing the formation and capacitance properties of interfacial polymerized polyaniline nanofibers by introducing small alcohol molecules. Journal of Solid State Electrochemistry, 2018, 22, 1227-1236.	1.2	15
24	Microwave-assisted synthesis method for rapid synthesis of tin selenide electrode material for supercapacitors. Journal of Alloys and Compounds, 2018, 737, 623-629.	2.8	47
25	Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochimica Acta, 2018, 278, 114-123.	2.6	163
26	Hierarchical NiCo 2 O 4 @Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Applied Surface Science, 2018, 451, 280-288.	3.1	188
27	Surfactant-assisted potentiodynamically polymerized PEDOT fibers for significantly improved electrochemical capacitive properties. Materials Letters, 2018, 221, 309-312.	1.3	9
28	Vertically aligned, polypyrrole encapsulated MoS2/graphene composites for high-rate LIBs anode. Ceramics International, 2018, 44, 7611-7617.	2.3	10
29	EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes. Journal of Solid State Electrochemistry, 2018, 22, 2357-2366.	1.2	6
30	Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithiumâ€ion Capacitors. Advanced Materials, 2018, 30, e1705670.	11.1	334
31	Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics, 2018, 24, 257-268.	1.2	38
32	Three-dimensional N-doped graphene/polyaniline composite foam for high performance supercapacitors. Applied Surface Science, 2018, 428, 348-355.	3.1	39
33	Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor. Journal of Solid State Electrochemistry, 2018, 22, 129-139.	1.2	31
34	A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chemical Engineering Journal, 2018, 334, 2547-2557.	6.6	105
35	Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Applied Surface Science, 2018, 436, 327-336.	3.1	257
36	Highly Stable and Efficient Ligninâ€PEDOT/PSS Composites for Removal of Toxic Metals. Advanced Sustainable Systems, 2018, 2, 1700114.	2.7	19

3

#	ARTICLE	IF	CITATIONS
37	Synthesis and Bonding Performance of Conductive Polymer Containing Rare Earth Oxides. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 746-750.	1.9	6
38	Adenine decorated@reduced graphene oxide, a new environmental friendly material for supercapacitor application. Journal of Alloys and Compounds, 2018, 735, 1010-1016.	2.8	16
39	Facile Synthesis of Co3O4/CoF2·4H2O/graphene Composites for Supercapacitor Electrodes. International Journal of Electrochemical Science, 2018, 13, 10990-11000.	0.5	0
40	Influence of the Electrolyte Salt on the Electrochemical Polymerization of Pyrrole. Effects on p-Doping/Undoping, Conductivity and Morphology. International Journal of Electrochemical Science, 2018, 13, 12404-12419.	0.5	5
41	The Metal Oxide Nanoparticles doped Polyaniline based Nanocomposite as Stable Electrode Material for Supercapacitors. , $2018, \dots$		4
42	Molybdenum carbide promotion on Fe–N-doped carbon nanolayers facilely prepared for enhanced oxygen reduction. Nanoscale, 2018, 10, 21944-21950.	2.8	12
43	Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. Journal of Materials Chemistry A, 2018, 6, 24050-24057.	5.2	95
44	Nanocellulose/polypyrrole aerogel electrodes with higher conductivity <i>via</i> adding vapor grown nano-carbon fibers as conducting networks for supercapacitor application. RSC Advances, 2018, 8, 39918-39928.	1.7	27
45	The Sonogel-Carbon-PEDOT Material: An Innovative Bulk Material for Sensor Devices. Journal of the Electrochemical Society, 2018, 165, B906-B915.	1.3	9
46	Effects of Graphene Oxide on the Conductivity and Capacitance of Polypyrrole. International Journal of Electrochemical Science, 2018, , 4267-4275.	0.5	4
47	A ternary nanocomposites of graphene / TiO ₂ / polypyrrole for energy storage applications. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 631-642.	1.0	16
48	Structural, morphological and electrochemical properties of long alkoxy-functionalized polythiophene and TiO2 nanocomposites. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
49	Electrochemical Properties of Supercapacitor Electrodes Based on Polypyrrole and Enzymatically Prepared Cellulose Nanofibers. Polymer Science - Series C, 2018, 60, 228-239.	0.8	6
50	All-printed solid-state substrate-versatile and high-performance micro-supercapacitors for in situ fabricated transferable and wearable energy storage via multi-material 3D printing. Journal of Power Sources, 2018, 403, 109-117.	4.0	45
51	Yeast-derived N-doped carbon microsphere/polyaniline composites as high performance pseudocapacitive electrodes. Electrochimica Acta, 2018, 291, 256-266.	2.6	56
52	Symmetric supercapacitor performances of CaCu3Ti4O12 decorated polyaniline nanocomposite. Electrochimica Acta, 2018, 292, 558-567.	2.6	28
53	Prospective Synthesis Approaches to Emerging Materials for Supercapacitor., 2018,, 185-208.		8
54	Polypyrrole Nanoparticles Doped with Fullerene Uniformly Distributed in the Polymeric Phase: Synthesis, Morphology, and Electrochemical Properties. Journal of Physical Chemistry C, 2018, 122, 25539-25554.	1.5	17

#	ARTICLE	IF	Citations
55	Template-Confined Growth of Poly(4-aminodiphenylamine) Nanosheets as Positive Electrode toward Superlong-Life Asymmetric Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37125-37134.	4.0	22
56	Hierarchical FeCo ₂ O ₄ @polypyrrole Core/Shell Nanowires on Carbon Cloth for High-Performance Flexible All-Solid-State Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 14945-14954.	3.2	117
57	A flexible dual solid-stateelectrolyte supercapacitor with suppressed self-discharge and enhanced stability. Sustainable Energy and Fuels, 2018, 2, 2727-2732.	2.5	23
58	Effect of chalcogen substitution on aqueous dispersions of poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesulfonate) and their flexible conducting films. Journal of Materials Science: Materials in Electronics, 2018, 29, 18566-18572.	1.1	9
59	Superior capacitive behavior of porous activated carbon tubes derived from biomass waste-cotonier strobili fibers. Advanced Powder Technology, 2018, 29, 2097-2107.	2.0	61
60	Effect of benzoquinone additives on the performance of symmetric carbon/carbon capacitors – electrochemical impedance study. Journal of Energy Storage, 2018, 18, 340-348.	3.9	6
61	Recent Progress in Biomassâ€Derived Electrode Materials for High Volumetric Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1801007.	10.2	213
62	Supramolecular grafting of doped polyaniline leads to an unprecedented solubility enhancement, radical cation stabilization, and morphology transformation. Journal of Materials Chemistry A, 2018, 6, 12654-12662.	5.2	6
63	A ternary nanocomposite of reduced graphene oxide, Ag nanoparticle and Polythiophene used for supercapacitors. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 360-369.	1.0	21
64	Interfacial Constructing Flexible V ₂ O ₅ @Polypyrrole Core–Shell Nanowire Membrane with Superior Supercapacitive Performance. ACS Applied Materials & Diterfaces, 2018, 10, 18816-18823.	4.0	117
65	High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers. Journal of Chemical Information and Modeling, 2018, 58, 2450-2459.	2.5	57
66	A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochimica Acta, 2018, 283, 366-373.	2.6	73
67	Microwave-assisted synthesis of Ru and Ce doped tungsten oxide for supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 13794-13802.	1.1	13
68	Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors. Electrochimica Acta, 2018, 284, 80-88.	2.6	38
69	Zn2SnO4/activated carbon composites for high cycle performance supercapacitor electrode. Journal of Alloys and Compounds, 2018, 767, 419-423.	2.8	16
70	Polymer nanocomposite materials in energy storage: Properties and applications., 2018,, 239-282.		7
71	High Performance of Supercapacitor from PEDOT:PSS Electrode and Redox Iodide Ion Electrolyte. Nanomaterials, 2018, 8, 335.	1.9	33
72	Printable Nanomaterials for the Fabrication of High-Performance Supercapacitors. Nanomaterials, 2018, 8, 528.	1.9	46

#	Article	IF	Citations
73	Microporous/mesoporous cobalt hexacyanoferrate nanocubes for long-cycle life asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 14897-14905.	1.1	17
74	Preparation of the poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate)@g-C3N4 composite by a simple direct mixing method for supercapacitor. Electrochimica Acta, 2018, 283, 1468-1474.	2.6	25
75	Electrode materials for electrochemical capacitors based on poly(3,4 ethylenedioxythiophene) and functionalized multi-walled carbon nanotubes characterized in aqueous and aprotic electrolytes. Synthetic Metals, 2018, 244, 80-91.	2.1	12
76	Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor. Journal of Power Sources, 2018, 393, 169-176.	4.0	76
77	Construction of Metal–Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Ma	4.0	176
78	CTAB-assisted microemulsion synthesis of unique 3D network nanostructured polypyrrole presenting significantly diverse capacitance performances in different electrolytes. Journal of Materials Science: Materials in Electronics, 2018, 29, 17552-17562.	1.1	5
79	Synthesis of C/Co ₃ O ₄ composite mesoporous hollow sphere sandwich graphene films for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 2554-2562.	3.0	26
80	Recent advancements in supercapacitor technology. Nano Energy, 2018, 52, 441-473.	8.2	1,228
81	Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. Journal of Materials Chemistry A, 2018, 6, $17653-17661$.	5.2	102
83	Synthesis and characterization of nanocomposites consisting of polyaniline, chitosan and tin dioxide. Materials Chemistry and Physics, 2018, 216, 402-412.	2.0	20
84	PDMS with designer functionalitiesâ€"Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	11.8	478
85	A biomimetic <i>Setaria viridis</i> -inspired electrode with polyaniline nanowire arrays aligned on MoO ₃ @polypyrrole core–shell nanobelts. Journal of Materials Chemistry A, 2018, 6, 13428-13437.	5.2	43
86	Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31, 54-78.	7.1	275
87	Capacitive deionization of NaCl from saline solution using graphene/CNTs/ZnO NPs based electrodes. Journal Physics D: Applied Physics, 2019, 52, 455304.	1.3	18
88	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	3.2	94
89	Polythiophene Grafted onto Singleâ€Wall Carbon Nanotubes through Oligo(ethylene oxide) Linkages for Supercapacitor Devices with Enhanced Electrochemical Performance. ChemElectroChem, 2019, 6, 4595-4607.	1.7	19
90	A ternary MnO ₂ -deposited RGO/lignin-based porous carbon composite electrode for flexible supercapacitor applications. New Journal of Chemistry, 2019, 43, 14084-14092.	1.4	21
91	Multidimensional Coâ€Exfoliated Activated Grapheneâ€Based Carbon Hybrid for Supercapacitor Electrode. Energy Technology, 2019, 7, 1900578.	1.8	5

#	Article	IF	Citations
92	Theoretical and Experimental Comparison of Electrical Properties of Nickel(II) Coordinated and Protonated Polyaniline. Journal of Physical Chemistry C, 2019, 123, 18232-18239.	1.5	34
93	Robust, Flexible, and Binder Free Highly Crystalline V ₂ O ₅ Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 13115-13126.	3.2	63
94	An excellent cycle performance of asymmetric supercapacitor based on ZIF-derived C/N-doped porous carbon nanostructures. Journal of Alloys and Compounds, 2019, 805, 1200-1207.	2.8	12
95	Going Nano with Confined Effects to Construct Pomegranate-like Cathode for High-Energy and High-Power Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28934-28942.	4.0	3
96	Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor. Electrochimica Acta, 2019, 320, 134582.	2.6	78
97	A water-evaporation-induced self-charging hybrid power unit for application in the Internet of Things. Science Bulletin, 2019, 64, 1409-1417.	4.3	51
98	Synthesis and Enhancement of Electroactive Biomass/Polypyrrole Hydrogels for High Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1901393.	1.9	41
99	Hybrid Supercapacitors Based on Interwoven CoOâ€NiOâ€ZnO Nanowires and Porous Graphene Hydrogel Electrodes with Safe Aqueous Electrolyte for High Supercapacitance. Advanced Electronic Materials, 2019, 5, 1900397.	2.6	30
101	Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems. Nano Energy, 2019, 66, 104124.	8.2	30
102	Vulcanization treatment: An effective way to improve the electrochemical cycle stability of polyaniline in supercapacitors. Journal of Power Sources, 2019, 443, 227246.	4.0	16
103	Utilizing polyaniline to decorate graphene and its effect on the electrochemical properties of polyaniline/graphene electrode composite. Materials Research Express, 2019, 6, 105614.	0.8	11
104	PANI@Co-Porphyrins composite for the construction of supercapacitors. Journal of Energy Storage, 2019, 26, 101013.	3.9	29
105	Performance of CFRP Anchors under Dynamic Loading. IOP Conference Series: Earth and Environmental Science, 2019, 304, 032080.	0.2	1
106	Frequent Pattern-Based Mapping at Flash Translation Layer of Solid-State Drives. IEEE Access, 2019, 7, 95233-95239.	2.6	3
107	Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and its Application as Energy Storage Electrodes. Nanoscale Research Letters, 2019, 14, 226.	3.1	67
108	Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. , 2019, 1, 253-275.		135
109	A Novel Ultrastable and Highâ€Performance Electrode Material for Asymmetric Supercapacitors Based on ZIFâ€9@Polyaniline. Advanced Materials Interfaces, 2019, 6, 1901571.	1.9	33
110	Microgravimetric study of electrochemical properties of PEDOT/WO3 composite films in diluted sulfuric acid. Journal of Solid State Electrochemistry, 2019, 23, 3275-3285.	1.2	3

#	Article	IF	CITATIONS
111	Hydrophilically engineered polyacrylonitrile nanofiber aerogel as a soft template for large mass loading of mesoporous poly(3,4-ethylenedioxythiophene) network on a bare metal wire for high-rate wire-shaped supercapacitors. Journal of Power Sources, 2019, 441, 227212.	4.0	9
112	Electrochemical Performance of Manganese Coordinated Polyaniline. Advanced Electronic Materials, 2019, 5, 1900816.	2.6	35
113	Improvement of capacitance activity for Cuâ€doped Niâ€based metal–organic frameworks by adding potassium hexacyanoferrate into KOH electrolyte. Applied Organometallic Chemistry, 2019, 33, e5193.	1.7	15
114	Novel poly(2-(6-(5-oxo-4-(thiophen-2-ylmethylene)-4,5-dihydrooxazol-2-yl)naphthalen-2-yl)-4-(thiophen-2-ylmethylene) Synthesis, electrochemical polymerization and characterization of its super capacitive properties. Synthetic Metals. 2019. 257. 116166.	xazol-5(4l 2.1	H)-gne):
115	Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. Journal of Carbon Research, 2019, 5, 62.	1.4	19
116	Synthesis of K-Carrageenan Flame-Retardant Microspheres and Its Application for Waterborne Epoxy Resin with Functionalized Graphene. Polymers, 2019, 11, 1708.	2.0	15
118	Free-Standing and Heteroatoms-Doped Carbon Nanofiber Networks as a Binder-Free Flexible Electrode for High-Performance Supercapacitors. Nanomaterials, 2019, 9, 1189.	1.9	18
119	A simple and sensitive electrochemical sensor with A-PCA film modified electrode for the determination of metanephrine. New Journal of Chemistry, 2019, 43, 14368-14376.	1.4	2
120	Mn-doped Ni-coordination supramolecular networks for binder-free high-performance supercapacitor electrode material. Electrochimica Acta, 2019, 321, 134682.	2.6	14
121	A Novel Dioxythiophene Based Conducting Polymer as Electrode Material for Supercapacitor Application. International Journal of Electrochemical Science, 2019, , 9504-9519.	0.5	11
122	Selfâ€Assembled Flexible and Integratable 3D Microtubular Asymmetric Supercapacitors. Advanced Science, 2019, 6, 1901051.	5.6	39
123	Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application. Journal of Electronic Materials, 2019, 48, 6666-6674.	1.0	4
124	Hierarchical Vertically Aligned Titanium Carbide (MXene) Array for Flexible All-Solid-State Supercapacitor with High Volumetric Capacitance. ACS Applied Energy Materials, 2019, 2, 6834-6840.	2.5	18
125	Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors. Journal of Power Sources, 2019, 439, 227066.	4.0	21
126	Impact of Singly Occupied Molecular Orbital Energy on the n-Doping Efficiency of Benzimidazole Derivatives. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37981-37990.	4.0	32
127	Effect of Electrode Material on Electrodeposition of Tungsten Oxide. Russian Journal of Applied Chemistry, 2019, 92, 1006-1012.	0.1	1
128	Facile Synthesis of Novel V0.13Mo0.87O2.935 Nanowires With High-Rate Supercapacitive Performance. Frontiers in Chemistry, 2019, 7, 595.	1.8	7
129	Synthesis of polypyrrole coated melamine foam by in-situ interfacial polymerization method for highly compressible and flexible supercapacitor. Journal of Colloid and Interface Science, 2019, 557, 617-627.	5.0	41

#	Article	IF	CITATIONS
130	Potassium-assisted carbonization of pyrrole to prepare nanorod-structured graphitic carbon with a high surface area for high-rate supercapacitors. Carbon, 2019, 155, 326-333.	5.4	12
131	Interface modification of hierarchical Co9S8@NiCo layered dihydroxide nanotube arrays using polypyrrole as charge transfer layer in flexible all-solid asymmetric supercapacitors. Journal of Power Sources, 2019, 439, 227103.	4.0	63
132	A long-life pseudocapacitive triazine-based porous organic framework and resulting N-doped microporous carbons for supercapacitance application. Functional Materials Letters, 2019, 12, 1950065.	0.7	6
133	Water/Oxygen Circulation-Based Biophotoelectrochemical System for Solar Energy Storage and Release. Journal of the American Chemical Society, 2019, 141, 16416-16421.	6.6	21
134	Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrasonics Sonochemistry, 2019, 59, 104736.	3.8	81
135	Molecular Design, Synthetic Strategies, and Applications of Cationic Polythiophenes. Chemical Reviews, 2019, 119, 11442-11509.	23.0	39
136	NiCo ₂ O ₄ @Polyaniline Nanotubes Heterostructure Anchored on Carbon Textiles with Enhanced Electrochemical Performance for Supercapacitor Application. Journal of Physical Chemistry C, 2019, 123, 25549-25558.	1.5	46
137	Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability. Journal of Power Sources, 2019, 438, 227032.	4.0	9
138	Estimation of dynamic tire force by measurement of vehicle body responses with numerical and experimental validation. Mechanical Systems and Signal Processing, 2019, 123, 369-385.	4.4	39
139	Hierarchical nickel/phosphorus/nitrogen/carbon composites templated by one metal–organic framework as highly efficient supercapacitor electrode materials. Journal of Materials Chemistry A, 2019, 7, 2875-2883.	5.2	38
140	A "chain–lock―strategy to construct a conjugated copolymer network for supercapacitor applications. Journal of Materials Chemistry A, 2019, 7, 116-123.	5.2	29
141	Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 1323-1333.	5.2	106
142	High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO ₂ Nanocomposites. ACS Applied Materials & amp; Interfaces, 2019, 11, 6491-6501.	4.0	117
143	Characterization of Solvent-Treated PEDOT:PSS Thin Films with Enhanced Conductivities. Polymers, 2019, 11, 134.	2.0	43
144	One-pot facile simultaneous <i>in situ</i> synthesis of conductive Ag–polyaniline composites using Keggin and Preyssler-type phosphotungstates. RSC Advances, 2019, 9, 2772-2783.	1.7	9
145	Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochimica Acta, 2019, 300, 373-379.	2.6	38
146	Synthesis and electrochemical properties of various dimensional poly(1,5-diaminoanthraquinone) nanostructures: Nanoparticles, nanotubes and nanoribbons. Journal of Colloid and Interface Science, 2019, 542, 1-7.	5.0	19
147	Well-defined poly(1,5-diaminoanthraquinone)/reduced graphene oxide hybrids with superior electrochemical property for high performance electrochemical capacitors. Journal of Colloid and Interface Science, 2019, 542, 33-44.	5.0	16

#	Article	IF	CITATIONS
148	Self-woven nanofibrillar PEDOT mats for impact-resistant supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1154-1162.	2.5	9
149	One Step Deposition of PEDOT–PSS on ALD Protected Silicon Nanowires: Toward Ultrarobust Aqueous Microsupercapacitors. ACS Applied Energy Materials, 2019, 2, 436-447.	2.5	19
150	One-pot synthesis of ZnS nanowires/Cu ₇ S ₄ nanoparticles/reduced graphene oxide nanocomposites for supercapacitor and photocatalysis applications. Dalton Transactions, 2019, 48, 2442-2454.	1.6	46
151	Covalently functionalized heterostructured carbon by redox-active <i>p</i> -phenylenediamine molecules for high-performance symmetric supercapacitors. New Journal of Chemistry, 2019, 43, 1688-1698.	1.4	22
152	Solvent-tuned chemoselective carboazidation and diazidation of alkenes <i>via</i> iron catalysis. Organic Chemistry Frontiers, 2019, 6, 512-516.	2.3	35
153	Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. Nanomaterials, 2019, 9, 503.	1.9	21
154	Facile One-Pot Synthesis of Bimetallic Co/Mn-MOFs@Rice Husks, and its Carbonization for Supercapacitor Electrodes. Scientific Reports, 2019, 9, 8984.	1.6	16
155	Transient analysis of diffusion-induced deformation in a viscoelastic electrode. AIP Advances, 2019, 9, 065111.	0.6	5
156	Sol-gel-driven combustion wave for scalable transformation of Mn(NO3)2 precursors into MnO2-X/MWCNT supercapacitor electrodes capable of electrochemical activation. Carbon, 2019, 152, 746-754.	5.4	22
157	Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes. Journal of Power Sources, 2019, 434, 226735.	4.0	23
158	Conducting Polymer Nanocomposites as Gas Sensors. Polymers and Polymeric Composites, 2019, , 911-940.	0.6	3
159	Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7, 16028-16045.	5.2	694
160	Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11175-11185.	3.2	127
161	Ultrahighâ€Arealâ€Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbonâ€Nanotube Arrays. Advanced Materials, 2019, 31, e1901916.	11.1	89
162	Mn3O4-polyaniline-graphene as distinctive composite for use in high-performance supercapacitors. Applied Surface Science, 2019, 491, 171-179.	3.1	31
163	Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Materials, 2019, 21, 219-239.	9.5	30
164	Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Applied Energy Materials, 2019, 2, 4335-4344.	2.5	72
165	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360

#	Article	IF	CITATIONS
166	Mechanically Flexible Conductors for Stretchable and Wearable Eâ€Skin and Eâ€Textile Devices. Advanced Materials, 2019, 31, e1901408.	11.1	313
167	Nickel Oxide Decorated Carbon Nanofibers as High Performance Electrodes for Supercapacitors. International Journal of Electrochemical Science, 2019, , 2240-2245.	0.5	0
168	Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors. Electrochimica Acta, 2019, 314, 9-19.	2.6	60
169	Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Materials, 2019, 23, 225-232.	9.5	65
170	Facile in-situ simultaneous electrochemical reduction and deposition of reduced graphene oxide embedded palladium nanoparticles as high performance electrode materials for supercapacitor with excellent rate capability. Electrochimica Acta, 2019, 314, 124-134.	2.6	93
171	Generation of Monolayer MoS ₂ with 1T Phase by Spatialâ€Confinementâ€Induced Ultrathin PPy Anchoring for Highâ€Performance Supercapacitor. Advanced Materials Interfaces, 2019, 6, 1900162.	1.9	33
172	Polyacetylene carbon materials: facile preparation using AlCl ₃ catalyst and excellent electrochemical performance for supercapacitors. RSC Advances, 2019, 9, 11986-11995.	1.7	11
173	The versatility of copper tin sulfide. Journal of Materials Chemistry A, 2019, 7, 17118-17182.	5.2	42
174	Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. Journal of Materials Science, 2019, 54, 10809-10824.	1.7	49
175	Ion beam modified molybdenum disulfide-reduced graphene oxide/ polypyrrole nanotubes ternary nanocomposite for hybrid supercapacitor electrode. Electrochimica Acta, 2019, 312, 392-410.	2.6	23
176	Optical and Electrical Properties of Monolacunary Keggin-Type Polyoxometalate/Star-Shaped Polycarbazole Nanocomposite Film. Journal of the Electrochemical Society, 2019, 166, H313-H319.	1.3	9
177	Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-styrenesulfonate) with Different Molecular Weights of Poly(4-styrenesulfonate). Polymers, 2019, 11, 232.	2.0	20
178	Composite multilayer films based on polyelectrolytes and in situ â€formed carbon nanostructures with enhanced photoluminescence and conductivity properties. Journal of Applied Polymer Science, 2019, 136, 47718.	1.3	9
179	From fluorene molecules to ultrathin carbon nanonets with an enhanced charge transfer capability for supercapacitors. Nanoscale, 2019, 11, 6610-6619.	2.8	24
180	A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials. Materials, 2019, 12, 703.	1.3	76
181	Core@shell β-FeOOH@polypyrolle derived N, S-codoped Fe3O4@N-doped porous carbon nanococoons for high performance supercapacitors. Applied Surface Science, 2019, 480, 582-592.	3.1	30
182	Porous carbon anchored titanium carbonitride for high-performance supercapacitor. Electrochimica Acta, 2019, 304, 138-145.	2.6	16
183	Poly(1,5-diaminoanthraquinone) coated carbon cloth composites as flexible electrode with extraordinary cycling stability for symmetric solid-state supercapacitors. Journal of Colloid and Interface Science, 2019, 546, 60-69.	5.0	16

#	Article	IF	CITATIONS
184	Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance. Energy Storage Materials, 2019, 23, 594-601.	9.5	53
185	Mild synthesis of holey N-doped reduced graphene oxide and its double-edged effects in polyaniline hybrids for supercapacitor application. Electrochimica Acta, 2019, 305, 175-186.	2.6	51
186	Preparation of covalently bonded polyaniline nanofibers/carbon nanotubes supercapacitor electrode materials using interfacial polymerization approach. Journal of Polymer Research, 2019, 26, 1.	1.2	24
187	Hierarchical PANI/NiCo-LDH Core-Shell Composite Networks on Carbon Cloth for High Performance Asymmetric Supercapacitor. Nanomaterials, 2019, 9, 527.	1.9	51
188	Mapping binary copolymer property space with neural networks. Chemical Science, 2019, 10, 4973-4984.	3.7	36
189	Lower Band Gap Sb/ZnWO4/r-GO Nanocomposite Based Supercapacitor Electrodes. Journal of Electronic Materials, 2019, 48, 4188-4195.	1.0	26
190	Structure-designed fabrication of all-printed flexible in-plane solid-state supercapacitors for wearable electronics. Journal of Power Sources, 2019, 425, 195-203.	4.0	39
191	Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424, 108-130.	4.0	305
192	The integration of SnO2 dots and porous carbon nanofibers for flexible supercapacitors. Electrochimica Acta, 2019, 308, 121-130.	2.6	68
193	Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 10751-10760.	5.2	96
194	NiCo2S4 nanoparticles anchoring on polypyrrole nanotubes for high-performance supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2019, 840, 242-248.	1.9	40
195	Controllable synthesis of aluminum doped peony-like α-Ni(OH) ₂ with ultrahigh rate capability for asymmetric supercapacitors. RSC Advances, 2019, 9, 10237-10244.	1.7	7
196	A high-performance flexible supercapacitor based on hierarchical Co3O4-SnO@SnO2 nanostructures. Electrochimica Acta, 2019, 307, 341-350.	2.6	34
197	Facile synthesis and electrochemical performances of multi-walled carbon nanotubes/poly(3,4-ethylenedioxythiophene) composite films as electrodes for fabric supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 6350-6357.	1.1	4
198	Formation of mixed metal sulfides of NixCu1â^'xCo2S4 for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 134-142.	1.9	35
199	Polypyrrole Nanowires with Ordered Large Mesopores: Synthesis, Characterization and Applications in Supercapacitor and Lithium/Sulfur Batteries. Polymers, 2019, 11, 277.	2.0	17
200	Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose, 2019, 26, 3387-3399.	2.4	65
201	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	18.7	824

#	Article	IF	CITATIONS
202	in Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate. Nanomaterials, 2019, 9, 304.	1.9	11
203	Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. Electrochimica Acta, 2019, 303, 246-256.	2.6	140
204	Tetrahydroxy-anthraquinone induced structural change of zeolitic imidazolate frameworks for asymmetric supercapacitor electrode material application. New Journal of Chemistry, 2019, 43, 4425-4431.	1.4	3
205	Application of nanoparticles and composite materials for energy generation and storage. IET Nanodielectrics, 2019, 2, 115-122.	2.0	24
206	Impedimetric studies about the degradation of polypyrrole nanotubes during galvanostatic charge and discharge cycles. Journal of Electroanalytical Chemistry, 2019, 855, 113636.	1.9	18
207	The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors?. RSC Advances, 2019, 9, 42498-42508.	1.7	48
208	Functionalization of textile cotton fabric with reduced graphene oxide/MnO ₂ /polyaniline based electrode for supercapacitor. Materials Research Express, 2019, 6, 125708.	0.8	19
209	Synthesis of Submicron PEDOT Particles of High Electrical Conductivity via Continuous Aerosol Vapor Polymerization. ACS Applied Materials & English & Englis	4.0	13
210	Preparation of Microporous Supercapacitor Electrode Based on the Triple Networks of Disposable Sheet Mask. Nano, 2019, 14, 1950157.	0.5	2
211	Facile Method for Preparation of Porous Carbon Derived from Biomass for High Performance Supercapacitors. International Journal of Electrochemical Science, 2019, 14, 11199-11211.	0.5	6
212	Laccase-Mediator Systems as a Tool for the Development of Antistatic/Anticorrosion Protective Coatings Based on Conducting Polyaniline. Applied Biochemistry and Microbiology, 2019, 55, 691-695.	0.3	0
213	Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 2019, 1, 4644-4658.	2.2	403
214	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	5.2	24
215	Capacitive deionization performance of CNTs-Si-Ag based electrodes for the removal of heat stable salts from methyldiethanolamine (MDEA) solution in natural gas sweetening units. Chemical Engineering Journal, 2019, 356, 400-412.	6.6	27
216	Self-supported hierarchical bead-chain graphite felt@FePO4@polyaniline: A flexible electrode for all-solid-state supercapacitors with ultrahigh energy density. Chemical Engineering Journal, 2019, 361, 342-352.	6.6	24
217	Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy, 2019, 170, 53-61.	4.5	81
218	Non-metallic element modified metal-organic frameworks as high-performance electrodes for all-solid-state asymmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 539, 370-378.	5.0	44
219	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today, 2019, 24, 103-119.	6.2	357

#	ARTICLE	IF	CITATIONS
220	Beyond conventional supercapacitors: Hierarchically conducting polymer-coated 3D nanostructures for integrated on-chip micro-supercapacitors employing ionic liquid electrolytes. Synthetic Metals, 2019, 247, 131-143.	2.1	22
221	Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes. Electrochimica Acta, 2019, 295, 989-996.	2.6	57
222	A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochimica Acta, 2019, 296, 59-68.	2.6	128
223	A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns. Cellulose, 2019, 26, 1169-1181.	2.4	24
224	Vertically Standing MnO ₂ Nanowalls Grown on AgCNT-Modified Carbon Fibers for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 669-678.	3.2	34
225	Synthesis of Micro/Nanoâ€Flower Ni _X Coâ^'Pâ^'O for Highâ€Performance Electrochemical Supercapacitors. ChemElectroChem, 2019, 6, 928-936.	1.7	11
226	Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors. Electrochimica Acta, 2019, 299, 253-261.	2.6	34
227	Polyindole vertical nanowire array based electrochromic-supercapacitor difunctional device for energy storage and utilization. European Polymer Journal, 2019, 113, 29-35.	2.6	66
228	Flower-like Cu5Sn2S7/ZnS nanocomposite for high performance supercapacitor. Chinese Chemical Letters, 2019, 30, 1115-1120.	4.8	33
229	Electrochemical properties of PEDOT/WO3 composite films for high performance supercapacitor application. Electrochimica Acta, 2019, 299, 182-190.	2.6	52
230	Electrochemical properties of PEDOT: PSS /V2O5 hybrid fiber based supercapacitors. Journal of Physics and Chemistry of Solids, 2019, 129, 234-241.	1.9	21
231	High-Performance Layer-by-Layer Self-Assembly PANI/GQD-rGO/CFC Electrodes for a Flexible Solid-State Supercapacitor by a Facile Spraying Technique. ACS Applied Energy Materials, 2019, 2, 1077-1085.	2.5	29
232	Nanocomposite system of simultaneously-thiolated graphene oxide and polyaniline nanofibers for energy storage applications. Electrochimica Acta, 2019, 300, 1-8.	2.6	9
233	Hierarchical Ni–Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 776, 543-553.	2.8	48
234	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133
235	Preparation of carbon dots decorated graphene/polyaniline composites by supramolecular in-situ self-assembly for high-performance supercapacitors. Electrochimica Acta, 2019, 297, 1094-1103.	2.6	26
236	Modelling voltametric data from electrochemical capacitors. Journal of Power Sources, 2019, 417, 193-206.	4.0	24
237	Conducting Polymer Nanocomposites as Gas Sensors. Polymers and Polymeric Composites, 2019, , 1-30.	0.6	1

#	Article	IF	CITATIONS
238	Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochimica Acta, 2019, 293, 447-457.	2.6	36
239	Preparation and thermoelectric properties of PEDOT:PSS coated Te nanorod/PEDOT:PSS composite films. Organic Electronics, 2019, 64, 79-85.	1.4	80
240	Investigation of the pseudocapacitive properties of polyaniline nanostructures obtained from scalable chemical oxidative synthesis routes. Ionics, 2019, 25, 1331-1340.	1.2	3
241	Electrochemical performance of poly(3, 4-ethylenedioxythipohene)/nanocrystalline cellulose (PEDOT/NCC) film for supercapacitor. Carbohydrate Polymers, 2019, 203, 128-138.	5.1	51
242	Three-demensional porous carbon framework coated with one-demensional nanostructured polyaniline nanowires composite for high-performance supercapacitors. Applied Surface Science, 2019, 474, 147-153.	3.1	10
243	Hydrothermal synthesis of PANI nanowires for high-performance supercapacitor. High Performance Polymers, 2020, 32, 258-267.	0.8	25
244	Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology, 2020, 48, 19-33.	2.0	12
245	Electrical investigation on thiophene–indole conducting copolymers as-synthesized through in situ chemical copolymerization route. Polymer Bulletin, 2020, 77, 4181-4196.	1.7	3
246	Integrated structural design of polyaniline-modified nitrogen-doped hierarchical porous carbon nanofibers as binder-free electrodes toward all-solid-state flexible supercapacitors. Applied Surface Science, 2020, 501, 144001.	3.1	25
247	Novel dual superlyophobic cellulose membrane for multiple oil/water separation. Chemosphere, 2020, 241, 125067.	4.2	19
248	Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya†Hengduan Mountain region. Journal of Forestry Research, 2020, 31, 2255-2272.	1.7	7
249	Potassium pre-inserted K1.04Mn8O16 as cathode materials for aqueous Li-ion and Na-ion hybrid capacitors. Journal of Energy Chemistry, 2020, 46, 53-61.	7.1	40
250	Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Letters, 2020, 30, 389-397.	3.3	40
251	Enhancing the performance of polypyrrole composites as electrode materials for supercapacitors by carbon nanotubes additives. Journal of Applied Polymer Science, 2020, 137, 48867.	1.3	17
252	Review of Transition Metal Nitrides and Transition Metal Nitrides/Carbon nanocomposites for supercapacitor electrodes. Materials Chemistry and Physics, 2020, 245, 122533.	2.0	98
253	Selective sensing of dopamine by sodium cholate tailored polypyrrole-silver nanocomposite. Synthetic Metals, 2020, 260, 116296.	2.1	25
254	Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 1492-1502.	3.0	47
255	PEDOT: Fundamentals and Its Nanocomposites for Energy Storage. Chinese Journal of Polymer Science (English Edition), 2020, 38, 435-448.	2.0	34

#	Article	IF	CITATIONS
256	Flower-like Bi2O3 with enhanced rate capability and cycling stability for supercapacitors. Journal of Materials Science: Materials in Electronics, 2020, 31, 2221-2230.	1.1	9
257	A comprehensive review of Cr, Ti-based anode materials for Li-ion batteries. Ionics, 2020, 26, 1081-1099.	1.2	9
258	Harnessing energy from micropollutants electrocatalysis in a high-performance supercapacitor based on PEDOT nanotubes. Applied Materials Today, 2020, 18, 100538.	2.3	6
259	Simply synthesized N-doped carbon supporting Fe3O4 nanocomposite for high performance supercapacitor. Journal of Alloys and Compounds, 2020, 821, 153580.	2.8	48
260	Significant effect of cations on polypyrrole cycle stability. Solid State Ionics, 2020, 346, 115216.	1.3	8
261	Comparative Studies on Polyurethane Composites Filled with Polyaniline and Graphene for DLP-Type 3D Printing. Polymers, 2020, 12, 67.	2.0	46
262	Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. Chemical Papers, 2020, 74, 1-54.	1.0	122
263	Supercapacitor nanomaterials., 2020,, 295-324.		6
264	Nanomaterials of conducting polymers and its application in energy conversion and storage. , 2020, , 325-354.		5
265	Polypyrrole/nylon membrane composite film for ultra-flexible all-solid supercapacitor. Journal of Materiomics, 2020, 6, 339-347.	2.8	27
266	Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synthetic Metals, 2020, 259, 116215.	2.1	50
267	Enhanced pseudocapacitive performance of CoSnO3 through Mn2+ doping by ion-exchange method for all-printed supercapacitors. Electrochimica Acta, 2020, 331, 135298.	2.6	11
268	Construction of an electrochemical stable conductive network to improve the pseudocapacitance of polyaniline. Electrochimica Acta, 2020, 331, 135279.	2.6	13
269	Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochemical Energy Reviews, 2020, 3, 155-186.	13.1	163
270	Engineering nano-heterostructured electrodes based on polypyrrole nanowires@Ni3S2 nanosheets and MoO2 nanoparticles-decorated N-doped carbon nanotubes towards high-performance solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 820, 153364.	2.8	12
271	PEDOT Thin Films with n-Type Thermopower. ACS Applied Energy Materials, 2020, 3, 861-867.	2.5	15
272	Impact of morphological variation by phase-oriented MnO2-based hierarchical ternary composites for the fabrication of solid-state symmetric supercapacitor. Ionics, 2020, 26, 2563-2579.	1.2	12
273	Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4â^' to PANI via a simple and scalable synthetic method. Chemical Engineering Journal, 2020, 392, 123653.	6.6	36

#	Article	IF	CITATIONS
274	Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porousÂelectrode materials. Energy Storage Materials, 2020, 27, 555-590.	9.5	179
275	Supramolecule-assisted synthesis of cyclodextrin polymer functionalized polyaniline/carbon nanotube with core-shell nanostructure as high-performance supercapacitor material. Electrochimica Acta, 2020, 331, 135345.	2.6	33
276	Constructing a simple and sensitive electrochemical sensor for the determination of NMN based on p-m-ABSA film modified glassy carbon electrode. Microchemical Journal, 2020, 152, 104438.	2.3	3
277	Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Materials, 2020, 26, 165-197.	9.5	145
278	One-step synthesis of 2D–2D Co(OH)2–MoSe2 hybrid nanosheets as an efficient electrode material for high-performance asymmetric supercapacitor. Journal of Electroanalytical Chemistry, 2020, 879, 114775.	1.9	31
279	Oxygen–nitrogen–sulfur self-doping hierarchical porous carbon derived from lotus leaves for high-performance supercapacitor electrodes. Journal of Power Sources, 2020, 479, 228799.	4.0	69
280	Self-arranged polythiophene on multi-walled carbon nanotube templated composites: Synthesis and application in rechargeable aluminium battery. Electrochimica Acta, 2020, 361, 137097.	2.6	24
281	In-situ polymerization to prepare reduced graphene oxide/polyaniline composites for high performance supercapacitors. Journal of Energy Storage, 2020, 32, 101742.	3.9	22
282	Utilization of waste coir fibre architecture to synthesize porous graphene oxide and their derivatives: An efficient energy storage material. Journal of Cleaner Production, 2020, 276, 124240.	4.6	26
283	Performance of bismuth-based materials for supercapacitor applications: A review. Materials Today Communications, 2020, 25, 101691.	0.9	29
284	Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor. NPG Asia Materials, 2020, 12, .	3.8	30
285	Flexible Polypyrrole@Fe ₂ O ₃ @Stainless Steel Yarn Composite Electrode for Symmetric Threadâ€Like Supercapacitor with Extended Operating Voltage Window in Li ₂ SO ₄ â€Based Aqueous Electrolyte. Advanced Sustainable Systems, 2020, 4, 2000173.	2.7	27
286	Polyindole batteries and supercapacitors. Energy Storage Materials, 2020, 33, 336-359.	9.5	66
287	Coral-like PEDOT Nanotube Arrays on Carbon Fibers as High-Rate Flexible Supercapacitor Electrodes. ACS Applied Energy Materials, 2020, 3, 7794-7803.	2.5	55
288	Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. Journal of Carbon Research, 2020, 6, 73.	1.4	14
289	Spectroelectrochemistry of Poly(3,4-Ethylenedioxythiophene)–Tungsten Oxide Composite Films in Dilute Sulfuric Acid Solution. Russian Journal of General Chemistry, 2020, 90, 1949-1954.	0.3	1
290	Porous Fe2O3 Nanorods on Hierarchical Porous Biomass Carbon as Advanced Anode for High-Energy-Density Asymmetric Supercapacitors. Frontiers in Chemistry, 2020, 8, 611852.	1.8	13
291	Ambipolar Poly(3,4-ethylenedioxythiophene)-Pendant Tetrachlorinated Perylene Diimide for Symmetric Supercapacitors. ACS Applied Polymer Materials, 2020, 2, 5574-5580.	2.0	14

#	Article	IF	CITATIONS
292	Hierarchically structured MgO enrich NiCo2O4 nanorod arrays @ ultra-high cyclic stability for new generation supercapacitor. Electrochimica Acta, 2020, 357, 136848.	2.6	19
293	Designing quinone-dopamine-based conjugates as six electron system for high-performance hybrid electrode. Electrochimica Acta, 2020, 357, 136835.	2.6	16
294	Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale, 2020, 12, 17649-17662.	2.8	95
295	Capacitance fading mechanism and structural evolution of conductive polyaniline in electrochemical supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 14625-14634.	1.1	12
296	â€~In-Situ' Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application. Journal of Composites Science, 2020, 4, 87.	1.4	3
297	A Self-standing Organic Supercapacitor to Power Bioelectronic Devices. ACS Applied Energy Materials, 2020, 3, 7896-7907.	2.5	24
298	Ni-MnO ₂ Synthesized by One-Step Liquid Phase Coprecipitation as Promising Electrode Materials for Supercapacitor. Materials Science Forum, 2020, 999, 21-27.	0.3	6
299	Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon, 2020, 170, 1-29.	5.4	132
300	Enhanced electrochemical performance of flexible and eco-friendly starch/graphene oxide nanocomposite. Heliyon, 2020, 6, e05292.	1.4	21
301	Composite Nanofibers by Growing Polypyrrole on the Surface of Polyaniline Nanofibers Formed under Free Melting Condition and Shell-Thickness-Dependent Capacitive Properties. Fibers and Polymers, 2020, 21, 1722-1732.	1.1	0
302	Porous carbons derived from potato for high-performancesupercapacitors. lonics, 2020, 26, 6319-6329.	1.2	5
303	Aminal/Schiffâ€Base Polymer to Fabricate Nitrogenâ€Doped Porous Carbon Nanospheres for Highâ€Performance Supercapacitors. ChemElectroChem, 2020, 7, 3859-3865.	1.7	6
304	A review on Graphitic Carbon Nitride based binary nanocomposites as supercapacitors. Journal of Energy Storage, 2020, 32, 101840.	3.9	70
305	Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings, 2020, 10, 892.	1.2	30
306	A Novel Polyaniline Nanowire Arrays/Threeâ€Dimensional Graphene Composite for Supercapacitor. ChemistrySelect, 2020, 5, 11004-11009.	0.7	10
307	Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 2020, 10, 969.	1.6	269
308	High Voltage Microsupercapacitors Fabricated and Assembled by Laser Carving. ACS Applied Materials & Laser Carving. ACS Applied Materia	4.0	16
309	New Limits for Stability of Supercapacitor Electrode Material Based on Graphene Derivative. Nanomaterials, 2020, 10, 1731.	1.9	20

#	Article	IF	CITATIONS
310	Enzymatic synthesis and electrochemical characterization of sodium 1,2-naphthoquinone-4-sulfonate-doped PEDOT/MWCNT composite. RSC Advances, 2020, 10, 33010-33017.	1.7	10
311	Hybrid heterostructures of graphene and molybdenum disulfide: The structural characterization and its supercapacitive performance in 6M KOH electrolyte. Journal of Science: Advanced Materials and Devices, 2020, 5, 554-559.	1.5	5
312	One-pot mechanochemical exfoliation of graphite and <i>in situ </i> polymerization of aniline for the production of graphene/polyaniline composites for high-performance supercapacitors. RSC Advances, 2020, 10, 44688-44698.	1.7	22
313	Polymer-Derived Electrospun Co ₃ O ₄ @C Porous Nanofiber Network for Flexible, High-Performance, and Stable Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11002-11014.	2.5	24
314	Recent developments of stamped planar micro-supercapacitors: Materials, fabrication and perspectives. Nano Materials Science, 2021, 3, 154-169.	3.9	25
315	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
316	Controllable and fast growth of ultrathin α-Ni(OH)2 nanosheets on polydopamine based N-doped carbon spheres for supercapacitors application. Synthetic Metals, 2020, 270, 116580.	2.1	11
317	Interface engineering integrates fractal-tree structured nitrogen-doped graphene/carbon nanotubes for supercapacitors. Electrochimica Acta, 2020, 349, 136372.	2.6	27
318	Self-Assembly of Reverse Micelles to Engineer PEDOT Nanoribbons, Nanotubes, Nanorods and their High Capacitance Performances. Journal of the Electrochemical Society, 2020, 167, 080538.	1.3	12
319	Synthesis of Nitrogenâ€Doped Microporous/Mesoporous Carbon with Enhanced Pseudocapacitive Behavior for Highâ€Performance Symmetrical Supercapacitors. ChemElectroChem, 2020, 7, 2592-2598.	1.7	8
320	Oxidative Spin-Spray-Assembled Coordinative Multilayers as Platforms for Capacitive Films. Langmuir, 2020, 36, 6736-6748.	1.6	7
321	Trifluoromethyl functionalized polyindoles: electrosynthesis, characterization, and improved capacitive performance. New Journal of Chemistry, 2020, 44, 8512-8519.	1.4	1
322	A facile method for synthesis of Ni(OH)2@xRF with excellent electrochemical performances. Materials Letters, 2020, 273, 127867.	1.3	2
323	A high-performance battery-supercapacitor hybrid device based on bimetallic hydroxides nanoflowers derived from metal-organic frameworks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600, 124967.	2.3	13
324	High-performance and freestanding PPy/Ti3C2Tx composite film for flexible all-solid-state supercapacitors. Journal of Power Sources, 2020, 465, 228267.	4.0	73
325	Nanoscale coordination polymers: Preparation, function and application. Advances in Inorganic Chemistry, 2020, , 33-72.	0.4	12
326	Fabrication and electrochemical characterization of graphene-oxide supercapacitor electrodes with activated carbon current collectors on graphite substrates. Computers and Electrical Engineering, 2020, 85, 106678.	3.0	12
327	In-situ grown of polyaniline on defective mesoporous carbon as a high performance supercapacitor electrode material. Journal of Energy Storage, 2020, 30, 101429.	3.9	14

#	Article	IF	CITATIONS
328	Oneâ€step electrochemical preparation of ternary phthalocyanine/acidâ€activated multiwalled carbon nanotube/polypyrroleâ€based electrodes and their supercapacitor applications. International Journal of Energy Research, 2020, 44, 9093-9111.	2.2	45
329	Low temperature microwave fabrication of three-dimensional graphene/polyimide foams with flexibility strain responsivity. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105995.	3.8	24
330	Solution-processable, hypercrosslinked polymer via post-crosslinking for electrochromic supercapacitor with outstanding electrochemical stability. Solar Energy Materials and Solar Cells, 2020, 215, 110661.	3.0	28
331	Facile Synthesis of Polymeric Schiff Base Metal Complex as Electrode for High-performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 090544.	1.3	6
332	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
333	Carbon dots regulate crosslinking of functionalized three-dimensional graphene networks decorated with p-phenylenediamine for superior performance flexible solid-state supercapacitors. Journal of Energy Storage, 2020, 30, 101586.	3.9	7
334	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	11.1	134
335	Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 11637-11645.	1.1	15
336	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
337	Binder assisted self-assembly of graphene oxide/Mn2O3 nanocomposite electrode on Ni foam for efficient supercapacitor application. Ceramics International, 2020, 46, 15631-15637.	2.3	28
338	Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 5958-5965.	1.1	20
339	Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation. Nano Energy, 2020, 72, 104715.	8.2	148
340	Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy, 2020, , .	0.2	2
341	Solvent treatment inducing ultralong cycle stability poly(3,4â€ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as bindingâ€free electrodes for supercapacitors. International Journal of Energy Research, 2020, 44, 5856-5865.	2.2	8
342	Conducting Polymer Grafting: Recent and Key Developments. Polymers, 2020, 12, 709.	2.0	36
343	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
344	Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO ₂ Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. Environmental Science & Enable Science & Enable Page 10. Sept. 10. Sept	4.6	67
345	Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications. Journal of Electroanalytical Chemistry, 2020, 863, 114064.	1.9	26

#	Article	IF	CITATIONS
346	Reviewâ€"The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of the Electrochemical Society, 2020, 167, 037566.	1.3	76
347	Application of poly (aniline-co-o-methoxyaniline) as energy storage material. Synthetic Metals, 2020, 262, 116346.	2.1	22
348	Oxygen vacancies boosting ultra-stability of mesoporous ZnO-CoO@N-doped carbon microspheres for asymmetric supercapacitors. Science China Materials, 2020, 63, 2013-2027.	3.5	30
349	Hybrid core-shell nanostructure made of chitosan incorporated polypyrrole nanotubes decorated with NiO for all-solid-state symmetric supercapacitor application. Electrochimica Acta, 2020, 354, 136651.	2.6	35
350	Advances of Electrode Materials. , 2020, , 389-389.		1
351	Cathode Materials Based on Lithium Iron Phosphate/PEDOT Composites for Lithium-Ion Batteries. Inorganic Materials, 2020, 56, 648-656.	0.2	7
352	Entire synergistic contribution of Chinese rice ball-like hollow nitride sphere limited assemble of polyaniline for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2020, 24, 2325-2332.	1.2	4
353	Eco-friendly Polypyrrole-coated Cocozelle Composites for Supercapacitor Application. Fibers and Polymers, 2020, 21, 1300-1307.	1.1	6
354	Eigenstate PANI–coated paper fiber with graphene materials for high-performance supercapacitor. lonics, 2020, 26, 5199-5210.	1.2	17
355	A selective etching approach to pore structure control of polymeric precursors: creating hierarchical porous N, P co-doped carbon nanospheres for semi-solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 14254-14264.	5.2	22
356	High-performance yarn supercapacitor based on directly twisted carbon nanotube@bacterial cellulose membrane. Cellulose, 2020, 27, 7649-7661.	2.4	23
357	Long-term continuous and real-time in situ monitoring of Pb(II) toxic contaminants in wastewater using solid-state ion selective membrane (S-ISM) Pb and pH auto-correction assembly. Journal of Hazardous Materials, 2020, 400, 123299.	6.5	23
358	Inkjet-Printing Technology for Supercapacitor Application: Current State and Perspectives. ACS Applied Materials & District State and Perspectives. ACS Applied Mater	4.0	101
359	Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 4677-4699.	5.2	111
360	An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors. Nano-Micro Letters, 2020, 12, 63.	14.4	81
361	A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13386-13399.	4.0	35
362	Surfactants and amino acids in the control of nanotubular morphology of polypyrrole and their effect on the conductivity. Colloid and Polymer Science, 2020, 298, 319-325.	1.0	11
363	Activated Carbon by One-Step Calcination of Deoxygenated Agar for High Voltage Lithium Ion Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3637-3643.	3.2	31

#	Article	IF	Citations
364	Flexible and transparent planar supercapacitor based on embedded metallic mesh current collector. Journal Physics D: Applied Physics, 2020, 53, 165501.	1.3	10
365	Growth of Film Electrodes through Electrospray Coating of Precursor Sol for Use in Asymmetric Supercapacitor. Industrial & Engineering Chemistry Research, 2020, 59, 4428-4436.	1.8	6
366	Covalent conductive polymer chain and organic ligand ethylenediamine modified MXene-like-{AlW ₁₂ O ₄₀ } compounds for fully symmetric supercapacitors, electrochemical sensors and photocatalysis mechanisms. Journal of Materials Chemistry A, 2020, 8, 5709-5720.	5.2	40
367	Cauliflowerâ€ike poly(3,4â€ethylenedioxythipohene)/nanocrystalline cellulose/manganese oxide ternary nanocomposite for supercapacitor. Journal of Applied Polymer Science, 2020, 137, 49162.	1.3	12
368	Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. Journal of Energy Storage, 2020, 29, 101302.	3.9	145
369	Spatial Distribution Control on the Energy Storage Performance of PANI@PVA@ACNT-Based Flexible Solid-State Supercapacitors. ACS Applied Energy Materials, 2020, 3, 3082-3091.	2.5	17
370	Fabricated high performance ultrathin MoSe2 nanosheets grow on MWCNT hybrid materials for asymmetric supercapacitors. Journal of Alloys and Compounds, 2020, 826, 154175.	2.8	30
371	Fabrication of Ternary Hierarchical Nanosheets RGO/PANI/Fe ₂ O ₃ as Electrode Material with High Capacitance Performance. Journal of the Electrochemical Society, 2020, 167, 040501.	1.3	9
372	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	2.7	49
373	Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Advances, 2020, 10, 3122-3129.	1.7	66
374	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10479-10489.	4.0	57
375	Few-layer Ti3C2T MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.	7.1	27
376	Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin, 2020, 65, 546-556.	4.3	292
377	Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. Journal of Materials Research and Technology, 2020, 9, 3261-3271.	2.6	60
378	Promoting Oriented Growth of a Polyaniline Array on Carbon Cloth through in Situ Chemical Polymerization under a High Voltage Electric Field for a Flexible Supercapacitor with High Areal Capacity and Stability. ACS Applied Energy Materials, 2020, 3, 1969-1978.	2.5	49
379	Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. Materials, 2020, 13, 548.	1.3	77
380	Facile Synthesis of Hierarchical MgCo ₂ O ₄ @MnO ₂ Core-Shell Nanosheet Arrays on Nickel Foam as an Advanced Electrode for Asymmetric Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 020510.	1.3	13
381	Construction of a Ternary Nanocomposite, Polypyrrole/Fe–Co Sulfide-Reduced Graphene Oxide/Nickel Foam, as a Novel Binder-Free Electrode for High-Performance Asymmetric Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 4393-4407.	1.5	60

#	Article	IF	Citations
382	Systematic Design of Polypyrrole/Carbon Fiber Electrodes for Efficient Flexible Fiber-Type Solid-State Supercapacitors. Nanomaterials, 2020, 10, 248.	1.9	22
383	Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , .	0.4	2
384	Preparation and performance of PANI/RFC/rGO composite electrode materials for supercapacitors. lonics, 2020, 26, 4031-4038.	1.2	3
385	3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors. Nano-Micro Letters, 2020, 12, 82.	14.4	78
386	Ti3C2Tx MXene and Vanadium nitride/Porous carbon as electrodes for asymmetric supercapacitors. Electrochimica Acta, 2020, 341, 136035.	2.6	76
387	Polyindole modified g-C3N4 nanohybrids via in-situ chemical polymerization for its improved electrochemical performance. Vacuum, 2020, 177, 109363.	1.6	30
388	In Situ Aniline-Polymerized Interfaces on GO–PVA Nanoplatforms as Bifunctional Supercapacitors and pH-Universal ORR Electrodes. ACS Applied Energy Materials, 2020, 3, 4727-4737.	2.5	13
389	One-Step Electrofabrication of Reduced Graphene Oxide/Poly(<i>N</i> -methylthionine) Composite Film for High Performance Supercapacitors. Journal of the Electrochemical Society, 2020, 167, 085501.	1.3	7 3
390	A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coordination Chemistry Reviews, 2020, 416, 213341.	9.5	159
391	Pristine NiCo2O4 nanorods loaded rGO electrode as a remarkable electrode material for asymmetric supercapacitors. Materials Science in Semiconductor Processing, 2020, 114, 105078.	1.9	53
392	Dielectric Properties of All-Organic Coatings: Comparison of PEDOT and PANI in Epoxy Matrices. Journal of Composites Science, 2020, 4, 26.	1.4	2
393	Double in situ fabrication of PPy@MnMoO4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose, 2020, 27, 5829-5843.	2.4	23
394	Recent progress on the enhancement of photocatalytic properties of BiPO4 using π–conjugated materials. Advances in Colloid and Interface Science, 2020, 280, 102160.	7.0	87
395	Nitrogen-Doped Seamless Activated Carbon Electrode with Excellent Durability for Electric Double Layer Capacitor. Journal of the Electrochemical Society, 2020, 167, 060523.	1.3	17
396	Effect of α-Fe2O3 nanoparticles on the mechanism of charge storage in polypyrrole-based hydrogel. Polymer Bulletin, 2021, 78, 2389-2404.	1.7	2
397	Capacitive properties of promising energy storage material based on thiophene containing perylenediimide polymer. Journal of Applied Polymer Science, 2021, 138, app50234.	1.3	7
398	Fabrication of PEDOT:PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors. Electrochimica Acta, 2021, 365, 137363.	2.6	50
399	Recent progress in copper sulfide based nanomaterials for high energy supercapacitor applications. Journal of Electroanalytical Chemistry, 2021, 880, 114825.	1.9	59

#	Article	IF	CITATIONS
400	All-polymer ultrathin flexible supercapacitors for electronic skin. Chemical Engineering Journal, 2021, 405, 126915.	6.6	19
401	Nickel and cobalt sulfide-based nanostructured materials for electrochemical energy storage devices. Chemical Engineering Journal, 2021, 409, 127237.	6.6	84
402	Continuous and controllable synthesis of MnO2/PPy composites with core–shell structures for supercapacitors. Chemical Engineering Journal, 2021, 405, 127059.	6.6	46
403	Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors. Journal of Materiomics, 2021, 7, 156-165.	2.8	26
404	Matching electrode lengths enables the practical use of asymmetric fiber supercapacitors with a high energy density. Nano Energy, 2021, 80, 105523.	8.2	32
405	Carbon Related Materials. , 2021, , .		5
406	Integration of supercapacitors and batteries towards highâ€performance hybrid energy storage devices. International Journal of Energy Research, 2021, 45, 1449-1479.	2.2	55
407	Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	26
408	Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coordination Chemistry Reviews, 2021, 429, 213616.	9.5	67
409	Construction of hierarchical structure of Co3O4 electrode based on electrospinning technique for supercapacitor. Journal of Alloys and Compounds, 2021, 853, 157271.	2.8	55
410	Ï∈Ï∈ stacked iron (II) phthalocyanine/graphene oxide composites: rational fabrication and excellent supercapacitor properties with superior rate performance. Journal of Solid State Electrochemistry, 2021, 25, 659-670.	1.2	7
411	Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chemical Engineering Journal, 2021, 405, 126664.	6.6	90
412	Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors. Materials Chemistry Frontiers, 2021, 5, 1324-1329.	3.2	24
413	Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochimica Acta, 2021, 368, 137529.	2.6	76
414	Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. Journal of Alloys and Compounds, 2021, 863, 158071.	2.8	27
415	Synthesis of mesoporous hollow carbon microcages by combining hard and soft template method for high performance supercapacitors. Ceramics International, 2021, 47, 5968-5976.	2.3	16
416	MnO2-based carbon nanofiber cable for supercapacitor applications. Journal of Energy Storage, 2021, 33, 102130.	3.9	23
417	Heat assisted facile synthesis of nanostructured polyaniline/reduced crumbled graphene oxide as a high-performance flexible electrode material for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125982.	2.3	25

#	Article	IF	Citations
418	Self-assembled PANI/CeO2/Ni(OH)2 hierarchical hybrid spheres with improved energy storage capacity for high-performance supercapacitors. Electrochimica Acta, 2021, 367, 137525.	2.6	28
419	Rational Design of Bimetallic Oxide Multiâ€Nanoarchitectures for Highâ€Rate and Durable Hybrid Supercapacitors. Advanced Materials Technologies, 2021, 6, 2000793.	3.0	12
420	Synergistic effect of microwave heating and hydrothermal methods on synthesized Ni2CoS4/GO for ultrahigh capacity supercapacitors. Journal of Colloid and Interface Science, 2021, 582, 312-321.	5.0	15
421	Review on Current Progress of MnO ₂ â€Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem, 2021, 8, 291-336.	1.7	62
422	Lignin Cellulose Nanofibrils as an Electrochemically Functional Component for Highâ€Performance and Flexible Supercapacitor Electrodes. ChemSusChem, 2021, 14, 1057-1067.	3.6	40
423	Electrochemical double-layer capacitors with lithium-ion electrolyte and electrode coatings with PEDOT:PSS binder. Journal of Applied Electrochemistry, 2021, 51, 373-385.	1.5	13
424	Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials. Journal of Energy Storage, 2021, 33, 102049.	3.9	56
425	Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Materials, 2021, 36, 56-76.	9.5	214
426	Modular Hydrogen Peroxide Electrosynthesis Cell with Anthraquinone-Modified Polyaniline Electrocatalyst. ACS ES&T Engineering, 2021, 1, 446-455.	3.7	19
427	Electrochemical Supercapacitors: From Mechanism Understanding to Multifunctional Applications. Advanced Energy Materials, 2021, 11, 2003311.	10.2	109
428	Waste Plastic Triboelectric Nanogenerators Using Recycled Plastic Bags for Power Generation. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 400-410.	4.0	116
429	Multicomponent Co9S8@MoS2 nanohybrids as a novel trifunctional electrocatalyst for efficient methanol electrooxidation and overall water splitting. Journal of Colloid and Interface Science, 2021, 586, 538-550.	5.0	45
430	In-situ preparation of Fe3O4/graphene nanocomposites and their electrochemical performances for supercapacitor. Materials Chemistry and Physics, 2021, 258, 123995.	2.0	24
431	Camellia Pollenâ€Derived Carbon with Controllable N Content for Highâ€Performance Supercapacitors by Ammonium Chloride Activation and Dual Nâ€Doping. ChemNanoMat, 2021, 7, 34-43.	1.5	28
432	Highly porous honeycombâ€ike activated carbon derived using cellulose pulp for symmetric supercapacitors. International Journal of Energy Research, 2021, 45, 4385-4395.	2,2	13
433	Synthesis and characterization of donor–acceptor type quinoxaline-based polymers and the corresponding electrochromic devices with satisfactory open circuit memory. Synthetic Metals, 2021, 271, 116619.	2.1	18
434	Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering, 2021, 15, 238-250.	2.3	86
435	Supercapacitor Devices. Springer Series in Materials Science, 2021, , 39-79.	0.4	10

#	Article	IF	CITATIONS
436	Amalgamation of MnWO ₄ nanorods with amorphous carbon nanotubes for highly stabilized energy efficient supercapacitor electrodes. Dalton Transactions, 2021, 50, 5327-5341.	1.6	23
437	Activated carbon from banyan prop root biomass and its application in pseudocapacitors: a strategy towards circular economy for energy. Ionics, 2021, 27, 1357-1368.	1.2	4
438	Thermal effect on the pseudocapacitive behavior of high-performance flexible supercapacitors based on polypyrrole-decorated carbon cloth electrodes. New Journal of Chemistry, 2021, 45, 12435-12447.	1.4	24
439	Polyaniline Nanocomposites., 2021,, 579-612.		O
440	Layered Nanofiber Yarn for High-Performance Flexible All-Solid Supercapacitor Electrodes. Journal of Physical Chemistry C, 2021, 125, 1190-1199.	1.5	16
441	Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline. RSC Advances, 2021, 11, 29564-29575.	1.7	8
442	The Critical Role of Oxygen-Containing Functional Groups in the Etching Behavior of Activators to Carbon Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 1646-1655.	3.2	19
443	Mesoporous NiCo ₂ Se ₄ tube as an efficient electrode material with enhanced performance for asymmetric supercapacitor applications. CrystEngComm, 2021, 23, 2099-2112.	1.3	26
444	Single Wall Carbon Nanotubes/Polypyrrole Composite Thin Film Electrodes: Investigation of Interfacial Ion Exchange Behavior. Journal of Composites Science, 2021, 5, 25.	1.4	2
445	Nanoarchitectured conducting polymers: Rational design and relative activity for next-generation supercapacitors., 2021,, 27-58.		0
446	Nanoporous Metal Oxides for Supercapacitor Applications. , 2021, , 601-621.		2
447	Metal phosphides: topical advances in the design of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20241-20276.	5.2	66
448	Poly(<i>ortho</i> -phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices. Journal of Materials Chemistry A, 2021, 9, 10487-10496.	5.2	5
450	Reduced graphene oxide/g-C ₃ N ₄ modified carbon fibers for high performance fiber supercapacitors. New Journal of Chemistry, 2021, 45, 923-929.	1.4	16
451	Electroactive organically modified mesoporous silicates on graphene oxide-graphite 3D architectures operating with electron-hopping for high rate energy storage. Electrochimica Acta, 2021, 366, 137407.	2.6	8
452	Preparation and application of a D–A conjugated electrochromic flexible electrode with side chain carbazole active groups in supercapacitors. New Journal of Chemistry, 2021, 45, 18472-18481.	1.4	8
453	Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy and Fuels, 2021, 5, 1235-1254.	2.5	105
454	Advances in the design and application of transition metal oxide-based supercapacitors. Open Chemistry, 2021, 19, 709-725.	1.0	22

#	ARTICLE	IF	CITATIONS
455	Green and facile preparation of graphene/resveratrol/polyaniline composites for high-performance supercapacitors. New Journal of Chemistry, 2021, 45, 3581-3588.	1.4	2
456	Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. Journal of Materials Chemistry A, 2021, 9, 1970-2017.	5.2	186
457	Conducting polymeric nanocomposite for supercapattery., 2021,, 63-91.		1
458	Novel poly(arylene ether ketone)/poly(ethylene glycol)-grafted poly(arylene ether ketone) composite microporous polymer electrolyte for electrical double-layer capacitors with efficient ionic transport. RSC Advances, 2021, 11, 14814-14823.	1.7	0
459	Phase Changing Materials Based Super Capacitors. , 2021, , .		O
460	Envisaging Future Energy Storage Materials for Supercapacitors: An Ensemble of Preliminary Attempts. ChemistrySelect, 2021, 6, 1127-1161.	0.7	17
461	Enhancing performance of NiCo2S4/Ni3S2 supercapacitor electrode by Mn doping. Electrochimica Acta, 2021, 368, 137634.	2.6	38
462	Controlled chemical oxidative polymerization of conductive polyaniline with excellent pseudocapacitive properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 6965-6975.	1.1	O
464	Exceptional Capacitance Enhancement of a Nonâ€Conducting COF through Potentialâ€Driven Chemical Modulation by Redox Electrolyte. Advanced Energy Materials, 2021, 11, 2003626.	10.2	30
465	Synthesis of hierarchically porous boron-doped carbon material with enhanced surface hydrophobicity and porosity for improved supercapacitor performance. Electrochimica Acta, 2021, 370, 137801.	2.6	30
466	Recent Developments and Future Prospects for Zinc″on Hybrid Capacitors: a Review. Advanced Energy Materials, 2021, 11, 2003994.	10.2	219
467	Past, present and future of electrochemical capacitors: Technologies, performance and applications. Journal of Energy Storage, 2021, 35, 102310.	3.9	24
468	Preparation and Electrochemical Properties of Porous Carbon Materials Derived from Waste Plastic Foam and Their Application for Supercapacitors. International Journal of Electrochemical Science, 0, , 210343.	0.5	1
469	Planar Grapheneâ€Based Microsupercapacitors. Small, 2021, 17, e2006827.	5.2	24
470	Novel method of preparing hierarchical porous CoFe2O4 by the citric acid-assisted sol-gel auto-combustion for supercapacitors. Journal of Energy Storage, 2021, 35, 102286.	3.9	39
471	Recent Progress and Application Challenges of Wearable Supercapacitors. Batteries and Supercaps, 2021, 4, 1279-1290.	2.4	33
472	Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. International Journal of Polymer Analysis and Characterization, 2021, 26, 354-363.	0.9	12
474	A Highâ€Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes. Chemistry - A European Journal, 2021, 27, 6973-6984.	1.7	75

#	Article	IF	CITATIONS
475	Superior volumetric capacitance of nitrogen and fluorine Co-doped holey graphene/PANI composite film for supercapacitor electrodes. Journal of Materials Research, 2021, 36, 4169-4181.	1.2	3
476	Chemical synthesis and supercapacitive evaluation of polyaniline nanofibers (PANINFs). Journal of Materials Science: Materials in Electronics, 2021, 32, 11865-11876.	1.1	13
477	Electrodeposition of Ultrathin Nanosheets of Nickel-Cobalt Double Hydroxides with Layered Structure for Improved Supercapacitor Performance. International Journal of Electrochemical Science, 2021, 16, 210422.	0.5	9
479	In situ hybridization of polyaniline on Mn oxide for high-performance supercapacitor. Journal of Energy Storage, 2021, 36, 102330.	3.9	13
480	Co-intercalation of CTAB favors the preparation of Ti3C2Tx/PANI composite with improved electrochemical performance. Ionics, 2021, 27, 2501-2508.	1.2	4
481	Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Nanotechnology, 2021, 32, 295401.	1.3	15
482	Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 16203-16214.	1.1	15
483	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
484	Interactions in Electrodeposited Poly-3,4-Ethylenedioxythiopheneâ€"Tungsten Oxide Composite Films Studied with Spectroelectrochemistry. Polymers, 2021, 13, 1630.	2.0	4
487	Energy recovery for hybrid hydraulic excavators: flywheel-based solutions. Automation in Construction, 2021, 125, 103648.	4.8	23
488	Preparation and Evaluation of the Supercapacitive Performance of MnO2/3D-reduced Graphene Oxide Aerogel Composite Electrode Through In Situ Electrochemical Deposition. Journal of Electronic Materials, 2021, 50, 4557-4566.	1.0	0
489	Biomass-Based Carbon Electrodes in the Design of Supercapacitors: An Electrochemical Point of View., 0,,.		1
490	Kinetics control over the Schiff base formation reaction for fabrication of hierarchical porous carbon materials with tunable morphology for high-performance supercapacitors. Nanotechnology, 2021, 32, 305602.	1.3	2
491	A green and sustainable organic molecule electrode prepared by fluorenone for more efficient energy storage. Electrochimica Acta, 2021, 377, 138088.	2.6	19
492	Review on innovative sustainable nanomaterials to enhance the performance of supercapacitors. Journal of Energy Storage, 2021, 37, 102474.	3.9	42
494	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
495	Polyacrylamide Gel-Derived Nitrogen-Doped Carbon Foam Yields High Performance in Supercapacitor Electrodes. ACS Applied Energy Materials, 2021, 4, 6719-6729.	2.5	22
496	N-doped cellulose-based carbon aerogels with a honeycomb-like structure for high-performance supercapacitors. Journal of Energy Storage, 2021, 38, 102414.	3.9	17

#	Article	IF	CITATIONS
497	The implementation of graphene-based aerogel in the field of supercapacitor. Nanotechnology, 2021, 32, 362001.	1.3	30
498	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie, 2021, 133, 17779-17787.	1.6	15
499	Silver decorated lanthanum calcium manganate for electrochemical supercapacitor. Materials Research Express, 2021, 8, 075502.	0.8	6
500	Graphene quantum dots and its modified application for energy storage and conversion. Journal of Energy Storage, 2021, 39, 102606.	3.9	16
501	High-yield preparation of molybdenum disulfide/polypyrrole hybrid nanomaterial with non-covalent interaction and its supercapacitor application. Journal of Alloys and Compounds, 2021, 868, 159263.	2.8	13
502	Sulfonated rGO from waste dry cell graphite rod and its hybrid with PANI as electrode for supercapacitor. Journal of Solid State Electrochemistry, 2021, 25, 2235-2247.	1.2	6
503	Optimization and cuttingâ€edge design of fuelâ€cell hybrid electric vehicles. International Journal of Energy Research, 2021, 45, 18392-18423.	2.2	44
504	Polypyrrole/CNT/cotton Composite Yarn Supercapacitor for Wearable Electronics. Fibers and Polymers, 2022, 23, 327-334.	1.1	4
505	A self-healing hydrogel electrolyte towards all-in-one flexible supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 20445-20460.	1.1	14
506	Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: As electrode material for supercapacitor. Ceramics International, 2021, 47, 18497-18509.	2.3	60
507	Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy, 2021, 85, 105942.	8.2	230
508	Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. Renewable and Sustainable Energy Reviews, 2021, 145, 110854.	8.2	53
509	Mixed Ionic-Electronic Transport in Polymers. Annual Review of Materials Research, 2021, 51, 73-99.	4.3	49
510	High performance electrochromic poly(5-cyanoindole)/TiO2 nanocomposite material for intelligent supercapacitor. Synthetic Metals, 2021, 277, 116785.	2.1	14
511	Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34616-34624.	4.0	16
512	A Review on Transition-metal Oxalate Based Electrode for Supercapacitors. IOP Conference Series: Materials Science and Engineering, 2021, 1166, 012032.	0.3	5
513	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie - International Edition, 2021, 60, 17638-17646.	7.2	63
514	Prospects for the Development of High Energy Density Dielectric Capacitors. Applied Sciences (Switzerland), 2021, 11, 8063.	1.3	8

#	Article	IF	CITATIONS
515	Fabrication and electrochemical behavior of halloysite/ graphene-polyaniline three-dimensional hybrid aerogel loaded with iron oxide. Journal of Alloys and Compounds, 2021, 871, 159157.	2.8	9
516	Modelling of GO/PPy/CB and rGO/PPy/CB nanocomposite supercapacitors using an electrical equivalent circuit. Ionics, 2021, 27, 4531-4547.	1.2	2
517	Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals, 2021, 11, 947.	1.0	29
518	Facile Synthesis of Coral Reef-Like ZnO/CoS2 Nanostructure on Nickel Foam as an Advanced Electrode Material for High-Performance Supercapacitors. Energies, 2021, 14, 4925.	1.6	7
519	A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. Journal of Energy Storage, 2021, 40, 102729.	3.9	80
520	Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers, 2021, 13, 2834.	2.0	23
521	A phosphorus integrated strategy for supercapacitor: 2D black phosphorus–doped and phosphorus-doped materials. Materials Today Chemistry, 2021, 21, 100480.	1.7	18
522	Fabrication of rGO/CoSx-rGO/rGO hybrid film via coassembly and sulfidation of 2D metal organic framework nanoflakes and graphene oxide as free-standing supercapacitor electrode. Journal of Alloys and Compounds, 2021, 872, 159702.	2.8	29
523	Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers, 2021, 13, 2898.	2.0	116
524	Design and Fabrication of Highly Porous 2D Bimetallic Sulfide ZnS/FeS Composite Nanosheets as an Advanced Negative Electrode Material for Supercapacitors. Energy & Samp; Fuels, 2021, 35, 15185-15191.	2.5	37
525	Facile synthesis and high volumetric capacitance of holey graphene film for supercapacitor electrodes with optimizing preparation conditions. Soft Materials, 2022, 20, 137-148.	0.8	1
526	Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Advanced Composites and Hybrid Materials, 2021, 4, 1082-1091.	9.9	81
527	Novel electrodes for supercapacitor: Conducting polymers, metal oxides, chalcogenides, carbides, nitrides, MXenes, and their composites with graphene. Journal of Alloys and Compounds, 2022, 893, 161998.	2.8	129
528	Cerium based metal organic framework derived composite with reduced graphene oxide as efficient supercapacitor electrode. Journal of Energy Storage, 2021, 41, 102999.	3.9	15
529	Designing Multifunctional Co and Fe Co-Doped MoS ₂ Nanocube Electrodes for Dye-Sensitized Solar Cells, Perovskite Solar Cells, and a Supercapacitor. ACS Omega, 2021, 6, 24931-24939.	1.6	14
530	Redox-active polymers as organic electrode materials for sustainable supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 147, 111247.	8.2	44
531	Supercapacitor performances of titanium–polymeric nanocomposites: a review study. Iranian Polymer Journal (English Edition), 2022, 31, 31-57.	1.3	6
532	Polyaniline electropolymerized within template of vertically ordered polyvinyl alcohol as electrodes of flexible supercapacitors with long cycle life. Electrochimica Acta, 2021, 390, 138819.	2.6	18

#	Article	IF	CITATIONS
533	Polyaniline/silver nanowire cotton fiber: A flexible electrode material for supercapacitor. Advanced Powder Technology, 2021, 32, 3954-3963.	2.0	14
534	Facile preparation of graphene/polyaniline composite hydrogel film by electrodeposition for binder-free all-solid-state supercapacitor. Journal of Alloys and Compounds, 2021, 875, 159931.	2.8	44
535	Microstructure control for high-capacitance polyaniline. Electrochimica Acta, 2021, 391, 138977.	2.6	21
536	Redefining high-k dielectric materials vision at nanoscale for energy storage: A new electrochemically active protection barrier. Electrochimica Acta, 2021, 389, 138727.	2.6	3
537	Design and synthesis of novel electroactive 2,2′:5′,2″-terthiophene monomers including oxyethylene chains for solid-state flexible energy storage applications. Electrochimica Acta, 2021, 389, 138662.	2.6	2
538	Poly(o-toluidine)/multiwalled carbon nanotube-based nanocomposites: An efficient electrode material for supercapacitors. Journal of Materials Research, 2021, 36, 3472.	1.2	4
539	Electrical and dielectric properties of self-assembled polyaniline on barium sulphate surface. Egyptian Journal of Petroleum, 2021, 30, 9-19.	1.2	5
540	Mechanically Induced Elastomeric Optical Transmittance Modulator. ACS Applied Polymer Materials, 2021, 3, 5434-5440.	2.0	2
541	Ultra-low temperature flexible supercapacitor based on hierarchically structured pristine polypyrrole membranes. Chemical Engineering Journal, 2021, 420, 129712.	6.6	51
542	Interface Mo-N coordination bonding MoSxNy@Polyaniline for stable structured supercapacitor electrode. Electrochimica Acta, 2021, 391, 138953.	2.6	27
543	Rational design of active layer configuration with parallel graphene/polyaniline composite films for high-performance supercapacitor electrode. Electrochimica Acta, 2021, 398, 139330.	2.6	17
544	A Shapeâ€Variable, Lowâ€√emperature Liquid Metal–Conductive Polymer Aqueous Secondary Battery. Advanced Functional Materials, 2021, 31, 2107062.	7.8	17
545	Binary vanadium pentoxide carbon-graphene foam composites derived from dark red hibiscus sabdariffa for advanced asymmetric supercapacitor. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200347.	1.6	2
546	High-crystalline tetraaniline nanofibers deposited carbon cloth as flexible electrode for high-performance solid-state supercapacitors. Surface and Coatings Technology, 2021, 424, 127626.	2.2	7
547	High-performance all-solid-state flexible asymmetric supercapacitors composed of PPy@Ti3C2Tx/CC and Ti3C2Tx/CC electrodes. Surfaces and Interfaces, 2021, 26, 101393.	1.5	8
548	Organic electrochemical transistors in bioelectronic circuits. Biosensors and Bioelectronics, 2021, 190, 113461.	5.3	63
549	Flexible supercapacitor: Overview and outlooks. Journal of Energy Storage, 2021, 42, 103053.	3.9	171
550	Ultrathin Cu2P2O7 nanoflakes on stainless steel substrate for flexible symmetric all-solid-state supercapacitors. Chemical Engineering Journal, 2021, 422, 130131.	6.6	66

#	Article	IF	CITATIONS
551	Enhancement in carrier separation of ZnO-Ho2O3-Sm2O3 hetrostuctured nanocomposite with rGO and PANI supported direct dual Z-scheme for antimicrobial inactivation and sunlight driven photocatalysis. Advanced Powder Technology, 2021, 32, 3770-3787.	2.0	46
552	Technologies and economics of electric energy storages in power systems: Review and perspective. Advances in Applied Energy, 2021, 4, 100060.	6.6	77
553	Regulating monomer assembly to enhance PEDOT capacitance performance via different oxidants. Journal of Colloid and Interface Science, 2021, 601, 265-271.	5.0	12
554	Synthesis and characterization of iron-cobalt oxide/polypyrrole nanocomposite: An electrochemical sensing platform of anti-prostate cancer drug flutamide in human urine and serum samples. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127367.	2.3	18
555	High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene-TPU hybrid fibers. Electrochimica Acta, 2021, 395, 139141.	2.6	38
556	Carbon dots as nano-modules for energy conversion and storage. Materials Today Communications, 2021, 29, 102732.	0.9	13
557	Recent advances of transition metal oxalate-based micro- and nanomaterials for electrochemical energy storage: a review. Materials Today Chemistry, 2021, 22, 100564.	1.7	22
558	PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chemical Engineering Journal, 2022, 428, 131183.	6.6	44
559	Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 728-735.	5.0	19
560	Sonochemically exfoliated polymer-carbon nanotube interface for high performance supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 1792-1799.	5.0	47
561	Ternary nanocomposites for supercapattery. , 2021, , 141-173.		2
562	Transition metal nitrides for electrochemical energy applications. Chemical Society Reviews, 2021, 50, 1354-1390.	18.7	580
563	Electrode Material Selection for Supercapacitors. Springer Series in Materials Science, 2021, , 159-200.	0.4	8
564	Regulating the species and the counter-ion size of proton acids to prepare novel poly(4-aminodiphenylamine) nanomaterials for supercapacitors. Materials Chemistry Frontiers, 2021, 5, 6145-6151.	3.2	1
565	Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials, 2021, 11, 91.	1.9	87
566	MXene binder stabilizes pseudocapacitance of conducting polymers. Journal of Materials Chemistry A, 2021, 9, 20356-20361.	5.2	15
567	Characteristics of Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 269-285.	0.4	28
568	Introduction to Supercapacitors. Springer Series in Materials Science, 2020, , 1-28.	0.4	14

#	Article	IF	CITATIONS
569	Transition Metal Oxide-/Carbon-/Electronically Conducting Polymer-Based Ternary Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 387-434.	0.4	23
570	Transition Metal Oxide/Activated Carbon-Based Composites as Electrode Materials for Supercapacitors. Springer Series in Materials Science, 2020, , 145-178.	0.4	18
571	Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science, 2020, 43, 1.	0.8	9
572	The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Reports, 2020, 6, 148-156.	2.5	60
573	Enhancement of electrochemical performance of cobalt (II) coordinated polyaniline: A combined experimental and theoretical study. Electrochimica Acta, 2020, 338, 135881.	2.6	36
574	Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. Journal of Electroanalytical Chemistry, 2019, 836, 182-189.	1.9	42
575	Comparative electrochemical behavior of poly (3-aminobenzoic acid) films in conventional and non-conventional solvents. AIP Conference Proceedings, 2020, , .	0.3	2
576	Enhancing the Electrochemical Properties of LaCoO3 by Sr-Doping, rGO-Compounding with Rational Design for Energy Storage Device. Nanoscale Research Letters, 2020, 15, 184.	3.1	22
577	Polyaniline Nanocomposites. Advances in Chemical and Materials Engineering Book Series, 2019, , 220-253.	0.2	5
578	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
579	New Covalent Organic Square Lattice Based on Porphyrin and Tetraphenyl Ethylene Building Blocks toward High-Performance Supercapacitive Energy Storage. Chemistry of Materials, 2021, 33, 8512-8523.	3.2	40
580	An eco-friendly method for synthesis of Cu2O/rGO/PANI composite using Citrus maxima juice for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2021, 32, 27937-27949.	1.1	5
582	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem, 2021, 3, 100065.	10.1	25
583	Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors. ChemSusChem, 2021, 14, 5384-5398.	3.6	17
584	An UiO-66/P-L-histidine composite film fabricated by electropolymerization and electrodeposition for sensing biomarker 4-nitroquinoline N-oxide. Microchemical Journal, 2022, 172, 106925.	2.3	3
585	Preparation and characterization of PANI-PPY/PET fabric conductive composite for supercapacitors. Journal of the Textile Institute, 2022, 113, 2443-2450.	1.0	5
586	Zn Ion-Doped Amorphous NiWO4 Nanospheres as Cathode Material for High-Performance Asymmetric Supercapacitors. Journal of Electronic Materials, 2021, 50, 7240-7249.	1.0	9
587	{BW ₁₂ O ₄₀ } Hybrids Modified by in Situ Synthesized Rigid Ligand with Supercapacitance and Photocatalytic Properties. Inorganic Chemistry, 2021, 60, 16357-16369.	1.9	15

#	Article	IF	CITATIONS
588	A universal strategy: Rational construction of noble metal nanoparticle-shell/conducting polymer nanofiber-core electrodes with enhanced electrochemical performances. Nanotechnology, 2020, 31, 445602.	1.3	0
589	Physical and Electrochemical Properties of Soluble 3,4-Ethylenedioxythiophene (EDOT)-Based Copolymers Synthesized via Direct (Hetero)Arylation Polymerization. Frontiers in Chemistry, 2021, 9, 753840.	1.8	3
590	Exploring the underlying kinetics of electrodeposited PANI NT composite using distribution of relaxation times. Electrochimica Acta, 2022, 401, 139501.	2.6	2
591	Sucrose-assisted one step hydrothermal synthesis of MnCO3/Mn3O4 hybrid materials for electrochemical energy storage. Electrochimica Acta, 2022, 402, 139486.	2.6	7
592	CdSNPs@NPANâ€rGOâ€PAN electrospinning film with enhanced photocatalytic activity via adjusting the fiber dimension. Applied Organometallic Chemistry, 2022, 36, e6462.	1.7	3
593	Fe2O3 decorated graphene oxide/polypyrrole matrix for high energy density flexible supercapacitor. Surfaces and Interfaces, 2021, 27, 101572.	1.5	17
594	Fabrication on the Flexible Supercapacitor Based on the Polypyrrole Deposited on Polyethylene/Polypropylene Non-Woven Film. Russian Journal of Electrochemistry, 2020, 56, 947-958.	0.3	3
595	A Kirigami Approach of Patterning Membrane Actuators. Polymers, 2021, 13, 125.	2.0	2
596	Advanced functional materials and devices for energy conversion and storage applications. , 2022, , 43-96.		2
597	A novel perspective on interfacial interactions between polypyrrole and carbon materials for improving performance of supercapacitors. Applied Surface Science, 2022, 573, 151626.	3.1	13
598	Significantly enhanced capacitance of symmetrical supercapacitor based on Cu-CuxS@S-C electrode by thiourea electrolyte additive. Applied Surface Science, 2022, 572, 151458.	3.1	2
599	Self-responsive Nanomaterials for Flexible Supercapacitors. Springer Series in Materials Science, 2020, , 93-138.	0.4	0
600	Hierarchical Porous Materials for Supercapacitors., 2022,, 622-637.		0
601	Periodical Imaging of Microstructure During Temperature Regulated Electrical Conductivity Measurements of Supercritically Synthesized Polypyrrole. Springer Proceedings in Energy, 2020, , 127-135.	0.2	1
602	Poly(1,5-diaminonaphthalene)-Grafted Monolithic 3D Hierarchical Carbon as Highly Capacitive and Stable Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 53736-53745.	4.0	2
603	Polyoxomolybdate–Polypyrrole–Graphene Oxide Nanohybrid Electrode for High-Power Symmetric Supercapacitors. Energy & Dels, 2021, 35, 18824-18832.	2.5	12
604	In-situ electrochemical polymerization of aniline on flexible conductive substrates for supercapacitors and non-enzymatic ascorbic acid sensors. Nanotechnology, 2022, 33, 045405.	1.3	2
605	A review on holey graphene electrode for supercapacitor. Journal of Energy Storage, 2021, 44, 103380.	3.9	41

#	Article	IF	CITATIONS
606	Constructing \hat{I}^2 -FeOOH scaffold for enhancing conductance and capacitances of coaxial polypyrrole/nylon fibers. Electrochimica Acta, 2020, 349, 136407.	2.6	5
607	Electrochemical Synthesis of Porous Polypyrrole Materials Using Polyacrylonitrile Monolith Template. Kagaku Kogaku Ronbunshu, 2020, 46, 129-133.	0.1	0
608	Carbon Materials as Electrodes of Electrochemical Double-Layer Capacitors: Textural and Electrochemical Characterization., 2021,, 149-185.		0
609	Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale, 2021, 13, 19740-19770.	2.8	41
610	Facile synthesis of polypyrrole/graphene composite aerogel with Alizarin Red S as reactive dopant for high-performance flexible supercapacitor. Journal of Power Sources, 2022, 517, 230737.	4.0	38
611	Additively manufactured electrodes for supercapacitors: A review. Applied Materials Today, 2022, 26, 101220.	2.3	9
612	Tailor-made organic polymers towards high voltage aqueous ammonium/potassium-ion asymmetric supercapacitors. Applied Surface Science, 2022, 577, 151918.	3.1	14
613	"Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953.	5.6	9
614	A quasi-solid asymmetric supercapacitor based on MnO2-coated and N-doped pinecone porous carbon. Journal of Materials Science: Materials in Electronics, 2022, 33, 1899-1909.	1.1	3
615	Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. Journal of Molecular Structure, 2022, 1251, 131964.	1.8	20
616	Electropolymerization of D-A-D type monomers consisting of thiophene and quionaxline moieties for electrochromic devices and supercapacitors. Journal of Solid State Chemistry, 2022, 307, 122739.	1.4	22
617	Conducting polymer hydrogel based electrode materials for supercapacitor applications. Journal of Energy Storage, 2022, 45, 103510.	3.9	70
618	Hydrothermal synthesis of NiO/NiCo2O4 nanomaterials for applications in electrochemical energy storage. Journal of Materials Science: Materials in Electronics, 2022, 33, 354.	1.1	4
619	Facile synthesis and electrochemical properties of alicyclic polyimides based carbon microflowers for electrode materials of supercapacitors. Journal of Energy Storage, 2022, 47, 103656.	3.9	9
620	2D-on-2D core–shell Co ₃ (PO ₄) ₂ stacked micropetals@Co ₂ Mo ₃ O ₈ nanosheets and binder-free 2D CNT–Ti ₃ C ₂ T _{<i>X</i>} –MXene electrodes for high-energy solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2021, 9, 26135-26148.	5.2	22
621	Graphene Hybrids Intercalated with 2D Redox-Active Covalent Organic Framework as High-Performance Capacitive Materials. SSRN Electronic Journal, 0, , .	0.4	O
622	Sustainable Polymer-Based Materials for Energy and Environmental Applications. Energy, Environment, and Sustainability, 2022, , 9-30.	0.6	2
623	Defective Metal–Organic Framework-808@Polyaniline Composite Materials for High Capacitance Retention Supercapacitor Electrodes. ACS Applied Energy Materials, 2022, 5, 1235-1243.	2.5	24

#	Article	IF	CITATIONS
624	Three-dimensional polypyrrole induced high-performance flexible piezoelectric nanogenerators for mechanical energy harvesting. Composites Science and Technology, 2022, 219, 109260.	3.8	22
625	Electropolymerized 1,10-phenanthroline as the electrode material for aqueous supercapacitors. Chemical Engineering Journal, 2022, 433, 134483.	6.6	10
626	Pyrazine-based organic electrode material for high-performance supercapacitor applications. Journal of Energy Storage, 2022, 48, 103953.	3.9	10
627	Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Applied Surface Science, 2022, 581, 152432.	3.1	78
628	Scalable Fabrication of Quantum-Sized CoS $<$ sub> $1.97 sub> Nanoparticles Anchoring on Biomass Carbon Aerogel for Energy Storage Application. SSRN Electronic Journal, 0, , .$	0.4	0
629	Investigation of magnetron sputtered Ni@Cu/ <scp> WS ₂ </scp> as an electrode material for potential supercapattery devices. International Journal of Energy Research, 2022, 46, 7334-7347.	2.2	8
630	Rational preparation of ternary carbon cloth/MnO2/polyaniline nanofibers for high-performance electrochemical supercapacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 1918-1929.	1.1	3
631	Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Materials, 2022, 47, 13-43.	9.5	92
632	Conductive polymer doped two-dimensional MXene materials: opening the channel of magnesium ion transport. RSC Advances, 2022, 12, 4329-4335.	1.7	12
633	Electrode Materials for Supercapacitors in Hybrid Electric Vehicles: Challenges and Current Progress. Condensed Matter, 2022, 7, 6.	0.8	66
634	A thin carbon nanofiber/branched carbon nanofiber nanocomposite for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 3091-3094.	1.4	3
635	Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules, 2022, 27, 546.	1.7	11
636	Application of Microbes in Synthesis of Electrode Materials for Supercapacitors. Environmental and Microbial Biotechnology, 2022, , 39-92.	0.4	3
637	Nanostructured materials for electrochromic energy storage systems. Journal of Materials Chemistry A, 2022, 10, 1179-1226.	5. 2	25
638	Reduced graphene oxide/hierarchal spinel nickel cobaltite nanoflowers composites for supercapacitor electrodes with ultrahigh capacitive and excellent rate performance. Ceramics International, 2022, , .	2.3	9
639	Self-assembled Ti3C2Tx-MXene/PTh composite electrodes for electrochemical capacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 6636-6645.	1.1	3
640	Metal-organic framework/conductive polymer hybrid materials for supercapacitors. Applied Materials Today, 2022, 26, 101387.	2.3	26
641	Electrochemical polymerization of polypyrrole on carbon cloth@ZIF67 using alizarin red S as redox dopant for flexible supercapacitors. Electrochimica Acta, 2022, 407, 139869.	2.6	20

#	Article	IF	CITATIONS
642	Electrochemical synthesis and characterization of self-doped aniline 2-sulfonic acid-modified flexible electrode with high areal capacitance and rate capability for supercapacitors. Synthetic Metals, 2022, 285, 117017.	2.1	22
643	Polyaniline wrapped carbon nanotube/exfoliated MoS2 nanosheet composite as a promising electrode for high power supercapacitors. Carbon Trends, 2022, 7, 100154.	1.4	21
644	Phosphorene, antimonene, silicene and siloxene based novel 2D electrode materials for supercapacitors-A brief review. Journal of Energy Storage, 2022, 48, 104027.	3.9	35
645	Study on capacitance properties of the sputtered carbon doped titanium nitride electrode material for supercapacitor. Vacuum, 2022, 198, 110893.	1.6	9
646	Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials. Carbon, 2022, 190, 412-421.	5.4	24
647	Electrochemical grown Ni,Zn-MOF and its derived hydroxide as battery-type electrodes for supercapacitors. Synthetic Metals, 2022, 285, 117009.	2.1	26
648	Magnetically aligned CNT/magnetite heterogeneous composite membranes for electromagnetic wave shielding and heat dissipation. Materials Research Bulletin, 2022, 149, 111748.	2.7	14
649	Highly flexible, freestanding supercapacitor electrodes based on hollow hierarchical porous carbon nanofibers bridged by carbon nanotubes. Chemical Engineering Journal, 2022, 434, 134662.	6.6	44
650	Corrosion-controlled surface engineering improves the adhesion of materials for stable free-standing electrodes. Journal of Colloid and Interface Science, 2022, 614, 617-628.	5.0	1
651	Polyindole and polypyrrole as a sustainable platform for environmental remediation and sensor applications. Materials Advances, 2022, 3, 2990-3022.	2.6	28
652	An ultrahighâ€energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2â€sulfonic acid modified carbon felt electrode. International Journal of Energy Research, 2022, 46, 8042-8060.	2.2	26
653	Facile synthesis of fluorinated graphene/NiCo2O4 nanorods composite with high supercapacitive performance. Applied Nanoscience (Switzerland), 2022, 12, 3177-3184.	1.6	4
654	Evaluation of batteryâ€grade alkaline earth metal sulfide electrodes for energy storage applications. International Journal of Energy Research, 2022, 46, 8093-8101.	2.2	6
655	High surface wetting and conducting NiO/PANI nanocomposites as efficient electrode materials for supercapacitors. Inorganic Chemistry Communication, 2022, 138, 109275.	1.8	9
656	A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydrate Polymers, 2022, 284, 119230.	5.1	14
657	Characterization of polyanilines synthesized at different pH for electrochemical sensing and supercapacitor applications. Materials Today: Proceedings, 2022, 51, 2286-2292.	0.9	6
658	Boosting the Energy Density of Cofe2o4 Nanocubes by Non-Covalently Grafting Over Cu/Graphitic Carbon Nitride as Solid-State Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
659	Supercapacitors: Current Trends and Future Opportunities. Engineering Materials, 2022, , 1047-1089.	0.3	1

#	ARTICLE	IF	CITATIONS
660	Review on the recent progress in the nanocomposite polymer electrolytes on the performance of lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 7137-7174.	2.2	11
661	Polymerization of pyrrole induced by pillar[5]arene functionalized graphene for supercapacitor electrode. Chinese Chemical Letters, 2022, 33, 4846-4849.	4.8	20
662	Synthesis and Electrochemical Properties of Donor–Acceptor-Conjugated Polymers Based on Carbazole-EDOT Derivatives with Different Electron-Withdrawing Groups. ACS Applied Polymer Materials, 2022, 4, 2132-2139.	2.0	7
663	Recent progress in materials and architectures for capacitive deionization: A comprehensive review. Water Environment Research, 2022, 94, e10696.	1.3	19
664	Applications of polymers in lithium-ion batteries with enhanced safety and cycle life. Journal of Polymer Research, 2022, 29, 1.	1.2	11
665	Controlled growth of Bi-Functional La doped CeO2 nanorods for photocatalytic H2 production and supercapacitor applications. International Journal of Hydrogen Energy, 2022, 47, 15480-15490.	3.8	20
667	Additive Manufacturing of Supercapacitor Electrodes $\hat{a} \in \text{``Materials, Methods and Design. Key Engineering Materials, 0, 913, 59-75.}$	0.4	4
668	Strip-like Co-based metal–organic framework as electrode material for supercapacitors. Journal of Materials Science: Materials in Electronics, 2022, 33, 8256-8269.	1.1	0
669	A <i>Ï€</i> onjugated Polyimideâ€Based Highâ€Performance Aqueous Potassiumâ€Ion Asymmetric Supercapacitor. Macromolecular Rapid Communications, 2022, 43, e2200040.	2.0	8
670	A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage, 2023, 5, .	2.3	63
671	Enhancement of polypyrrole nanotubes stability by gold nanoparticles for the construction of flexible solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2022, 911, 116212.	1.9	10
672	3D juniperus sabina-like Ni/Co metal-organic framework as an enhanced electrode material for supercapacitors. Journal of Solid State Chemistry, 2022, 310, 123056.	1.4	7
673	Thickness-controlled porous hexagonal NiO nanodiscs electrodes for use in supercapacitors: How nanodiscs thickness influences electrochemical performance. Journal of Energy Storage, 2022, 50, 104329.	3.9	6
674	Recent trends in electrolytes for supercapacitors. Journal of Energy Storage, 2022, 50, 104222.	3.9	90
675	Electrochemical sensing of serotonin by silver decorated polypyrrole nanoribbon based electrode synthesized by sodium cholate as soft template. Materials Today Communications, 2022, 31, 103361.	0.9	4
676	Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications. Journal of Energy Storage, 2022, 51, 104378.	3.9	25
677	Perspectives of conducting polymer nanostructures for high-performance electrochemical capacitors. Journal of Energy Storage, 2022, 51, 104418.	3.9	29
678	Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. Journal of Energy Storage, 2022, 51, 104475.	3.9	13

#	Article	IF	CITATIONS
679	1.6ÂV high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets. Carbon, 2022, 194, 240-247.	5.4	9
680	Synthesis of Nano-polypyrrole/Reduced Graphene Oxide via Double Emulsion Method. Polymer Science - Series A, 2021, 63, 828-841.	0.4	0
681	Synthesis of Arylene Ether-Type Hyperbranched Poly(triphenylamine) for Lithium Battery Cathodes. Materials, 2021, 14, 7885.	1.3	1
682	Layer-by-Layer Electrode Fabrication for Improved Performance of Porous Polyimide-Based Supercapacitors. Materials, 2022, 15, 4.	1.3	5
683	A sensitive electrochemical sensor based on metal cobalt wrapped conducting polymer polypyrrole nanocone arrays for the assay of nitrite. Mikrochimica Acta, 2022, 189, 26.	2.5	21
684	Recent progress of battery grade metal sulfides for hybrid energy storage devices. International Journal of Energy Research, 2022, 46, 3906-3938.	2.2	9
685	Polypyrrole-Modified Ni ₃ S ₂ Nanosheet Electrodes for Supercapacitors. ACS Applied Nano Materials, 2022, 5, 654-661.	2.4	9
686	Ternary Composite of Molybdenum Disulfide-Graphene Oxide-Polyaniline for Supercapacitor. Journal of the Electrochemical Society, 2021, 168, 120542.	1.3	10
687	A facile strategy to fabricate hollow spherical polyaniline and its application to dyes removal. Polymer Bulletin, 2023, 80, 3675-3688.	1.7	3
688	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
689	Perylenediimide/Graphite Foilâ€Based Electrode Materials with Outstanding Cycling Stability for Symmetric Supercapacitor Device Architectures. Energy Technology, 2022, 10, .	1.8	11
690	Facile synthesis of novel PANI covered Y2O3–ZnO nanocomposite: A promising electrode material for supercapacitor. Solid State Sciences, 2022, 128, 106883.	1.5	12
691	Recent Advances in Carbon and Metal Based Supramolecular Technology for Supercapacitor Applications. Chemical Record, 2022, 22, e202200041.	2.9	26
692	Polypyrrole Nanofoam/Carbon Nanotube Multilayered Electrode for Flexible Electrochemical Capacitors. ACS Applied Energy Materials, 2022, 5, 4059-4069.	2.5	10
695	Improved electrochemical properties of polypyrrole with cucurbit[6]uril <i>via</i> supramolecular interactions. Physical Chemistry Chemical Physics, 2022, 24, 13773-13783.	1.3	3
696	Two-in-one template-assisted construction of hollow phosphide nanotubes for electrochemical energy storage. Inorganic Chemistry Frontiers, 0, , .	3.0	1
697	Electropolymerization of EDOT in an anionic surfactant-stabilized hydrophobic ionic liquid-based microemulsion. Physical Chemistry Chemical Physics, 2022, 24, 13793-13805.	1.3	3
698	Effect of Oxidizer on PANI for Producing BaTiO3@PANI Perovskite Composites and Their Electrical and Electrochemical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3093-3105.	1.9	9

#	Article	IF	CITATIONS
699	CoFe2O4 nanocubes over Cu/graphitic carbon nitride as electrode materials for solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2022, 446, 136540.	6.6	21
700	Sustainable and Renewable Nano-biocomposites for Sensors and Actuators: A Review on Preparation and Performance. Current Analytical Chemistry, 2023, 19, 38-69.	0.6	7
701	Facile synthesis of paratoluene sulfonic acid assisted S-doped polyaniline hybrid composite for energy storage devices. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	1
702	Ionic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem, 2022, 4, 100075.	10.1	25
703	Highly Graphitized Porous Carbon Microspheres Derived from Copolymer of Glucose and Melamine for Advanced Electrodes. Particle and Particle Systems Characterization, 2022, 39, .	1.2	2
704	Synthesis and electrochemical performance of V2O5 nanosheets for supercapacitor. AIP Advances, 2022, 12, .	0.6	10
705	Cobalt manganese phosphate and sulfide electrode materials for potential applications of battery-supercapacitor hybrid devices. Journal of Energy Storage, 2022, 50, 104632.	3.9	10
706	Electropolymerization of thiazole derivatives bearing thiophene and selenophene and the potential application in capacitors. Journal of Electroanalytical Chemistry, 2022, 916, 116386.	1.9	2
707	Evaporation-induced hydrated graphene/polyaniline/carbon cloth integration towards high mass loading supercapacitor electrodes. Chemical Engineering Journal, 2022, 445, 136727.	6.6	33
708	Highly conductive film of PEDOT:PSS treated with cosolvent of formamide and methanol for flexible piezoresistive sensor applications. Applied Physics Letters, 2022, 120, .	1.5	8
709	Conducting Polymers Based Nanocomposites for Supercapacitors. Advances in Material Research and Technology, 2022, , 485-511.	0.3	16
712	A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications. Chemical Engineering Journal, 2022, 446, 137116.	6.6	39
713	A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chemical Communications, 2022, 58, 7070-7073.	2.2	1
714	Interface coupling and energy storage of inorganic–organic nanocomposites. Journal of Materials Chemistry A, 2022, 10, 14187-14220.	5.2	10
715	Graphene decorated <scp>LiMn₂O₄</scp> electrode material for hybrid type energy storage devices. Energy Storage, 2023, 5, .	2.3	2
716	Hydroxymethyl PEDOT microstructure-based electrodes for high-performance supercapacitors. APL Materials, 2022, 10, .	2.2	11
717	Recent advances in metal pyrophosphates for electrochemical supercapacitors: A review. Journal of Energy Storage, 2022, 52, 104986.	3.9	17
718	Application of Conductive Polymers in Electrochemistry. ACS Symposium Series, 0, , 185-217.	0.5	2

#	Article	IF	CITATIONS
719	Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 13190-13240.	5. 2	137
720	A polyaniline surface-modified Prussian blue analogue cathode for flexible aqueous Zn-ion batteries. Chemical Communications, 2022, 58, 8226-8229.	2.2	27
721	Nickel Oxide-Incorporated Polyaniline Nanocomposites as an Efficient Electrode Material for Supercapacitor Application. Inorganics, 2022, 10, 86.	1.2	33
722	Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors. Current Chinese Science, 2022, 2, 460-471.	0.2	2
723	Review on recent advancements in chemically synthesized manganese cobalt oxide (MnCo2O4) and its composites for energy storage application. Chemical Engineering Journal, 2022, 450, 137425.	6.6	36
724	Systematic Investigation on the Electrochemical Performance of Pristine Silver Metal–Organic Framework as the Efficient Electrode Material for Supercapacitor Application. Energy & Samp; Fuels, 2022, 36, 7104-7114.	2.5	8
726	Scalable fabrication of quantum-sized CoS1.97 nanoparticles anchoring on biomass carbon aerogel for energy storage application. Journal of Alloys and Compounds, 2022, 920, 165858.	2.8	9
727	Selective Adsorption of Hemoglobin in Human Whole Blood with a Nickel Monosubstituted Silicotungstic Acid Hybrid. ACS Omega, 2022, 7, 22633-22638.	1.6	3
728	Moringa Oleifera leaf extract mediated synthesis of reduced graphene oxide-vanadium pentoxide nanocomposite for enhanced specific capacitance in supercapacitors. Inorganic Chemistry Communication, 2022, 142, 109648.	1.8	9
729	Polypyrrole/SnCl2 modified bacterial cellulose electrodes with high areal capacitance for flexible supercapacitors. Carbohydrate Polymers, 2022, 292, 119679.	5.1	19
730	Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chemical Engineering Journal, 2022, 447, 137562.	6.6	28
731	Ï€-Conjugated polymeric materials for cutting-edge electrochemical energy storage devices. , 2022, , 145-173.		0
732	Conductive polymer-based composite photocatalysts for environment and energy applications. , 2022, , 505-538.		2
733	Conjugated polymer-based electrodes for flexible all-solid-state supercapacitors. , 2022, , 243-281.		0
734	A Conjugately Configured Supercapacitor with Suppressed Self-Discharge by Coupling Pairs of Presodiated Manganese Oxides. Energy & Supercapacitor with Suppressed Self-Discharge by Coupling Pairs of Presodiated Manganese Oxides.	2.5	5
735	Organic Crosslinked Polymer-Derived N/O-Doped Porous Carbons for High-Performance Supercapacitor. Nanomaterials, 2022, 12, 2186.	1.9	10
736	Ni(OH) ₂ -Type Nanoparticles Derived from Ni Salen Polymers: Structural Design toward Functional Materials for Improved Electrocatalytic Performance. ACS Applied Materials & Design toward Interfaces, 2022, 14, 33768-33786.	4.0	3
737	Laserâ€Scribed Graphene–Polyaniline Microsupercapacitor for Internetâ€ofâ€Things Applications. Advanced Functional Materials, 2022, 32, .	7.8	27

#	ARTICLE	IF	Citations
738	Hydrothermal Synthesis and Symmetrical Supercapacitor Study of 1D Lnâ€H ₂ PDA (Ln=La and) Tj E	TQ8000	rgBJ /Overlock
739	MoSe ₂ â€PANI Nanocomposite as Supercapacitor Electrode Material: Optimization, Mechanism and Electrochemical Performance. ChemistrySelect, 2022, 7, .	0.7	4
740	Insights on polymeric materials for the optimization of high-capacity anodes. Composites Part B: Engineering, 2022, 243, 110131.	5.9	4
741	Preparation of FePcNs@GO composites and boosting oxygen reduction reaction. Research on Chemical Intermediates, 2022, 48, 3375-3387.	1.3	1
742	Synergistic effect of NiS/g-C3N4 nanocomposite for highâ€performance asymmetric supercapacitors. Inorganic Chemistry Communication, 2022, 142, 109719.	1.8	4
743	Structure related RuSe2 nanoparticles and their application in supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129702.	2.3	5
744	Dexterous synthesis hybrid MnO2/PPy nanosheets grown on ultrafine NiO nanoarrays for high performance flexible hybrid capacitors. Journal of Energy Storage, 2022, 54, 105300.	3.9	1
745	Design of Boron Carbonitrides-Polyaniline (BCN-PANI) assembled supercapacitor with high voltage window. Journal of Colloid and Interface Science, 2022, 626, 544-553.	5.0	12
746	Construction of MoS2 intercalated Siloxene heterostructure for all-solid-state symmetric supercapacitors. Applied Materials Today, 2022, 29, 101578.	2.3	1
747	Electropolymerized chlorophyll derivative biopolymers for supercapacitors. Chemical Engineering Journal, 2022, 450, 138000.	6.6	6
748	Construction of hierarchical polypyrrole coated copper-catecholate grown on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 627, 142-150.	5 . 0	12
749	Facile preparation of SnO2/MoS2 nanocomposites with high electrochemical performance for energy storage applications. Inorganic Chemistry Communication, 2022, 143, 109802.	1.8	8
750	Nanosized V2CTx with Boosting Super Capacitance via Engineering Alkalization Assisted K+ Interlayer Coordination. Journal of the Electrochemical Society, 0, , .	1.3	0
751	One-Step Fabrication of Ice-Templated Pure Polypyrrole Nanoparticle Hydrogels for High-Rate Supercapacitors. ACS Applied Nano Materials, 2022, 5, 11940-11947.	2.4	4
752	Synergetic Effect of Polyaniline and Graphene in Their Composite Supercapacitor Electrodes: Impact of Components and Parameters of Chemical Oxidative Polymerization. Nanomaterials, 2022, 12, 2531.	1.9	13
7 53	An in-plane supercapacitor obtained by facile template method with high performance Mn–Co sulfide-based oxide electrode. Nanotechnology, 2022, 33, 485401.	1.3	1
754	Recent Development of Integrated Systems of Microsupercapacitors. Energy Material Advances, 2022, 2022, .	4.7	7
755	Dual Z-scheme core-shell PANI-CeO2-Fe2O3-NiO heterostructured nanocomposite for dyes remediation under sunlight and bacterial disinfection. Environmental Research, 2022, 215, 114140.	3.7	39

#	ARTICLE	IF	CITATIONS
756	High-Energy-Density Asymmetric Supercapacitor Based on a Nickel Cobalt Double Hydroxide/Reduced-Graphene-Oxide Fiber Electrode. ACS Applied Energy Materials, 2022, 5, 9605-9615.	2.5	15
757	An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors. Sustainable Materials and Technologies, 2022, 33, e00477.	1.7	10
758	Three-dimensional core-shell niobium-metal organic framework@carbon nanofiber mat as a binder-free positive electrode for asymmetric supercapacitor. Journal of Energy Storage, 2022, 55, 105484.	3.9	14
759	Rational design of metal oxide based electrode materials for high performance supercapacitors – A review. Journal of Energy Storage, 2022, 55, 105419.	3.9	49
760	Hollow Carbon Nanofibers with Inside-outside Decoration of Bi-metallic MOF Derived Ni-Fe Phosphides as Electrode Materials for Asymmetric Supercapacitors. Chemical Engineering Journal, 2022, 450, 138363.	6.6	79
761	Temperature-tolerant flexible supercapacitor integrated with a strain sensor using an organohydrogel for wearable electronics. Chemical Engineering Journal, 2022, 450, 138379.	6.6	36
762	High performance of asymmetric coin cells designed using optimized weight percentage of multiwalled carbon nanotubes in Ni/Co-MOFs nanocomposites. Materials Research Bulletin, 2022, 156, 111996.	2.7	6
763	A review on polyaniline and graphene nanocomposites for supercapacitors. Polymer-Plastics Technology and Materials, 2022, 61, 1871-1907.	0.6	30
764	Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41, 3957-3975.	3.6	31
765	Preparation and Electrochemical Properties of Conjugated Polymers with Carbazole Unit as Side Chain Terminal Group for Supercapacitor Electrodes. International Journal of Electrochemical Science, 0, , ArticleID:221049.	0.5	1
766	Synthesis of Mn2V2O7 nanopebbles via hydrothermal method and its high-efficiency energy storage for supercapacitors. Journal of Energy Storage, 2022, 55, 105553.	3.9	8
767	Dodecahedral carbon with hierarchical porous channels and bi-heteroatom modulated interface for high-performance symmetric supercapacitors. Journal of Power Sources, 2022, 549, 232111.	4.0	6
768	Application of morphology and phase design of dealloying method in supercapacitor. Journal of Alloys and Compounds, 2022, 927, 166974.	2.8	9
769	Properties, functions, and challenges: current collectors. Materials Today Chemistry, 2022, 26, 101152.	1.7	15
770	Solution-processable multicolor TiO2/polyaniline nanocomposite for integrated bifunctional electrochromic energy storage device. Applied Surface Science, 2023, 607, 155015.	3.1	13
771	Interconnected MoS ₂ /FeCo ₂ S ₄ nanosheet array bifunctional electrocatalysts grown on carbon cloth for efficient overall water splitting. New Journal of Chemistry, 2022, 46, 16419-16425.	1.4	5
772	Sacrificial template synthesis of hollow-structured NiCoP microcubes as novel electrode material for asymmetric supercapacitors. Dalton Transactions, 0 , , .	1.6	2
773	Interconnected and high cycling stability polypyrrole supercapacitors using cellulose nanocrystals and commonly used inorganic salts as dopants. Journal of Energy Chemistry, 2023, 76, 165-174.	7.1	9

#	Article	IF	CITATIONS
774	Flexible and weavable 3D porous graphene/PPy/lignocellulose-based versatile fibrous wearables for thermal management and strain sensing. Chemical Engineering Journal, 2023, 452, 139338.	6.6	19
775	A Concise Summary of Recent Research on MOF Based Flexible Supercapacitors. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 141-158.	0.1	0
776	Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density. ACS Applied Materials & Samp; Interfaces, 2022, 14, 42671-42682.	4.0	11
777	Graft Copolymers of Polysaccharide: Synthesis Methodology and Biomedical Applications in Tissue Engineering. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	0
778	Effect of solution pH on structure and electrochemical performance of MoS2. Journal of Materials Science: Materials in Electronics, 2022, 33, 21677-21687.	1.1	1
779	Preparation of ZnCo2O4 nanowire arrays with high capacitive by a one-step low-temperature water bath and calcination methods. Ionics, 0, , .	1.2	0
780	Biopolymer Films of Metal-Coordinated Chlorophyll- <i>a</i> Derivatives for "Green―Supercapacitor Electrodes. ACS Applied Energy Materials, 2022, 5, 12523-12530.	2.5	1
781	A light-weight, thin-thickness, flexible multifunctional electrochromic device integrated with variable optical, thermal management and energy storage. Electrochimica Acta, 2022, 435, 141274.	2.6	8
782	Facile preparation of SnS2 nanoflowers and nanoplates for the application of high-performance hybrid supercapacitors. International Journal of Hydrogen Energy, 2022, 47, 39204-39214.	3.8	33
783	Electrochemical performance of transition metal sulfide by employing different synthesis techniques for hybrid batteries. International Journal of Energy Research, 2022, 46, 22883-22893.	2.2	7
784	Fabrication of self-doped aramid-based porous carbon fibers for the high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2022, 923, 116829.	1.9	8
785	Synthesis of Different Manganese Tungstate Nanostructures for Enhanced Charge Storage Application: Theoretical support of the Experimental Findings. Physical Chemistry Chemical Physics, 0, , .	1.3	1
786	Energy Technology Based on Conductive Polymers. , 2022, , 205-273.		0
787	Single-wall and graphene-modified multiwall wasp nest shaped Bi ₂ Mo ₂ O ₉ self-assembly for performance-enhanced asymmetric supercapacitor. Journal of Materials Chemistry C, 2022, 10, 16453-16464.	2.7	9
788	Polyanilineâ€"Graphene Electrodes Prepared by Electropolymerization for High-Performance Capacitive Electrodes: A Brief Review. Batteries, 2022, 8, 191.	2.1	6
789	Urea-Assisted Nickel-Manganese Phosphate Composite Microarchitectures with Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach. Energy & En	2,5	4
790	A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers, 2022, 14, 4693.	2.0	5
791	A solar-rechargeable bio-photoelectrochemical system based on carbon tracking strategy for enhancement of glucose electrometabolism. Nano Energy, 2022, 104, 107940.	8.2	4

#	Article	IF	CITATIONS
792	Freeze-tolerant gel electrolyte membrane for flexible Zn-ion hybrid supercapacitor. Journal of Energy Storage, 2022, 56, 105923.	3.9	8
793	Honeycomb-like MgCo2O4@ZnCo layered double hydroxide as novel electrode material for high-performance all-solid-state supercapacitors. Applied Surface Science, 2023, 612, 155661.	3.1	12
794	Controlled Synthesis of a Hierarchically Porous Nâ€Doped Carbon Material with Dominantly Pyrrolic Nitrogen Using a Selfâ€Sacrificial SBAâ€15 Template for Increased Supercapacitance. ChemistrySelect, 2022, 7, .	0.7	0
795	A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. Journal of Energy Storage, 2022, 56, 106023.	3.9	34
796	Metal–organic framework induced hybrid NiCo ₂ S ₄ /PPy structures with unique interface features for high performance flexible energy storage devices. CrystEngComm, 2022, 24, 8399-8406.	1.3	1
797	Activation-induced layered structure in NiCoAl by atomic modulation for energy storage application. Materials Today Chemistry, 2023, 27, 101265.	1.7	1
798	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
799	Nanoflower copper sulphide intercalated reduced graphene oxide integrated polypyrrole nano matrix as robust symmetric supercapacitor electrode material. Journal of Energy Storage, 2023, 59, 106446.	3.9	19
800	A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renewable and Sustainable Energy Reviews, 2023, 173, 113106.	8.2	22
801	Conducting Polymers and Their Composites for Supercapacitors. , 2022, , 1-28.		O
803	Donor–Node–Acceptor Ambipolar Conducting Polymer Electrode Materials for Wide-Voltage and High-Stability Supercapacitors. ACS Sustainable Chemistry and Engineering, 2022, 10, 15978-15986.	3.2	5
804	Effect of Protonation Doping of Polyaniline Electrodes using Hydrochloric Acid on Its Pseudocapacitor Capacitance. Journal of Physics: Conference Series, 2022, 2376, 012006.	0.3	0
805	In Vivo Penetrating Microelectrodes for Brain Electrophysiology. Sensors, 2022, 22, 9085.	2.1	3
806	Micropattern of Silver/Polyaniline Core–Shell Nanocomposite Achieved by Maskless Optical Projection Lithography. Nano Letters, 2022, 22, 9823-9830.	4.5	8
807	Magnetic particle-filled polyaniline-doped graphene oxide nanocomposite-based electrode in application of supercapacitor. Energy and Environment, 0, , 0958305X2211451.	2.7	0
808	Fabrication of Poly(3, 4â€ethylenedioxythiophene)/Oâ^'S Coâ€Doped Porous Carbon Composites as Electrode Materials for Supercapacitors. ChemistrySelect, 2022, 7, .	0.7	2
809	High-Performance Flexible Triboelectric Nanogenerator Based on Environmentally Friendly, Low-Cost Sodium Carboxymethylcellulose for Energy Harvesting and Self-Powered Sensing. ACS Applied Electronic Materials, 2023, 5, 291-301.	2.0	2
810	An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. Journal of Composites Science, 2022, 6, 363.	1.4	20

#	Article	IF	CITATIONS
811	Redox-active graphene/polypyrrole composite aerogel with high-performance capacitive behavior for flexible supercapacitor. Diamond and Related Materials, 2023, 132, 109646.	1.8	4
812	Ultralow-Temperature Aqueous Conductive Polymer–Hydrogen Gas Battery. ACS Applied Materials & Interfaces, 2023, 15, 1021-1028.	4.0	1
813	In Situ Growth of MnO ₂ Nanosheets on a Graphite Flake as an Effective Binder-Free Electrode for High-Performance Supercapacitors. ACS Omega, 2022, 7, 48320-48331.	1.6	2
814	The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives. Sustainable Materials and Technologies, 2023, 35, e00536.	1.7	4
815	Novel Hybrid Composites Based on Polymers of Diphenyl-Amine-2-Carboxylic Acid and Highly Porous Activated IR-Pyrolyzed Polyacrylonitrile. Polymers, 2023, 15, 441.	2.0	3
816	Facial preparation of covalent modified reduced graphene oxide/polyaniline composite and its stable-enhanced electrochemical performance. Heliyon, 2023, 9, e13002.	1.4	3
817	Nanostructured Poly(3,4-ethylenedioxythiophene) Coatings on Functionalized Glass for Energy Storage. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3235-3243.	4.0	2
818	Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors. Carbon Letters, 2023, 33, 781-790.	3.3	4
819	Application of Co3O4/Nitrogen-doped carbon composite electrode material derived form Zeolitic imidazolate frameworks-67 in supercapacitors. Journal of Electroanalytical Chemistry, 2023, 930, 117152.	1.9	6
820	Facile synthesis of a multifunctional ternary SnO2/MWCNTs/PANI nanocomposite: Detailed analysis of dielectric, electrochemical, and water splitting applications. Electrochimica Acta, 2023, 441, 141816.	2.6	11
821	Molecular insights into temperature oscillation of electric double-layer capacitors in charging–discharging cycles. Journal of Power Sources, 2023, 559, 232596.	4.0	5
822	A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 2023, 293, 117262.	2.1	4
823	Smart multifunctional polymeric inks for supercapacitor applications. , 2023, , 429-449.		1
824	Supercapacitors—new developments. , 2023, , 39-64.		0
826	Effect of A-Site Substitution on LaMnO3 Perovskite via Sr Ions for Energy Applications. Journal of Electronic Materials, 2023, 52, 4279-4288.	1.0	1
827	Highâ€Voltage MXeneâ€Based Supercapacitors: Present Status and Future Perspectives. Small Methods, 2023, 7, .	4.6	14
828	Electrode materials for EDLC and pseudocapacitors. , 2023, , 179-198.		2
829	Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers, 2023, 15, 730.	2.0	20

#	Article	IF	CITATIONS
830	Facile preparation of polyaniline/graphene oxide composite towards electrode materials. Energy and Environment, 0, , 0958305X2211504.	2.7	1
831	Design Hybrid Porous Organic/Inorganic Polymers Containing Polyhedral Oligomeric Silsesquioxane/Pyrene/Anthracene Moieties as a High-Performance Electrode for Supercapacitor. International Journal of Molecular Sciences, 2023, 24, 2501.	1.8	29
832	Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues. Energies, 2023, 16, 1271.	1.6	1
833	"Perfect match―of the carbazole-based conducting polymer and polyoxometalate nanocomposite components for enhanced optical and electrical properties. European Polymer Journal, 2023, 186, 111857.	2.6	3
834	Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Materials Science in Semiconductor Processing, 2023, 158, 107366.	1.9	22
835	Porous (NH4)Fe3(SO4)2(OH)6 microparticles derived from iron-based zeolite imidazole frameworks as negative electrode material for supercapacitors. Journal of Energy Storage, 2023, 61, 106804.	3.9	1
836	Preparation of PANI/GO Electrode Material Modified by Non-ionic Surfactant TX-100. Lecture Notes in Electrical Engineering, 2023, , 494-500.	0.3	0
837	Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials, 2023, 13, 855.	1.9	5
838	Study on copper interconnection structure of flexible electronics by Ag-PT composite membrane induced electrodeposition. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1,1	0
839	Engineering building blocks of covalent organic frameworks for boosting capacitive charge storage. Journal of Power Sources, 2023, 564, 232873.	4.0	4
840	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
841	Critical review on recent developments in conducting polymer nanocomposites for supercapacitors. Synthetic Metals, 2023, 295, 117326.	2.1	10
842	Low-temperature synthesis of crystalline vanadium oxide films using oxygen plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, .	0.9	3
843	Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy, 2023, 109, 108290.	8.2	21
844	Gel electrolyte modification on D-A-D type conjugated polymer based supercapacitor. Journal of Energy Storage, 2023, 62, 106962.	3.9	2
845	One-step hydrothermal synthesis of manganese oxide nanosheets with graphene quantum dots for high-performance supercapacitors. Journal of Energy Storage, 2023, 62, 106948.	3.9	8
846	Interface engineered hydrangea-like ZnCo2O4/NiCoGa-layered double hydroxide@polypyrrole core-shell heterostructure for high-performance hybrid supercapacitor. Journal of Colloid and Interface Science, 2023, 640, 662-679.	5.0	11
847	Two-dimensional transition metal carbide (Ti0.5V0.5)3C2Tx MXene as high performance electrode for flexible supercapacitor. Journal of Colloid and Interface Science, 2023, 639, 233-240.	5.0	11

#	Article	IF	Citations
848	Recent advances and perspectives on graphene-based gels for superior flexible all-solid-state supercapacitors. Journal of Power Sources, 2023, 565, 232916.	4.0	23
849	Introducing GO/Cul nanostructure as active electrode matter for supercapacitors: A comparative investigation within two aqueous electrolytes. Journal of Energy Storage, 2023, 63, 107077.	3.9	5
850	A 10Âyears-developmental study on conducting polymers composites for supercapacitors electrodes: A review for extensive data interpretation. Journal of Industrial and Engineering Chemistry, 2023, 122, 27-45.	2.9	9
851	Organic Cathode Materials for Rechargeable Aluminumâ€lon Batteries. ChemSusChem, 2023, 16, .	3.6	11
852	Nitrogen and sulfur-codoped porous carbon derived from zein/poly(ionic liquid) complexes as electrode material for high-performance supercapacitor. Journal of Nanoparticle Research, 2023, 25, .	0.8	1
853	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
854	Catalyst controlled synthesis of porous organic polymers and their SWCNT composites for high performance supercapacitor applications. Reactive and Functional Polymers, 2023, 185, 105534.	2.0	2
855	Interface Engineering of Core–Shell Structured Co ₃ O ₄ @Ni(OH) ₂ Nanowires for Energy Storage Device. Journal of Nanoelectronics and Optoelectronics, 2022, 17, 1315-1321.	0.1	2
856	A UiO-66-NH ₂ MOF derived N doped porous carbon and ZrO ₂ composite cathode for zinc-ion hybrid supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 2115-2124.	3.0	5
857	Microwave-assisted reduction of graphene oxide using Artemisia vulgaris extract for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	5
858	Transferring and Retaining of Different Polyaniline Nanofeatures via Electrophoretic Deposition for Enhanced Sensing Performance. Small, 2023, 19, .	5.2	2
859	Devices for Energy Harvesting and Storage. Nanoscience and Technology, 2023, , 61-93.	1.5	1
860	Aging Mechanism and Models of Supercapacitors: A Review. Technologies, 2023, 11, 38.	3.0	29
861	Construction of Phthalocyanine-Titanium Dioxide/Graphene/Polyaniline Composite Electrodes by Electrochemical Method for Supercapacitor Applications. ECS Journal of Solid State Science and Technology, 2023, 12, 031008.	0.9	7
862	Green-Synthesized Graphene for Supercapacitorsâ€"Modern Perspectives. Journal of Composites Science, 2023, 7, 108.	1.4	7
863	Review of advances in improving thermal, mechanical and electrochemical properties of polyaniline composite for supercapacitor application. Polymer Bulletin, 2024, 81, 189-246.	1.7	4
864	Recent Breakthroughs in Supercapacitors Boosted by Macrocycles. ChemSusChem, 0, , .	3.6	1
865	Energy Storage Application of Conducting Polymers Featuring Dual Acceptors: Exploring Conjugation and Flexible Chain Length Effects. Small, 2023, 19, .	5.2	5

#	Article	IF	CITATIONS
866	Redox-active 2D porous organic polymers for high-performance supercapacitor. Journal of Industrial and Engineering Chemistry, 2023, 123, 320-329.	2.9	3
867	Preparation and Characterization of PANI/CCF Electrode Devices for High-Performance Supercapacitor. Fibers and Polymers, 0, , .	1.1	O
868	Microwave-assisted synthesis of cobalt doped WO3 nanostructure as an electrode material for supercapacitor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
869	Ultralight PPy@PVA/BC/MXene composite aerogels for high-performance supercapacitor eltrodes and pressure sensors. Applied Surface Science, 2023, 624, 157138.	3.1	10
870	Effect of partially reduced <scp>fullerenolâ€graphene</scp> hybrid nanofiller on photophysical and super capacitance properties of fluorescence conducting polymer nanocomposites. Polymer Composites, 0, , .	2.3	O
871	Ceramic-polyaniline composites for asymmetric supercapacitors. , 2023, , 371-396.		O
872	Recent research progress of conductive polymer-based supercapacitor electrode materials. Textile Reseach Journal, 2023, 93, 3884-3925.	1.1	3
873	Enhanced electrochemical properties of polyaniline (PANI) films electrodeposited on carbon fiber felt (CFF): Influence of monomer/acid ratio and deposition time parameters in energy storage applications. Electrochimica Acta, 2023, 454, 142388.	2.6	2
874	Graphene oxide-doped poly(styrene- <i>co</i> -maleic anhydride) for high-energy supercapacitors. Nanomaterials and Energy, 2023, 12, 30-43.	0.1	0
875	Recent advances in supramolecular self-assembly derived materials for high-performance supercapacitors. Nanoscale Advances, 2023, 5, 2394-2412.	2.2	3
876	Facile synthesis of the SnTe/SnSe binary nanocomposite <i>via</i> a hydrothermal route for flexible solid-state supercapacitors. RSC Advances, 2023, 13, 12009-12022.	1.7	16
877	Efficient symmetric supercapacitors employing molecular engineered pyrazine functionalized perylene diimide electrode materials. Chemical Engineering Journal Advances, 2023, 14, 100499.	2.4	3
879	MoS2-based core-shell nanostructures: Highly efficient materials for energy storage and conversion applications. Journal of Energy Storage, 2023, 66, 107393.	3.9	8
880	Photocatalytic nanoscale polymer-based coatings. , 2023, , 585-611.		0
890	Physicochemical Properties of Oriented Crystalline Assembled Polyaniline/Metal Doped Li4Ti5O12 Composites for Li-ion Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 2601-2617.	1.9	5
895	Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. Sustainable Energy and Fuels, 2023, 7, 3776-3795.	2.5	5
912	Recent technological advances in designing electrodes and electrolytes for efficient zinc ion hybrid supercapacitors. Energy Advances, 2023, 2, 1263-1293.	1.4	5
914	Polymer-MOFs Nanocomposite for Supercapacitor. Green Energy and Technology, 2023, , 187-209.	0.4	2

#	Article	IF	CITATIONS
915	Redox-Active Polymeric Materials Applied for Supercapacitors. Green Energy and Technology, 2023, , 229-243.	0.4	О
916	Polymer-Metal Phosphide Nanocomposites for Flexible Supercapacitors. Green Energy and Technology, 2023, , 283-298.	0.4	0
917	Preparation of Silicon Polymer-Derived Ceramics Upon Chemical Treatment to Obtain Materials with Highly Improved Capacitive Current. Green Energy and Technology, 2023, , 449-465.	0.4	0
941	Functionalization Techniques for the Development of Conducting Polymer-Based Supercapacitors. Materials Horizons, 2024, , 329-352.	0.3	0
942	Comparison of Different Functionalized Materials for Supercapacitors: General Overview of the Environmental Awareness. Materials Horizons, 2024, , 441-455.	0.3	0
944	Pre & Dest-Treatment of Functionalized Nanomaterials in Fabricating Supercapacitor Electrodes. Materials Horizons, 2024, , 223-250.	0.3	0
955	Supercapacitor. , 2024, , 227-236.		0
978	Transition Metal Dichalcogenides, Conducting Polymers, and Their Nanocomposites as Supercapacitor Electrode Materials. Polymer Science - Series A, 2023, 65, 447-471.	0.4	1
982	Preparation of vanadium-based electrode materials and their research progress in solid-state flexible supercapacitors. Rare Metals, 2024, 43, 431-454.	3.6	2
984	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0
985	Conducting Polymers for Pseudocapacitors. Engineering Materials, 2024, , 157-175.	0.3	0
997	New Materials for Low-carbon Supercapacitors: Latest Developments and Perspectives. , 2023, , 117-145.		0
1005	Titanium nitride (TiN) as a promising alternative to plasmonic metals: a comprehensive review of synthesis and applications. Materials Advances, 2024, 5, 846-895.	2.6	0
1014	Recent studies on biocomposites and its impact toward enabling technology. , 2024, , 1-22.		0
1021	Materials and components used for supercapacitors. , 2024, , 39-56.		O