Virus genomes reveal factors that spread and sustained

Nature 544, 309-315 DOI: 10.1038/nature22040

Citation Report

#	Article	IF	CITATIONS
1	Molecular mapping of Zika spread. Nature, 2017, 546, 355-356.	13.7	16
2	Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nature Protocols, 2017, 12, 1261-1276.	5.5	898
3	Opportunities and challenges in modeling emerging infectious diseases. Science, 2017, 357, 149-152.	6.0	113
4	Viral outbreaks involve destabilized evolutionary networks: evidence from Ebola, Influenza and Zika. Scientific Reports, 2017, 7, 11881.	1.6	15
5	Infectious disease management must be evolutionary. Nature Ecology and Evolution, 2017, 1, 1053-1055.	3.4	4
6	Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Scientific Reports, 2017, 7, 15216.	1.6	40
7	Predicting virus emergence amid evolutionary noise. Open Biology, 2017, 7, 170189.	1.5	149
8	A model-based clustering method to detect infectious disease transmission outbreaks from sequence variation. PLoS Computational Biology, 2017, 13, e1005868.	1.5	33
9	Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes. Journal of the Royal Society Interface, 2017, 14, 20170583.	1.5	8
10	Scalable relaxed clock phylogenetic dating. Virus Evolution, 2017, 3, .	2.2	116
11	Pandemic preparedness and forecast. Nature Microbiology, 2018, 3, 265-267.	5.9	5
12	Genomic Insights into Zika Virus Emergence and Spread. Cell, 2018, 172, 1160-1162.	13.5	56
13	Mapping road network communities for guiding disease surveillance and control strategies. Scientific Reports, 2018, 8, 4744.	1.6	24
14	Active Ebola Virus Replication and Heterogeneous Evolutionary Rates in EVD Survivors. Cell Reports, 2018, 22, 1159-1168.	2.9	37
15	Landscape attributes governing local transmission of an endemic zoonosis: Rabies virus in domestic dogs. Molecular Ecology, 2018, 27, 773-788.	2.0	50
16	Converging and emerging threats to health security. Environment Systems and Decisions, 2018, 38, 198-207.	1.9	33
17	TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evolution, 2018, 4, vex042.	2.2	883
18	Analytic models for SIR disease spread on random spatial networks. Journal of Complex Networks, 2018 6, 948-970	1.1	30

TION REDO

#	Article	IF	CITATIONS
19	Clinical sequencing: From raw data to diagnosis with lifetime value. Clinical Genetics, 2018, 93, 508-519.	1.0	75
20	Towards a genomics-informed, real-time, global pathogen surveillance system. Nature Reviews Genetics, 2018, 19, 9-20.	7.7	505
21	An exploration of the spatiotemporal and demographic patterns of Ebola Virus Disease epidemic in West Africa using open access data sources. Applied Geography, 2018, 90, 272-281.	1.7	1
22	Detection of Emerging Zoonotic Pathogens: An Integrated One Health Approach. Annual Review of Animal Biosciences, 2018, 6, 121-139.	3.6	76
23	Survey of Ebola Viruses in Frugivorous and Insectivorous Bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerging Infectious Diseases, 2018, 24, 2228-2240.	2.0	66
24	Spatial infectious disease epidemiology: on the cusp. BMC Medicine, 2018, 16, 192.	2.3	39
25	Bayesian phylodynamic inference with complex models. PLoS Computational Biology, 2018, 14, e1006546.	1.5	64
26	Design and Analysis of Infectious Disease Studies. Oberwolfach Reports, 2018, 15, 383-432.	0.0	0
27	Evolutionary Virology at 40. Genetics, 2018, 210, 1151-1162.	1.2	51
28	Recent advances in computational phylodynamics. Current Opinion in Virology, 2018, 31, 24-32.	2.6	45
29	How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders. PLoS ONE, 2018, 13, e0195885.	1.1	35
30	Populations, megapopulations, and the areal unit problem. Health and Place, 2018, 54, 79-84.	1.5	4
31	The phylogenomics of evolving virus virulence. Nature Reviews Genetics, 2018, 19, 756-769.	7.7	152
32	Genomic Analysis of Lassa Virus during an Increase in Cases in Nigeria in 2018. New England Journal of Medicine, 2018, 379, 1745-1753.	13.9	135
33	Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science, 2018, 362, 577-580.	6.0	140
34	Mapping malaria by combining parasite genomic and epidemiologic data. BMC Medicine, 2018, 16, 190.	2.3	68
35	Private collection: high correlation of sample collection and patient admission date in clinical microbiological testing complicates sharing of phylodynamic metadata. Virus Evolution, 2018, 4, vey005.	2.2	8
36	A Predictive Spatial Distribution Framework for Filovirus-Infected Bats. Scientific Reports, 2018, 8, 7970.	1.6	7

#	Article	IF	CITATIONS
37	MERS-CoV spillover at the camel-human interface. ELife, 2018, 7, .	2.8	172
38	The Bayesian optimist's guide to adaptive immune receptor repertoire analysis. Immunological Reviews, 2018, 284, 148-166.	2.8	12
39	The epidemiological characteristics and molecular phylogeny of the dengue virus in Guangdong, China, 2015. Scientific Reports, 2018, 8, 9976.	1.6	11
41	A comparative computational genomics of Ebola Virus Disease strains: In-silico Insight for Ebola control. Informatics in Medicine Unlocked, 2018, 12, 106-119.	1.9	15
42	Ebola Immunity: Gaining a Winning Position in Lightning Chess. Journal of Immunology, 2018, 201, 833-842.	0.4	19
43	Mechanisms and Concepts in RNA Virus Population Dynamics and Evolution. Annual Review of Virology, 2018, 5, 69-92.	3.0	101
44	Monitoring and redirecting virus evolution. PLoS Pathogens, 2018, 14, e1006979.	2.1	13
45	GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Research, 2018, 28, 1395-1404.	2.4	553
46	Rational Engineering and Characterization of an mAb that Neutralizes Zika Virus by Targeting a Mutationally Constrained Quaternary Epitope. Cell Host and Microbe, 2018, 23, 618-627.e6.	5.1	28
47	Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science, 2018, 361, 894-899.	6.0	279
48	The effects of random taxa sampling schemes in Bayesian virus phylogeography. Infection, Genetics and Evolution, 2018, 64, 225-230.	1.0	12
49	Bayesian Phylogeography and Pathogenic Characterization of Smallpox Based on <i>HA</i> , <i>ATI</i> , and <i>CrmB</i> Genes. Molecular Biology and Evolution, 2018, 35, 2607-2617.	3.5	6
50	Population mobility reductions associated with travel restrictions during the Ebola epidemic in Sierra Leone: use of mobile phone data. International Journal of Epidemiology, 2018, 47, 1562-1570.	0.9	111
51	Long-Range Polymerase Chain Reaction Method for Sequencing the Ebola Virus Genome From Ecological and Clinical Samples. Journal of Infectious Diseases, 2018, 218, S301-S304.	1.9	8
53	Outbreaks in a Rapidly Changing Central Africa — Lessons from Ebola. New England Journal of Medicine, 2018, 379, 1198-1201.	13.9	56
54	Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 2018, 4, vey016.	2.2	2,401
55	Phylodynamic assessment of intervention strategies for the West African Ebola virus outbreak. Nature Communications, 2018, 9, 2222.	5.8	59
56	Networked-oscillator-based modeling and control of unsteady wake flows. Physical Review E, 2018, 97, 063107.	0.8	19

		CITATION REPORT		
#	Article		IF	CITATIONS
57	Using Genomics to Track Global Antimicrobial Resistance. Frontiers in Public Health, 201	9, 7, 242.	1.3	263
58	Bayesian phylodynamics of avian influenza A virus H9N2 in Asia with time-dependent pre migration. PLoS Computational Biology, 2019, 15, e1007189.	dictors of	1.5	22
59	Bayesian Estimation of Past Population Dynamics in BEAST 1.10 Using the Skygrid Coale Molecular Biology and Evolution, 2019, 36, 2620-2628.	escent Model.	3.5	99
60	Advances in Visualization Tools for Phylogenomic and Phylodynamic Studies of Viral Dise Frontiers in Public Health, 2019, 7, 208.	ases.	1.3	15
61	Genomic analysis of respiratory syncytial virus infections in households and utility in infe infects the infant. Scientific Reports, 2019, 9, 10076.	rring who	1.6	19
62	High-Performance Computing in Bayesian Phylogenetics and Phylodynamics Using BEAG Molecular Biology, 2019, 1910, 691-722.	LE. Methods in	0.4	11
63	Communicable Disease Surveillance Ethics in the Age of Big Data and New Technology. A Review, 2019, 11, 173-187.	Asian Bioethics	0.9	27
64	Impacts of environmental and socio-economic factors on emergence and epidemic poter in Africa. Nature Communications, 2019, 10, 4531.	ntial of Ebola	5.8	63
65	Twenty years of West Nile virus spread and evolution in the Americas visualized by Nexts Pathogens, 2019, 15, e1008042.	strain. PLoS	2.1	87
66	Phylodynamics of Influenza A/H1N1pdm09 in India Reveals Circulation Patterns and Increfor Clade 6b Residues and Other High Mortality Mutants. Viruses, 2019, 11, 791.	eased Selection	1.5	9
67	Inferring time-dependent migration and coalescence patterns from genetic sequence and data in structured populations. Virus Evolution, 2019, 5, vez030.	d predictor	2.2	20
68	Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa. N Journal, 2019, 18, 268.	Лalaria	0.8	41
69	Evaluation of DNA Extraction Methods on Individual Helminth Egg and Larval Stages for Whole-Genome Sequencing. Frontiers in Genetics, 2019, 10, 826.		1.1	30
70	Inferring host roles in bayesian phylodynamics of global avian influenza A virus H9N2. Vir 538, 86-96.	ology, 2019,	1.1	13
71	The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Fo with a Horizon Scan-like Exercise. Journal of Heredity, 2019, 110, 261-274.	recasting	1.0	9
72	Phylodynamic Analysis of Ebola Virus Disease Transmission in Sierra Leone. Viruses, 2019	9, 11, 71.	1.5	3
73	Global phylodynamic analysis of avian paramyxovirus-1 provides evidence of inter-host tr and intercontinental spatial diffusion. BMC Evolutionary Biology, 2019, 19, 108.	ansmission	3.2	38
74	Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Research, 2019	, 47, 5539-5549.	6.5	173

	A	15	C
#	ARTICLE	IF	CITATIONS
75	Evolution, 2019, 36, 2069-2085.	3.5	153
76	Towards Translational Epidemiology: Next-Generation Sequencing and Phylogeography as Epidemiological Mainstays. MSystems, 2019, 4, .	1.7	2
77	Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180276.	1.8	118
78	Inferring epidemiological links from deep sequencing data: a statistical learning approach for human, animal and plant diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180258.	1.8	14
79	Overview of Human Viral Hemorrhagic Fevers. , 2019, , 21-54.		1
80	Estimating Epidemic Incidence and Prevalence from Genomic Data. Molecular Biology and Evolution, 2019, 36, 1804-1816.	3.5	39
81	Retrospective versus real-time Ebola virus sequencing. Lancet Infectious Diseases, The, 2019, 19, 567-568.	4.6	3
82	Molecular characterisation of the emerging measles virus from Roraima state, Brazil, 2018. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180545.	0.8	3
83	Emerging Challenges and Opportunities in Infectious Disease Epidemiology. American Journal of Epidemiology, 2019, 188, 873-882.	1.6	14
84	Introduction of Ebola virus into a remote border district of Sierra Leone, 2014: use of field epidemiology and RNA sequencing to describe chains of transmission. Epidemiology and Infection, 2019, 147, e88.	1.0	2
85	Recent advances in the development and evaluation of molecular diagnostics for Ebola virus disease. Expert Review of Molecular Diagnostics, 2019, 19, 325-340.	1.5	12
86	Incorporating sampling uncertainty in the geospatial assignment of taxa for virus phylogeography. Virus Evolution, 2019, 5, vey043.	2.2	12
87	Intra-host Ebola viral adaption during human infection. Biosafety and Health, 2019, 1, 14-24.	1.2	9
88	The Emergence of Genomic Research in Africa and New Frameworks for Equity in Biomedical Research. Ethnicity and Disease, 2019, 29, 179-186.	1.0	18
89	Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Scientific Reports, 2019, 9, 5151.	1.6	89
90	Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data. PLoS Computational Biology, 2019, 15, e1006930.	1.5	60
91	Determinants of Transmission Risk During the Late Stage of the West African Ebola Epidemic. American Journal of Epidemiology, 2019, 188, 1319-1327.	1.6	11
92	Precision epidemiology for infectious disease control. Nature Medicine, 2019, 25, 206-211.	15.2	94

#	Article	IF	Citations
93	How Modelling Can Enhance the Analysis of Imperfect Epidemic Data. Trends in Parasitology, 2019, 35, 369-379.	1.5	20
94	Ebola virus disease. Lancet, The, 2019, 393, 936-948.	6.3	305
95	Pathogen Genomics in Public Health. New England Journal of Medicine, 2019, 381, 2569-2580.	13.9	165
96	The ability of single genes vs full genomes to resolve time and space in outbreak analysis. BMC Evolutionary Biology, 2019, 19, 232.	3.2	35
97	Reconstruction and prediction of viral disease epidemics. Epidemiology and Infection, 2019, 147, e34.	1.0	29
98	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics, 2019, 26, 116-127.	1.5	16
99	Phylogeographic Analysis Reveals Multiple International transmission Events Have Driven the Global Emergence of Escherichia coli O157:H7. Clinical Infectious Diseases, 2019, 69, 428-437.	2.9	26
100	Tracking virus outbreaks in the twenty-first century. Nature Microbiology, 2019, 4, 10-19.	5.9	305
101	Frontiers in Molecular Evolutionary Medicine. Journal of Molecular Evolution, 2020, 88, 3-11.	0.8	18
102	A Darwinian Uncertainty Principle. Systematic Biology, 2020, 69, 521-529.	2.7	12
103	Emergence of a Plant Pathogen in Europe Associated with Multiple Intercontinental Introductions. Applied and Environmental Microbiology, 2020, 86, .	1.4	57
104	Global commercial passenger airlines and travel health information regarding infection control and the prevention of infectious disease: What's in a website?. Travel Medicine and Infectious Disease, 2020, 33, 101528.	1.5	11
105	The role of genetic sequencing and analysis in the polio eradication programme. Virus Evolution, 2020, 6, veaa040.	2.2	19
106	Genomic epidemiology and evolutionary dynamics of respiratory syncytial virus group B in Kilifi, Kenya, 2015–17. Virus Evolution, 2020, 6, veaa050.	2.2	3
107	Species-Specific Evolution of Ebola Virus during Replication in Human and Bat Cells. Cell Reports, 2020, 32, 108028.	2.9	17
108	Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biology, 2020, 21, 238.	3.8	18
109	Molecular epidemiology of the first wave of severe acute respiratory syndrome coronavirus 2 infection in Thailand in 2020. Scientific Reports, 2020, 10, 16602.	1.6	29
110	Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study. Lancet Infectious Diseases, The, 2020, 20, 1263-1271.	4.6	352

#	Article	IF	CITATIONS
111	Origin and evolution of emerging Liao ning Virus (genus Seadornavirus, family Reoviridae). Virology Journal, 2020, 17, 105.	1.4	1
112	GeoBoost2: a natural languageprocessing pipeline for GenBank metadata enrichment for virus phylogeography. Bioinformatics, 2020, 36, 5120-5121.	1.8	7
113	Going back to the roots: Evaluating Bayesian phylogeographic models with discrete trait uncertainty. Infection, Genetics and Evolution, 2020, 85, 104501.	1.0	3
114	Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism. Viruses, 2020, 12, 1164.	1.5	51
115	Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2. Nature Communications, 2020, 11, 5110.	5.8	118
116	Urban Vegetation Slows Down the Spread of Coronavirus Disease (COVIDâ€19) in the United States. Geophysical Research Letters, 2020, 47, e2020GL089286.	1.5	37
117	Viral genomics in Ebola virus research. Nature Reviews Microbiology, 2020, 18, 365-378.	13.6	30
118	The public health response to COVID-19: balancing precaution and unintended consequences. Annals of Epidemiology, 2020, 46, 12-13.	0.9	24
119	Tracking echovirus eleven outbreaks in Guangdong, China: a metatranscriptomic, phylogenetic, and epidemiological study. Virus Evolution, 2020, 6, veaa029.	2.2	14
120	Multivariate time-series analysis of biomarkers from a dengue cohort offers new approaches for diagnosis and prognosis. PLoS Neglected Tropical Diseases, 2020, 14, e0008199.	1.3	7
121	Accounting for population structure reveals ambiguity in the Zaire Ebolavirus reservoir dynamics. PLoS Neglected Tropical Diseases, 2020, 14, e0008117.	1.3	8
122	Estimating the relative probability of direct transmission between infectious disease patients. International Journal of Epidemiology, 2020, 49, 764-775.	0.9	10
123	Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Medicine, 2020, 12, 57.	3.6	104
124	Population structure across scales facilitates coexistence and spatial heterogeneity of antibiotic-resistant infections. PLoS Computational Biology, 2020, 16, e1008010.	1.5	19
125	Delayed recognition of Ebola virus disease is associated with longer and larger outbreaks. Emerging Microbes and Infections, 2020, 9, 291-301.	3.0	18
126	In Search of Covariates of HIV-1 Subtype B Spread in the United States—A Cautionary Tale of Large-Scale Bayesian Phylogeography. Viruses, 2020, 12, 182.	1.5	15
127	Identification of Hidden Population Structure in Time-Scaled Phylogenies. Systematic Biology, 2020, 69, 884-896.	2.7	26
128	Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Scientific Reports, 2020, 10, 1723.	1.6	65

	CITATION	CITATION REPORT	
# 129	ARTICLE Methods for Rapid Mobility Estimation to Support Outbreak Response. Health Security, 2020, 18, 1-15.	IF 0.9	CITATIONS
130	Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5067-5073.	3.3	28
131	Ebola virus disease. Nature Reviews Disease Primers, 2020, 6, 13.	18.1	340
132	Online Bayesian Phylodynamic Inference in BEAST with Application to Epidemic Reconstruction. Molecular Biology and Evolution, 2020, 37, 1832-1842.	3.5	25
133	Post-exposure prophylactic vaccine candidates for the treatment of human Risk Group 4 pathogen infections. Expert Review of Vaccines, 2020, 19, 85-103.	2.0	4
134	Improving Cross-Border Preparedness and Response: Lessons Learned from 3 Lassa Fever Outbreaks Across Benin, Nigeria, and Togo, 2017-2019. Health Security, 2020, 18, S-105-S-112.	0.9	15
135	Community perspectives on the benefits and risks of technologically enhanced communicable disease surveillance systems: a report on four community juries. BMC Medical Ethics, 2020, 21, 31.	1.0	12
136	An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evolution, 2020, 6, veaa027.	2.2	119
137	Genomic and serologic characterization of enterovirus A71 brainstem encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	19
138	Permutation Tests for Infection Graphs. Journal of the American Statistical Association, 2021, 116, 770-782.	1.8	0
139	Porcine reproductive and respiratory syndrome virus dissemination across pig production systems in the United States. Transboundary and Emerging Diseases, 2021, 68, 667-683.	1.3	31
140	Log Transformation Improves Dating of Phylogenies. Molecular Biology and Evolution, 2021, 38, 1151-1167.	3.5	7
141	Inference of Nipah virus evolution, 1999–2015. Virus Evolution, 2021, 7, veaa062.	2.2	18
142	Host–parasite dynamics set the ecological theatre for the evolution of state―and contextâ€dependent dispersal in hosts. Oikos, 2021, 130, 121-132.	1.2	8
143	Spatiotemporal reconstruction and transmission dynamics during the 2016–17 H5N8 highly pathogenic avian influenza epidemic in Italy. Transboundary and Emerging Diseases, 2021, 68, 37-50.	1.3	7
144	GEViTRec: Data Reconnaissance Through Recommendation Using a Domain-Specific Visualization Prevalence Design Space. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 4855-4872.	2.9	5
145	Integrating genomics education into Nigerian undergraduate medical training - A narrative review. Journal of Clinical Sciences, 2021, 18, 3.	0.0	2
146	Genome sequencing and its use in public health responses to COVID-19. Microbiology Australia, 2021, 42, 44.	0.1	1

#	Article	IF	CITATIONS
147	Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. Engineering, 2022, 10, 155-166.	3.2	15
148	An approach to integrate population mobility patterns and sociocultural factors in communicable disease preparedness and response. Humanities and Social Sciences Communications, 2021, 8, .	1.3	5
149	Analysis of an Ebola virus disease survivor whose host and viral markers were predictive of death indicates the effectiveness of medical countermeasures and supportive care. Genome Medicine, 2021, 13, 5.	3.6	9
150	Preparing for Emerging Zoonotic Viruses. , 2021, , 256-266.		11
151	Ebola virus antibody decay–stimulation in a high proportion of survivors. Nature, 2021, 590, 468-472.	13.7	30
152	Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science, 2021, 371, 708-712.	6.0	335
153	Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nature Communications, 2021, 12, 1810.	5.8	12
155	Repeated introductions and intensive community transmission fueled a mumps virus outbreak in Washington State. ELife, 2021, 10, .	2.8	13
156	Rapid Acquisition of High-Quality SARS-CoV-2 Genome via Amplicon-Oxford Nanopore Sequencing. Virologica Sinica, 2021, 36, 901-912.	1.2	18
157	Integration of genomic sequencing into the response to the Ebola virus outbreak in Nord Kivu, Democratic Republic of the Congo. Nature Medicine, 2021, 27, 710-716.	15.2	35
159	Comparative analysis of spatial-temporal patterns of human metapneumovirus and respiratory syncytial virus in Africa using genetic data, 2011–2014. Virology Journal, 2021, 18, 104.	1.4	1
160	Integrating genomics in population models to forecast translocation success. Restoration Ecology, 2021, 29, e13395.	1.4	13
163	Untangling introductions and persistence in COVID-19 resurgence in Europe. Nature, 2021, 595, 713-717.	13.7	133
164	A dynamic, ensemble learning approach to forecast dengue fever epidemic years in Brazil using weather and population susceptibility cycles. Journal of the Royal Society Interface, 2021, 18, 20201006.	1.5	16
165	Evolutionary and Ecological Drivers Shape the Emergence and Extinction of Foot-and-Mouth Disease Virus Lineages. Molecular Biology and Evolution, 2021, 38, 4346-4361.	3.5	14
167	Integrating animal movements with phylogeography to model the spread of PRRSV in the USA. Virus Evolution, 2021, 7, veab060.	2.2	14
168	Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science, 2021, 373, 889-895.	6.0	142
169	Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evolution, 2021, 7, veab064.	2.2	774

#	Article	IF	CITATIONS
170	Accuracy in Near-Perfect Virus Phylogenies. Systematic Biology, 2022, 71, 426-438.	2.7	8
171	Amplicon and Metagenomic Analysis of Middle East Respiratory Syndrome (MERS) Coronavirus and the Microbiome in Patients with Severe MERS. MSphere, 2021, 6, e0021921.	1.3	12
172	SARS-CoV-2 Tests: Bridging the Gap between Laboratory Sensors and Clinical Applications. ACS Sensors, 2021, 6, 2815-2837.	4.0	24
173	Herramientas biotecnológicas en el diagnóstico, prevención y tratamiento frente a pandemias. Revista Bionatura, 2021, 3, 2091-2113.	0.1	0
174	Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. Journal of Fungi (Basel, Switzerland), 2021, 7, 661.	1.5	3
176	Genomic-informed pathogen surveillance in Africa: opportunities and challenges. Lancet Infectious Diseases, The, 2021, 21, e281-e289.	4.6	97
177	Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature, 2021, 597, 539-543.	13.7	113
178	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	5.8	33
179	Marburg and Ebola Virus mRNA 3′ Untranslated Regions Contain Negative Regulators of Translation That Are Modulated by ADAR1 Editing. Journal of Virology, 2021, 95, e0065221.	1.5	8
180	Exploiting genomic surveillance to map the spatio-temporal dispersal of SARS-CoV-2 spike mutations in Belgium across 2020. Scientific Reports, 2021, 11, 18580.	1.6	10
181	Genetic and evolutionary analysis of SARS-CoV-2 circulating in the region surrounding Islamabad, Pakistan. Infection, Genetics and Evolution, 2021, 94, 105003.	1.0	7
182	Omics for Forensic and Post-Mortem Microbiology. , 2021, , 219-240.		1
183	Sequencing the pandemic: rapid and high-throughput processing and analysis of COVID-19 clinical samplesÂfor 21stÂcentury public health. F1000Research, 2021, 10, 48.	0.8	6
184	Accelerating Vaccine Development During the 2013–2016 West African Ebola Virus Disease Outbreak. Current Topics in Microbiology and Immunology, 2017, 411, 229-261.	0.7	14
185	Ebola and Other Haemorrhagic Fevers. , 2019, , 179-205.		2
186	How countries are using genomics to help avoid a second coronavirus wave. Nature, 2020, 582, 19-19.	13.7	6
187	Capturing sequence diversity in metagenomes with comprehensive and scalable probe design. Nature Biotechnology, 2019, 37, 160-168.	9.4	96
188	Disease control across urban–rural gradients. Journal of the Royal Society Interface, 2020, 17, 20200775.	1.5	16

#	ARTICLE	IF	CITATIONS
189	Ebola returns to its Congo Basin heartland. Journal of General Virology, 2018, 99, 861-863.	1.3	2
214	A Comparison of Geographical Propagation Visualizations. , 2020, , .		9
215	Cohort study protocol: Bioresource in Adult Infectious Diseases (BioAID). Wellcome Open Research, 2018, 3, 97.	0.9	6
216	Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 2020, 5, 3.	0.9	30
217	Hamiltonian Monte Carlo sampling to estimate past population dynamics using the skygrid coalescent model in a Bayesian phylogenetics framework. Wellcome Open Research, 2020, 5, 53.	0.9	15
218	Ethical challenges in pathogen sequencing: a systematic scoping review. Wellcome Open Research, 2020, 5, 119.	0.9	6
219	Estimating effective population size changes from preferentially sampled genetic sequences. PLoS Computational Biology, 2020, 16, e1007774.	1.5	14
220	Genomic sequence of yellow fever virus from a Dutch traveller returning from the Gambia-Senegal region, the Netherlands, November 2018. Eurosurveillance, 2019, 24, .	3.9	9
221	Lassa – A latent threat to West Africa: How ready are we?. Journal of Global Infectious Diseases, 2018, 10, 169.	0.2	4
222	Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ, 2019, 7, e8013.	0.9	23
223	Why populations are not planets_ gravity and the limits of disease modeling by analogy. Journal of Geography and Regional Planning, 2021, 14, 105-112.	0.2	0
224	ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biology and Evolution, 2021, 13, .	1.1	23
225	Progress and challenges in virus genomic epidemiology. Trends in Parasitology, 2021, 37, 1038-1049.	1.5	45
230	Simulating the effect of public health interventions using dated virus sequences and geographical data. Peer Community in Evolutionary Biology, 2018, , 100046.	0.0	0
240	Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. , 2019, , 437-469.		5
241	Epidemiology and Management of Lassa Fever in the West African Sub-Region: Overcoming the Socio-cultural Challenges. , 2019, , 41-58.		0
243	ZooPhy: A bioinformatics pipeline for virus phylogeography and surveillance. Online Journal of Public Health Informatics, 2019, 11, .	0.4	0
250	Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes. Wellcome Open Research, 2020, 5, 3.	0.9	26

#	Article	IF	CITATIONS
256	Enabling One Health solutions through genomics. Indian Journal of Medical Research, 2021, 153, 273-279.	0.4	0
258	Enabling One Health solutions through genomics. Indian Journal of Medical Research, 2021, 153, 273.	0.4	2
259	Assessment of Inter-Laboratory Differences in SARS-CoV-2 Consensus Genome Assemblies between Public Health Laboratories in Australia. Viruses, 2022, 14, 185.	1.5	4
260	Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Frontiers in Microbiology, 2021, 12, 708550.	1.5	9
261	Multi-Feature Representation Based COVID-19 Risk Stage Evaluation With Transfer Learning. IEEE Transactions on Network Science and Engineering, 2022, 9, 1359-1375.	4.1	6
262	From viral evolution to spatial contagion: a biologically modulated Hawkes model. Bioinformatics, 2022, 38, 1846-1856.	1.8	5
265	The Carbon Footprint of Bioinformatics. Molecular Biology and Evolution, 2022, 39, .	3.5	29
267	Phylogeography Reveals Association between Swine Trade and the Spread of Porcine Epidemic Diarrhea Virus in China and across the World. Molecular Biology and Evolution, 2022, 39, .	3.5	35
268	Phycova — a tool for exploring covariates of pathogen spread. Virus Evolution, 2022, 8, veac015.	2.2	3
269	Methods for sequencing the pandemic: benefits of rapid or high-throughput processing. F1000Research, 0, 10, 48.	0.8	5
270	Spatial model of Ebola outbreaks contained by behavior change. PLoS ONE, 2022, 17, e0264425.	1.1	1
271	Therapeutic Strategies against Ebola Virus Infection. Viruses, 2022, 14, 579.	1.5	16
273	Phylodynamic analysis of the highly pathogenic avian influenza H5N8 epidemic in France, 2016–2017. Transboundary and Emerging Diseases, 2022, 69, .	1.3	6
274	Epidemiological characteristics of imported respiratory infectious diseases in China, 2014‒2018. Infectious Diseases of Poverty, 2022, 11, 22.	1.5	0
275	Modeling international mobility using roaming cell phone traces during COVID-19 pandemic. EPJ Data Science, 2022, 11, 22.	1.5	9
276	The need for linked genomic surveillance of SARS-CoV-2. Canada Communicable Disease Report, 2022, 48, 131-139.	0.6	13
281	Phylogenetic and phylodynamic approaches to understanding and combating the early SARS-CoV-2 pandemic. Nature Reviews Genetics, 2022, 23, 547-562.	7.7	70
282	Phylogenetic analysis of migration, differentiation, and class switching in B cells. PLoS Computational Biology, 2022, 18, e1009885.	1.5	40

#	Article	IF	CITATIONS
283	Nanopore Sequencing as a Rapid Tool for Discrimination between Epidemic and Vaccine Strains of Classical Swine Fever Viruses in Japan. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2022, 75, e83-e90.	0.0	0
284	A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virologica Sinica, 2022, , .	1.2	6
285	Accommodating sampling location uncertainty in continuous phylogeography. Virus Evolution, 2022, 8, .	2.2	8
288	Prospective surveillance study to detect antimalarial drug resistance, gene deletions of diagnostic relevance and genetic diversity of <i>Plasmodium falciparum</i> in Mozambique: protocol. BMJ Open, 2022, 12, e063456.	0.8	7
291	The Evolution of Medical Countermeasures for Ebola Virus Disease: Lessons Learned and Next Steps. Vaccines, 2022, 10, 1213.	2.1	11
292	Robust Phylodynamic Analysis of Genetic Sequencing Data from Structured Populations. Viruses, 2022, 14, 1648.	1.5	6
293	Molecular adaptations during viral epidemics. EMBO Reports, 2022, 23, .	2.0	18
294	Viral informatics: bioinformatics-based solution for managing viral infections. Briefings in Bioinformatics, 2022, 23, .	3.2	10
296	Scalable Bayesian phylogenetics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	9
298	Using multiple sampling strategies to estimate SARS-CoV-2 epidemiological parameters from genomic sequencing data. Nature Communications, 2022, 13, .	5.8	10
299	Phylogeographic analysis reveals an ancient East African origin of human herpes simplex virus 2 dispersal out-of-Africa. Nature Communications, 2022, 13, .	5.8	1
301	A high scale SARS-CoV-2 profiling by its whole-genome sequencing using Oxford Nanopore Technology in Kazakhstan. Frontiers in Genetics, 0, 13, .	1.1	2
302	Data Integration in Bayesian Phylogenetics. Annual Review of Statistics and Its Application, 2023, 10, 353-377.	4.1	2
303	Spatially explicit phylogeographical reconstruction sheds light on the history of the forest cover in the Congo Basin. Journal of Biogeography, 0, , .	1.4	1
304	Applications of Long-Read Sequencing Technology in Clinical Genomics. Advances in Molecular Pathology, 2022, 5, 85-108.	0.2	0
306	Distinguishing imported cases from locally acquired cases within a geographically limited genomic sample of an infectious disease. Bioinformatics, 2023, 39, .	1.8	1
307	Advancing disease genomics beyond COVID-19 and reducing health disparities: what does the future hold for Africa?. Briefings in Functional Genomics, 0, , .	1.3	1
310	Gaps in mobility data and implications for modelling epidemic spread: A scoping review and simulation study. Epidemics, 2023, 42, 100666.	1.5	2

#	Article	IF	CITATIONS
311	Minimal Antigenic Evolution after a Decade of Norovirus GII.4 Sydney_2012 Circulation in Humans. Journal of Virology, 2023, 97, .	1.5	8
312	Impact and mitigation of sampling bias to determine viral spread: Evaluating discrete phylogeography through CTMC modeling and structured coalescent model approximations. Virus Evolution, 2023, 9, .	2.2	13
313	Diverse pathways toward a cure. IScience, 2023, 26, 106052.	1.9	0
314	Comparing the transmission potential from sequence and surveillance data of 2009 North American influenza pandemic waves. Infectious Disease Modelling, 2023, 8, 240-252.	1.2	0
315	Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Nature Methods, 2023, 20, 512-522.	9.0	111
316	Toward a global virus genomic surveillance network. Cell Host and Microbe, 2023, 31, 861-873.	5.1	13
317	Linked Mutations in the Ebola Virus Polymerase Are Associated with Organ Specific Phenotypes. Microbiology Spectrum, 2023, 11, .	1.2	1
318	Deciphering the Hantavirus Host Range Combining Virology and Species Distribution Models with an Emphasis on the Yellow Pygmy Rice Rat (Oligoryzomys flavescens). Transboundary and Emerging Diseases, 2023, 2023, 1-15.	1.3	0
320	Into a Brighter Future. , 2023, , 143-149.		0
321	Future Pandemics. , 2023, , 135-142.		0
325	Emerging and Zoonotic Diseases. , 2023, , 111-122.		0
341	Ebola and Marburg viruses. , 2024, , 2281-2308.		0
342	Principles of diagnostic virology and virus discovery. , 2024, , 2595-2604.		0