Performance Assessment and Translation of Physiologi Models From acslX to Berkeley Madonna, MATLAB, and Gold Nanoparticles As Case Examples

Toxicological Sciences 158, 23-35 DOI: 10.1093/toxsci/kfx070

Citation Report

#	Article	IF	CITATIONS
1	Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food and Chemical Toxicology, 2017, 107, 74-87.	1.8	54
2	Pharmacokinetics of Mequindox and Its Marker Residue 1,4-Bisdesoxymequindox in Swine Following Multiple Oral Gavage and Intramuscular Administration: An Experimental Study Coupled with Population Physiologically Based Pharmacokinetic Modeling. Journal of Agricultural and Food Chemistry, 2017, 65, 5768-5777.	2.4	14
3	Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating <i>in vitro</i> and <i>in vivo</i> toxicity with physiologically based pharmacokinetic modeling. Nanotoxicology, 2018, 12, 453-469.	1.6	26
4	Development of a multiroute physiologically based pharmacokinetic model for orbifloxacin in rabbits. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41, 622-631.	0.6	7
5	Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicological Sciences, 2018, 164, 85-100.	1.4	32
6	The construction and application of a population physiologically based pharmacokinetic model for methadone in Beagles and Greyhounds. Journal of Veterinary Pharmacology and Therapeutics, 2018, 41, 670-683.	0.6	5
7	A Computational Workflow for Probabilistic Quantitative in Vitro to in Vivo Extrapolation. Frontiers in Pharmacology, 2018, 9, 508.	1.6	20
8	Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. International Journal of Nanomedicine, 2018, Volume 13, 2631-2646.	3.3	29
9	Macrophage-Assisted Dissolution of Gold Nanoparticles. ACS Applied Bio Materials, 2019, 2, 1006-1016.	2.3	28
10	Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 327-367.	0.9	14
11	Physiologically Based Pharmacokinetic Modeling for Exposure and Risk Assessment. , 2019, , 233-238.		2
13	Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Archives of Toxicology, 2019, 93, 1865-1880.	1.9	19
14	An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. Journal of Veterinary Pharmacology and Therapeutics, 2019, 42, 461-475.	0.6	12
15	Physiologically based mathematical models of nanomaterials for regulatory toxicology: A review. Computational Toxicology, 2019, 9, 133-142.	1.8	19
16	Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle. Food and Chemical Toxicology, 2019, 126, 285-294.	1.8	20
17	Assessing Global Human Exposure to T-2 Toxin via Poultry Meat Consumption Using a Lifetime Physiologically Based Pharmacokinetic Model. Journal of Agricultural and Food Chemistry, 2019, 67, 1563-1571.	2.4	28
18	Physiologically based pharmacokinetic modeling of hydrogen cyanide in humans following the oral administration of potassium cyanide and cyanogenic glycosides from food. Human and Ecological Risk Assessment (HERA), 2020, 26, 1496-1511.	1.7	8
19	Role of COL3A1 and POSTN on Pathologic Stages of Esophageal Cancer. Technology in Cancer Research and Treatment, 2020, 19, 153303382097748.	0.8	13

CITATION REPORT

#	Article	IF	CITATIONS
20	A history and recent efforts of selected physiologically based pharmacokinetic modeling topics. , 2020, , 1-26.		3
21	Metabolism and physiologically based pharmacokinetic models. , 2020, , 161-173.		0
22	Physiologically based pharmacokinetic model calibration, evaluation, and performance assessment. , 2020, , 243-279.		2
23	Software tools for toxicology and risk assessment. , 2020, , 791-812.		1
24	Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials. Nanomaterials, 2020, 10, 1267.	1.9	32
25	Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano, 2020, 14, 3075-3095.	7.3	157
26	A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Food and Chemical Toxicology, 2020, 137, 111127.	1.8	23
27	Bioinformatics analysis and verification of gene targets for benign tracheal stenosis. Molecular Genetics & Genomic Medicine, 2020, 8, e1245.	0.6	3
28	Imageâ€guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1628.	3.3	24
29	Identification of Co-expressed Genes Between Atrial Fibrillation and Stroke. Frontiers in Neurology, 2020, 11, 184.	1.1	15
30	Physiologicalâ€based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20â€years; inâ€depth analysis of applications, organizations, and platforms. Biopharmaceutics and Drug Disposition, 2021, 42, 107-117.	1.1	69
31	Engineered nanomaterials and pharmacokinetics. , 2021, , 71-92.		0
32	Derivation of a Human In Vivo Benchmark Dose for Perfluorooctanoic Acid From ToxCast In Vitro Concentration–Response Data Using a Computational Workflow for Probabilistic Quantitative In Vitro to In Vivo Extrapolation. Frontiers in Pharmacology, 2021, 12, 630457.	1.6	10
33	Application of physiologically based pharmacokinetic models to promote the development of veterinary drugs with high efficacy and safety. Journal of Veterinary Pharmacology and Therapeutics, 2021, 44, 663-678.	0.6	4
34	An integrative approach to define chemical exposure threshold limits for endangered sea turtles. Journal of Hazardous Materials, 2021, 420, 126512.	6.5	2
35	Application of in vitro data in physiologically-based kinetic models for quantitative in vitro-in vivo extrapolation: A case-study for baclofen. Toxicology in Vitro, 2021, 76, 105223.	1.1	7
36	DallphinAtoM: Physiologically based pharmacokinetics software predicting human PK parameters based on physicochemical properties, in vitro and animal in vivo data. Computer Methods and Programs in Biomedicine, 2022, 216, 106662.	2.6	0
37	Berkeley Madonna Version 10–A simulation package for solving mathematical models. CPT: Pharmacometrics and Systems Pharmacology, 2022, 11, 290-301.	1.3	15

#	Article	IF	CITATIONS
38	Development and application of a physiologically based pharmacokinetic model for orbifloxacin in crucian carp (<i>Carassius auratus</i>). Journal of Veterinary Pharmacology and Therapeutics, 2022, ,	0.6	1
39	Modular Representation of Physiologically Based Pharmacokinetic Models: Nanoparticle Delivery to Solid Tumors in Mice as an Example. Mathematics, 2022, 10, 1176.	1.1	1
40	Development of a physiologically based pharmacokinetic model to predict irinotecan disposition during inflammation. Chemico-Biological Interactions, 2022, 360, 109946.	1.7	2
43	Population Pharmacokinetics/PD Modelling: a Systematic Review. International Journal of Computers, 2022, 16, 66-74.	0.2	Ο
44	An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G. Toxicological Sciences, 2022, 188, 180-197.	1.4	5
45	Development of a multi-route physiologically based pharmacokinetic (PBPK) model for nanomaterials: a comparison between a traditional versus a new route-specific approach using gold nanoparticles in rats. Particle and Fibre Toxicology, 2022, 19, .	2.8	15
46	A web-based interactive physiologically based pharmacokinetic (iPBPK) model for meloxicam in broiler chickens and laying hens. Food and Chemical Toxicology, 2022, 168, 113332.	1.8	8
47	Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. International Journal of Molecular Sciences, 2022, 23, 12560.	1.8	5
48	Toxicokinetics, dose–response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	10

CITATION REPORT

future perspectives. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .