Pressure dependence of viscosity in supercooled water thermodynamic and dynamic anomalies of water

Proceedings of the National Academy of Sciences of the Unite 114, 4312-4317

DOI: 10.1073/pnas.1619501114

Citation Report

#	Article	IF	CITATIONS
1	How Water's Properties Are Encoded in Its Molecular Structure and Energies. Chemical Reviews, 2017, 117, 12385-12414.	47.7	284
2	Which way to low-density liquid water?. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8141-8143.	7.1	5
3	Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13336-13344.	7.1	99
4	Expanding the calculation of activation volumes: Self-diffusion in liquid water. Journal of Chemical Physics, 2018, 148, 134105.	3.0	11
5	Thermodynamics of Fluid Polyamorphism. Physical Review X, 2018, 8, .	8.9	61
6	Water-like anomalies as a function of tetrahedrality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3333-E3341.	7.1	55
7	Common microscopic structural origin for water's thermodynamic and dynamic anomalies. Journal of Chemical Physics, 2018, 149, 224502.	3.0	68
8	Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations. Journal of Chemical Physics, 2018, 149, 094503.	3.0	62
9	Origin of the emergent fragile-to-strong transition in supercooled water. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9444-9449.	7.1	107
10	Impact of kilobar pressures on ultrafast triazene and thiacyanine photodynamics. Physical Chemistry Chemical Physics, 2018, 20, 18169-18175.	2.8	5
11	How do hydrogen bonds break in supercooled water?: Detecting pathways not going through saddle point of two-dimensional potential of mean force. Journal of Chemical Physics, 2018, 148, 244501.	3.0	8
12	Thermodynamics of supercooled and stretched water: Unifying two-structure description and liquid-vapor spinodal. Journal of Chemical Physics, 2019, 151, 034503.	3.0	53
13	Understanding the Origin of the Breakdown of the Stokes–Einstein Relation in Supercooled Water at Different Temperature–Pressure Conditions. Journal of Physical Chemistry B, 2019, 123, 10089-10099.	2.6	31
14	Friction in Cold Ice Within Outer Solar System Satellites With Reference to Thermal Weakening at High Sliding Velocities. Journal of Geophysical Research E: Planets, 2019, 124, 2397-2413.	3.6	2
15	Consistency of geometrical definitions of hydrogen bonds based on the two-dimensional potential of mean force with respect to the time correlation in liquid water over a wide range of temperatures. Journal of Molecular Liquids, 2019, 294, 111603.	4.9	3
16	Vibrational dynamics of confined supercooled water. Journal of Chemical Physics, 2019, 150, 224504.	3.0	13
17	Energetics of ice nucleation in mesoporous titania using positron annihilation spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 6033-6041.	2.8	2
18	A facile oxygen-17 NMR method to determine effective viscosity in dilute, molecularly crowded and confined aqueous media. Chemical Communications, 2019, 55, 12404-12407.	4.1	12

#	Article	IF	CITATIONS
19	Transport Behavior of Common, Pourable Liquids. , 2019, , 181-199.		2
20	On the validity of the Stokes–Einstein relation for various water force fields. Molecular Physics, 2020, 118, e1702729.	1.7	22
21	The anomalies and criticality of liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26591-26599.	7.1	57
22	Aquaporin-like water transport in nanoporous crystalline layered carbon nitride. Science Advances, 2020, 6, .	10.3	17
23	Water ice compression: Principles and applications. Journal of Molecular Liquids, 2020, 315, 113750.	4.9	7
24	Breakdown of the Stokes–Einstein Relation in Supercooled Water/Methanol Binary Mixtures: Explanation Using the Translational Jump-Diffusion Approach. Journal of Physical Chemistry B, 2020, 124, 10398-10408.	2.6	18
25	Understanding how water models affect the anomalous pressure dependence of their diffusion coefficients. Journal of Chemical Physics, 2020, 153, 104510.	3.0	10
26	Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science, 2020, 369, 1490-1492.	12.6	71
27	Effect of dissolved salt on the anomalies of water at negative pressure. Journal of Chemical Physics, 2020, 152, 194501.	3.0	4
28	The Effects of Root Temperature on Growth, Physiology, and Accumulation of Bioactive Compounds of Agastache rugosa. Agriculture (Switzerland), 2020, 10, 162.	3.1	17
29	Pressure Effects on Water Dynamics by Time-Resolved Optical Kerr Effect. Journal of Physical Chemistry Letters, 2020, 11, 3063-3068.	4.6	8
30	Isotope effects on the high pressure viscosity of liquid water measured by differential dynamic microscopy. Applied Physics Letters, 2020, 116, 233701.	3.3	4
31	The dynamics of supercooled water can be predicted from room temperature simulations. Journal of Chemical Physics, 2020, 152, 074505.	3.0	15
32	Direct Evidence in the Scattering Function for the Coexistence of Two Types of Local Structures in Liquid Water. Journal of the American Chemical Society, 2020, 142, 2868-2875.	13.7	50
33	Experimental study of water thermodynamics up to 1.2 GPa and 473 K. Journal of Chemical Physics, 2020, 152, 154501.	3.0	6
34	Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals. Physical Chemistry Chemical Physics, 2021, 23, 2298-2304.	2.8	9
35	Breakdown of the Stokes–Einstein relation in supercooled water: the jump-diffusion perspective. Physical Chemistry Chemical Physics, 2021, 23, 19964-19986.	2.8	16
36	Brownian dynamics simulation of protofilament relaxation during rapid freezing. PLoS ONE, 2021, 16, e0247022.	2.5	3

CITATION REPORT

~			<u> </u>	
	ITAT	ION	REPC) R T
<u> </u>	/		ILLI C	

#	Article	IF	CITATIONS
37	Relations between thermodynamics, structures, and dynamics for modified water models in their supercooled regimes. Journal of Chemical Physics, 2021, 154, 054502.	3.0	5
38	Dielectric friction, violation of the Stokes-Einstein-Debye relation, and non-Gaussian transport dynamics of dipolar solutes in water. Physical Review Research, 2021, 3, .	3.6	7
39	Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model. Physical Review Letters, 2021, 127, 015701.	7.8	7
40	Transition pathway of hydrogen bond switching in supercooled water analyzed by the Markov state model. Journal of Chemical Physics, 2021, 154, 234501.	3.0	2
41	Dielectric Susceptibility of Water in the Interface. Journal of Physical Chemistry B, 2021, 125, 8282-8293.	2.6	16
42	Modification of local and collective dynamics of water in perchlorate solution, induced by pressure and concentration. Journal of Molecular Liquids, 2021, 337, 116273.	4.9	1
43	Liquid–Liquid Critical Point Hypothesis of Water. NIMS Monographs, 2021, , 1-28.	0.3	0
44	Equation of state of water based on the SCAN meta-GGA density functional. Physical Chemistry Chemical Physics, 2020, 22, 4626-4631.	2.8	9
45	Non-Newtonian flow effects in supercooled water. Physical Review Research, 2020, 2, .	3.6	10
46	Thermally Driven Transformation of Water Clustering Structures at Self-Assembled Monolayers. Langmuir, 2021, 37, 11493-11498.	3.5	2
47	Negative density-dependence of the structural relaxation time of liquid silica: insights from a comparative molecular dynamics study. Journal of Physics Condensed Matter, 2021, 33, 025101.	1.8	0
48	A new single equation of state to describe the dynamic viscosity and self-diffusion coefficient for all fluid phases of water from 200 to 1800 K based on a new original microscopic model. Physics of Fluids, 2021, 33, 117112.	4.0	5
49	Water dynamics in C–S–H and M-S-H cement pastes: A revised jump-diffusion and rotation-diffusion model. Physica B: Condensed Matter, 2022, 627, 413542.	2.7	2
50	Phase transition of supercooled water confined in cooperative two-state domain. Journal of Physics Condensed Matter, 2022, 34, 165403.	1.8	4
51	Pressure Drop Measurements in Microfluidic Devices: A Review on the Accurate Quantification of Interfacial Slip. Advanced Materials Interfaces, 2022, 9, .	3.7	9
52	Pressure and temperature dependence of fluorescence anisotropy of green fluorescent protein. RSC Advances, 2022, 12, 8647-8655.	3.6	1
54	Piezoâ€elasticity and stability limits of monocrystal methane gas hydrates: Atomisticâ€continuum characterization. Canadian Journal of Chemical Engineering, 2023, 101, 639-650.	1.7	7
55	Low- and High-Density Unknown Waters at Ice–Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 4251-4256.	4.6	4

CITATION REPORT

#	Article	IF	CITATIONS
56	Constraints on the Role of Laplace Pressure in Multiphase Reactions and Viscosity of Organic Aerosols. Geophysical Research Letters, 2022, 49, .	4.0	7
57	Shear viscosity and Stokes-Einstein violation in supercooled light and heavy water. Physical Review E, 2022, 106, .	2.1	6
58	Size dependence of solute's translational jump-diffusion in solvent: Relationship between trapping and jump-diffusion. Chemical Physics Letters, 2022, 806, 140059.	2.6	8
59	Non-monotonic composition dependence of the breakdown of Stokes–Einstein relation for water in aqueous solutions of ethanol and 1-propanol: explanation using translational jump-diffusion approach. Physical Chemistry Chemical Physics, 2022, 24, 18738-18750.	2.8	10
60	Free energy calculations and unbiased molecular dynamics targeting the liquid–liquid transition in water no man's land. Journal of Chemical Physics, 2023, 158, .	3.0	3
61	Self-diffusion and shear viscosity for the TIP4P/Ice water model. Journal of Chemical Physics, 2023, 158, ·	3.0	5
62	Protein–protein interactions in solutions of monoclonal antibodies probed by the dependence of the high-frequency viscosity on temperature and concentration. Analyst, The, 2023, 148, 1887-1897.	3.5	0
63	What Is the Viscosity of Liquid Water Confined in a Hydrophobic Nanotube? Estimation Using a Novel Approach. Journal of Physical Chemistry C, 2023, 127, 7027-7035.	3.1	3
64	A Unified Description of the Liquid Structure, Static and Dynamic Anomalies, and Criticality of TIP4P/2005 Water by a Hierarchical Two-State Model. Journal of Physical Chemistry B, 2023, 127, 3452-3462.	2.6	3
65	Đ'Đ¿Đ»Đ͵Đ² Ñ,ĐµĐ¼Đ¿ĐµÑ€Đ°Ñ,урĐ͵ Ñ,а Ñ,Đ͵ÑĐºÑƒ Đ½Đ° Ñ,ĐµÑ€Đ¼Đ¾ĐƊ͵Đ½ĐºĐ¼Ñ−Ñ‡Đ½Đ͵Đ¹ Đ	₽₽ ∂%₂ ĐμÑ,	,ѱцÑ−Ñ"€
66	A Maxwell relation for dynamical timescales with application to the pressure and temperature dependence of water self-diffusion and shear viscosity. Physical Chemistry Chemical Physics, 2023, 25, 12820-12832.	2.8	0
67	Does supercooled water retain its universal nucleation behavior under shear at high pressure?. Physical Chemistry Chemical Physics, 0, , .	2.8	1
68	Thermodynamic anomalies of water near its singular temperature of 42°C. Journal of Molecular Liquids, 2023, 389, 122849.	4.9	1
69	Viscosity and Stokes-Einstein relation in deeply supercooled water under pressure. Journal of Chemical Physics, 2023, 159, .	3.0	0
70	Enhanced fluidity of water in superhydrophobic nanotubes: estimating viscosity using jump-corrected confined Stokes–Einstein approach. Physical Chemistry Chemical Physics, 2024, 26, 4492-4504.	2.8	0