Nextflow enables reproducible computational workflow

Nature Biotechnology 35, 316-319 DOI: 10.1038/nbt.3820

Citation Report

#	Article	IF	CITATIONS
1	A Review of Scalable Bioinformatics Pipelines. Data Science and Engineering, 2017, 2, 245-251.	6.4	25
2	Computation semantics of the functional scientific workflow language Cuneiform. Journal of Functional Programming, 2017, 27, .	0.8	9
3	The international MAQC Society launches to enhance reproducibility of high-throughput technologies. Nature Biotechnology, 2017, 35, 1127-1128.	17.5	32
4	Robust Cross-Platform Workflows: How Technical and Scientific Communities Collaborate to Develop, Test and Share Best Practices for Data Analysis. Data Science and Engineering, 2017, 2, 232-244.	6.4	19
5	Bio-Docklets: virtualization containers for single-step execution of NGS pipelines. GigaScience, 2017, 6, 1-7.	6.4	12
7	CIPHER: a flexible and extensive workflow platform for integrative next-generation sequencing data analysis and genomic regulatory element prediction. BMC Bioinformatics, 2017, 18, 363.	2.6	25
8	Cell-type specific sequencing of microRNAs from complex animal tissues. Nature Methods, 2018, 15, 283-289.	19.0	68
9	Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature, 2018, 556, 452-456.	27.8	513
10	Cloud computing for genomic data analysis and collaboration. Nature Reviews Genetics, 2018, 19, 208-219.	16.3	205
11	Chromosomal instability drives metastasis through a cytosolic DNA response. Nature, 2018, 553, 467-472.	27.8	1,002
12	Orchid: a novel management, annotation and machine learning framework for analyzing cancer mutations. Bioinformatics, 2018, 34, 936-942.	4.1	16
13	Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E743-E752.	7.1	89
14	Constructing lightweight and flexible pipelines using Plugin-Based Microbiome Analysis (PluMA). Bioinformatics, 2018, 34, 2881-2888.	4.1	5
15	Generalized Bootstrap Supports for Phylogenetic Analyses of Protein Sequences Incorporating Alignment Uncertainty. Systematic Biology, 2018, 67, 997-1009.	5.6	12
16	INNUENDO: A crossâ€sectoral platform for the integration of genomics in the surveillance of foodâ€borne pathogens. EFSA Supporting Publications, 2018, 15, 1498E.	0.7	56
17	Fast and Reproducible LOFAR Workflows with AGLOW. , 2018, , .		0
18	Orchestral: A Lightweight Framework for Parallel Simulations of Cell-Cell Communication. , 2018, , .		6
19	The application of Hadoop in structural bioinformatics. Briefings in Bioinformatics, 2018, , .	6.5	6

TATION REDC

#	Article	IF	CITATIONS
20	Evaluating Workflow Management Systems: A Bioinformatics Use Case. , 2018, , .		15
21	Skitter: a DSL for distributed reactive workflows. , 2018, , .		2
22	An Open-Source Azure Solution for Scalable Genomics Workflows. , 2018, , .		2
23	BioJupies: Automated Generation of Interactive Notebooks for RNA-Seq Data Analysis in the Cloud. Cell Systems, 2018, 7, 556-561.e3.	6.2	217
24	Pergola: Boosting Visualization and Analysis of Longitudinal Data by Unlocking Genomic Analysis Tools. IScience, 2018, 9, 244-257.	4.1	5
25	Transparent Deployment of Scientific Workflows across Clouds - Kubernetes Approach. , 2018, , .		14
26	Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons. PLoS Computational Biology, 2018, 14, e1006498.	3.2	5
27	Developing reproducible bioinformatics analysis workflows for heterogeneous computing environments to support African genomics. BMC Bioinformatics, 2018, 19, 457.	2.6	33
28	Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification. F1000Research, 2018, 7, 952.	1.6	87
29	Real-time analysis of nanopore-based metagenomic sequencing from infected orthopaedic devices. BMC Genomics, 2018, 19, 714.	2.8	128
30	Ten steps to get started in Genome Assembly and Annotation. F1000Research, 2018, 7, 148.	1.6	85
31	automan: A Python-Based Automation Framework for Numerical Computing. Computing in Science and Engineering, 2018, 20, 81-97.	1.2	15
32	Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host–Pathogen Genetic Interactions. Frontiers in Genetics, 2018, 9, 130.	2.3	45
33	LncPipe: A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data. Journal of Genetics and Genomics, 2018, 45, 399-401.	3.9	15
34	YAMP: a containerized workflow enabling reproducibility in metagenomics research. GigaScience, 2018, 7, .	6.4	22
35	Robust Microbial Markers for Non-Invasive Inflammatory Bowel Disease Identification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 16, 1-1.	3.0	7
36	Watchdog – a workflow management system for the distributed analysis of large-scale experimental data. BMC Bioinformatics, 2018, 19, 97.	2.6	20
37	Constructing Computational Pipelines. , 2019, , 135-143.		0

	CITATION R	EPORT	
# 38	ARTICLE Computational Pipelines and Workflows in Bioinformatics. , 2019, , 1151-1162.	IF	CITATIONS
39	Container-based bioinformatics with Pachyderm. Bioinformatics, 2019, 35, 839-846.	4.1	35
40	Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map. IEEE Transactions on Medical Imaging, 2019, 38, 448-459.	8.9	351
41	Parsl. , 2019, , .		138
42	Integrative and comparative genomic analyses identify clinicallyÂrelevant pulmonary carcinoidÂgroups and unveil the supra-carcinoids. Nature Communications, 2019, 10, 3407.	12.8	132
43	Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. Scientific Reports, 2019, 9, 11223.	3.3	30
44	Reproducible Scientific Workflows for High Performance and Cloud Computing. , 2019, , .		5
45	Scalable Parallel Programming in Python with Parsl. , 2019, , .		13
46	Scalable Workflows and Reproducible Data Analysis for Genomics. Methods in Molecular Biology, 2019, 1910, 723-745.	0.9	25
47	Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. Molecular Cell, 2019, 75, 756-768.e7.	9.7	116
48	Pipeliner: A Nextflow-Based Framework for the Definition of Sequencing Data Processing Pipelines. Frontiers in Genetics, 2019, 10, 614.	2.3	28
49	Managing genomic variant calling workflows with Swift/T. PLoS ONE, 2019, 14, e0211608.	2.5	7
50	PhyloMagnet: fast and accurate screening of short-read meta-omics data using gene-centric phylogenetics. Bioinformatics, 2020, 36, 1718-1724.	4.1	7
51	doepipeline: a systematic approach to optimizing multi-level and multi-step data processing workflows. BMC Bioinformatics, 2019, 20, 498.	2.6	2
52	MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. Journal of Proteome Research, 2019, 18, 3876-3884.	3.7	35
53	Expression Atlas update: from tissues to single cells. Nucleic Acids Research, 2020, 48, D77-D83.	14.5	363
54	Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology. Scientific Reports, 2019, 9, 16350.	3.3	49
55	PyGMQL: scalable data extraction and analysis for heterogeneous genomic datasets. BMC Bioinformatics, 2019, 20, 560.	2.6	15

#	Article	IF	CITATIONS
56	The Personal Genome Project-UK, an open access resource of human multi-omics data. Scientific Data, 2019, 6, 257.	5.3	19
57	Sharing interoperable workflow provenance: A review of best practices and their practical application in CWLProv. GigaScience, 2019, 8, .	6.4	49
58	Hecaton: reliably detecting copy number variation in plant genomes using short read sequencing data. BMC Genomics, 2019, 20, 818.	2.8	4
59	Free Water in White Matter Differentiates MCI and AD From Control Subjects. Frontiers in Aging Neuroscience, 2019, 11, 270.	3.4	57
60	Value of Collaboration among Multi-Domain Experts in Analysis of High-Throughput Genomics Data. Cancer Research, 2019, 79, 5140-5145.	0.9	7
61	Scalable Pathogen Pipeline Platform (SP^3): Enabling Unified Genomic Data Analysis with Elastic Cloud Computing. , 2019, , .		1
62	BioExcel Building Blocks, a software library for interoperable biomolecular simulation workflows. Scientific Data, 2019, 6, 169.	5.3	35
63	Software engineering for scientific big data analysis. GigaScience, 2019, 8, .	6.4	20
64	Influence of Socio-Economic and Psychosocial Profiles on the Human Breast Milk Bacteriome of South African Women. Nutrients, 2019, 11, 1390.	4.1	16
65	Scientific Tests and Continuous Integration Strategies to Enhance Reproducibility in the Scientific Software Context. , 2019, , .		14
66	NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language. Microbiome, 2019, 7, 84.	11.1	42
67	Hyperparameter optimization for image analysis: application to prostate tissue images and live cell data of virus-infected cells. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1847-1857.	2.8	6
68	Exploiting orthology and de novo transcriptome assembly to refine target sequence information. BMC Medical Genomics, 2019, 12, 69.	1.5	2
69	snakePipes: facilitating flexible, scalable and integrative epigenomic analysis. Bioinformatics, 2019, 35, 4757-4759.	4.1	119
70	GenPipes: an open-source framework for distributed and scalable genomic analyses. GigaScience, 2019, 8, .	6.4	121
71	Accumulating computational resource usage of genomic data analysis workflow to optimize cloud computing instance selection. GigaScience, 2019, 8, .	6.4	8
72	Tibanna: software for scalable execution of portable pipelines on the cloud. Bioinformatics, 2019, 35, 4424-4426.	4.1	11
73	Bioportainer Workbench: a versatile and user-friendly system that integrates implementation, management, and use of bioinformatics resources in Docker environments. CigaScience, 2019, 8, .	6.4	7

#	Article	IF	Citations
74	Reproducible Data Analysis Pipelines for Precision Medicine. , 2019, , .		2
75	SciPipe—Turning Scientific Workflows into Computer Programs. Computing in Science and Engineering, 2019, 21, 109-113.	1.2	0
76	eDiVA—Classification and prioritization of pathogenic variants for clinical diagnostics. Human Mutation, 2019, 40, 865-878.	2.5	19
77	SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines. GigaScience, 2019, 8, .	6.4	22
78	High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 2019, 363, 1345-1349.	12.6	243
79	Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nature Ecology and Evolution, 2019, 3, 657-667.	7.8	43
80	Script of Scripts: A pragmatic workflow system for daily computational research. PLoS Computational Biology, 2019, 15, e1006843.	3.2	11
81	Interoperable and scalable data analysis with microservices: applications in metabolomics. Bioinformatics, 2019, 35, 3752-3760.	4.1	22
82	Anduril 2: upgraded large-scale data integration framework. Bioinformatics, 2019, 35, 3815-3817.	4.1	31
83	Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics. Scientific Reports, 2019, 9, 2559.	3.3	41
84	Learning Low-Wastage Memory Allocations for Scientific Workflows at IceCube. , 2019, , .		5
85	Feedback-Based Resource Allocation for Batch Scheduling of Scientific Workflows. , 2019, , .		7
86	The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environmental Microbiomes, 2019, 14, 7.	5.0	69
87	Polarimetric Analysis of Natural Terrain Observed With a <i>Ku</i> -Band Terrestrial Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5268-5288.	4.9	5
88	SeqScreen: a biocuration platform for robust taxonomic and biological process characterization of nucleic acid sequences of interest. , 2019, , .		7
89	Exploration of Workflow Management Systems Emerging Features from Users Perspectives. , 2019, , .		16
90	Custom Execution Environments with Containers in Pegasus-Enabled Scientific Workflows. , 2019, , .		5
91	Comparative analysis of workflow platform in support of in silico oncology. AIP Conference Proceedings, 2019, , .	0.4	0

#	Article	IF	CITATIONS
92	Hash-Based Core Genome Multilocus Sequence Typing for Clostridium difficile. Journal of Clinical Microbiology, 2019, 58, .	3.9	16
93	Towards Reproducible Bioinformatics: The OpenBio-C Scientific Workflow Environment. , 2019, , .		7
94	SNAPPy: A snakemake pipeline for scalable HIV-1 subtyping by phylogenetic pairing. Virus Evolution, 2019, 5, vez050.	4.9	7
95	Large multiple sequence alignments with a root-to-leaf regressive method. Nature Biotechnology, 2019, 37, 1466-1470.	17.5	25
96	RNASeqR: An R Package for Automated Two-Group RNA-Seq Analysis Workflow. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2023-2031.	3.0	6
97	SWEEP., 2019,,.		16
98	A Glyphosate Pulse to Brackish Long-Term Microcosms Has a Greater Impact on the Microbial Diversity and Abundance of Planktonic Than of Biofilm Assemblages. Frontiers in Marine Science, 2019, 6, .	2.5	8
99	uap: reproducible and robust HTS data analysis. BMC Bioinformatics, 2019, 20, 664.	2.6	14
100	Vertical and horizontal integration of multi-omics data with miodin. BMC Bioinformatics, 2019, 20, 649.	2.6	44
101	Bundle-specific tractography with incorporated anatomical and orientational priors. NeuroImage, 2019, 186, 382-398.	4.2	59
102	Bioinformatics for precision oncology. Briefings in Bioinformatics, 2019, 20, 778-788.	6.5	49
103	Methods for comparative ChIA-PET and Hi-C data analysis. Methods, 2020, 170, 69-74.	3.8	11
104	Quantification of apparent axon density and orientation dispersion in the white matter of youth born with congenital heart disease. NeuroImage, 2020, 205, 116255.	4.2	21
105	MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Research, 2020, 48, D561-D569.	14.5	227
106	Scalable Data Analysis in Proteomics and Metabolomics Using BioContainers and Workflows Engines. Proteomics, 2020, 20, e1900147.	2.2	24
107	Tractostorm: The what, why, and how of tractography dissection reproducibility. Human Brain Mapping, 2020, 41, 1859-1874.	3.6	59
108	CAMITAX: Taxon labels for microbial genomes. GigaScience, 2020, 9, .	6.4	6
109	Bioinformatics pipeline using JUDI: <i>Just Do It!</i> . Bioinformatics, 2020, 36, 2572-2574.	4.1	5

#	Article	IF	CITATIONS
110	FAIR Computational Workflows. Data Intelligence, 2020, 2, 108-121.	1.5	97
111	ThermoRawFileParser: Modular, Scalable, and Cross-Platform RAW File Conversion. Journal of Proteome Research, 2020, 19, 537-542.	3.7	144
112	A semi-automated protocol for NGS metabarcoding and fungal analysis in forensic. Forensic Science International, 2020, 306, 110052.	2.2	5
113	The Tegument Protein pUL47 of Marek's Disease Virus Is Necessary for Horizontal Transmission and Is Important for Expression of Glycoprotein gC. Journal of Virology, 2020, 95, .	3.4	9
114	Development of an MS Workflow Based on Combining Database Search Engines for Accurate Protein Identification and Its Validation to Identify the Serum Proteomic Profile in Female Stress Urinary Incontinence. BioMed Research International, 2020, 2020, 1-9.	1.9	0
115	Building Infrastructure and Workflows for Clinical Bioinformatics Pipelines. Advances in Molecular Pathology, 2020, 3, 157-167.	0.4	0
117	In silico benchmarking of metagenomic tools for coding sequence detection reveals the limits of sensitivity and precision. BMC Bioinformatics, 2020, 21, 459.	2.6	8
118	NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy. GigaScience, 2020, 9, .	6.4	23
119	ARADEEPOPSIS, an Automated Workflow for Top-View Plant Phenomics using Semantic Segmentation of Leaf States. Plant Cell, 2020, 32, 3674-3688.	6.6	20
120	An embryonic stem cell-specific heterochromatin state promotes core histone exchange in the absence of DNA accessibility. Nature Communications, 2020, 11, 5095.	12.8	28
121	Tripal and Galaxy: supporting reproducible scientific workflows for community biological databases. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	1
122	Performance evaluation of lossy quality compression algorithms for RNA-seq data. BMC Bioinformatics, 2020, 21, 321.	2.6	1
123	MethylStar: A fast and robust pre-processing pipeline for bulk or single-cell whole-genome bisulfite sequencing data. BMC Genomics, 2020, 21, 479.	2.8	11
124	A programming model for Hybrid Workflows: Combining task-based workflows and dataflows all-in-one. Future Generation Computer Systems, 2020, 113, 281-297.	7.5	9
125	The Disruptive Fourth Industrial Revolution. Lecture Notes in Electrical Engineering, 2020, , .	0.4	4
126	GenomeChronicler: The Personal Genome Project UK Genomic Report Generator Pipeline. Frontiers in Genetics, 2020, 11, 518644.	2.3	4
127	DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Scientific Reports, 2020, 10, 20917.	3.3	30
128	Bactopia: a Flexible Pipeline for Complete Analysis of Bacterial Genomes. MSystems, 2020, 5, .	3.8	82

#	Article	IF	CITATIONS
129	Distinct miRNA Profile of Cellular and Extracellular Vesicles Released from Chicken Tracheal Cells Following Avian Influenza Virus Infection. Vaccines, 2020, 8, 438.	4.4	4
130	Reference Genome Assembly for Australian <i>Ascochyta rabiei</i> Isolate ArME14. G3: Genes, Genomes, Genetics, 2020, 10, 2131-2140.	1.8	15
131	Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology. Journal of Grid Computing, 2020, 18, 529-546.	3.9	0
133	Two MicroRNAs Are Sufficient for Embryonic Patterning in C.Âelegans. Current Biology, 2020, 30, 5058-5065.e5.	3.9	17
134	COVID-Align: accurate online alignment of hCoV-19 genomes using a profile HMM. Bioinformatics, 2021, 37, 1761-1762.	4.1	9
135	rdmc: An Open Source R Package Implementing Convergent Adaptation Models of Lee and Coop (2017). G3: Genes, Genomes, Genetics, 2020, 10, 3041-3046.	1.8	3
136	GeneTEFlow: A Nextflow-based pipeline for analysing gene and transposable elements expression from RNA-Seq data. PLoS ONE, 2020, 15, e0232994.	2.5	1
137	High precision <i>Neisseria gonorrhoeae</i> variant and antimicrobial resistance calling from metagenomic Nanopore sequencing. Genome Research, 2020, 30, 1354-1363.	5.5	27
138	DeepVariant-on-Spark: Small-Scale Genome Analysis Using a Cloud-Based Computing Framework. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-7.	1.3	6
139	StreamFlow: Cross-Breeding Cloud With HPC. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1723-1737.	4.6	27
140	Species-specific pace of development is associated with differences in protein stability. Science, 2020, 369, .	12.6	163
141	Tracking of Antibiotic Resistance Transfer and Rapid Plasmid Evolution in a Hospital Setting by Nanopore Sequencing. MSphere, 2020, 5, .	2.9	51
142	RNAflow: An Effective and Simple RNA-Seq Differential Gene Expression Pipeline Using Nextflow. Genes, 2020, 11, 1487.	2.4	18
143	The International Virus Bioinformatics Meeting 2020. Viruses, 2020, 12, 1398.	3.3	3
144	State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing. Frontiers in Genetics, 2020, 11, 610798.	2.3	180
145	Comparative Genome Analysis of 33 Chlamydia Strains Reveals Characteristic Features of Chlamydia Psittaci and Closely Related Species. Pathogens, 2020, 9, 899.	2.8	24
146	wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data. BMC Bioinformatics, 2020, 21, 169.	2.6	26
147	Needlestack: an ultra-sensitive variant caller for multi-sample next generation sequencing data. NAR Genomics and Bioinformatics, 2020, 2, Iqaa021.	3.2	5

#	Article	IF	CITATIONS
148	Antimicrobial Resistance Profiles of Adherent Invasive Escherichia coli Show Increased Resistance to β-Lactams. Antibiotics, 2020, 9, 251.	3.7	9
149	Optimizing 16S rRNA gene profile analysis from low biomass nasopharyngeal and induced sputum specimens. BMC Microbiology, 2020, 20, 113.	3.3	16
150	nf-rnaSeqMetagen: A nextflow metagenomics pipeline for identifying and characterizing microbial sequences from RNA-seq data. Medicine in Microecology, 2020, 4, 100011.	1.6	2
151	Genomic history and ecology of the geographic spread of rice. Nature Plants, 2020, 6, 492-502.	9.3	143
152	TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity. NeuroImage, 2020, 218, 116889.	4.2	92
153	MaRe: Processing Big Data with application containers on Apache Spark. GigaScience, 2020, 9, .	6.4	6
154	The Quest for Orthologs benchmark service and consensus calls in 2020. Nucleic Acids Research, 2020, 48, W538-W545.	14.5	41
155	A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nature Protocols, 2020, 15, 2247-2276.	12.0	553
156	Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biology, 2020, 18, e3000723.	5.6	33
157	Phenome–Genome Profiling of Single Bacterial Cell by Ramanâ€Activated Gravityâ€Driven Encapsulation and Sequencing. Small, 2020, 16, e2001172.	10.0	33
158	JASS: command line and web interface for the joint analysis of GWAS results. NAR Genomics and Bioinformatics, 2020, 2, Iqaa003.	3.2	11
159	Towards reproducible computational drug discovery. Journal of Cheminformatics, 2020, 12, 9.	6.1	100
161	Surveying the Sweetpotato Rhizosphere, Endophyte, and Surrounding Soil Microbiomes at Two North Carolina Farms Reveals Underpinnings of Sweetpotato Microbiome Community Assembly. Phytobiomes Journal, 2020, 4, 75-89.	2.7	7
162	Guidelines for systematic reporting of sequence alignments. Biology Methods and Protocols, 2020, 5, bpaa001.	2.2	5
163	lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements. Nature Protocols, 2020, 15, 2387-2412.	12.0	65
164	Watchdog 2.0: New developments for reusability, reproducibility, and workflow execution. GigaScience, 2020, 9, .	6.4	10
165	Bioinformatics recipes: creating, executing and distributing reproducible data analysis workflows. BMC Bioinformatics, 2020, 21, 292.	2.6	1
166	Organizing genome engineering for the gigabase scale. Nature Communications, 2020, 11, 689.	12.8	14

#	Article	IF	CITATIONS
167	Prospects and challenges of multi-omics data integration in toxicology. Archives of Toxicology, 2020, 94, 371-388.	4.2	142
168	MasterOfPores: A Workflow for the Analysis of Oxford Nanopore Direct RNA Sequencing Datasets. Frontiers in Genetics, 2020, 11, 211.	2.3	38
169	MAPDP: A Cloud-Based Computational Platform for Immunopeptidomics Analyses. Journal of Proteome Research, 2020, 19, 1873-1881.	3.7	11
170	The nf-core framework for community-curated bioinformatics pipelines. Nature Biotechnology, 2020, 38, 276-278.	17.5	963
171	RiboFlow, RiboR and RiboPy: an ecosystem for analyzing ribosome profiling data at read length resolution. Bioinformatics, 2020, 36, 2929-2931.	4.1	23
172	Effects of telomerase overexpression in the model organism Caenorhabditis elegans. Gene, 2020, 732, 144367.	2.2	0
173	Scientific workflow managers in metabolomics: an overview. Analyst, The, 2020, 145, 3801-3808.	3.5	15
174	Combining signal and sequence to detect RNA polymerase initiation in ATAC-seq data. PLoS ONE, 2020, 15, e0232332.	2.5	1
175	Cancer neoantigen prioritization through sensitive and reliable proteogenomics analysis. Nature Communications, 2020, 11, 1759.	12.8	97
176	DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nature Communications, 2020, 11, 1742.	12.8	70
177	DolphinNext: a distributed data processing platform for high throughput genomics. BMC Genomics, 2020, 21, 310.	2.8	66
178	Computational Oncology in the Multi-Omics Era: State of the Art. Frontiers in Oncology, 2020, 10, 423.	2.8	59
179	Comparison of high-throughput single-cell RNA sequencing data processing pipelines. Briefings in Bioinformatics, 2021, 22, .	6.5	16
180	Detection of copy-number variations from NGS data using read depth information: a diagnostic performance evaluation. European Journal of Human Genetics, 2021, 29, 99-109.	2.8	23
181	Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Briefings in Bioinformatics, 2021, 22, 642-663.	6.5	110
182	AFCL: An Abstract Function Choreography Language for serverless workflow specification. Future Generation Computer Systems, 2021, 114, 368-382.	7.5	30
183	PoSeiDon: a Nextflow pipeline for the detection of evolutionary recombination events and positive selection. Bioinformatics, 2021, 37, 1018-1020.	4.1	8
184	Practical Applications of Computational Biology & Bioinformatics, 14th International Conference (PACBB 2020). Advances in Intelligent Systems and Computing, 2021, , .	0.6	2

#	Article	IF	CITATIONS
185	Diffusion Tensor Imaging in Contact and Non-Contact University-Level Sport Athletes. Journal of Neurotrauma, 2021, 38, 529-537.	3.4	8
186	RNA-Mediated Feedback Control of Transcriptional Condensates. Cell, 2021, 184, 207-225.e24.	28.9	324
187	aCLImatise: automated generation of tool definitions for bioinformatics workflows. Bioinformatics, 2021, 36, 5556-5557.	4.1	1
188	Practical guide for managing large-scale human genome data in research. Journal of Human Genetics, 2021, 66, 39-52.	2.3	31
189	Current RNA-seq methodology reporting limits reproducibility. Briefings in Bioinformatics, 2021, 22, 140-145.	6.5	55
190	xGAP: a python based efficient, modular, extensible and fault tolerant genomic analysis pipeline for variant discovery. Bioinformatics, 2021, 37, 9-16.	4.1	0
191	Murchison Widefield Array rapid-response observations of the short GRB 180805A. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
192	Train-the-Trainer as an Effective Approach to Building Global Networks of Experts in Genomic Surveillance of Antimicrobial Resistance (AMR). Clinical Infectious Diseases, 2021, 73, S283-S289.	5.8	8
193	Cloud Computing Enabled Big Multi-Omics Data Analytics. Bioinformatics and Biology Insights, 2021, 15, 117793222110359.	2.0	23
195	PM4NGS, a project management framework for next-generation sequencing data analysis. GigaScience, 2021, 10, .	6.4	0
197	Cloudy with a Chance of Peptides: Accessibility, Scalability, and Reproducibility with Cloud-Hosted Environments. Journal of Proteome Research, 2021, 20, 2076-2082.	3.7	8
198	Streamlining data-intensive biology with workflow systems. GigaScience, 2021, 10, .	6.4	32
199	Sustainable data analysis with Snakemake. F1000Research, 2021, 10, 33.	1.6	188
200	Transcriptome annotation in the cloud: complexity, best practices, and cost. GigaScience, 2021, 10, .	6.4	9
201	XenoCell: classification of cellular barcodes in single cell experiments from xenograft samples. BMC Medical Genomics, 2021, 14, 34.	1.5	8
202	Methods to Identify and Study the Evolution of Pseudogenes Using a Phylogenetic Approach. Methods in Molecular Biology, 2021, 2324, 21-34.	0.9	1
203	Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases, 2021, 27, 104-112.	4.3	82
204	Significantly improving the quality of genome assemblies through curation. GigaScience, 2021, 10, .	6.4	739

#	Article	IF	CITATIONS
205	Software-Defined Workflows for Distributed Interoperable Closed-Loop Neuromodulation Control Systems. IEEE Access, 2021, 9, 131733-131745.	4.2	1
206	Metagenomics workflow for hybrid assembly, differential coverage binning, metatranscriptomics and pathway analysis (MUFFIN). PLoS Computational Biology, 2021, 17, e1008716.	3.2	18
207	Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench. Nucleic Acids Research, 2021, 49, e42-e42.	14.5	41
209	BioContainers Registry: Searching Bioinformatics and Proteomics Tools, Packages, and Containers. Journal of Proteome Research, 2021, 20, 2056-2061.	3.7	19
211	Named Data Networking for Genomics Data Management and Integrated Workflows. Frontiers in Big Data, 2021, 4, 582468.	2.9	3
213	Using prototyping to choose a bioinformatics workflow management system. PLoS Computational Biology, 2021, 17, e1008622.	3.2	20
214	StellarPGx: A Nextflow Pipeline for Calling Star Alleles in Cytochrome P450 Genes. Clinical Pharmacology and Therapeutics, 2021, 110, 741-749.	4.7	28
215	IncEvo: automated identification and conservation study of long noncoding RNAs. BMC Bioinformatics, 2021, 22, 59.	2.6	8
218	Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome. Nature Communications, 2021, 12, 727.	12.8	83
219	Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ, 2021, 9, e10947.	2.0	43
220	Co-fractionation/mass spectrometry to identify protein complexes. STAR Protocols, 2021, 2, 100370.	1.2	12
221	Bioinformatic strategies for the analysis of genomic aberrations detected by targeted NGS panels with clinical application. PeerJ, 2021, 9, e10897.	2.0	4
222	The transcriptomeâ€wide landscape of molecular subtypeâ€specific <scp>mRNA</scp> expression profiles in acute myeloid leukemia. American Journal of Hematology, 2021, 96, 580-588.	4.1	9
223	nf-gwas-pipeline: A Nextflow Genome-Wide Association Study Pipeline. Journal of Open Source Software, 2021, 6, 2957.	4.6	11
224	Ten simple rules for quick and dirty scientific programming. PLoS Computational Biology, 2021, 17, e1008549.	3.2	9
225	eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA sequences exploiting Nextflow and Singularity. Molecular Ecology Resources, 2021, 21, 1697-1704.	4.8	39
226	<i>Bioconductor</i> toolchain for reproducible bioinformatics pipelines using <i>Rcwl</i> and <i>RcwlPipelines</i> . Bioinformatics, 2021, 37, 3351-3352.	4.1	3
227	Principles for data analysis workflows. PLoS Computational Biology, 2021, 17, e1008770.	3.2	16

#	Article	IF	CITATIONS
228	Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Computational Biology, 2021, 17, e1008819.	3.2	4
230	Testcrosses are an efficient strategy for identifying <i>cis</i> -regulatory variation: Bayesian analysis of allele-specific expression (BayesASE). G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
231	Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit. Nature Protocols, 2021, 16, 1785-1801.	12.0	36
233	QCloud2: An Improved Cloud-based Quality-Control System for Mass-Spectrometry-based Proteomics Laboratories. Journal of Proteome Research, 2021, 20, 2010-2013.	3.7	23
234	Learning from reproducing computational results: introducing three principles and the <i>Reproduction Package</i> . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200069.	3.4	11
238	Antiretroviral Treatment-Induced Decrease in Immune Activation Contributes to Reduced Susceptibility to Tuberculosis in HIV-1/Mtb Co-infected Persons. Frontiers in Immunology, 2021, 12, 645446.	4.8	5
239	A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nature Communications, 2021, 12, 1447.	12.8	60
240	Co-designing HPC-systems by computing capabilities and management flexibility to accommodate bioinformatic workflows at different complexity levels. Journal of Supercomputing, 0, , 1.	3.6	2
245	Go Get Data (GGD) is a framework that facilitates reproducible access to genomic data. Nature Communications, 2021, 12, 2151.	12.8	9
246	Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TAZ. Nature Communications, 2021, 12, 2340.	12.8	43
247	DNA metabarcoding of forensic mycological samples. Egyptian Journal of Forensic Sciences, 2021, 11, .	1.0	0
248	<tt>pyrpipe</tt> : a Python package for RNA-Seq workflows. NAR Genomics and Bioinformatics, 2021, 3, lqab049.	3.2	14
249	The frontotemporal organization of the arcuate fasciculus and its relationship with speech perception in young and older amateur singers and nonâ€singers. Human Brain Mapping, 2021, 42, 3058-3076.	3.6	13
251	Identifying high-confidence capture Hi-C interactions using CHiCANE. Nature Protocols, 2021, 16, 2257-2285.	12.0	11
253	Extended Abstract. ACM SIGAda Ada Letters, 2021, 40, 73-75.	0.1	0
254	A longitudinal analysis of brain extracellular free water in HIV infected individuals. Scientific Reports, 2021, 11, 8273.	3.3	7
256	Sustainable data analysis with Snakemake. F1000Research, 2021, 10, 33.	1.6	642
258	Whole genome variation in 27 Mexican indigenous populations, demographic and biomedical insights. PLoS ONE, 2021, 16, e0249773.	2.5	8

#	Article	IF	CITATIONS
259	The PI3K/mTOR Pathway Is Targeted by Rare Germline Variants in Patients with Both Melanoma and Renal Cell Carcinoma. Cancers, 2021, 13, 2243.	3.7	2
261	PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. Journal of Alzheimer's Disease, 2021, 82, 327-347.	2.6	9
264	Nonparametric coalescent inference of mutation spectrum history and demography. Proceedings of the United States of America, 2021, 118, .	7.1	34
265	geneshot: gene-level metagenomics identifies genome islands associated with immunotherapy response. Genome Biology, 2021, 22, 135.	8.8	12
268	ProkEvo: an automated, reproducible, and scalable framework for high-throughput bacterial population genomics analyses. PeerJ, 2021, 9, e11376.	2.0	4
269	The EpiDiverse Plant Epigenome-Wide Association Studies (EWAS) Pipeline. Epigenomes, 2021, 5, 12.	1.8	6
270	Bundle-specific associations between white matter microstructure and Aβ and tau pathology in preclinical Alzheimer's disease. ELife, 2021, 10, .	6.0	26
272	One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). MSystems, 2021, 6, e0018121.	3.8	21
273	The machine learning life cycle and the cloud: implications for drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 1071-1079.	5.0	16
274	A community effort to identify and correct mislabeled samples in proteogenomic studies. Patterns, 2021, 2, 100245.	5.9	6
277	Dadaist2: A Toolkit to Automate and Simplify Statistical Analysis and Plotting of Metabarcoding Experiments. International Journal of Molecular Sciences, 2021, 22, 5309.	4.1	12
278	Multi-Omics Model Applied to Cancer Genetics. International Journal of Molecular Sciences, 2021, 22, 5751.	4.1	19
279	Epitope profiling reveals binding signatures of SARS-CoV-2 immune response in natural infection and cross-reactivity with endemic human CoVs. Cell Reports, 2021, 35, 109164.	6.4	44
280	SPEAQeasy: a scalable pipeline for expression analysis and quantification for R/bioconductor-powered RNA-seq analyses. BMC Bioinformatics, 2021, 22, 224.	2.6	14
281	DetectIS: a pipeline to rapidly detect exogenous DNA integration sites using DNA or RNA paired-end sequencing data. Bioinformatics, 2021, 37, 4230-4232.	4.1	1
282	The Dockstore: enhancing a community platform for sharing reproducible and accessible computational protocols. Nucleic Acids Research, 2021, 49, W624-W632.	14.5	10
285	Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. Journal of Clinical Virology, 2021, 138, 104812.	3.1	39
287	Dysregulation of COVID-19 related gene expression in the COPD lung. Respiratory Research, 2021, 22, 164.	3.6	22

ARTICLE IF CITATIONS # DIAproteomics: A Multifunctional Data Analysis Pipeline for Data-Independent Acquisition Proteomics 289 3.7 17 and Peptidomics. Journal of Proteome Research, 2021, 20, 3758-3766. Longâ€lived macrophage reprogramming drives spike proteinâ€mediated inflammasome activation in COVIDâ€19. EMBO Molecular Medicine, 2021, 13, e14150. 290 6.9 98 Omics in a Digital World: The Role of Bioinformatics in Providing New Insights Into Human Aging. 291 2.36 Frontiers in Genetics, 2021, 12, 689824. Approaches for containerized scientific workflows in cloud environments with applications in life science. F1000Research, 0, 10, 513. COVseq is a cost-effective workflow for mass-scale SARS-CoV-2 genomic surveillance. Nature 293 12.8 14 Communications, 2021, 12, 3903. Cotree/Goalign: toolkit and Go API to facilitate the development of phylogenetic workflows. NAR 3.2 Genomics and Bioinformatics, 2021, 3, lqab075. 297 Quantifying Variability in Microscopy Image Analyses for COVID-19 Drug Discovery., 2021, , . 0 DIVIS: Integrated and Customizable Pipeline for Cancer Genome Sequencing Analysis and 301 2.8 Interpretation. Frontiers in Oncology, 2021, 11, 672597. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall 302 5.7 15 remodeling and calcium gradient. Plant Journal, 2021, 107, 893-908. Compi: a framework for portable and reproducible pipelines. PeerJ Computer Science, 2021, 7, e593. 4.5 BIGwas: Single-command quality control and association testing for multi-cohort and biobank-scale 304 6.4 13 GWAS/PheWAS data. GigaScience, 2021, 10, . Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genetics, 2021, 17, e1009603 MicroPIPE: validating an end-to-end workflow for high-quality complete bacterial genome 306 2.8 25 construction. BMC Genomics, 2021, 22, 474. Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple transcription 4.4 factors from a single experiment. Communications Biology, 2021, 4, 661. Cultureâ€enriched community profiling improves resolution of the vertebrate gut microbiota. 312 12 4.8 Molecular Ecology Resources, 2022, 22, 122-136. Meta-omics Reveal <i>Gallionellaceae</i> and <i>Rhodanobacter</i> Species as Interdependent Key Players for Fe(II) Oxidation and Nitrate Reduction in the Autotrophic Enrichment Culture KS. Applied 3.1 and Environmental Microbiology, 2021, 87, e0049621. Extensive transcriptional and chromatin changes underlie astrocyte maturation in vivo and in 314 12.8 60 culture. Nature Communications, 2021, 12, 4335. Enhancers with tissue-specific activity are enriched in intronic regions. Genome Research, 2021, 31, 5.5 1325-1336.

#	Article	IF	CITATIONS
317	Geniac: Automatic Configuration GENerator and Installer for nextflow pipelines. Open Research Europe, 0, 1, 76.	2.0	0
318	Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov Systematic and Applied Microbiology, 2021, 44, 126200.	2.8	24
320	CLIMB-COVID: continuous integration supporting decentralised sequencing for SARS-CoV-2 genomic surveillance. Genome Biology, 2021, 22, 196.	8.8	53
321	Comparative Analysis of Fecal Microbiomes From Wild Waterbirds to Poultry, Cattle, Pigs, and Wastewater Treatment Plants for a Microbial Source Tracking Approach. Frontiers in Microbiology, 2021, 12, 697553.	3.5	20
324	snpQT: flexible, reproducible, and comprehensive quality control and imputation of genomic data. F1000Research, 2021, 10, 567.	1.6	1
325	DOME: recommendations for supervised machine learning validation in biology. Nature Methods, 2021, 18, 1122-1127.	19.0	105
326	poreCov-An Easy to Use, Fast, and Robust Workflow for SARS-CoV-2 Genome Reconstruction via Nanopore Sequencing. Frontiers in Genetics, 2021, 12, 711437.	2.3	24
327	HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities): a specific and comprehensive pipeline for metagenomic shotgun sequencing data analysis. BMC Bioinformatics, 2021, 22, 106.	2.6	9
329	Molecular Characterization of Southern African Territories 2 (SAT2) Serotype of Foot-and-Mouth Disease Virus from Nigeria in 2017 to 2018. Microbiology Resource Announcements, 2021, 10, e0036221.	0.6	1
330	Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Communications Biology, 2021, 4, 846.	4.4	13
331	In silico saturation mutagenesis of cancer genes. Nature, 2021, 596, 428-432.	27.8	61
332	tsRNAsearch: a pipeline for the identification of tRNA and ncRNA fragments from small RNA-sequencing data. Bioinformatics, 2021, 37, 4424-4430.	4.1	6
333	Repression of CHROMOMETHYLASE 3 prevents epigenetic collateral damage in Arabidopsis. ELife, 2021, 10, .	6.0	28
335	Effective variant filtering and expected candidate variant yield in studies of rare human disease. Npj Genomic Medicine, 2021, 6, 60.	3.8	51
337	Evaluation of Spin Columns for Human Plasma Depletion to Facilitate MS-Based Proteomics Analysis of Plasma. Journal of Proteome Research, 2021, 20, 4610-4620.	3.7	24
340	A graphical, interactive and GPU-enabled workflow to process long-read sequencing data. BMC Genomics, 2021, 22, 626.	2.8	7
341	Reproducibility standards for machine learning in the life sciences. Nature Methods, 2021, 18, 1132-1135.	19.0	96
343	Simultaneous ribosome profiling of hundreds of microbes from the human microbiome. Nature Protocols, 2021, 16, 4676-4691.	12.0	7

#	Article	IF	CITATIONS
344	Fifteen quick tips for success with HPC, i.e., responsibly BASHing that Linux cluster. PLoS Computational Biology, 2021, 17, e1009207.	3.2	4
346	Post-weaning shifts in microbiome composition and metabolism revealed by over 25 000 pig gut metagenome-assembled genomes. Microbial Genomics, 2021, 7, .	2.0	9
347	ppx: Programmatic Access to Proteomics Data Repositories. Journal of Proteome Research, 2021, 20, 4621-4624.	3.7	9
348	Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell, 2021, 184, 4251-4267.e20.	28.9	31
349	ExOrthist: a tool to infer exon orthologies at any evolutionary distance. Genome Biology, 2021, 22, 239.	8.8	11
352	Modern Technology in Multi-Shell Diffusion MRI Reveals Diffuse White Matter Changes in Young Adults With Relapsing-Remitting Multiple Sclerosis. Frontiers in Neuroscience, 2021, 15, 665017.	2.8	5
355	Track-to-Learn: A general framework for tractography with deep reinforcement learning. Medical Image Analysis, 2021, 72, 102093.	11.6	8
356	Identification of cancer-related mutations in human pluripotent stem cells using RNA-seq analysis. Nature Protocols, 2021, 16, 4522-4537.	12.0	8
358	Yippee like 4 (Ypel4) is essential for normal mouse red blood cell membrane integrity. Scientific Reports, 2021, 11, 15898.	3.3	6
359	Large-scale quality assessment of prokaryotic genomes with metashot/prok-quality. F1000Research, 2021, 10, 822.	1.6	6
363	Subacute Exposure to an Environmentally Relevant Dose of Di-(2-ethylhexyl) Phthalate during Gestation Alters the Cecal Microbiome, but Not Pregnancy Outcomes in Mice. Toxics, 2021, 9, 215.	3.7	5
365	Cloud-based genomics pipelines for ophthalmology: reviewed from research to clinical practice. Modeling and Artificial Intelligence in Ophthalmology, 2021, 3, 101-140.	0.0	1
366	Perspectives on automated composition of workflows in the life sciences. F1000Research, 2021, 10, 897.	1.6	7
367	Variant calling across 505 openly consented samples from four Gambian populations on GRCh38. Wellcome Open Research, 0, 6, 239.	1.8	1
368	Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements. Biology, 2021, 10, 896.	2.8	3
369	Performance of methods to detect genetic variants from bisulphite sequencing data in a nonâ€model species. Molecular Ecology Resources, 2022, 22, 834-846.	4.8	10
370	A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nature Genetics, 2021, 53, 1290-1299.	21.4	193
372	Multiâ€omics networkâ€based functional annotation of unknown Arabidopsis genes. Plant Journal, 2021, 108, 1193-1212.	5.7	39

#	Article	IF	CITATIONS
374	Amplification of Femtograms of Bacterial DNA Within 3 h Using a Digital Microfluidics Platform for MinION Sequencing. ACS Omega, 2021, 6, 25642-25651.	3.5	15
376	Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses. Immunity, 2021, 54, 1961-1975.e5.	14.3	69
377	Emergence and Spread of a B.1.1.28-Derived P.6 Lineage with Q675H and Q677H Spike Mutations in Uruguay. Viruses, 2021, 13, 1801.	3.3	6
378	Rare germline variants in individuals diagnosed with schizophrenia within multiplex families. Psychiatry Research, 2021, 303, 114038.	3.3	6
380	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	12.6	262
381	Reproducible, scalable, and shareable analysis pipelines with bioinformatics workflow managers. Nature Methods, 2021, 18, 1161-1168.	19.0	83
382	DarkQ: continuous genomic monitoring using message queues. F1000Research, 0, 10, 998.	1.6	1
383	RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus. Data in Brief, 2021, 38, 107392.	1.0	1
385	TITAN: A knowledge-based platform for Big Data workflow management. Knowledge-Based Systems, 2021, 232, 107489.	7.1	9
386	Remodeling the chromatin landscape in T lymphocytes by a division of labor among transcription factors. Immunological Reviews, 2021, 300, 167-180.	6.0	7
387	Internet of Things Architecture for High Throughput Biology. SSRN Electronic Journal, 0, , .	0.4	2
388	OUP accepted manuscript. Clinical Infectious Diseases, 2021, 73, S267-S274.	5.8	12
389	Frontoparietal Anatomical Connectivity Predicts Second Language Learning Success. Cerebral Cortex, 2022, 32, 2602-2610.	2.9	5
390	Efficient Scheduling of Scientific Workflow Actions in the Cloud Based on Required Capabilities. Communications in Computer and Information Science, 2021, , 32-55.	0.5	0
391	Bioinformatics workflows for clinical applications in precision oncology. Seminars in Cancer Biology, 2022, 84, 103-112.	9.6	8
392	Biomedical and Clinical Research Data Management. , 2021, , 532-543.		2
393	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	27.8	524
394	APE: A Command-Line Tool and API for Automated Workflow Composition. Lecture Notes in Computer Science, 2020, , 464-476.	1.3	8

ARTICLE IF CITATIONS # Numerical simulation, clustering, and prediction of multicomponent polymer precipitation. 396 2.3 7 Data-Centric Engineering, 2020, 1, . Butler enables rapid cloud-based analysis of thousands of human genomes. Nature Biotechnology, 17.5 2020, 38, 288-292. Can reproducibility be improved in clinical natural language processing? A study of 7 clinical NLP 398 4.4 17 suites. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 504-515. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. 14.5 136 Nucleic Acids Research, 2020, 48, W521-W528. NanoSPC: a scalable, portable, cloud compatible viral nanopore metagenomic data processing pipeline. 400 14.5 14 Nucleic Acids Research, 2020, 48, W366-W371. Geostatistical Analysis and Mitigation of the Atmospheric Phase Screens in Ku-Band Terrestrial Radar Interferometric Observations of an Alpine Glacier. IEEE Transactions on Geoscience and Remote 6.3 Sensing, 2020, 58, 7533-7556. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. Journal of Clinical 464 8.2 117 Investigation, 2020, 130, 6080-6092. Organizing and running bioinformatics hackathons within Africa: The H3ABioNet cloud computing 1.5 experience. AAS Open Research, 2018, 1, 9. 466 Cluster Flow: A user-friendly bioinformatics workflow tool. F1000Research, 2016, 5, 2824. 1.6 18 Cluster Flow: A user-friendly bioinformatics workflow tool. F1000Research, 2016, 5, 2824. 1.6 Swimming downstream: statistical analysis of differential transcript usage following Salmon 468 1.6 63 quantification. F1000Research, 2018, 7, 952. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. 1.6 F1000Research, 2020, 9, 63. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. 470 1.6 89 F1000Research, 2020, 9, 63. CGAT-core: a python framework for building scalable, reproducible computational biology 471 1.6 workflows. F1Ó00Research, 0, 8, 377. CGAT-core: a python framework for building scalable, reproducible computational biology 472 1.6 20 workflows. F1000Research, 0, 8, 377. ANIMA: Association network integration for multiscale analysis. Wellcome Open Research, 2018, 3, 27. 1.8 Variant calling on the GRCh38 assembly with the data from phase three of the 1000 Genomes Project. 474 1.8 26 Wellcome Open Research, 2019, 4, 50. Variant calling on the GRCh38 assembly with the data from phase three of the 1000 Genomes Project. 1.8 Wellcome Open Research, 2019, 4, 50.

\mathbf{c}	 0.11	DEDO	DT
			ועו
<u> </u>		ILLI C	

#	ARTICLE	IF	CITATIONS
476	Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Research, 2019, 4, 191.	1.8	103
477	Long-read RNA sequencing of human and animal filarial parasites improves gene models and discovers operons. PLoS Neglected Tropical Diseases, 2020, 14, e0008869.	3.0	11
478	qPortal: A platform for data-driven biomedical research. PLoS ONE, 2018, 13, e0191603.	2.5	18
480	genomepy: download genomes the easy way. Journal of Open Source Software, 2017, 2, 320.	4.6	10
481	ReferenceSeeker: rapid determination of appropriate reference genomes. Journal of Open Source Software, 2020, 5, 1994.	4.6	13
482	qMRLab: Quantitative MRI analysis, under one umbrella. Journal of Open Source Software, 2020, 5, 2343.	4.6	36
483	Snow avalanche detection and mapping in multitemporal and multiorbital radar images from TerraSAR-X and Sentinel-1. Natural Hazards and Earth System Sciences, 2020, 20, 1783-1803.	3.6	17
484	In-depth human plasma proteome analysis captures tissue proteins and transfer of protein variants across the placenta. ELife, 2019, 8, .	6.0	56
485	Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. ELife, 2019, 8, .	6.0	88
486	Co-expression analysis reveals interpretable gene modules controlled by trans-acting genetic variants. ELife, 2020, 9, .	6.0	24
487	Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ, 2017, 5, e3720.	2.0	187
488	<i>Staphylococcus aureus</i> viewed from the perspective of 40,000+ genomes. PeerJ, 2018, 6, e5261.	2.0	66
489	BioWorkbench: a high-performance framework for managing and analyzing bioinformatics experiments. PeerJ, 2018, 6, e5551.	2.0	11
490	Prioritizing bona fide bacterial small RNAs with machine learning classifiers. PeerJ, 2019, 7, e6304.	2.0	9
491	BioShake: a Haskell EDSL for bioinformatics workflows. PeerJ, 2019, 7, e7223.	2.0	5
492	CoproID predicts the source of coprolites and paleofeces using microbiome composition and host DNA content. PeerJ, 2020, 8, e9001.	2.0	32
493	Extreme Scale Survey Simulation with Python Workflows. , 2021, , .		0
494	Converting Biomedical Text Annotated Resources into FAIR Research Objects with an Open Science Platform. Applied Sciences (Switzerland), 2021, 11, 9648.	2.5	1

#	Article	IF	CITATIONS
496	An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens. Scientific Reports, 2021, 11, 19731.	3.3	27
498	Orchestrating and sharing large multimodal data for transparent and reproducible research. Nature Communications, 2021, 12, 5797.	12.8	10
500	Simplifying the development of portable, scalable, and reproducible workflows. ELife, 2021, 10, .	6.0	4
502	FA-nf: A Functional Annotation Pipeline for Proteins from Non-Model Organisms Implemented in Nextflow. Genes, 2021, 12, 1645.	2.4	2
503	Distributed workflows with Jupyter. Future Generation Computer Systems, 2022, 128, 282-298.	7.5	3
504	Characterization of primary models of human trophoblast. Development (Cambridge), 2021, 148, .	2.5	50
507	qc3C: Reference-free quality control for Hi-C sequencing data. PLoS Computational Biology, 2021, 17, e1008839.	3.2	5
508	Graph-Based Approaches Significantly Improve the Recovery of Antibiotic Resistance Genes From Complex Metagenomic Datasets. Frontiers in Microbiology, 2021, 12, 714836.	3.5	7
509	Repositioning of a novel GABA-B receptor agonist, AZD3355 (Lesogaberan), for the treatment of non-alcoholic steatohepatitis. Scientific Reports, 2021, 11, 20827.	3.3	7
510	Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius. Frontiers in Microbiology, 2021, 12, 753521.	3.5	20
512	META-pipe cloud setup and execution. F1000Research, 2017, 6, 2060.	1.6	3
517	META-pipe cloud setup and execution. F1000Research, 0, 6, 2060.	1.6	1
519	ANIMA: Association network integration for multiscale analysis. Wellcome Open Research, 2018, 3, 27.	1.8	5
536	META-pipe cloud setup and execution. F1000Research, 2017, 6, 2060.	1.6	3
546	Organizing and running bioinformatics hackathons within Africa: The H3ABioNet cloud computing experience. AAS Open Research, 2018, 1, 9.	1.5	11
559	VizSciFlow: A Visually Guided Scripting Framework for Supporting Complex Scientific Data Analysis. Proceedings of the ACM on Human-Computer Interaction, 2020, 4, 1-37.	3.3	6
563	Potential of I/O Aware Workflows in Climate and Weather. Supercomputing Frontiers and Innovations, 2020, 7, .	0.4	0
564	Building an Interactive Workbench Environment for Single Cell Genomics Applications. , 2020, , .		1

#	Article	IF	CITATIONS
565	Indispensability of Clinical Bioinformatics for Effective Implementation of Genomic Medicine in Pathology Laboratories. ACI Open, 2020, 04, e167-e172.	0.5	2
570	Computational Methods for Elucidating Gene Expression Regulation in Bacteria. Methods in Molecular Biology, 2021, 2190, 95-114.	0.9	0
571	Functional antibody and T cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study. Nature Cancer, 2021, 2, 1321-1337.	13.2	66
572	Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics, 2022, 17, 1195-1204.	2.7	19
573	<scp>NKG2A</scp> is a late immune checkpoint on <scp>CD8</scp> T cells and marks repeated stimulation and cell division. International Journal of Cancer, 2022, 150, 688-704.	5.1	22
574	SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
575	A repackaged CRISPR platform increases homology-directed repair for yeast engineering. Nature Chemical Biology, 2022, 18, 38-46.	8.0	15
576	Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biology, 2021, 22, 301.	8.8	85
577	ORPER: A Workflow for Constrained SSU rRNA Phylogenies. Genes, 2021, 12, 1741.	2.4	2
578	FASTAFS: file system virtualisation of random access compressed FASTA files. BMC Bioinformatics, 2021, 22, 535.	2.6	4
579	VirMutSig: Discovery and assignment of viral mutational signatures from sequencing data. STAR Protocols, 2021, 2, 100911.	1.2	3
583	Managing Failures in Task-Based Parallel Workflows in Distributed Computing Environments. Lecture Notes in Computer Science, 2020, , 411-425.	1.3	7
585	The Disruptive 4IR in the Life Sciences: Metabolomics. Lecture Notes in Electrical Engineering, 2020, , 227-256.	0.4	4
587	DEN-IM: dengue virus genotyping from amplicon and shotgun metagenomic sequencing. Microbial Genomics, 2020, 6, .	2.0	0
588	Development of Computational Pipeline Software for Genome/Exome Analysis on the K Computer. Supercomputing Frontiers and Innovations, 2020, 7, .	0.4	0
593	Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data. Nature Biomedical Engineering, 2022, 6, 515-526.	22.5	17
594	BioProv - A provenance library for bioinformatics workflows. Journal of Open Source Software, 2021, 6, 3622.	4.6	1
595	Design considerations for workflow management systems use in production genomics research and the clinic. Scientific Reports, 2021, 11, 21680.	3.3	7

#	Article	IF	CITATIONS
596	MSA: reproducible mutational signature attribution with confidence based on simulations. BMC Bioinformatics, 2021, 22, 540.	2.6	6
597	Comparing wholeâ€genome shotgun sequencing and DNA metabarcoding approaches for species identification and quantification of pollen species mixtures. Ecology and Evolution, 2021, 11, 16082-16098.	1.9	17
598	Integration of solutions and services for multi-omics data analysis towards personalized medicine. Biocybernetics and Biomedical Engineering, 2021, 41, 1646-1663.	5.9	7
599	High-throughput sequencing for species authentication and contamination detection of 63 cell lines. Scientific Reports, 2021, 11, 21657.	3.3	3
600	Smad4 controls signaling robustness and morphogenesis by differentially contributing to the Nodal and BMP pathways. Nature Communications, 2021, 12, 6374.	12.8	18
601	Fixel-Based Analysis and Free Water Corrected DTI Evaluation of HIV-Associated Neurocognitive Disorders. Frontiers in Neurology, 2021, 12, 725059.	2.4	7
602	Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Reports, 2021, 37, 109955.	6.4	89
603	Age-related Differences in the Nasal Mucosal Immune Response to SARS-CoV-2. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 206-222.	2.9	27
604	SLAW: A Scalable and Self-Optimizing Processing Workflow for Untargeted LC-MS. Analytical Chemistry, 2021, 93, 15024-15032.	6.5	21
605	MetaFlow mics: Scalable and Reproducible Nextflow Pipelines for the Analysis of Microbiome Marker Data. , 2020, , .		17
612	DATMA: Distributed AuTomatic Metagenomic Assembly and annotation framework. PeerJ, 2020, 8, e9762.	2.0	2
613	Unifying package managers, workflow engines, and containers: Computational reproducibility with BioNix. GigaScience, 2020, 9, .	6.4	7
619	Data analysis and modeling pipelines for controlled networked social science experiments. PLoS ONE, 2020, 15, e0242453.	2.5	2
620	Comprehensive Analysis of Large-Scale Transcriptomes from Multiple Cancer Types. Genes, 2021, 12, 1865.	2.4	3
621	Building up a clinical microbiota profiling: a quality framework proposal. Critical Reviews in Microbiology, 2022, 48, 356-375.	6.1	6
624	Exploring bacterial diversity via a curated and searchable snapshot of archived DNA sequences. PLoS Biology, 2021, 19, e3001421.	5.6	60
625	Guide tree optimization with genetic algorithm to improve multiple protein 3D-structure alignment. Bioinformatics, 2022, 38, 985-989.	4.1	6
628	Promotech: a general tool for bacterial promoter recognition. Genome Biology, 2021, 22, 318.	8.8	20

#	Article	IF	Citations
629	Long-term exposure to environmental diclofenac concentrations impairs growth and induces molecular changes in Lymnaea stagnalis freshwater snails. Chemosphere, 2022, 291, 133065.	8.2	10
630	Analysis of pir gene expression across the Plasmodium life cycle. Malaria Journal, 2021, 20, 445.	2.3	9
631	Automated Determination of Nuclear Magnetic Resonance Chemical Shift Perturbations in Ligand Screening Experiments: The PICASSO Web Server. Journal of Chemical Information and Modeling, 2021, ,	5.4	4
632	Computational cancer neoantigen prediction: current status and recent advances. Immuno-Oncology Technology, 2021, 12, 100052.	0.3	14
633	snpQT: flexible, reproducible, and comprehensive quality control and imputation of genomic data. F1000Research, 0, 10, 567.	1.6	1
635	MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nature Methods, 2022, 19, 311-315.	19.0	102
636	The haplotype-resolved reference genome of lemon (Citrus limon L. Burm f.). Tree Genetics and Genomes, 2021, 17, 1.	1.6	7
639	Pathologic and gene expression comparison of CT- screen detected and routinely detected stage I/0 lung adenocarcinoma in NCCN risk-matched cohorts Cancer Treatment and Research Communications, 2021, 29, 100486.	1.7	1
640	BAFFR Activates PI3K/AKT Signaling in Human Naive But Not in Switched Memory B Cells Through Direct Interactions with B Cell Antigen Receptors. SSRN Electronic Journal, 0, , .	0.4	0
642	A simple guide to <i>de novo</i> transcriptome assembly and annotation. Briefings in Bioinformatics, 2022, 23, .	6.5	42
645	Enabling Seamless Execution of Computational and Data Science Workflows on HPC and Cloud with the Popper Container-native Automation Engine. , 2020, , .		4
646	The Role of Containers in Reproducibility. , 2020, , .		4
650	A short plus long-amplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. PLoS ONE, 2022, 17, e0261014.	2.5	11
651	nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning. NAR Genomics and Bioinformatics, 2022, 4, Iqac007.	3.2	24
653	Improving bioinformatics software quality through incorporation of software engineering practices. PeerJ Computer Science, 2022, 8, e839.	4.5	6
654	SangeR: the high-throughput Sanger sequencing analysis pipeline. Bioinformatics Advances, 2022, 2, .	2.4	3
655	Rapid radiation in a highly diverse marine environment. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
656	MeRIPseqPipe: an integrated analysis pipeline for MeRIP-seq data based on Nextflow. Bioinformatics, 2022, 38, 2054-2056.	4.1	4

#	Article	IF	CITATIONS
658	CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. , 2022, 10, e003995.		16
659	Identification and functional characterization of transcriptional activators in human cells. Molecular Cell, 2022, 82, 677-695.e7.	9.7	64
660	Challenges in Bioinformatics Workflows for Processing Microbiome Omics Data at Scale. Frontiers in Bioinformatics, 2022, 1, .	2.1	6
661	Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein finds additional vaccine-induced epitopes beyond those for mild infection. ELife, 2022, 11, .	6.0	19
662	MODalyseR—a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data. Bioinformatics Advances, 2022, 2, .	2.4	1
663	Packaging research artefacts with RO-Crate. Data Science, 2022, 5, 97-138.	0.9	52
664	SCHOOL: Software for Clinical Health in Oncology for Omics Laboratories. Journal of Pathology Informatics, 2022, 13, 100163.	1.7	4
665	A Checklist for Reproducible Computational Analysis in Clinical Metabolomics Research. Metabolites, 2022, 12, 87.	2.9	12
668	ASPICov: An automated pipeline for identification of SARS-Cov2 nucleotidic variants. PLoS ONE, 2022, 17, e0262953.	2.5	6
669	What's new and what's next in diffusion MRI preprocessing. NeuroImage, 2022, 249, 118830.	4.2	43
670	riboviz 2: a flexible and robust ribosome profiling data analysis and visualization workflow. Bioinformatics, 2022, 38, 2358-2360.	4.1	3
672	A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution. Nature Communications, 2022, 13, 781.	12.8	19
673	Atrophic gastritis and gastric cancer tissue miRNome analysis reveal hsa-miR-129-1 and hsa-miR-196a as potential early diagnostic biomarkers. World Journal of Gastroenterology, 2022, 28, 653-663.	3.3	6
674	The COMBAT-TB Workbench: Making Powerful Mycobacterium tuberculosis Bioinformatics Accessible. MSphere, 2022, 7, e0099121.	2.9	4
675	TransPi—a comprehensive TRanscriptome ANalysiS PIpeline for <i>de novo</i> transcriptome assembly. Molecular Ecology Resources, 2022, 22, 2070-2086.	4.8	14
676	Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nature Biomedical Engineering, 2022, 6, 207-220.	22.5	16
677	A data management infrastructure for the integration of imaging and omics data in life sciences. BMC Bioinformatics, 2022, 23, 61.	2.6	18
678	Comprehensive variant calling from wholeâ€genome sequencing identifies a complex inversion that disrupts <scp><i>ZFPM2</i></scp> in familial congenital diaphragmatic hernia. Molecular Genetics & Genomic Medicine, 2022, 10, e1888.	1.2	6

#	Article	IF	CITATIONS
679	Ten simple rules for large-scale data processing. PLoS Computational Biology, 2022, 18, e1009757.	3.2	1
680	Side-by-Side Comparison of Post-Entry Quarantine and High Throughput Sequencing Methods for Virus and Viroid Diagnosis. Biology, 2022, 11, 263.	2.8	12
681	The Architecture of a Precision Oncology Platform. Advances in Experimental Medicine and Biology, 2022, 1361, 1-22.	1.6	1
682	Software Workflows and Infrastructures for Precision Oncology. Advances in Experimental Medicine and Biology, 2022, 1361, 23-35.	1.6	0
683	Decoding Human Genome Regulatory Features That Influence HIV-1 Proviral Expression and Fate Through an Integrated Genomics Approach. Bioinformatics and Biology Insights, 2022, 16, 117793222110723.	2.0	1
684	Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of <i>Caenorhabditis elegans</i> across the Hawaiian Islands. Molecular Ecology, 2022, 31, 2327-2347.	3.9	8
685	Biogeochemical Niches of Fe-Cycling Communities Influencing Heavy Metal Transport along the Rio Tinto, Spain. Applied and Environmental Microbiology, 2022, 88, AEM0229021.	3.1	6
686	PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus. Communications Biology, 2022, 5, 168.	4.4	11
687	Phylodynamic Inference of Bacterial Outbreak Parameters Using Nanopore Sequencing. Molecular Biology and Evolution, 2022, 39, .	8.9	9
688	TC-hunter: identification of the insertion site of a transgenic gene within the host genome. BMC Genomics, 2022, 23, 149.	2.8	0
690	EESSI: A crossâ€platform readyâ€ŧoâ€use optimised scientific software stack. Software - Practice and Experience, 0, , .	3.6	2
691	Geniac: Automatic Configuration GENerator and Installer for nextflow pipelines. Open Research Europe, 0, 1, 76.	2.0	0
692	Containers in Bioinformatics. Journal of Molecular Diagnostics, 2022, 24, 442-454.	2.8	7
693	SWAAT Bioinformatics Workflow for Protein Structure-Based Annotation of ADME Gene Variants. Journal of Personalized Medicine, 2022, 12, 263.	2.5	2
696	epiGBS2: Improvements and evaluation of highly multiplexed, epiGBSâ€based reduced representation bisulfite sequencing. Molecular Ecology Resources, 2022, 22, 2087-2104.	4.8	10
697	Transcriptome-wide analysis of glioma stem cell specific m6A modifications in long-non-coding RNAs. Scientific Reports, 2022, 12, 5431.	3.3	6
698	Clinical Metagenomic Sequencing for Species Identification and Antimicrobial Resistance Prediction in Orthopedic Device Infection. Journal of Clinical Microbiology, 2022, 60, e0215621.	3.9	18
699	A High-Quality Reference Genome Sequence and Genetic Transformation System of Aralia elata. Frontiers in Plant Science, 2022, 13, 822942.	3.6	4

#	Article	IF	CITATIONS
700	Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell RNA-seq data. Nature Methods, 2022, 19, 316-322.	19.0	31
701	IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms, 2022, 10, 700.	3.6	61
703	Shared signatures and divergence in skin microbiomes of children with atopic dermatitis and their caregivers. Journal of Allergy and Clinical Immunology, 2022, 150, 894-908.	2.9	14
704	GREEN-DB: a framework for the annotation and prioritization of non-coding regulatory variants from whole-genome sequencing data. Nucleic Acids Research, 2022, 50, 2522-2535.	14.5	13
705	Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting. PLoS Pathogens, 2022, 18, e1010420.	4.7	2
708	Machine Learning of All Mycobacterium tuberculosis H37Rv RNA-seq Data Reveals a Structured Interplay between Metabolism, Stress Response, and Infection. MSphere, 2022, 7, e0003322.	2.9	22
709	Age Estimate of GJB2-p.(Arg143Trp) Founder Variant in Hearing Impairment in Ghana, Suggests Multiple Independent Origins across Populations. Biology, 2022, 11, 476.	2.8	5
710	Gene Regulatory Networks of Epidermal and Neural Fate Choice in a Chordate. Molecular Biology and Evolution, 2022, 39, .	8.9	4
711	The ViReflow pipeline enables user friendly large scale viral consensus genome reconstruction. Scientific Reports, 2022, 12, 5077.	3.3	12
712	Enhanced protein isoform characterization through long-read proteogenomics. Genome Biology, 2022, 23, 69.	8.8	33
713	A Workflow Demonstrator for Processing Catalysis Research Data. Data Intelligence, 2022, 4, 455-470.	1.5	4
714	Taming DNA clustering in massive datasets with SLYMFAST. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2022, 22, 15-23.	0.9	1
718	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	6.8	11
719	Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathogens, 2022, 18, e1010399.	4.7	12
720	Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells. Nature Communications, 2022, 13, 1827.	12.8	25
723	â€~Candidatus ferrigenium straubiae' sp. nov., â€~Candidatus ferrigenium bremense' sp. nov., â€~Candida ferrigenium altingense' sp. nov., are autotrophic Fe(II)-oxidizing bacteria of the family Gallionellaceae. Systematic and Applied Microbiology, 2022, 45, 126306.	tus 2.8	13
724	A Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequencing data. ImmunoInformatics, 2022, 6, 100012.	2.2	4
726	A Performance Characterization of Scientific Machine Learning Workflows. , 2021, , .		1

ARTICLE IF CITATIONS # It's a Scheduling Affair: GROMACS in the Cloud with the KubeFlux Scheduler., 2021,,. 727 10 Intelligent Resource Provisioning for Scientific Workflows and HPC., 2021,,. nextNEOpi: a comprehensive pipeline for computational neoantigen prediction. Bioinformatics, 2022, 729 4.1 17 38, 1131-1132. Tarema: Adaptive Resource Allocation for Scalable Scientific Workflows in Heterogeneous Clusters., An Brief Examination of Case Studies in Reproducibility for Bioinformatics Training., 2021, , . 731 0 GIP: an open-source computational pipeline for mapping genomic instability from protists to cancer cells. Nucleic Acids Research, 2022, 50, e36-e36. 14.5 sRNARFTarget: a fast machine-learning-based approach for transcriptome-wide sRNA target prediction. 737 3.1 9 RNA Biology, 2022, 19, 44-54. Phage Genome Annotation: Where to Begin and End. Phage, 2021, 2, 183-193. 1.7 739 NGS read classification using AI. PLoS ONE, 2021, 16, e0261548. 2.5 0 nf-rnaSeqCount: A Nextflow pipeline for obtaining raw read counts from RNA-seq data. South African 740 0.2 Computer Journal, 2021, 33, Genome variant calling workflow implementation and deployment in HPC infrastructure., 2021,,. 741 2 Long-Term Effects of a Web-Based Low-FODMAP Diet Versus Probiotic Treatment for Irritable Bowel Syndrome, Including Shotgun Analyses of Microbiota: Randomized, Double-Crossover Clinical Trial. Journal of Medical Internet Research, 2021, 23, e30291. 742 4.3 EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell, 2021, 184, 744 28.9 72 6361-6377.e24. BusyBee Web: towards comprehensive and differential composition-based metagenomic binning. 745 14.5 Nucleic Acids Research, 2022, 50, W132-W137 BioUMLâ€"towards a universal research platform. Nucleic Acids Research, 2022, 50, W124-W131. 747 14.5 10 Transcriptome-wide identification of RNA-binding protein binding sites using seCLIP-seq. Nature 748 Protocols, 2022, 17, 1223-1265. Altered myelination in youth born with congenital heart disease. Human Brain Mapping, 2022, 43, 749 3.6 4 3545-3558. Galaxy workflows for fragment-based virtual screening: a case study on the SARS-CoV-2 main 6.1 protease. Journal of Cheminformatics, 2022, 14, 22.

#	Article	IF	CITATIONS
751	Analysis of human brain tissue derived from DBS surgery. Translational Neurodegeneration, 2022, 11, 22.	8.0	3
753	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	4.7	6
754	Validating the knowledge bank approach for personalized prediction of survival in acute myeloid leukemia: a reproducibility study. Human Genetics, 2022, 141, 1467-1480.	3.8	1
775	EpiDiverse Toolkit: a pipeline suite for the analysis of bisulfite sequencing data in ecological plant epigenetics. NAR Genomics and Bioinformatics, 2021, 3, lqab106.	3.2	7
776	A <i>de novo</i> Transcription-Dependent TAD Boundary Underpins Critical Multiway Interactions During Antibody Class Switch Recombination. SSRN Electronic Journal, 0, , .	0.4	0
777	Probiotic Mixture Containing Lactobacillus helveticus, Bifidobacterium longum and Lactiplantibacillus plantarum Affects Brain Responses Toward an Emotional Task in Healthy Subjects: A Randomized Clinical Trial. Frontiers in Nutrition, 2022, 9, 827182.	3.7	9
778	Drugsniffer: An Open Source Workflow for Virtually Screening Billions of Molecules for Binding Affinity to Protein Targets. Frontiers in Pharmacology, 2022, 13, 874746.	3.5	7
781	SvAnna: efficient and accurate pathogenicity prediction of coding and regulatory structural variants in long-read genome sequencing. Genome Medicine, 2022, 14, 44.	8.2	7
782	Sister chromatid–sensitive Hi-C to map the conformation of replicated genomes. Nature Protocols, 2022, 17, 1486-1517.	12.0	8
783	A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell, 2022, 185, 2354-2369.e17.	28.9	26
784	GEMmaker: process massive RNA-seq datasets on heterogeneous computational infrastructure. BMC Bioinformatics, 2022, 23, 156.	2.6	2
787	Evaluating the power and limitations of genome-wide association studies in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	17
788	Serial Analysis of the T-Cell Receptor β-Chain Repertoire in People Living With HIV Reveals Incomplete Recovery After Long-Term Antiretroviral Therapy. Frontiers in Immunology, 2022, 13, 879190.	4.8	5
789	White matter microstructural variability linked to differential attentional skills and impulsive behavior in a pediatric population. Cerebral Cortex, 2023, 33, 1895-1912.	2.9	5
790	Functional, structural, and molecular characterizations of the leukemogenic driver MEF2D-HNRNPUL1 fusion. Blood, 2022, 140, 1390-1407.	1.4	10
792	Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nature Cell Biology, 2022, 24, 633-644.	10.3	35
793	Machine-learning from Pseudomonas putida KT2440 transcriptomes reveals its transcriptional regulatory network. Metabolic Engineering, 2022, 72, 297-310.	7.0	28
794	Advancing genomic epidemiology by addressing the bioinformatics bottleneck: Challenges, design principles, and a Swiss example. Epidemics, 2022, , 100576.	3.0	3

#	Article	IF	Citations
795	Accuracy of multiple sequence alignment methods in the reconstruction of transposable element families. NAR Genomics and Bioinformatics, 2022, 4, lqac040.	3.2	6
796	Monoallelic and biallelic variants in LEF1 are associated with a new syndrome combining ectodermal dysplasia and limb malformations caused by altered WNT signaling. Genetics in Medicine, 2022, 24, 1708-1721.	2.4	4
797	A male pheromone that improves the quality of the oogenic germline. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2015576119.	7.1	15
800	Automatic Mapping of Small Lunar Impact Craters Using LROâ€NAC Images. Earth and Space Science, 2022, 9, .	2.6	9
803	High-Resolution Single-Cell Atlas Reveals Diversity and Plasticity of Tissue-Resident Neutrophils in Non-Small Cell Lung Cancer. SSRN Electronic Journal, 0, , .	0.4	2
807	Characterising genome architectures using genome decomposition analysis. BMC Genomics, 2022, 23, .	2.8	2
809	Controlled X hromosome dynamics defines meiotic potential of female mouse <i>in vitro</i> germ cells. EMBO Journal, 2022, 41, .	7.8	13
812	A guide to avian museomics: Insights gained from resequencing hundreds of avian study skins. Molecular Ecology Resources, 2022, 22, 2672-2684.	4.8	19
813	Bioinformatics Methods for ChIP-seq Histone Analysis. Methods in Molecular Biology, 2022, , 267-293.	0.9	0
816	NETISCE: a network-based tool for cell fate reprogramming. Npj Systems Biology and Applications, 2022, 8, .	3.0	7
817	Multiplexed Assembly and Annotation of Synthetic Biology Constructs Using Long-Read Nanopore Sequencing. ACS Synthetic Biology, 2022, 11, 2238-2246.	3.8	10
819	Prediction of Antibiotic Susceptibility Profiles of Vibrio cholerae Isolates From Whole Genome Illumina and Nanopore Sequencing Data: CholerAegon. Frontiers in Microbiology, 0, 13, .	3.5	0
820	SeqScreen: accurate and sensitive functional screening of pathogenic sequences via ensemble learning. Genome Biology, 2022, 23, .	8.8	13
821	Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing. Scientific Data, 2022, 9, .	5.3	4
823	Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Scientific Data, 2022, 9, .	5.3	13
824	Automated Library Construction and Analysis for High-throughput Nanopore Sequencing of SARS-CoV-2. journal of applied laboratory medicine, The, 0, , .	1.3	0
825	A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites, 2022, 12, 584.	2.9	10
827	Prediction of Treatment Response in Triple Negative Breast Cancer From Whole Slide Images. Frontiers in Signal Processing, 0, 2, .	1.7	2

#	Article	IF	CITATIONS
828	Proteotranscriptomics – A facilitator in omics research. Computational and Structural Biotechnology Journal, 2022, 20, 3667-3675.	4.1	4
829	One-Year Monitoring SARS-CoV-2 RNA Surface Contamination in Hospitals Reveals No Correlation with Organic Material and Negative Pressure as a Limiting Factor for Contamination. SSRN Electronic Journal, 0, , .	0.4	0
831	First Plant Cell Atlas symposium report. Plant Direct, 2022, 6, .	1.9	1
832	Emu: species-level microbial community profiling of full-length 16S rRNA Oxford Nanopore sequencing data. Nature Methods, 2022, 19, 845-853.	19.0	69
833	Gut Microbiome Changes Occurring with Norovirus Infection and Recovery in Infants Enrolled in a Longitudinal Birth Cohort in Leon, Nicaragua. Viruses, 2022, 14, 1395.	3.3	3
834	BAFFR activates PI3K/AKT signaling in human naive but not in switched memory B cells through direct interactions with B cell antigen receptors. Cell Reports, 2022, 39, 111019.	6.4	4
835	Guidelines for reporting Whole Genome Sequencingâ€based typing data through the EFSA One Health WGS System. EFSA Supporting Publications, 2022, 19, .	0.7	5
836	Minos: variant adjudication and joint genotyping of cohorts of bacterial genomes. Genome Biology, 2022, 23, .	8.8	11
839	HiC-TE: a computational pipeline for Hi-C data analysis to study the role of repeat family interactions in the genome 3D organization. Bioinformatics, 2022, 38, 4030-4032.	4.1	1
840	Sharing Vitamin B12 between Bacteria and Microalgae Does Not Systematically Occur: Case Study of the Haptophyte Tisochrysis lutea. Microorganisms, 2022, 10, 1337.	3.6	5
841	Experience Migrating a Pipeline for the C-MÄ \in IKI gateway from Tapis v2 to Tapis v3. , 2022, , .		0
842	Trained Immunity in Primary Sjögren's Syndrome: Linking Type I Interferons to a Pro-Atherogenic Phenotype. Frontiers in Immunology, 0, 13, .	4.8	3
845	Evidence for close molecular proximity between reverting and undifferentiated cells. BMC Biology, 2022, 20, .	3.8	3
846	Seasonal Dynamics in Carbon Cycling of Marine Bacterioplankton Are Lifestyle Dependent. Frontiers in Microbiology, 0, 13, .	3.5	7
847	Advances and Trends in Omics Technology Development. Frontiers in Medicine, 0, 9, .	2.6	69
848	Dissecting the treatment-naive ecosystem of human melanoma brain metastasis. Cell, 2022, 185, 2591-2608.e30.	28.9	62
849	Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Briefings in Bioinformatics, 2022, 23, .	6.5	81
851	Genomic surveillance of Rift Valley fever virus: from sequencing to lineage assignment. BMC Genomics, 2022, 23, .	2.8	8

#	Article	IF	CITATIONS
853	Approaches Taken to Streamline and Consolidate Large Dataset Processing Techniques, with a Focus on Ptychography. Microscopy and Microanalysis, 2022, 28, 2994-2996.	0.4	0
855	Systematic Analysis of Long Non-Coding RNA Genes in Nonalcoholic Fatty Liver Disease. Non-coding RNA, 2022, 8, 56.	2.6	7
857	KSTAR: An algorithm to predict patient-specific kinase activities from phosphoproteomic data. Nature Communications, 2022, 13, .	12.8	6
858	Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks. Nature Communications, 2022, 13, .	12.8	20
859	Brain transcriptomic profiling reveals common alterations across neurodegenerative and psychiatric disorders. Computational and Structural Biotechnology Journal, 2022, 20, 4549-4561.	4.1	7
861	Allergic sensitization impairs lung resident memory CD8 T-cell response and virus clearance. Journal of Allergy and Clinical Immunology, 2022, 150, 1415-1426.e9.	2.9	2
862	ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature, 2022, 607, 784-789.	27.8	92
868	cfDNA methylome profiling for detection and subtyping of small cell lung cancers. Nature Cancer, 2022, 3, 1260-1270.	13.2	47
869	Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients. Genome Medicine, 2022, 14, .	8.2	12
870	A Chromosome-Scale Genome Assembly of a <i>Helicoverpa zea</i> Strain Resistant to <i>Bacillus thuringiensis</i> Cry1Ac Insecticidal Protein. Genome Biology and Evolution, 2023, 15, .	2.5	4
872	The structural connectivity of the human angular gyrus as revealed by microdissection and diffusion tractography. Brain Structure and Function, 2023, 228, 103-120.	2.3	11
873	Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics, 2022, 38, 4613-4621.	4.1	37
874	A Multi-omics Data Analysis Workflow Packaged as a FAIR Digital Object. Research Ideas and Outcomes, 0, 8, .	1.0	0
877	C. elegans toxicant responses vary among genetically diverse individuals. Toxicology, 2022, 479, 153292.	4.2	10
878	Hmga2 protein loss alters nuclear envelope and 3D chromatin structure. BMC Biology, 2022, 20, .	3.8	4
879	Sapporo: A workflow execution service that encourages the reuse of workflows in various languages in bioinformatics. F1000Research, 0, 11, 889.	1.6	7
880	Exploring breast and prostate cancer RNA-seq derived radiosensitivity with the Genomic Adjusted Radiation Dose (GARD) model. Clinical and Translational Radiation Oncology, 2022, 36, 127-131.	1.7	2
881	MLDev: Data Science Experiment Automation andÂReproducibility Software. Communications in Computer and Information Science, 2022, , 3-18.	0.5	2

#	Article	IF	CITATIONS
882	A taxonomy of tools and approaches for distributed genomic analyses. Informatics in Medicine Unlocked, 2022, 32, 101024.	3.4	0
883	Design, Labeling, and Application of Probes for RNA smFISH. Methods in Molecular Biology, 2022, , 173-183.	0.9	2
885	NanoRTax, a real-time pipeline for taxonomic and diversity analysis of nanopore 16S rRNA amplicon sequencing data. Computational and Structural Biotechnology Journal, 2022, 20, 5350-5354.	4.1	1
886	KadiStudio: FAIR Modelling of Scientific Research Processes. Data Science Journal, 2022, 21, .	1.3	5
887	MethylScore, a pipeline for accurate and context-aware identification of differentially methylated regions from population-scale plant whole-genome bisulfite sequencing data. Quantitative Plant Biology, 2022, 3, .	2.0	10
900	Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biology, 2022, 23, .	8.8	17
901	Reconstructing the course of the COVID-19 epidemic over 2020 for US states and counties: Results of a Bayesian evidence synthesis model. PLoS Computational Biology, 2022, 18, e1010465.	3.2	21
903	RNA helicase-dependent gene looping impacts messenger RNA processing. Nucleic Acids Research, 2022, 50, 9226-9246.	14.5	10
906	MetaPhage: an Automated Pipeline for Analyzing, Annotating, and Classifying Bacteriophages in Metagenomics Sequencing Data. MSystems, 2022, 7, .	3.8	15
907	TMBur: a distributable tumor mutation burden approach for whole genome sequencing. BMC Medical Genomics, 2022, 15, .	1.5	3
909	Impaired immune response drives age-dependent severity of COVID-19. Journal of Experimental Medicine, 2022, 219, .	8.5	26
910	Rapid evolution of SARS-CoV-2 in domestic cats. Virus Evolution, 2022, 8, .	4.9	4
911	Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science, 2022, 377, .	12.6	43
912	Genome Sequencing of Methicillin-Resistant and Methicillin-Susceptible <i>Mammaliicoccus sciuri</i> from Diseased Animals. Microbiology Resource Announcements, 0, , .	0.6	0
914	DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography. , 0, 1, .		3
915	DNA replication timing directly regulates the frequency of oncogenic chromosomal translocations. Science, 2022, 377, .	12.6	15
917	CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature, 2022, 609, 829-834.	27.8	22
918	Highly significant improvement of protein sequence alignments with AlphaFold2. Bioinformatics, 2022, 38, 5007-5011.	4.1	8

#	Article	IF	CITATIONS
919	Cilia-related gene signature in the nasal mucosa correlates with disease severity and outcomes in critical respiratory syncytial virus bronchiolitis. Frontiers in Immunology, 0, 13, .	4.8	2
920	Ionizing Radiation Drives Key Regulators of Antigen Presentation and a Global Expansion of the Immunopeptidome. Molecular and Cellular Proteomics, 2022, 21, 100410.	3.8	7
922	scATACpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell ATAC-seq data. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
923	IoT cloud laboratory: Internet of Things architecture for cellular biology. Internet of Things (Netherlands), 2022, 20, 100618.	7.7	15
925	WMSA: a novel method for multiple sequence alignment of DNA sequences. Bioinformatics, 2022, 38, 5019-5025.	4.1	9
926	Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing. Nature Biotechnology, 2023, 41, 204-211.	17.5	17
928	H3K18 lactylation marks tissue-specific active enhancers. Genome Biology, 2022, 23, .	8.8	25
933	Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discover Oncology, 2022, 13, .	2.1	2
934	Evidence for the heterologous benefits of prior BCG vaccination on COVISHIELDâ,,¢ vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Frontiers in Immunology, 0, 13, .	4.8	14
935	Open and reproducible neuroimaging: From study inception to publication. NeuroImage, 2022, 263, 119623.	4.2	33
936	A Consolidated View onÂSpecification Languages forÂData Analysis Workflows. Lecture Notes in Computer Science, 2022, , 201-215.	1.3	3
937	Genomics technologies and bioinformatics in allergy and immunology. , 2022, , 221-260.		0
939	IAnimal: a cross-species omics knowledgebase for animals. Nucleic Acids Research, 2023, 51, D1312-D1324.	14.5	6
940	Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy. ELife, 0, 11,	6.0	17
941	Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME Communications, 2022, 2, .	4.2	5
942	INSERT-seq enables high-resolution mapping of genomically integrated DNA using Nanopore sequencing. Genome Biology, 2022, 23, .	8.8	7
943	Ten simple rules for a successful international consortium in big data omics. PLoS Computational Biology, 2022, 18, e1010546.	3.2	1
946	ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq. Genome Biology, 2022, 23, .	8.8	5

			-
#	ARTICLE	IF.	CITATIONS
953	Phylodynamic signatures in the emergence of community-associated MRSA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
954	Geometric processing of TGO CaSSIS observations. Planetary and Space Science, 2022, 223, 105581.	1.7	0
955	Selective advantage of epigenetically disrupted cancer cells via phenotypic inertia. Cancer Cell, 2023, 41, 70-87.e14.	16.8	18
956	Reshi: Recommending Resources for Scientific Workflow Tasks on Heterogeneous Infrastructures. , 2022, , .		8
958	Extensive recombination-driven coronavirus diversification expands the pool of potential pandemic pathogens. Genome Biology and Evolution, 0, , .	2.5	13
960	Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nature Microbiology, 2022, 7, 2011-2024.	13.3	99
961	The novel oligopeptide utilizing species Anaeropeptidivorans aminofermentans M3/9T, its role in anaerobic digestion and occurrence as deduced from large-scale fragment recruitment analyses. Frontiers in Microbiology, 0, 13, .	3.5	0
965	MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Research, 2023, 51, D744-D752.	14.5	23
966	Genomic Diversity of Campylobacter lari Group Isolates from Europe and Australia in a One Health Context. Applied and Environmental Microbiology, 2022, 88, .	3.1	6
968	High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell, 2022, 40, 1503-1520.e8.	16.8	83
971	H3AGWAS: a portable workflow for genome wide association studies. BMC Bioinformatics, 2022, 23, .	2.6	6
974	Analysis and Interpretation of metagenomics data: an approach. Biological Procedures Online, 2022, 24, .	2.9	16
975	A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome. Nature Communications, 2022, 13, .	12.8	8
976	annotate_my_genomes: an easy-to-use pipeline to improve genome annotation and uncover neglected genes by hybrid RNA sequencing. GigaScience, 2022, 11, .	6.4	1
977	What the Phage: a scalable workflow for the identification and analysis of phage sequences. GigaScience, 2022, 11, .	6.4	12
978	QuasiFlow: a Nextflow pipeline for analysis of NGS-based HIV-1 drug resistance data. Bioinformatics Advances, 2022, 2, .	2.4	0
979	Running Ensemble Workflows at Extreme Scale: Lessons Learned and Path Forward. , 2022, , .		1
980	The BioExcel methodology for developing dynamic, scalable, reliable and portable computational biomolecular workflows. , 2022, , .		0
#	Article	IF	CITATIONS
------	---	------	-----------
981	hgtseq: A Standard Pipeline to Study Horizontal Gene Transfer. International Journal of Molecular Sciences, 2022, 23, 14512.	4.1	1
982	MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biology, 2022, 23, .	8.8	4
983	ConsensusPrime—A Bioinformatic Pipeline for Ideal Consensus Primer Design. BioMedInformatics, 2022, 2, 637-642.	2.0	3
984	Functional Diversification of Oyster Big Defensins Generates Antimicrobial Specificity and Synergy against Members of the Microbiota. Marine Drugs, 2022, 20, 745.	4.6	5
985	ALPPACA - A tooL for Prokaryotic Phylogeny And Clustering Analysis. Journal of Open Source Software, 2022, 7, 4677.	4.6	4
986	From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life, 2022, 12, 1939.	2.4	1
987	TractoInferno - A large-scale, open-source, multi-site database for machine learning dMRI tractography. Scientific Data, 2022, 9, .	5.3	11
988	An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. American Journal of Human Genetics, 2023, 110, 105-119.	6.2	52
989	Integrative transcriptomic analysis of the amyotrophic lateral sclerosis spinal cord implicates glial activation and suggests new risk genes. Nature Neuroscience, 2023, 26, 150-162.	14.8	37
990	Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice. Genes, 2022, 13, 2280.	2.4	9
991	STRling: a k-mer counting approach that detects short tandem repeat expansions at known and novel loci. Genome Biology, 2022, 23, .	8.8	17
993	Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nature Communications, 2022, 13, .	12.8	13
994	SARS-CoV-2: next generation sequencing and analysis. , 2022, , .		0
996	The rate of spontaneous mutations in yeast deficient for MutSÎ ² function. G3: Genes, Genomes, Genetics, 2023, 13, .	1.8	1
998	IABS/DCVMN webinar on next generation sequencing. Biologicals, 2023, 81, 101662.	1.4	2
999	Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics, 2023, 39, .	4.1	53
1001	RatesTools: a Nextflow pipeline for detecting <i>de novo</i> germline mutations in pedigree sequence data. Bioinformatics, 2023, 39, .	4.1	2
1002	Approach to Cohort-Wide Re-Analysis of Exome Data in 1000 Individuals with Neurodevelopmental Disorders. Genes, 2023, 14, 30.	2.4	2

ARTICLE IF CITATIONS Aging is associated with a systemic length-associated transcriptome imbalance. Nature Aging, 2022, 2, 1003 11.6 28 1191-1206. Ten simple rules and a template for creating workflows-as-applications. PLoS Computational Biology, 1004 3.2 2022, 18, e1010705. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory 1005 3.8 6 and environmental factors. BMC Biology, 2022, 20, . ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility 1006 andAthe polycomb repressive complex. PLoS Biology, 2022, 20, e3000221. Co-expression Gene Networks and Machine-learning Algorithms Unveil a Core Genetic Toolkit for Reproductive Division of Labour in Rudimentary Insect Societies. Genome Biology and Evolution, 2023, 1007 2.5 4 15, . Genotyping of Transposable Element Insertions Segregating in Human Populations Using Short-Read Realignments. Methods in Molecular Biology, 2023, , 63-83. 1008 Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers. 1009 8.2 30 Nature Structural and Molecular Biology, 2023, 30, 38-51. Interactive, Cloud-Native Workflows onÂHPC Using KNoC. Lecture Notes in Computer Science, 2022, , 1010 1.3 221-232. Ten simple rules for using public biological data for your research. PLoS Computational Biology, 2023, 1011 3.2 3 19, e1010749. Nextflow in Bioinformatics: Executors Performance Comparison Using Genomics Data. Future Generation Computer Systems, 2023, 142, 328-339. Perturbation of placental protein glycosylation by endoplasmic reticulum stress promotes 1013 4 4.1 maladaptation of maternal hepatic glucose metabolism. IScience, 2023, 26, 105911. The landscape of expression and alternative splicing variation across human traits. Cell Genomics, 6.5 2023, 3, 100244. Quality Control for the Target Decoy Approach for Peptide Identification. Journal of Proteome 1015 3.7 4 Research, 2023, 22, 350-358. A network-guided protocol to discover susceptibility genes in genome-wide association studies using stability selection. STAR Protocols, 2023, 4, 101998. 1.2 LMAS: evaluating metagenomic short <i>de novo</i> assembly methods through defined communities. 1019 6.4 3 GigaScience, 2022, 12, . Leveraging Reinforcement Learning for Task Resource Allocation in Scientific Workflows., 2022,,. Performance of methods for SARS-CoV-2 variant detection and abundance estimation within mixed 1021 2.0 7 population samples. PeerJ, 0, 11, e14596. nf-core/circrna: a portable workflow for the quantification, miRNA target prediction and differential expression analysis of circular RNAs. BMC Bioinformatics, 2023, 24, .

#	Article	IF	CITATIONS
1026	PlantTribes2: Tools for comparative gene family analysis in plant genomics. Frontiers in Plant Science, 0, 13, .	3.6	5
1027	A Robust Methodology for Assessing Homoeolog-Specific Expression. Methods in Molecular Biology, 2023, , 251-258.	0.9	0
1028	Nanopore Direct RNA Sequencing Data Processing and Analysis Using MasterOfPores. Methods in Molecular Biology, 2023, , 185-205.	0.9	6
1029	Design and implementation of a hybrid cloud system for large-scale human genomic research. Human Genome Variation, 2023, 10, .	0.7	2
1030	Towards Advanced Monitoring for Scientific Workflows. , 2022, , .		3
1031	Workflow sharing with automated metadata validation and test execution to improve the reusability of published workflows. GigaScience, 2022, 12, .	6.4	2
1036	The little skate genome and the evolutionary emergence of wing-like fins. Nature, 2023, 616, 495-503.	27.8	14
1037	Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience, 2023, 517, 70-83.	2.3	1
1038	On the building of efficient self-adaptable health data science services by using dynamic patterns. Future Generation Computer Systems, 2023, 145, 478-495.	7.5	2
1039	Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nature Communications, 2023, 14, .	12.8	10
1042	Automatic, Efficient and Scalable Provenance Registration for FAIR HPC Workflows. , 2022, , .		1
1043	A molecular phenotypic map of malignant pleural mesothelioma. GigaScience, 2022, 12, .	6.4	4
1044	A de novo transcription-dependent TAD boundary underpins critical multiway interactions during antibody class switch recombination. Molecular Cell, 2023, 83, 681-697.e7.	9.7	3
1045	Cytoprotective Effects of Human Platelet Lysate during the Xeno-Free Culture of Human Donor Corneas. International Journal of Molecular Sciences, 2023, 24, 2882.	4.1	2
1046	Effectiveness of an Individualized Exergame-Based Motor-Cognitive Training Concept Targeted to Improve Cognitive Functioning in Older Adults With Mild Neurocognitive Disorder: Study Protocol for a Randomized Controlled Trial. JMIR Research Protocols, 0, 12, e41173.	1.0	2
1047	Multiscale scientific workflows on high-performance hybrid cloud. , 2022, , .		0
1050	Macaw: The Machine Learning Magnetometer Calibration Workflow. , 2022, , .		0
1051	13. Creating a good learning and sharing environment for bioinformatics. , 2022, , .		0

ARTICLE IF CITATIONS Framing Apache Spark in life sciences. Heliyon, 2023, 9, e13368. 3.2 1 1052 549. Bioinformatics workflow for the detection of eQTL in the cattle genome using Nextflow DSL2., 1053 2022,,. Differences in Immune Responses in Individuals of Indian and European Origin: Relevance for the 1055 3.0 2 COVID-19 Pandemic. Microbiology Spectrum, 2023, 11, . Chromosomeâ€level genome assembly of a triploid poplar <i>Populus alba</i> â€[~] <i>Berolinensis</i> â€[™]. 1056 4.8 Molecular Ecology Resources, O, , . polishCLR: A Nextflow Workflow for Polishing PacBio CLR Genome Assemblies. Genome Biology and 1058 2.5 2 Evolution, 2023, 15, . Sputum bacterial load and bacterial composition correlate with lung function and are altered by long-term azithromycin treatment in children with HIV-associated chronic lung disease. Microbiome, 11.1 2023, 11, . One-year monitoring SARS-CoV-2 RNA surface contamination in hospitals reveals no correlation with 1061 3.2 0 organic material and negative pressure as a limiting factor for contamination. Heliyon, 2023, 9, e13875. MetaGenePipe: An Automated, Portable Pipeline for Contig-based Functional and Taxonomic Analysis. 1062 4.6 Journal of Open Source Software, 2023, 8, 4851. Antagonism of ALAS1 by the Measles Virus V protein contributes to degradation of the mitochondrial 1063 4.7 4 network and promotes interferon response. PLoS Pathogens, 2023, 19, e1011170. Social complexity, life-history and lineage influence the molecular basis of castes in vespid wasps. 12.8 Nature Communications, 2023, 14, . Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection 1069 3 11.9 reprograms alveolar macrophages. Science Immunology, 2023, 8, . The Planemo toolkit for developing, deploying, and executing scientific data analyses in Galaxy and beyond. Genome Research, 2023, 33, 261-268. 5.5 Using Nanocompore to Identify RNA Modifications from Direct RNA Nanopore Sequencing Data. 1071 2.9 1 Current Protocols, 2023, 3, . Assembling the perfect bacterial genome using Oxford Nanopore and Illumina sequencing. PLoS Computational Biology, 2023, 19, e1010905. 3.2 44 1074 A gene regulatory network for neural induction. ELife, 0, 12, . 9 6.0 Cladribine treatment specifically affects peripheral blood memory B cell clones and clonal expansion 1076 4.8 in multiple sclerosis patients. Frontiers in Immunology, 0, 14, . Developing and reusing bioinformatics data analysis pipelines using scientific workflow systems. 1077 4.1 3 Computational and Structural Biotechnology Journal, 2023, 21, 2075-2085. LYN kinase programs stromal fibroblasts to facilitate leukemic survival via regulation of c-JUN and 12.8 THBS1. Nature Communications, 2023, 14, .

#	Article	IF	CITATIONS
1082	Integrated <i>de novo</i> gene prediction and peptide assembly of metagenomic sequencing data. NAR Genomics and Bioinformatics, 2023, 5, .	3.2	0
1084	Estrogen receptor alpha deficiency in cardiomyocytes reprograms the heart-derived extracellular vesicle proteome and induces obesity in female mice. , 2023, 2, 268-289.		1
1085	Multiomic analysis of malignant pleural mesothelioma identifies molecular axes and specialized tumor profiles driving intertumor heterogeneity. Nature Genetics, 2023, 55, 607-618.	21.4	18
1086	Adaptation Strategies to High Hydrostatic Pressures in Pseudothermotoga species Revealed by Transcriptional Analyses. Microorganisms, 2023, 11, 773.	3.6	1
1088	Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes and Development, 2023, 37, 218-242.	5.9	13
1089	Predicting prices of Airbnb listings via Graph Neural Networks and Document Embeddings: The case of the island of Santorini. Procedia Computer Science, 2023, 219, 705-712.	2.0	0
1091	Strong Positive Selection in <i>Aedes aegypti</i> and the Rapid Evolution of Insecticide Resistance. Molecular Biology and Evolution, 2023, 40, .	8.9	3
1092	nf-core/isoseq: simple gene and isoform annotation with PacBio Iso-Seq long-read sequencing. Bioinformatics, 2023, 39, .	4.1	2
1095	DNA methyltransferase inhibition induces dynamic gene expression changes in lung CD4+ T cells of neonatal mice with E. coli pneumonia. Scientific Reports, 2023, 13, .	3.3	0
1096	ElasticBLAST: accelerating sequence search via cloud computing. BMC Bioinformatics, 2023, 24, .	2.6	14
1097	Rhometa: Population recombination rate estimation from metagenomic read datasets. PLoS Genetics, 2023, 19, e1010683.	3.5	2
1099	Transformation of primary murine peritoneal mast cells by constitutive KIT activation is accompanied by loss of Cdkn2a/Arf expression. Frontiers in Immunology, 0, 14, .	4.8	0
1100	Evaluation of Mycobacterium tuberculosis enrichment in metagenomic samples using ONT adaptive sequencing and amplicon sequencing for identification and variant calling. Scientific Reports, 2023, 13, .	3.3	5
1101	ViroProfiler: a containerized bioinformatics pipeline for viral metagenomic data analysis. Gut Microbes, 2023, 15, .	9.8	10
1102	Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland. Frontiers of Medicine, 2023, 17, 758-767.	3.4	22
1105	transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation. BMC Bioinformatics, 2023, 24, .	2.6	3
1106	A computationally-enhanced hiCLIP atlas reveals Staufen1-RNA binding features and links 3′ UTR structure to RNA metabolism. Nucleic Acids Research, 2023, 51, 3573-3589.	14.5	2
1107	The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey—I. Survey design and processing pipeline. Publications of the Astronomical Society of Australia, 2023, 40, .	3.4	4

#	Article	IF	CITATIONS
1108	Reconstitution and Mutagenesis of Avian Infectious Laryngotracheitis Virus from Cosmid and Yeast Centromeric Plasmid Clones. Journal of Virology, 2023, 97, .	3.4	2
1109	Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. Cell Genomics, 2023, 3, 100291.	6.5	20
1112	The GEN-ERA toolbox: unified and reproducible workflows for research in microbial genomics. GigaScience, 2022, 12, .	6.4	3
1113	The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey—II. Survey status, pulsar census, and first pulsar discoveries. Publications of the Astronomical Society of Australia, 2023, 40, .	3.4	2
1114	Genomic–transcriptomic evolution in lung cancer and metastasis. Nature, 2023, 616, 543-552.	27.8	44
1115	HIFâ€1α targeted deletion in myeloid cells decreases MDSC accumulation and alters microbiome in neonatal mice. European Journal of Immunology, 2023, 53, .	2.9	1
1119	Fungal Diversity and Dynamics during Long-Term Immersion of Conventional and Biodegradable Plastics in the Marine Environment. Diversity, 2023, 15, 579.	1.7	7
1120	Provenance-based Workflow Diagnostics Using Program Specification. , 2022, , .		Ο
1121	Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Science Alliance, 2023, 6, e202302069.	2.8	4
1122	Evaluating microbial contaminations of alternative heating oils. Engineering in Life Sciences, 0, , .	3.6	Ο
1123	Three-dimensional genome rewiring in loci with human accelerated regions. Science, 2023, 380, .	12.6	16
1125	High-throughput methods for the analysis of transcription factors and chromatin modifications: Low input, single cell and spatial genomic technologies. Blood Cells, Molecules, and Diseases, 2023, 101, 102745.	1.4	5
1126	The genome sequence of the Autumn Spider, Metellina segmentata (Clerck, 1757). Wellcome Open Research, 0, 8, 221.	1.8	1
1127	Environmental stress during larval development induces DNA methylation shifts in the migratory painted lady butterfly (<i>Vanessa cardui</i>). Molecular Ecology, 2023, 32, 3513-3523.	3.9	1
1128	HostSeq: a Canadian whole genome sequencing and clinical data resource. BMC Genomic Data, 2023, 24, .	1.7	2
1129	Discovery of dysregulated circular RNAs in whole blood transcriptomes from cystic fibrosis patients – implication of a role for cellular senescence in cystic fibrosis. Journal of Cystic Fibrosis, 2023, , .	0.7	0
1130	Natural products from reconstructed bacterial genomes of the Middle and Upper Paleolithic. Science, 2023, 380, 619-624.	12.6	15
1132	Bioinformatics workflow management systems. , 2023, , 247-265.		0

\sim			<u> </u>	
C1	TAT	ION.	Ked	ORT

#	Article	IF	CITATIONS
1133	A workflow reproducibility scale for automatic validation of biological interpretation results. GigaScience, 2022, 12, .	6.4	2
1134	The Swiss Pathogen Surveillance Platform – towards a nation-wide One Health data exchange platform for bacterial, viral and fungal genomics and associated metadata. Microbial Genomics, 2023, 9, .	2.0	4
1135	A comparison of altered white matter microstructure in youth born with congenital heart disease or born preterm. Frontiers in Neurology, 0, 14, .	2.4	1
1136	The genome sequence of a cockchafer, Melolontha melolontha (Linnaeus, 1758). Wellcome Open Research, 0, 8, 222.	1.8	1
1137	Structure learning for gene regulatory networks. PLoS Computational Biology, 2023, 19, e1011118.	3.2	0
1138	The genome sequence of the Large Scabious Mining Bee, Andrena hattorfiana (Fabricius, 1775). Wellcome Open Research, 0, 8, 224.	1.8	0
1139	AlphaFold-based protein analysis pipeline. , 2022, , .		0
1140	A bioinformatics pipeline for a tick pathogen surveillance multiplex amplicon sequencing assay. Ticks and Tick-borne Diseases, 2023, 14, 102207.	2.7	2
1142	Novel Amplicon-Based Sequencing Approach to West Nile Virus. Viruses, 2023, 15, 1261.	3.3	2
1143	CRISPR-Analytics (CRISPR-A): A platform for precise analytics and simulations for gene editing. PLoS Computational Biology, 2023, 19, e1011137.	3.2	0
1144	Genomic resources for Asian (<i>Elephas maximus</i>) and African savannah elephant (<i>Loxodonta) Tj ETQq0</i>	0 0 rgBT /	Overlock 10 1
1145	Recovery and Analysis of Long-Read Metagenome-Assembled Genomes. Methods in Molecular Biology, 2023, , 235-259.	0.9	0
1146	Comparing the accuracy and efficiency of third generation sequencing technologies, Oxford Nanopore Technologies, and Pacific Biosciences, for DNA barcode sequencing applications. Ecological Genetics and Genomics, 2023, 28, 100181.	0.5	3
1147	Quality Control in Metagenomics Data. Methods in Molecular Biology, 2023, , 21-54.	0.9	2
1148	CELEBI: The CRAFT Effortless Localisation and Enhanced Burst Inspection pipeline. Astronomy and Computing, 2023, 44, 100724.	1.7	6
1149	The genome sequence of the variegated flesh fly, Sarcophaga variegata (Scopoli, 1763). Wellcome Open Research, 0, 8, 234.	1.8	0
1151	Automatic Differentiation is no Panacea for Phylogenetic Gradient Computation. Genome Biology and Evolution, 2023, 15, .	2.5	4
1152	The genome sequence of the Lichen Button, Acleris literana (Linnaeus, 1758). Wellcome Open Research, 0, 8, 232.	1.8	1

#	Article	IF	Citations
1154	AOP-helpFinder 2.0: Integration of an event-event searches module. Environment International, 2023, 177, 108017.	10.0	4
1156	Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort. Microbiome, 2023, 11, .	11.1	0
1158	PPA: Principal parcellation analysis for brain connectomes and multiple traits. NeuroImage, 2023, 276, 120214.	4.2	1
1160	The genome sequence of the Tufted Button, Acleris cristana (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 8, 236.	1.8	0
1161	Identification of BRCA1/2 mutation female carriers using circulating microRNA profiles. Nature Communications, 2023, 14, .	12.8	3
1162	${ m i} f$ 28-dependent small RNA regulation of flagella biosynthesis. ELife, 0, 12, .	6.0	4
1163	GRACE: a comprehensive web-based platform for integrative single-cell transcriptome analysis. NAR Genomics and Bioinformatics, 2023, 5, .	3.2	0
1164	Buffy coat signatures of breast cancer risk in a prospective cohort study. Clinical Epigenetics, 2023, 15,	4.1	2
1165	The genome sequence of the Ashy Button, Acleris sparsana (Denis & SchiffermuÌ^ller, 1775). Wellcome Open Research, 0, 8, 241.	1.8	0
1166	The genome sequence of the Coxcomb Prominent, Ptilodon capucinus (Linnaeus, 1758). Wellcome Open Research, 0, 8, 242.	1.8	0
1167	The genome sequence of the White-faced Tortrix, Pandemis cinnamomeana (Treitschke, 1830). Wellcome Open Research, 0, 8, 244.	1.8	1
1168	The genome sequence of the Fan-foot, Herminia tarsipennalis (Treitschke, 1835). Wellcome Open Research, 0, 8, 248.	1.8	0
1169	The genome sequence of the Common Emerald, Hemithea aestivaria (HuÌ^bner, 1789). Wellcome Open Research, 0, 8, 243.	1.8	0
1170	The genome sequence of the Minor Shoulder-knot, Brachylomia viminalis (Fabricius, 1777). Wellcome Open Research, 0, 8, 245.	1.8	0
1171	The genome sequence of a woodlouse fly, Phyto melanocephala (Meigen, 1824). Wellcome Open Research, 0, 8, 249.	1.8	0
1172	Deciphering the Immunostimulatory Effects of β-Glucan on a Rainbow Trout (Oncorhynchus mykiss) Macrophage-like Cell Line (RTS11) by Whole Transcriptome Analysis. Genes, 2023, 14, 1261.	2.4	1
1173	Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. Nature Plants, 2023, 9, 1067-1080.	9.3	12
1175	Geoweaver_cwl: Transforming geoweaver AI workflows to common workflow language to extend interoperability. Applied Computing and Geosciences, 2023, 19, 100126.	2.2	1

#	Article	IF	Citations
1176	EraSOR: a software tool to eliminate inflation caused by sample overlap in polygenic score analyses. GigaScience, 2022, 12, .	6.4	4
1177	Proton and alpha radiation-induced mutational profiles in human cells. Scientific Reports, 2023, 13, .	3.3	0
1178	CoVigator—A Knowledge Base for Navigating SARS-CoV-2 Genomic Variants. Viruses, 2023, 15, 1391.	3.3	3
1180	The genome sequence of the Thicket Knot-horn, Acrobasis suavella (Zincken, 1818). Wellcome Open Research, 0, 8, 252.	1.8	0
1181	The genome sequence of the Streamer, Anticlea derivata (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 8, 254.	1.8	0
1182	The genome sequence of the Dingy Shears, Fissipunctia ypsillon (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 8, 253.	1.8	0
1183	The genome sequence of the Cinnabar Moth, Tyria jacobaeae (Linnaeus, 1758). Wellcome Open Research, 0, 8, 255.	1.8	2
1184	Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation. MSystems, 0, , .	3.8	1
1185	The genome sequence of the Muslin moth, Diaphora mendica (Clerck, 1759). Wellcome Open Research, 0, 8, 257.	1.8	0
1186	The genome sequence of the Tawny Mining Bee, Andrena fulva (Müller, 1766). Wellcome Open Research, 0, 8, 258.	1.8	0
1187	The genome sequence of the small spotty-eyed dronefly, Eristalinus sepulchralis (Linnaeus, 1758). Wellcome Open Research, 0, 8, 269.	1.8	1
1189	The genome sequence of the Birch Bell, Epinotia demarniana (Fischer von Röslerstamm, 1839). Wellcome Open Research, 0, 8, 256.	1.8	0
1190	Re-analysis of hepatitis B virus integration sites reveals potential new loci associated with oncogenesis in hepatocellular carcinoma. World Journal of Virology, 0, 12, 209-220.	2.9	0
1191	The genome sequence of the Large Sharp-tail Bee, Coelioxys conoideus (Illiger,1806). Wellcome Open Research, 0, 8, 259.	1.8	0
1192	The genome sequence of the Red-tipped Clearwing, Synanthedon formicaeformis (Esper, 1783). Wellcome Open Research, 0, 8, 260.	1.8	0
1193	The genome sequence of the Velvet Shank, Flammulina velutipes (Curtis) Singer, 1951. Wellcome Open Research, 0, 8, 273.	1.8	0
1194	The genome sequence of a tachinid fly, Nowickia ferox (Panzer, 1809). Wellcome Open Research, 0, 8, 275.	1.8	0
1195	The genome sequence of the greater pipefish, Syngnathus acus (Linnaeus, 1758). Wellcome Open Research, 0, 8, 274.	1.8	2

#	Article	IF	CITATIONS
1196	Building a FAIR image data ecosystem for microscopy communities. Histochemistry and Cell Biology, 2023, 160, 199-209.	1.7	3
1197	The genome sequence of the Dark Spectacle, Abrostola triplasia (Linnaeus, 1758). Wellcome Open Research, 0, 8, 278.	1.8	0
1198	The genome sequence of the hoverfly, Epistrophella euchroma (Kowarz, 1885). Wellcome Open Research, 0, 8, 279.	1.8	0
1199	The genome sequence of the Broken-barred Carpet, Electrophaes corylata (Thunberg, 1792). Wellcome Open Research, 0, 8, 283.	1.8	Ο
1200	The genome sequence of the Orange Footman, Eilema sororcula (Hufnagel, 1766). Wellcome Open Research, 0, 8, 282.	1.8	0
1201	The genome sequence of the Grey Poplar Bell, Epinotia nisella (Clerck, 1759). Wellcome Open Research, 0, 8, 281.	1.8	Ο
1202	Genome resources and whole genome resequencing of Phytophthora rubi isolates from red raspberry. Frontiers in Plant Science, 0, 14, .	3.6	1
1203	Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using CAGE sequencing. G3: Genes, Genomes, Genetics, 0, , .	1.8	Ο
1205	Reprohackathons: promoting reproducibility in bioinformatics through training. Bioinformatics, 2023, 39, i11-i20.	4.1	0
1208	Resources and tools for rare disease variant interpretation. Frontiers in Molecular Biosciences, 0, 10,	3.5	2
1211	LENS: Landscape of Effective Neoantigens Software. Bioinformatics, 2023, 39, .	4.1	4
1212	The genome sequence of the White-backed Marble, Hedya salicella (Linnaeus, 1758). Wellcome Open Research, 0, 8, 219.	1.8	Ο
1214	Genomic and Transcriptomic Analyses of Malignant Pleural Mesothelioma (MPM) Samples Reveal Crucial Insights for Preclinical Testing. Cancers, 2023, 15, 2813.	3.7	0
1215	The genome sequence of the Chevron, Eulithis testata (Linnaeus, 1761). Wellcome Open Research, 0, 8, 223.	1.8	Ο
1216	Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. Plants, 2023, 12, 2059.	3.5	0
1217	Cell-cell interactome of the hematopoietic niche and its changes in acute myeloid leukemia. IScience, 2023, 26, 106943.	4.1	2
1219	The genome sequence of the surf clam, Spisula solida (Linnaeus, 1758). Wellcome Open Research, 0, 8, 227.	1.8	0
1220	The genome sequence of the fish leech, Piscicola geometra (Linnaeus, 1761). Wellcome Open Research, 0, 8, 229.	1.8	0

#	Article	IF	CITATIONS
1222	The genome sequence of a soldierfly, Nemotelus nigrinus (Fallén, 1817). Wellcome Open Research, 0, 8, 240.	1.8	0
1223	The genome sequence of the narrow-cheeked clusterfly, Pollenia angustigena (Wainwright, 1940). Wellcome Open Research, 0, 8, 270.	1.8	0
1224	The genome sequence of the spider, Parasteatoda lunata (Clerck, 1757). Wellcome Open Research, 0, 8, 271.	1.8	0
1225	The genome sequence of the tachinid fly, Epicampocera succincta (Meigen, 1824). Wellcome Open Research, 0, 8, 276.	1.8	0
1226	The genome sequence of the oyster mushroom, Pleurotus ostreatus ((Jacq.) P. Kummer, 1871). Wellcome Open Research, 0, 8, 277.	1.8	0
1228	The genome sequence of the Squinting Bush Brown, Bicyclus anynana (Butler, 1879). Wellcome Open Research, 0, 8, 280.	1.8	0
1229	Single-cell profiling of IncRNA expression during Ebola virus infection in rhesus macaques. Nature Communications, 2023, 14, .	12.8	4
1230	The genome sequence of the Twin-spotted Quaker, Anorthoa munda (Denis & SchiffermuÌ^ller, 1775). Wellcome Open Research, 0, 8, 284.	1.8	0
1231	MIRACUM-Pipe: An Adaptable Pipeline for Next-Generation Sequencing Analysis, Reporting, and Visualization for Clinical Decision Making. Cancers, 2023, 15, 3456.	3.7	3
1232	nf-core/clipseq - a robust Nextflow pipeline for comprehensive CLIP data analysis. Wellcome Open Research, 0, 8, 286.	1.8	0
1233	KubeAdaptor: A docking framework for workflow containerization on Kubernetes. Future Generation Computer Systems, 2023, 148, 584-599.	7.5	2
1234	Solitary fibrous tumor with IGF-II-induced non-islet cell tumor hypoglycemia: a case report and molecular characterization by next-generation sequencing. Frontiers in Oncology, 0, 13, .	2.8	0
1235	Oncogene-like addiction to aneuploidy in human cancers. Science, 2023, 381, .	12.6	29
1236	A Drug Repurposing Pipeline Based on Bladder Cancer Integrated Proteotranscriptomics Signatures. Methods in Molecular Biology, 2023, , 59-99.	0.9	0
1237	The genome sequence of the Powdered Quaker, Orthosia gracilis (SchiffermuÌ^ller, 1775). Wellcome Open Research, 0, 8, 290.	1.8	0
1238	nf-encyclopedia: A Cloud-Ready Pipeline for Chromatogram Library Data-Independent Acquisition Proteomics Workflows. Journal of Proteome Research, 0, , .	3.7	1
1239	Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. , 2023, 2, .		5
1240	The genome sequence of a tachinid fly, Tachina lurida (Fabricius, 1781). Wellcome Open Research, 0, 8, 288.	1.8	0

#	Article	IF	CITATIONS
1241	Tau-typing: a Nextflow pipeline for finding the best phylogenetic markers in the genome for molecular typing of microbial species. Bioinformatics, 2023, 39, .	4.1	0
1242	The genome sequence of the Meal Moth, Pyralis farinalis (Linnaeus, 1758). Wellcome Open Research, 0, 8, 291.	1.8	1
1243	DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. Nature Communications, 2023, 14, .	12.8	11
1244	Slitflow: A Python framework for single-molecule dynamics and localization analysis. SoftwareX, 2023, 23, 101462.	2.6	0
1245	How Workflow Engines Should Talk to Resource Managers: A Proposal for a Common Workflow Scheduling Interface. , 2023, , .		2
1246	Accelerating bioinformatics implementation in public health. Microbial Genomics, 2023, 9, .	2.0	4
1247	Tumor monocyte content predicts immunochemotherapy outcomes in esophageal adenocarcinoma. Cancer Cell, 2023, 41, 1222-1241.e7.	16.8	4
1248	The genome sequence of the Round-winged Muslin, Thumatha senex (Hübner, 1804). Wellcome Open Research, 0, 8, 298.	1.8	0
1249	The genome sequence of the King Ragworm, Alitta virens (Sars, 1835). Wellcome Open Research, 0, 8, 297.	1.8	1
1250	Genome sequence for the thick topshell, Phorcus lineatus (da Costa, 1778). Wellcome Open Research, 0, 8, 296.	1.8	0
1251	The genome sequence of the Light Brocade, Lacanobia w-latinum (Hufnagel, 1766). Wellcome Open Research, 0, 8, 299.	1.8	0
1252	The genome sequence of the Little Grey, Eudonia lacustrata (Panzer, 1804). Wellcome Open Research, 0, 8, 302.	1.8	2
1253	The genome sequence of the Currant Clearwing, Synanthedon tipuliformis (Clerck, 1759). Wellcome Open Research, 0, 8, 300.	1.8	0
1254	The genome sequence of the Pinion-spotted Pug, Eupithecia insigniata (Hübner, 1790). Wellcome Open Research, 0, 8, 305.	1.8	1
1255	The genome sequence of the Water Carpet, Lampropteryx suffumata (Denis & Schiffermiiller, 1775). Wellcome Open Research, 0, 8, 304.	1.8	0
1256	Inhibitory IL-10-producing CD4+ T cells are T-bet-dependent and facilitate cytomegalovirus persistence via coexpression of arginase-1. ELife, 0, 12, .	6.0	1
1257	The genome sequence of the Brindled Beauty, Lycia hirtaria (Clerck, 1759). Wellcome Open Research, 0, 8, 303.	1.8	0
1258	The genome sequence of the variegated scallop, Mimachlamys varia (Linnaeus, 1758). Wellcome Open Research, 0, 8, 307.	1.8	1

ARTICLE IF CITATIONS # Adaptive resource allocation for workflow containerization on Kubernetes. Journal of Systems 1259 2.2 0 Engineering and Electronics, 2023, 34, 723-743. The genome sequence of the hawkweed Cheilosia, Cheilosia urbana (Meigen, 1822). Wellcome Open 1.8 Research, 0, 8, 311. Multiomics characterization of the of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity. Gut 1262 3.2 0 Microbiome, 0, , 1-25. The genome sequence of the Pine Hawkmoth, Sphinx pinastri (Linneaus 1758). Wellcome Open Research, 1264 1.8 0, 8, 312. GINGER: An integrated method for high-accuracy prediction of gene structure in higher eukaryotes at 1265 3.4 1 the gene and exon level. DNA Research, 0, , . The genome sequence of the Oak Rustic, Dryobota labecula (Esper, 1788). Wellcome Open Research, 0, 8, 1266 1.8 317 The genome sequence of the springtail Allacma fusca (Linnaeus, 1758). Wellcome Open Research, 0, 8, 1267 1.8 0 319 The genome sequence of the Tawny Marbled Minor, Oligia latruncula (Denis & amp; Schiffermul`ller,) Tj ETQq1 1 0.784314 rgBT /Over 1268 ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins. Nature 1269 12.8 3 Communications, 2023, 14, . The genome sequence of the tree of heaven, Ailanthus altissima (Mill.) Swingle, 1916. Wellcome Open 1270 1.8 Research, 0, 8, 321. The genome sequence of the White-legged damselfly, Platycnemis pennipes (Pallas, 1771). Wellcome 1271 2 1.8 Open Research, 0, 8, 320. The microbial genotoxin colibactin exacerbates mismatch repair mutations in colorectal tumors. 5.3 Neoplasia, 2023, 43, 100918. The genome sequence of the Oak Hook-tip, Watsonalla binaria (Hufnagel, 1767). Wellcome Open 1274 1.8 0 Research, 0, 8, 324. The genome sequence of a riffle beetle, Elmis aenea ($M\tilde{A}$ ¹/4ller, 1806). Wellcome Open Research, 0, 8, 322. 1.8 The genome sequence of the White Satin, Leucoma salicis (Linnaeus, 1758). Wellcome Open Research, 0, 1276 0 1.8 8, 323. The genome sequence of the Four-dotted Obscure, Oegoconia quadripuncta (Haworth 1829). 1278 1.8 Wellcome Open Research, 0, 8, 328. The genome sequence of common ivy, Hedera helix L., 1753. Wellcome Open Research, 0, 8, 325. 1279 1.8 0 Scikick: A sidekick for workflow clarity and reproducibility during extensive data analysis. PLoS ONE, 2023, 18, e0289171.

#	Article	IF	CITATIONS
1281	IS-Seq: a bioinformatics pipeline for integration sites analysis with comprehensive abundance quantification methods. BMC Bioinformatics, 2023, 24, .	2.6	1
1282	Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Frontiers in Artificial Intelligence, 0, 6, .	3.4	0
1283	Systematic benchmarking of single-cell ATAC-sequencing protocols. Nature Biotechnology, 0, , .	17.5	5
1285	A pile of pipelines: An overview of the bioinformatics software for metabarcoding data analyses. Molecular Ecology Resources, 0, , .	4.8	2
1286	The genome sequence of the spring stonefly, Protonemura montana (Kimmins, 1941). Wellcome Open Research, 0, 8, 333.	1.8	0
1288	COWID: an efficient cloud-based genomics workflow for scalable identification of SARS-COV-2. Briefings in Bioinformatics, 0, , .	6.5	0
1289	The genome sequence of a tortricid moth, Lathronympha strigana (Fabricius, 1775). Wellcome Open Research, 0, 8, 335.	1.8	0
1290	The genome sequence of the Buff Footman, Eilema depressum (Esper, 1787). Wellcome Open Research, 0, 8, 342.	1.8	0
1291	versaFlow: a versatile pipeline for resolution adapted diffusion MRI processing and its application to studying the variability of the PRIME-DE database. Frontiers in Neuroinformatics, 0, 17, .	2.5	1
1292	The genome sequence of an ichneumonid wasp, Tromatobia lineatoria (Villers, 1789). Wellcome Open Research, 0, 8, 339.	1.8	0
1294	Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biology, 2023, 24, .	8.8	10
1295	The genome sequence of the Whirlpool Ramshorn snail, Anisus vortex (Linnaeus, 1758). Wellcome Open Research, 0, 8, 344.	1.8	1
1296	The genome sequence of a ground beetle, Ophonus ardosiacus (Lutshnik, 1922). Wellcome Open Research, 0, 8, 353.	1.8	0
1297	The genome sequence of the Mullein moth, Shargacucullia verbasci (Linnaeus, 1758). Wellcome Open Research, 0, 8, 346.	1.8	0
1298	The genome sequence of the London Dowd, Blastobasis lacticolella (Rebel, 1939). Wellcome Open Research, 0, 8, 352.	1.8	0
1299	The genome sequence of the Thick-legged Hoverfly, Syritta pipiens (Linnaeus, 1758). Wellcome Open Research, 0, 8, 349.	1.8	0
1300	The genome sequence of the red compost earthworm, Lumbricus rubellus (Hoffmeister, 1843). Wellcome Open Research, 0, 8, 354.	1.8	0
1301	The genome sequence of the star-devouring scaleworm, Acholoë squamosa (Delle Chiaje, 1825). Wellcome Open Research, 0, 8, 348.	1.8	1

ARTICLE IF CITATIONS # The genome sequence of a click beetle, Agrypnus murinus (Linnaeus, 1758). Wellcome Open Research, 0, 1302 1.8 1 8, 355. The genome sequence of the Acer Sober, Anarsia innoxiella (Gregersen & amp; Karsholt, 2017). 1303 1.8 Wellcome Open Research, 0, 8, 357. The genome sequence of the Ear Moth, Amphipoea oculea (Linnaeus, 1761). Wellcome Open Research, 0, 1304 1.8 1 8, 356. The genome sequence of the micro grey sedge, Agapetus fuscipes (Curtis, 1834). Wellcome Open 1.8 Research, 0, 8, 363. A GPU-Accelerated Molecular Docking Workflow withÂKubernetes andÂApache Airflow. Lecture Notes 1307 1.3 1 in Computer Science, 2023, , 193-206. Compare_Genomes: A Comparative Genomics Workflow to Streamline the Analysis of Evolutionary 1309 Divergence Across Eukaryotic Genomes. Current Protocols, 2023, 3, . Machine learning uncovers the <i>Pseudomonas syringae</i> transcriptome in microbial communities 1310 3.8 0 and during infection. MSystems, 0, , . VIRify: An integrated detection, annotation and taxonomic classification pipeline using virus-specific 3.2 protéin profile hidden Markov models. PLoS Computational Biology, 2023, 19, e1011422. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than 1313 5.6 2 ribosomal DNA circle accumulation. PLoS Biology, 2023, 21, e3002250. 1314 A Distinct Nasal Microbiota Signature in Peritoneal Dialysis Patients. Kidney360, 2023, , . 2.1 The genome sequence of the Notch-wing Button, Acleris emargana (Fabricius, 1775). Wellcome Open 1315 0 1.8 Research, 0, 8, 376. The genome sequence of the Beautiful Golden Y, Autographa pulchrina (Haworth, 1809). Wellcome 1.8 Open Research, 0, 8, 375. The genome sequence of soft rush, Juncus effusus (L) Huds. (Juncaceae). Wellcome Open Research, 0, 1317 1.8 0 8, 374. The genome sequence of the Arctic Skipper, Carterocephalus palaemon (Pallas, 1771). Wellcome Open 1.8 Research, 0, 8, 369. The genome sequence of the Figwort Cheilosia, Cheilosia variabilis (Panzer, 1798). Wellcome Open 1319 0 1.8 Research, 0, 8, 377. The genome sequence of the short-fringed mining bee, Andrena dorsata (Kirby, 1802). Wellcome Open 1320 1.8 Research, 0, 8, 373. The genome sequence of the Rusty Oak Moth, Cydia amplana (Hübner, 1799). Wellcome Open Research, 0, 1321 1.8 0 8, 368. The genome sequence of the common toadflax, Linaria vulgaris Mill., 1768. Wellcome Open Research, 0, 1.8 8, 370.

ARTICLE IF CITATIONS The genome sequence of wood avens, Geum urbanum L., 1753. Wellcome Open Research, 0, 8, 371. 1323 1.8 0 The genome sequence of the Dingy Skipper, Erynnis tages (Linnaeus, 1758). Wellcome Open Research, 0, 1324 1.8 8, 372. The genome sequence of the Grey-backed Snout-hoverfly, Rhingia rostrata (Linnaeus, 1758). Wellcome 1325 0 1.8 Open Research, 0, 8, 388. Phylogenomic analysis of a global collection of <i>Escherichia coli</i> ST38: evidence of interspecies 3.8 and environmental transmission?. MSystems, 0, , . DNA-methylation signature accurately differentiates pancreatic cancer from chronic pancreatitis in 1327 12.1 1 tissue and plasma. Kut, 2023, 72, 2344-2353. The Challenge of Diffusion Magnetic Resonance Imaging in Cerebral Palsy: A Proposed Method to Identify White Matter Pathways. Brain Sciences, 2023, 13, 1386. 1328 2.3 Ribosome biogenesis disruption mediated chromatin structure changes revealed by SRAtac, a 1329 2.8 0 customizable end to end analysis pipeline for ATAC-seq. BMC Genomics, 2023, 24, . Elevated binding and functional antibody responses to SARS-CoV-2 in infants versus mothers. Nature 12.8 Communications, 2023, 14, . Genotypic diversity and unrecognized antifungal resistance among populations of Candida glabrata 1331 12.8 5 from positive blood cultures. Nature Communications, 2023, 14, . BioConvert: a comprehensive format converter for life sciences. NAR Genomics and Bioinformatics, 3.2 2023, 5, . Evaluation of metagenomic assembly methods for the detection and characterization of antimicrobial 1333 resistance determinants and associated mobilizable elements. Journal of Microbiological Methods, 1 1.6 2023, 213, 106815. Precision medicine using whole genome sequencing in a cat identifies a novel <scp>COL5A1</scp> variant for classical <scp>Ehlersâ€Danlos</scp> syndrome. Journal of Veterinary Internal Medicine, 1.6 2023, 37, 1716-1724. Ibrutinib directly reduces CD8+T cell exhaustion independent of BTK. Frontiers in Immunology, 0, 14, . 1335 4.8 0 A multi-scale expression and regulation knowledge base for <i>Escherichia coli</i>. Nucleic Acids Research, 2023, 51, 10176-10193. 14.5 m6A RNA methylation orchestrates transcriptional dormancy during paused pluripotency. Nature Cell 1337 10.3 7 Biology, 2023, 25, 1279-1289. Intra―and interhost genomic diversity of monkeypox virus. Journal of Medical Virology, 2023, 95, . <tt>simpleaf</tt>: a simple, flexible, and scalable framework for single-cell data processing using 1339 4.1 1 alevin-fry. Bioinformatics, 2023, 39, . Lotaru: Locally predicting workflow task runtimes for resource management on heterogeneous 1340 infrastructures. Future Generation Computer Systems, 2024, 150, 171-185.

#	Article	IF	Citations
1341	The International Virus Bioinformatics Meeting 2023. Viruses, 2023, 15, 2031.	3.3	0
1342	<tt>phippery</tt> : a software suite for PhIP-Seq data analysis. Bioinformatics, 2023, 39, .	4.1	0
1343	NanopoReaTA: a user-friendly tool for nanopore-seq real-time transcriptional analysis. Bioinformatics, 2023, 39, .	4.1	0
1344	Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia. Frontiers in Oncology, 0, 13, .	2.8	2
1345	Identification of experimentally-supported poly(A) sites in single-cell RNA-seq data with SCINPAS. NAR Genomics and Bioinformatics, 2023, 5, .	3.2	0
1346	A fast non-parametric test of association for multiple traits. Genome Biology, 2023, 24, .	8.8	1
1347	<scp>MINIâ€AC</scp> : inference of plant gene regulatory networks using bulk or singleâ€cell accessible chromatin profiles. Plant Journal, 2024, 117, 280-301.	5.7	2
1348	A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. Cell Systems, 2023, 14, 764-776.e6.	6.2	1
1349	Biomaterials text mining: A hands-on comparative study of methods on polydioxanone biocompatibility. New Biotechnology, 2023, 77, 161-175.	4.4	1
1350	Genome annotation: From human genetics to biodiversity genomics. Cell Genomics, 2023, 3, 100375.	6.5	4
1351	Cooperation and cheating orchestrate Vibrio assemblages and polymicrobial synergy in oysters infected with OsHV-1 virus. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
1353	The genome sequence of the Vapourer moth, Orgyia antiqua (Linnaeus, 1758). Wellcome Open Research, 0, 8, 314.	1.8	0
1354	The genome sequence of an ichneumonid wasp, Campoletis raptor (Zetterstedt, 1838). Wellcome Open Research, 0, 8, 313.	1.8	0
1355	The genome sequence of a scale worm, Harmothoe impar (Johnston, 1839). Wellcome Open Research, 0, 8, 315.	1.8	3
1356	The genome sequence of the Heart Moth, Dicycla oo (Linnaeus 1758). Wellcome Open Research, 0, 8, 318.	1.8	0
1357	The genome sequence of a stonefly, Nemoura dubitans (Morton, 1894). Wellcome Open Research, 0, 8, 329.	1.8	0
1358	An image-guided microfluidic system for single-cell lineage tracking. PLoS ONE, 2023, 18, e0288655.	2.5	2
1360	The genome sequence of the Locust Fly, Stomorhina lunata (Fabricius, 1805). Wellcome Open Research, 0, 8, 330.	1.8	0

#	Article	IF	CITATIONS
1362	WfCommons: Data Collection and Runtime Experiments using Multiple Workflow Systems. , 2023, , .		0
1363	Facilitating accessible, rapid, and appropriate processing of ancient metagenomic data with AMDirT. F1000Research, 0, 12, 926.	1.6	0
1364	bettercallsal: better calling of Salmonella serotypes from enrichment cultures using shotgun metagenomic profiling and its application in an outbreak setting. Frontiers in Microbiology, 0, 14, .	3.5	0
1365	scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border. ELife, 0, 12, .	6.0	6
1366	The <i>All of Us</i> Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research. Annual Review of Biomedical Data Science, 2023, 6, 443-464.	6.5	3
1367	The genome sequence of the Brown Argus, Aricia agestis (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 8, 336.	1.8	0
1368	The genome sequence of the Italian Tubic, Metalampra italica (Baldizzone, 1977). Wellcome Open Research, 0, 8, 338.	1.8	0
1369	The genome sequence of the Wainscot Smudge, Ypsolopha scabrella (Linnaeus, 1761). Wellcome Open Research, 0, 8, 341.	1.8	0
1370	The genome sequence of a conopid fly, Thecophora atra (Fabricius, 1775). Wellcome Open Research, 0, 8, 358.	1.8	0
1371	The genome sequence of the Skin Moth, Monopis laevigella (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 8, 359.	1.8	1
1372	The genome sequence of the Soprano Pipistrelle, Pipistrellus pygmaeus (Leach, 1825). Wellcome Open Research, 0, 8, 360.	1.8	0
1373	The genome sequence of a drosophilid fruit fly, Hirtodrosophila cameraria (Haliday, 1833). Wellcome Open Research, 0, 8, 361.	1.8	1
1374	The genome sequence of the northern bat, Eptesicus nilssonii (Keyserling & Blasius, 1839). Wellcome Open Research, 0, 8, 362.	1.8	0
1375	Comprehensive single-cell genome analysis at nucleotide resolution using the PTA Analysis Toolbox. Cell Genomics, 2023, 3, 100389.	6.5	1
1376	Hierarchical Management ofÂExtreme-Scale Task-Based Applications. Lecture Notes in Computer Science, 2023, , 111-124.	1.3	0
1377	A crowd-sourced genomic project to assess hybrid content in a rare avian vagrant (Azure Tit Cyanistes) Tj ETQq1	1 0.78431 1.2	4rgBT /Ove
1379	The genome sequence of the Brown Silverhorn, Athripsodes cinereus (Curtis, 1834). Wellcome Open Research, 0, 8, 378.	1.8	0
1380	The genome sequence of the mottled shieldbug, Rhaphigaster nebulosa (Poda, 1761). Wellcome Open Research, 0, 8, 384.	1.8	0

#	Article	IF	CITATIONS
1381	Lessons learned: overcoming common challenges in reconstructing the SARS-CoV-2 genome from short-read sequencing data via CoVpipe2. F1000Research, 0, 12, 1091.	1.6	0
1382	The genome sequence of a heleomyzid fly, Suillia variegata (Loew, 1862). Wellcome Open Research, 0, 8, 382.	1.8	0
1383	The genome sequence of a starfish, Luidia sarsii (Düben & Koren, in Düben, 1845). Wellcome Open Research, 0, 8, 380.	1.8	0
1384	The genome sequence of the European flounder, Platichthys flesus (Linnaeus, 1758). Wellcome Open Research, 0, 8, 381.	1.8	1
1385	The genome sequence of the Ragwort Fly, Sphenella marginata (Fallén, 1814). Wellcome Open Research, 0, 8, 383.	1.8	0
1386	The genome sequence of the Common Darter, Sympetrum striolatum (Charpentier, 1840). Wellcome Open Research, 0, 8, 389.	1.8	3
1387	The genome sequence of the dark-edged bee fly, Bombylius major (Linnaeus, 1758). Wellcome Open Research, 0, 8, 379.	1.8	0
1389	Evolution and impact of high content imaging. SLAS Discovery, 2023, 28, 292-305.	2.7	2
1390	The genome sequence of a satellite fly, Leucophora obtusa (Zetterstedt, 1837). Wellcome Open Research, 0, 8, 392.	1.8	0
1391	The genome sequence of the flavous nomad bee, Nomada flava (Panzer, 1798). Wellcome Open Research, 0, 8, 393.	1.8	0
1392	The genome sequence of the fork-jawed nomad bee, Nomada ruficornis (Linnaeus, 1758). Wellcome Open Research, 0, 8, 394.	1.8	0
1394	The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses. Clinical Immunology, 2023, 255, 109762.	3.2	3
1395	The genome sequence of the painted nomad bee, Nomada fucata (Panzer, 1798). Wellcome Open Research, 0, 8, 395.	1.8	0
1396	The genome sequence of an ichneumon wasp, Ophion slaviceki (Kriechbaumer, 1892). Wellcome Open Research, 0, 8, 397.	1.8	Ο
1397	EOSC-Life Workflow Collaboratory for the Life Sciences. , 0, 1, .		0
1398	The genome sequence of a solitary wasp, Mimumesa dahlbomi (Hymenoptera; Crabronidae;) Tj ETQq1 1 0.7843	14 fgBT /C	Overlock 10 Tf
1399	The genome sequence of the Six-striped Rustic, Xestia sexstrigata (Haworth, 1809). Wellcome Open Research, 0, 8, 399.	1.8	0
1400	The genome sequence of the Orange-tailed Mining Bee, Andrena haemorrhoa (Fabricius, 1781). Wellcome Open Research, 0, 8, 396.	1.8	0

#	Article	IF	CITATIONS
1401	Aruna Object Storage. , 0, 1, .		0
1402	Cloud Computing for Research and Education Gets a Sweet Upgrade with CACAO. , 2023, , .		0
1403	The genome sequence of the Cow Parsley Leaf Beetle, Chrysolina oricalcia (O.F. Müller, 1776). Wellcome Open Research, 0, 8, 400.	1.8	0
1405	BiocMAP: a Bioconductor-friendly, GPU-accelerated pipeline for bisulfite-sequencing data. BMC Bioinformatics, 2023, 24, .	2.6	0
1406	The genome sequence of the star-devouring scaleworm, Acholoe squamosa (Delle Chiaje, 1825). Wellcome Open Research, 0, 8, 348.	1.8	0
1408	Dynamic Network-Centric Multi-cloud Platform for Real-Time and Data-Intensive Science Workflows. , 2023, , 835-868.		0
1412	eQTL Catalogue 2023: New datasets, X chromosome QTLs, and improved detection and visualisation of transcript-level QTLs. PLoS Genetics, 2023, 19, e1010932.	3.5	3
1413	The genome sequence of the Chocolate-tip, Clostera curtula (Linnaeus, 1758). Wellcome Open Research, 0, 8, 405.	1.8	0
1414	The genome sequence of the Diamondback Moth, Plutella xylostella (Linnaeus, 1758). Wellcome Open Research, 0, 8, 404.	1.8	0
1415	The genome sequence of a marine yeast, Metschnikowia zobellii (Uden & CastBranco, 1961). Wellcome Open Research, 0, 8, 411.	1.8	0
1416	The genome sequence of bittersweet, Solanum dulcamara L. (Solanaceae). Wellcome Open Research, 0, 8, 409.	1.8	0
1417	The genome sequence of the Dingy Dowd, Blastobasis adustella (Walsingham, 1894). Wellcome Open Research, 0, 8, 407.	1.8	0
1418	The genome sequence of the Autumnal Rustic, Eugnorisma glareosa (Esper, 1788). Wellcome Open Research, 0, 8, 410.	1.8	0
1419	The genome sequence of the Grey Pine Carpet, Thera obeliscata (Hübner, 1787). Wellcome Open Research, 0, 8, 408.	1.8	0
1420	The genome sequence of a ground beetle, Leistus spinibarbis (Fabricius, 1775). Wellcome Open Research, 0, 8, 412.	1.8	0
1424	The genome sequence of the common limpet, Patella vulgata (Linnaeus, 1758). Wellcome Open Research, 0, 8, 418.	1.8	1
1425	The genome sequence of the centipede Strigamia acuminata (Leach, 1816). Wellcome Open Research, 0, 8, 420.	1.8	0
1426	Mass Spectrometry–Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annual Review of Pharmacology and Toxicology, 2024, 64, .	9.4	0

#	Article	IF	CITATIONS
1428	Contract-Driven Design of Scientific Data Analysis Workflows. , 2023, , .		0
1429	From Program Chains to Exploratory Workflows: PopinSnake for Genomic Insertion Detection. , 2023,		0
1430	Reproducible eScience: The Data Containerization Challenge. , 2023, , .		0
1431	Design by Contract Revisited in the Context of Scientific Data Analysis Workflows. , 2023, , .		0
1432	Scalable and versatile container-based pipelines for de novo genome assembly and bacterial annotation F1000Research, 0, 12, 1205.	1.6	1
1433	CD8+ cells and small viral reservoirs facilitate post-ART control of SIV replication in M3+ Mauritian cynomolgus macaques initiated on ART two weeks post-infection. PLoS Pathogens, 2023, 19, e1011676.	4.7	0
1434	Reproducible Bioinformatics Analysis Workflows for Detecting IGH Gene Fusions in B-Cell Acute Lymphoblastic Leukaemia Patients. Cancers, 2023, 15, 4731.	3.7	0
1435	Cell cycle status of male and female gametes during Arabidopsis reproduction. Plant Physiology, 0, , .	4.8	0
1436	Ten quick tips for building FAIR workflows. PLoS Computational Biology, 2023, 19, e1011369.	3.2	2
1437	Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene, 2024, 892, 147851.	2.2	1
1438	TopDownApp: An open and modular platform for analysis and visualisation of topâ€down proteomics data. Proteomics, 2024, 24, .	2.2	1
1439	The five pillars of computational reproducibility: bioinformatics and beyond. Briefings in Bioinformatics, 2023, 24, .	6.5	2
1440	Formulating a method to analyse the differential expression of co-occurrence networks for small-sampled microbiome data. , 2023, , .		0
1442	The genome sequence of a druid fly, Clusia tigrina (FalleÌn, 1820). Wellcome Open Research, 0, 8, 430.	1.8	0
1443	The genome sequence of the Scalloped Oak, Crocallis elinguaria (Linneas, 1758). Wellcome Open Research, 0, 8, 426.	1.8	0
1444	The genome sequence of the Crescent Plume, Marasmarcha lunaedactyla (Haworth, 1811). Wellcome Open Research, 0, 8, 431.	1.8	0
1445	NeoMS: Identification ofÂNovel MHC-I Peptides withÂTandem Mass Spectrometry. Lecture Notes in Computer Science, 2023, , 280-291.	1.3	0
1446	The genome sequence of the Swift Louse Fly Crataerina pallida (Latreille, 1812). Wellcome Open Research 0 8 434	1.8	0

#	Article	IF	CITATIONS
1449	The genome sequence of the Barred Straw, Gandaritis pyraliata (Denis & Schiffermul`ller, 1775). Wellcome Open Research, 0, 8, 435.	1.8	0
1450	<i>Mutator</i> transposon insertions within maize genes often provide a novel outward reading promoter. Genetics, 2023, 225, .	2.9	1
1451	Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data. Rna, 2023, 29, 1839-1855.	3.5	3
1452	The genome sequence of the fruit fly, Drosophila funebris. Wellcome Open Research, 0, 8, 437.	1.8	0
1453	The genome sequence of the Marbled Piercer, Cydia splendana (Hübner, 1799). Wellcome Open Research, 0, 8, 436.	1.8	0
1455	The genome sequence of the Yellow Horned, Achlya flavicornis (Linnaeus, 1758). Wellcome Open Research, 0, 8, 458.	1.8	0
1456	The genome sequence of the Truffle Blacklet, Cheilosia soror (Zetterstedt, 1843). Wellcome Open Research, 0, 8, 443.	1.8	0
1457	The genome sequence of the Silver-spotted Skipper, Hesperia comma (Linnaeus, 1758). Wellcome Open Research, 0, 8, 457.	1.8	0
1458	The genome sequence of a chalcid wasp, Gastracanthus pulcherrimus (Westwood, 1833). Wellcome Open Research, 0, 8, 440.	1.8	0
1459	Unbiased image segmentation assessment toolkit for quantitative differentiation of state-of-the-art algorithms and pipelines. BMC Bioinformatics, 2023, 24, .	2.6	Ο
1460	The genome sequence of the Grey Sedge caddis fly, Odontocerum albicorne (Scopoli, 1769). Wellcome Open Research, 0, 8, 445.	1.8	0
1461	The genome sequence of the Small Emerald, Hemistola chrysoprasaria (Esper, 1795). Wellcome Open Research, 0, 8, 441.	1.8	0
1462	The genome sequence of the Heart and Club moth, Agrotis clavis (Hufnagel, 1766). Wellcome Open Research, 0, 8, 446.	1.8	0
1464	The genome sequence of black horehound, Ballota nigra L. subsp. foetida (Lam.) Hayek (Lamiaceae). Wellcome Open Research, 0, 8, 439.	1.8	Ο
1465	The genome sequence of the broad-banded Epistrophe, Epistrophe grossulariae (Meigen, 1822). Wellcome Open Research, 0, 8, 438.	1.8	1
1466	The genome sequence of common fleabane, Pulicaria dysenterica (L.) Bernh. (Asteraceae). Wellcome Open Research, 0, 8, 447.	1.8	Ο
1467	The genome sequence of the wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Wellcome Open Research, 0, 8, 442.	1.8	0
1468	<pre><scp>PLANTdataHUB</scp>: a collaborative platform for continuous <scp>FAIR</scp> data sharing in plant research. Plant Journal, 2023, 116, 974-988.</pre>	5.7	4

#	Article	IF	CITATIONS
1469	The genome sequence of the Ingrailed Clay, Diarsia mendica (Fabricius, 1775). Wellcome Open Research, 0, 8, 448.	1.8	0
1470	The genome sequence of the Feathered Ranunculus, Polymixis lichenea (HuÌ^bner, 1813). Wellcome Open Research, 0, 8, 444.	1.8	0
1471	The genome sequence of the small wasp-sawfly, Tenthredo distinguenda (R. Stein, 1885). Wellcome Open Research, 0, 8, 459.	1.8	0
1472	The genome sequence of the Early Mason-wasp, Ancistrocerus nigricornis (Curtis, 1826). Wellcome Open Research, 0, 8, 461.	1.8	0
1473	The genome sequence of the silverweed cinquefoil, Potentilla anserina L., 1753. Wellcome Open Research, 0, 8, 464.	1.8	0
1474	The genome sequence of the black-bellied cluster fly, Pollenia amentaria (Scopoli, 1763). Wellcome Open Research, 0, 8, 466.	1.8	1
1475	The genome sequence of a leaf beetle, Cryptocephalus moraei (Linnaeus, 1758). Wellcome Open Research, 0, 8, 467.	1.8	0
1476	The genome sequence of the Cossus hoverfly, Volucella inflata (Fabricius 1794). Wellcome Open Research, 0, 8, 465.	1.8	0
1477	The genome sequence of the Common White Wave, Cabera pusaria (Linnaeus, 1758). Wellcome Open Research, 0, 8, 460.	1.8	0
1478	The genome sequence of a tachinid fly, Cistogaster globosa (Fabricius, 1775). Wellcome Open Research, 0, 8, 462.	1.8	0
1479	The genome sequence of the Scarce Umber, Agriopis aurantiaria (HuÌ`bner, 1799). Wellcome Open Research, 0, 8, 463.	1.8	0
1481	The advantage of intergenic regions as genomic features for machine-learning-based host attribution of Salmonella Typhimurium from the USA. Microbial Genomics, 2023, 9, .	2.0	0
1482	${ m i} f$ 28-dependent small RNA regulation of flagella biosynthesis. ELife, 0, 12, .	6.0	0
1483	TAGADA: a scalable pipeline to improve genome annotations with RNA-seq data. NAR Genomics and Bioinformatics, 2023, 5, .	3.2	1
1485	Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. International Journal of Molecular Sciences, 2023, 24, 15245.	4.1	0
1486	The genome sequence of the Fruity Milkcap, Lactarius evosmus (KuÌ^hner & Romagn., 1954). Wellcome Open Research, 0, 8, 471.	1.8	0
1487	The genome sequence of the Large Brook Dun, Ecdyonurus torrentis (Kimmins, 1942). Wellcome Open Research, 0, 8, 468.	1.8	0
1489	metaGOflow: a workflow for the analysis of marine Genomic Observatories shotgun metagenomics data. GigaScience, 2022, 12, .	6.4	1

#	Article	IF	CITATIONS
1490	The genome sequence of a digger wasp, Ectemnius continuus (Fabricius, 1804). Wellcome Open Research, 0, 8, 469.	1.8	0
1491	The genome sequence of the Batman Hoverfly, Myathropa florea (Linnaeus, 1758). Wellcome Open Research, 0, 8, 470.	1.8	0
1492	The genome sequence of a drosophilid fruit fly, Chymomyza fuscimana (Drosophilidae) (Zetterstedt,) Tj ETQq0 0	0 [gBT /O	verlock 10 Tf

1493	The genome sequence of the Light Emerald, Campaea margaritaria (Linnaeus, 1761). Wellcome Open Research, 0, 8, 476.	1.8	0
1494	The genome sequence of a soldier beetle, Cantharis rufa (Linnaeus, 1758). Wellcome Open Research, 0, 8, 478.	1.8	1
1495	The genome sequence of the Common Spotted Hoverfly, Eupeodes luniger (Meigen, 1822). Wellcome Open Research, 0, 8, 472.	1.8	0
1496	The genome sequence of a hoverfly, Sphaerophoria taeniata (Meigen, 1822). Wellcome Open Research, 0, 8, 474.	1.8	0
1497	Baargin: a Nextflow workflow for the automatic analysis of bacterial genomics data with a focus on Antimicrobial Resistance. Journal of Open Source Software, 2023, 8, 5397.	4.6	0
1499	Whole-Genome Sequencing of 502 Individuals from Latvia: The First Step towards a Population-Specific Reference of Genetic Variation. International Journal of Molecular Sciences, 2023, 24, 15345.	4.1	0
1501	The genome sequence of the Buff Arches, Habrosyne pyritoides (Hufnagel, 1766). Wellcome Open Research, 0, 8, 480.	1.8	0
1503	The genome sequence of a tachinid fly, Panzeria rudis (Fallén, 1810). Wellcome Open Research, 0, 8, 482.	1.8	0
1504	Screening for atypical porcine pestivirus in Swedish boar semen used for artificial insemination and a characterisation of the seminal RNA microbiome including the virome. BMC Veterinary Research, 2023, 19, .	1.9	0
1505	The genome sequence of the Early Thorn, Selenia dentaria (Fabricius, 1775). Wellcome Open Research, 0, 8, 485.	1.8	0
1506	The genome sequence of the Small Birch Bell, Epinotia ramella (Linnaeus, 1758). Wellcome Open Research, 0, 8, 479.	1.8	0
1508	The genome sequence of the Cabbage Moth, Mamestra brassicae (Linnaeus, 1758). Wellcome Open Research, 0, 8, 486.	1.8	0
1509	The genome sequence of the slender grass hoverfly, Melanostoma scalare (Fabricius, 1794). Wellcome Open Research, 0, 8, 489.	1.8	0
1510	The genome sequence of the Northern Summer Mayfly, Siphlonurus alternatus (Say, 1824). Wellcome Open Research, 0, 8, 488.	1.8	0
1511	The genome sequence of the Ruddy Flat-body, Agonopterix subpropinquella (Stainton, 1849). Wellcome Open Research, 0, 8, 487.	1.8	0

#	Article	IF	CITATIONS
1512	Genomic and transcriptomic characterization of delta SARS-CoV-2 infection in free-ranging white-tailed deer (Odocoileus virginianus). IScience, 2023, 26, 108319.	4.1	1
1514	ScanNeo2: a comprehensive workflow for neoantigen detection and immunogenicity prediction from diverse genomic and transcriptomic alterations. Bioinformatics, 0, , .	4.1	0
1516	The genome sequence of the Median Wasp, Dolichovespula media (Retzius, 1783). Wellcome Open Research, 0, 8, 492.	1.8	0
1517	The genome sequence of the Clouded-bordered Brindle, Apamea crenata (Hufnagel, 1766). Wellcome Open Research, 0, 8, 491.	1.8	1
1518	The genome sequence of the August Thorn, Ennomos quercinarius (Hufnagel, 1767). Wellcome Open Research, 0, 8, 490.	1.8	0
1519	The genome sequence of the Common Sycamore Aphid, Drepanosiphum platanoidis (Schrank, 1801). Wellcome Open Research, 0, 8, 481.	1.8	0
1520	Automated benchmarking of combined protein structure and ligand conformation prediction. Proteins: Structure, Function and Bioinformatics, 2023, 91, 1912-1924.	2.6	0
1521	Scalable single-cell profiling of chromatin modifications with sciCUT&Tag. Nature Protocols, 0, ,	12.0	0
1522	Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Medicine, 2023, 15, .	8.2	3
1523	The inhibition of inner mitochondrial fusion in hepatocytes reduces non-alcoholic fatty liver and improves metabolic profile during obesity by modulating bile acid conjugation. Cardiovascular Research, 2024, 119, 2917-2929.	3.8	2
1524	Software pipelines for RNA-Seq, ChIP-Seq and germline variant calling analyses in common workflow language (CWL). Frontiers in Bioinformatics, 0, 3, .	2.1	0
1525	Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nature Communications, 2023, 14, .	12.8	2
1526	Molecular and Pathological Characterization of Classical Swine Fever Virus Genotype 2 Strains Responsible for the 2013–2018 Outbreak in Colombia. Viruses, 2023, 15, 2308.	3.3	1
1527	Longitudinal evolution of diffusion metrics after left hemisphere ischaemic stroke. Brain Communications, 2023, 5, .	3.3	0
1528	Observations from the Proteomics Bench. Proteomes, 2024, 12, 6.	3.5	0
1529	A derived information framework for a dynamic knowledge graph and its application to smart cities. Future Generation Computer Systems, 2024, 152, 112-126.	7.5	5
1530	Rewiring Saccharomyces cerevisiae metabolism for optimised Taxol® precursors production. Metabolic Engineering Communications, 2024, 18, e00229.	3.6	0
1531	The SysteMHC Atlas v2.0, an updated resource for mass spectrometry-based immunopeptidomics. Nucleic Acids Research, 0, , .	14.5	1

#	Article	IF	CITATIONS
1532	Secondary Prevention and Extreme Cardiovascular Risk Evaluation (SEVERE-1), Focus on Prevalence and Associated Risk Factors: The Study Protocol. High Blood Pressure and Cardiovascular Prevention, 2023, 30, 573-583.	2.2	1
1533	A rugged yet easily navigable fitness landscape. Science, 2023, 382, .	12.6	5
1534	The genome sequence of the common earthworm, Lumbricus terrestris (Linnaeus, 1758). Wellcome Open Research, 0, 8, 500.	1.8	0
1536	SPIRE: a Searchable,ÂPlanetary-scale mIcrobiome REsource. Nucleic Acids Research, 2024, 52, D777-D783.	14.5	5
1537	Utility of wastewater genomic surveillance compared to clinical surveillance to track the spread of the SARS-CoV-2 Omicron variant across England. Water Research, 2023, 247, 120804.	11.3	2
1538	The genome sequence of a darkling beetle, Lagria hirta (Linnaeus, 1758). Wellcome Open Research, 0, 8, 501.	1.8	0
1539	An integrative pipeline for circular RNA quantitative trait locus discovery with application in human T cells. Bioinformatics, 2023, 39, .	4.1	0
1541	Spliceosomal introns in the diplomonad parasite Giardia duodenalis revisited. Microbial Genomics, 2023, 9, .	2.0	0
1542	The genome sequence of the Flame Shoulder, Ochropleura plecta (Linnaeus, 1761). Wellcome Open Research, 0, 8, 506.	1.8	0
1543	JLOH: Inferring loss of heterozygosity blocks from sequencing data. Computational and Structural Biotechnology Journal, 2023, 21, 5738-5750.	4.1	0
1544	The genome sequence of the Dusky Thorn, Ennomos fuscantarius (Haworth, 1809). Wellcome Open Research, 0, 8, 505.	1.8	0
1545	The genome sequence of the Black Spongefly, Sisyra nigra (Retzius, 1783). Wellcome Open Research, 0, 8, 511.	1.8	0
1546	The genome sequence of the Small Angle Shades, Euplexia lucipara (Linnaeus, 1758). Wellcome Open Research, 0, 8, 509.	1.8	0
1547	The genome sequence of the Heterolobosean amoeboflagellate, Tetramitus jugosus CCAP 1588/3C. Wellcome Open Research, 0, 8, 513.	1.8	0
1548	The genome sequence of the hazel dormouse, Muscardinus avellanarius (Linnaeus, 1758). Wellcome Open Research, 0, 8, 514.	1.8	1
1549	The genome sequence of the Six-belted Clearwing, Bembecia ichneumoniformis (Denis &) Tj ETQq1 1 0.7843	14 rgBT /(1.8	Overlock 10
1550	The genome sequence of the Brown-spot Pinion, Agrochola litura (Linnaeus, 1761). Wellcome Open Research, 0, 8, 512.	1.8	0
1551	The genome sequence of the Barred Red, Hylaea fasciaria (Linnaeus, 1758). Wellcome Open Research, 0, 8, 517.	1.8	0

#	Article	IF	Citations
1552	The genome sequence of a hoverfly, Epistrophe eligans (Harris, 1780). Wellcome Open Research, 0, 8, 521.	1.8	0
1553	The genome sequence of the Wasp Spider, Argiope bruennichi (Scopoli, 1772). Wellcome Open Research, 0, 8, 522.	1.8	0
1554	The genome sequence of the Rose-flounced Tabby, Endotricha flammealis (Denis & Schiffermüller,) Tj ETQ	2q0 0 0 rgl 1.8	BT /Overlock
1555	The genome sequence of a rove beetle, Othius punctulatus (Goeze, 1777). Wellcome Open Research, 0, 8, 519.	1.8	0
1556	The genome sequence of the chlorophyte Dunaliella primolecta CCAP 11/34 (Butcher, 1959). Wellcome Open Research, 0, 8, 523.	1.8	0
1557	The genome sequence of the stone loach, Barbatula barbatula (Linnaeus, 1758). Wellcome Open Research, 0, 8, 518.	1.8	0
1558	The genome sequence of Pycnococcus provasolii (CCAP190/2) (Guillard, 1991). Wellcome Open Research, 0, 8, 520.	1.8	0
1559	The genome sequence of the Downland Villa bee-fly, Villa cingulata (Meigen, 1804). Wellcome Open Research, 0, 8, 526.	1.8	0
1560	The genome sequence of the yellow-legged black legionnaire, Beris morrisii (Dale, 1841). Wellcome Open Research, 0, 8, 527.	1.8	1
1561	Methodology for Good Machine Learning with Multiâ€Omics Data. Clinical Pharmacology and Therapeutics, 2024, 115, 745-757.	4.7	1
1562	The genome sequence of the Winter Moth, Operophtera brumata (Linnaeus, 1758). Wellcome Open Research, 0, 8, 530.	1.8	0
1563	The genome sequence of the Beautiful Hook-tip, Laspeyria flexula (Denis & SchiffermuÌ`ller, 1775). Wellcome Open Research, 0, 8, 529.	1.8	0
1564	The genome sequence of the Chestnut, Conistra vaccinii (Linnaeus, 1761). Wellcome Open Research, 0, 8, 532.	1.8	0
1566	The genome sequence of the Large Longhorn, Nematopogon swammerdamella (Linnaeus, 1758). Wellcome Open Research, 0, 8, 531.	1.8	0
1567	The genome sequence of the pond olive, Cloeon dipterum. Wellcome Open Research, 0, 8, 540.	1.8	0
1570	Expression Atlas update: insights from sequencing data at both bulk and single cell level. Nucleic Acids Research, O, , .	14.5	0
1572	Content of stress granules reveals a sex difference at the early phase of cold exposure in mice. American Journal of Physiology - Endocrinology and Metabolism, 2024, 326, E29-E37.	3.5	0
1573	The genome sequence of the Gelatinous Scale Worm, Alentia gelatinosa (Sars, 1835). Wellcome Open Research, 0, 8, 542.	1.8	0

#	Article	IF	CITATIONS
1574	The genome sequence of a hoverfly, Pocota personata (Harris, 1780). Wellcome Open Research, 0, 8, 546.	1.8	0
1575	The genome sequence of the light-bulb sea squirt, Clavelina lepadiformis (Müller, 1776). Wellcome Open Research, 0, 8, 543.	1.8	0
1576	The genome sequence of the Lunar-spotted Pinion, Cosmia pyralina (Denis & SchiffermuÌ´ller, 1775). Wellcome Open Research, 0, 8, 545.	1.8	0
1577	FAIR+E pathogen data for surveillance and research: lessons from COVID-19. Frontiers in Public Health, 0, 11, .	2.7	Ο
1578	Sex and Age Impact CD4+ T Cell Susceptibility to HIV In Vitro through Cell Activation Dynamics. Cells, 2023, 12, 2689.	4.1	0
1579	The genome sequence of the bulrush Neoascia, Neoascia interrupta (Meigen, 1822). Wellcome Open Research, 0, 8, 549.	1.8	0
1580	The genome sequence of the Brown Rustic, Charanyca ferruginea (Esper, 1785). Wellcome Open Research, 0, 8, 547.	1.8	0
1581	The genome sequence of a ground beetle, Pterostichus niger (Schaller, 1783). Wellcome Open Research, 0, 8, 544.	1.8	0
1583	Mapping cardiac remodeling in chronic kidney disease. Science Advances, 2023, 9, .	10.3	1
1584	White matter microstructure is differently associated with executive functioning in youth born with congenital heart disease and youth born preterm. Brain and Behavior, 2023, 13, .	2.2	0
1587	The MAGMA pipeline for comprehensive genomic analyses of clinical Mycobacterium tuberculosis samples. PLoS Computational Biology, 2023, 19, e1011648.	3.2	2
1590	Molecular underpinnings and environmental drivers of loss of heterozygosity in Drosophila intestinal stem cells. Cell Reports, 2023, 42, 113485.	6.4	0
1591	The genome sequence of a digger wasp, Ectemnius lituratus (Panzer,1805). Wellcome Open Research, 0, 8, 552.	1.8	0
1592	A Bioinformatics Toolkit for Next-Generation Sequencing in Clinical Oncology. Current Issues in Molecular Biology, 2023, 45, 9737-9752.	2.4	0
1593	The genome sequence of the Common Snail-hunter beetle, Phosphuga atrata (Linnaeus, 1758). Wellcome Open Research, 0, 8, 562.	1.8	0
1594	Early mucosal events promote distinct mucosal and systemic antibody responses to live attenuated influenza vaccine. Nature Communications, 2023, 14, .	12.8	2
1595	The genome sequence of a caddisfly, Limnephilus auricula (Curtis, 1834). Wellcome Open Research, 0, 8, 560.	1.8	0
1596	The genome sequence of a weevil, Polydrusus cervinus (Linnaeus, 1758). Wellcome Open Research, 0, 8, 563.	1.8	0

#	Article	IF	CITATIONS
1597	The genome sequence of the Single-dotted Wave, Idaea dimidiata (Hufnagel, 1767). Wellcome Open Research, 0, 8, 557.	1.8	0
1598	The genome sequence of the nine-spined stickleback, Pungitius pungitius (Linnaeus, 1758). Wellcome Open Research, 0, 8, 555.	1.8	0
1599	The genome sequence of the European flat oyster, Ostrea edulis (Linnaeus, 1758). Wellcome Open Research, 0, 8, 556.	1.8	0
1600	The genome sequence of a solider beetle, Cantharis nigra (DeGeer, 1774). Wellcome Open Research, 0, 8, 558.	1.8	0
1601	The genome sequence of a tachinid fly, Thelaira solivaga (Harris, 1780). Wellcome Open Research, 0, 8, 564.	1.8	0
1602	The genome sequence of the Figure of Eight, Diloba caeruleocephala (Linnaeus, 1758). Wellcome Open Research, 0, 8, 554.	1.8	0
1603	The genome sequence of the Rose Chafer, Cetonia aurata (Linnaeus, 1758). Wellcome Open Research, 0, 8, 561.	1.8	1
1604	The genome sequence of a cranefly, Tipula unca (Wiedemann, 1817). Wellcome Open Research, 0, 8, 559.	1.8	0
1605	The genome sequence of the Webb's Wainscot, Globia sparganii (Esper, 1790). Wellcome Open Research, 0, 8, 565.	1.8	0
1606	Genomic instability analysis in DNA from Papanicolaou test provides proof-of-principle early diagnosis of high-grade serous ovarian cancer. Science Translational Medicine, 2023, 15, .	12.4	2
1607	The genome sequence of the Ochreous Pearl, Anania crocealis (Hübner, 1796). Wellcome Open Research, 0, 8, 568.	1.8	0
1608	The genome sequence of the Box Bug, Gonocerus acuteangulatus (Goeze, 1778). Wellcome Open Research, 0, 8, 567.	1.8	0
1609	The genome sequence of the Large Bear Hoverfly, Criorhina ranunculi (Panzer, 1804). Wellcome Open Research, 0, 8, 566.	1.8	0
1610	HRD related signature 3 predicts clinical outcome in advanced tubo-ovarian high-grade serous carcinoma. Gynecologic Oncology, 2024, 180, 91-98.	1.4	0
1611	pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods. BMC Bioinformatics, 2023, 24, .	2.6	5
1612	SPLASH: A statistical, reference-free genomic algorithm unifies biological discovery. Cell, 2023, 186, 5440-5456.e26.	28.9	0
1613	Epstein-Barr virus induces germinal center light zone chromatin architecture and promotes survival through enhancer looping at the <i>BCL2A1</i> locus. MBio, 0, , .	4.1	0
1614	Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nature Communications, 2023, 14, .	12.8	1

#	Article	IF	CITATIONS
1618	Beta-mannosidosis in a domestic cat associated with a missense variant in MANBA. Gene, 2024, 893, 147941.	2.2	0
1619	MicroRNA breed and parent-of-origin effects provide insights into biological pathways differentiating cattle subspecies in fetal liver. Frontiers in Genetics, 0, 14, .	2.3	0
1620	High-calorie diets uncouple hypothalamic oxytocin neurons from a gut-to-brain satiation pathway via κ-opioid signaling. Cell Reports, 2023, 42, 113305.	6.4	0
1621	Transcriptomic Changes in Response to Form of Selenium on the Interferon-Tau Signaling Mechanism in the Caruncular Tissue of Beef Heifers at Maternal Recognition of Pregnancy. International Journal of Molecular Sciences, 2023, 24, 17327.	4.1	1
1622	Churros: A docker-based pipeline for large-scale epigenomic analysis. DNA Research, 0, , .	3.4	0
1623	Metabarcoding for plant pathologists. Canadian Journal of Plant Pathology, 0, , 1-19.	1.4	0
1624	RIF1 regulates early replication timing in murine B cells. Nature Communications, 2023, 14, .	12.8	0
1625	The genome sequence of the July Highflyer, Hydriomena furcata (Thunberg, 1784). Wellcome Open Research, 0, 8, 496.	1.8	0
1626	The genome sequence of Fabricius' Nomad Bee, Nomada fabriciana (Linne, 1767). Wellcome Open Research, 0, 8, 497.	1.8	0
1627	The genome sequence of the Rock Grayling, Hipparchia semele (Linnaeus, 1758). Wellcome Open Research, 0, 8, 495.	1.8	0
1628	The genome sequence of the Hornet Moth, Sesia apiformis (Clerck, 1759). Wellcome Open Research, 0, 8, 499.	1.8	0
1629	The genome sequence of the Saxon Wasp, Dolichovespula saxonica (Fabricius, 1793). Wellcome Open Research, 0, 8, 498.	1.8	0
1630	The genome sequence of the brown sea anemone, Metridium senile (Linnaeus, 1761). Wellcome Open Research, 0, 8, 536.	1.8	0
1631	The genome sequence of the flutter-wing fly, Palloptera scutellata (Macquart, 1835). Wellcome Open Research, 0, 8, 534.	1.8	0
1632	The genome sequence of the common buff snailkiller, Tetanocera ferruginea (Fallén, 1820). Wellcome Open Research, 0, 8, 535.	1.8	0
1633	The genome sequence of the Variegated Golden Tortrix, Archips xylosteana (Linnaeus, 1758). Wellcome Open Research, 0, 8, 538.	1.8	0
1634	The genome sequence of an ichneumonid wasp, Heteropelma amictum (Fabricius, 1775). Wellcome Open Research, 0, 8, 537.	1.8	0
1635	Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell, 2023, 41, 2083-2099.e9.	16.8	6

#	Article	IF	CITATIONS
1638	The genome sequence of the white-footed hoverfly, Platycheirus albimanus (Fabricius, 1781). Wellcome Open Research, 0, 8, 572.	1.8	0
1641	Dual Targeting of DNA Damage Response Proteins Implicated in Cancer Radioresistance. Genes, 2023, 14, 2227.	2.4	0
1642	The genome sequence of a longhorn beetle, Rutpela maculata (Poda, 1769). Wellcome Open Research, 0, 8, 579.	1.8	0
1643	The genome sequence of Ashworth's Rustic, Xestia ashworthii (Doubleday, 1855). Wellcome Open Research, 0, 8, 578.	1.8	0
1645	PaintorPipe: a pipeline for genetic variant fine-mapping using functional annotations. Bioinformatics Advances, 0, , .	2.4	0
1646	Pipeline for RNA sequencing data analysis by combination of Nextflow and R. , 2023, , .		0
1647	Genomic portrait and relatedness patterns of the Iron Age Log Coffin culture in northwestern Thailand. Nature Communications, 2023, 14, .	12.8	1
1649	Gestational age at birth influences protein and RNA content in human milk extracellular vesicles. , 2024, 3, .		1
1650	The genome sequence of the Rosy Footman, Miltochrista miniata (Forster, 1771). Wellcome Open Research, 0, 8, 582.	1.8	0
1651	Combining Offâ€flow, a Nextflowâ€coded program, and whole genome sequencing reveals unintended genetic variation in CRISPR/Cas-edited iPSCs. Computational and Structural Biotechnology Journal, 2024, 23, 638-647.	4.1	0
1652	The genome sequence of a solitary sea squirt, Ascidia mentula (Müller, 1776). Wellcome Open Research, 0, 8, 583.	1.8	0
1653	The genome sequence of the Rosy Feather Star, Antedon bifida (Pennant, 1777). Wellcome Open Research, 0, 8, 584.	1.8	0
1654	A method for the systematic selection of enzyme panel candidates by solving the maximum diversity problem. BioSystems, 2024, 236, 105105.	2.0	1
1655	Molecular and associated approaches for studying soil biota and their functioning. , 2024, , 161-192.		0
1656	The genome sequence of the Tipped Oak Case-bearer, Coleophora flavipennella (Duponchel 1843). Wellcome Open Research, 0, 9, 3.	1.8	0
1657	Precision medicine using whole genome sequencing identifies a novel <i>dystrophin</i> (<i>DMD</i>) variant for <scp>X</scp> â€inked muscular dystrophy in a cat. Journal of Veterinary Internal Medicine, 2024, 38, 135-144.	1.6	1
1658	Whole genome sequencing in clinical practice. BMC Medical Genomics, 2024, 17, .	1.5	1
1659	A multi-omics data analysis workflow packaged as a FAIR Digital Object. GigaScience, 2024, 13, .	6.4	0

#	Article	IF	CITATIONS
1660	ReUseData: an R/Bioconductor tool for reusable and reproducible genomic data management. BMC Bioinformatics, 2024, 25, .	2.6	0
1661	The genome sequence of the English holly, Ilex aquifolium L. (Aquifoliaceae). Wellcome Open Research, 0, 9, 1.	1.8	0
1662	Creating cloud platforms for supporting FAIR data management in biomedical research projects F1000Research, 0, 13, 8.	1.6	0
1663	The genome sequence of the Brown Oak Tortrix, Archips crataeganus (Hübner, 1796). Wellcome Open Research, 0, 9, 9.	1.8	Ο
1664	The genome sequence of the Marbled White Spot, Protodeltote pygarga (Hufnagel, 1766). Wellcome Open Research, 0, 9, 7.	1.8	0
1665	The genome sequence of the Scorched Carpet, Ligdia adustata (Denis & SchiffermuÌ`ller, 1775). Wellcome Open Research, 0, 9, 16.	1.8	0
1666	The genome sequence of the Chequered Fruit-tree Tortrix, Pandemis corylana (Fabricius, 1794). Wellcome Open Research, 0, 9, 6.	1.8	0
1667	The genome sequence of the Lunar Underwing, Omphaloscelis lunosa (Haworth, 1809). Wellcome Open Research, 0, 9, 10.	1.8	0
1668	The genome sequence of an ichneumonid wasp, Exephanes ischioxanthus (Gravenhorst, 1829). Wellcome Open Research, 0, 9, 8.	1.8	0
1669	The genome sequence of the Hoary Footman, Eilema caniola (Hübner, 1808). Wellcome Open Research, 0, 9, 5.	1.8	0
1670	Predicting potential SARS-CoV-2 spillover and spillback in animals. Journal of Microbiology, Immunology and Infection, 2024, 57, 225-237.	3.1	0
1671	Neural extracellular matrix regulates visual sensory motor integration. IScience, 2024, 27, 108846.	4.1	Ο
1672	Evaluation of Genomic Contamination Detection Tools and Influence of Horizontal Gene Transfer on Their Efficiency through Contamination Simulations at Various Taxonomic Ranks. Applied Microbiology, 2024, 4, 124-132.	1.6	0
1676	nf-core/nanostring: a pipeline for reproducible NanoString nCounter analysis. Bioinformatics, 2024, 40, .	4.1	0
1678	Auto-GO: Reproducible, Robust and High Quality Ontology Enrichment Visualizations. , 2023, , .		0
1679	Communicating computational workflows in a regulatory environment. Drug Discovery Today, 2024, 29, 103884.	6.4	0
1680	Detection of DNA methylation signatures through the lens of genomic imprinting. Scientific Reports, 2024, 14, .	3.3	1
1681	Metagenomics untangles potential adaptations of Antarctic endolithic bacteria at the fringe of habitability. Science of the Total Environment, 2024, 917, 170290.	8.0	0

#	Article	IF	CITATIONS
1683	Pre-piRNA trimming safeguards piRNAs against erroneous targeting by RNA-dependent RNA polymerase. Cell Reports, 2024, 43, 113692.	6.4	0
1686	Acetyl-CoA production by Mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Molecular Cell, 2024, 84, 967-980.e10.	9.7	0
1687	Proactive Resource Management to Optimize Distributed Workflow Executions. , 2023, , .		0
1688	Predicting Dynamic Memory Requirements for Scientific Workflow Tasks. , 2023, , .		0
1689	Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Reports, 2024, 43, 113683.	6.4	0
1691	Viash: A meta-framework for building reusable workflow modules. Journal of Open Source Software, 2024, 9, 6089.	4.6	0
1693	Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Science Translational Medicine, 2024, 16, .	12.4	1
1694	Benchmarking of computational methods for m6A profiling with Nanopore direct RNA sequencing. Briefings in Bioinformatics, 2024, 25, .	6.5	2
1695	Numerical stability of DeepGOPlus inference. PLoS ONE, 2024, 19, e0296725.	2.5	0
1696	DNMT3B PWWP mutations cause hypermethylation of heterochromatin. EMBO Reports, 2024, 25, 1130-1155.	4.5	0
1699	Long-term effects of myo-inositol on traumatic brain injury: Epigenomic and transcriptomic studies. IBRO Neuroscience Reports, 2024, 16, 291-299.	1.6	0
1703	Machine Learning Methods for Gene Selection in Uveal Melanoma. International Journal of Molecular Sciences, 2024, 25, 1796.	4.1	0
1706	Unveiling the Dynamic Role of Bioinformatics in Automation for Efficient and Accurate Data Processing and Interpretation. , 2024, , 279-319.		0
1707	Evolutionary Analysis of Six Gene Families Part of the Reactive Oxygen Species (ROS) Gene Network in Three Brassicaceae Species. International Journal of Molecular Sciences, 2024, 25, 1938.	4.1	0
1709	Performing highly parallelized and reproducible GWAS analysis on biobank-scale data. NAR Genomics and Bioinformatics, 2024, 6, .	3.2	0
1712	The genome sequence of the citrus mealybug, Planococcus citri (Risso, 1913). Wellcome Open Research, 0, 9, 22.	1.8	0
1713	The genome sequence of the cottony cushion scale, Icerya purchasi (Maskell, 1879). Wellcome Open Research, 0, 9, 21.	1.8	0
1716	NFTest: automated testing of Nextflow pipelines. Bioinformatics, 2024, 40, .	4.1	0

#	Article	IF	CITATIONS
1717	PipeVal: light-weight extensible tool for file validation. Bioinformatics, 2024, 40, .	4.1	0
1718	Cloud-Native Computing: A Survey From the Perspective of Services. Proceedings of the IEEE, 2024, 112, 12-46.	21.3	0
1719	The genome sequence of the Shaded Pug, Eupithecia subumbrata (Denis & SchiffermuÌ^ller, 1775). Wellcome Open Research, 0, 9, 29.	1.8	0
1720	The genome sequence of a sawfly, Macrophya alboannulata (Costa, 1859). Wellcome Open Research, 0, 9, 28.	1.8	0
1721	The genome sequence of the small forest hoverfly, Chalcosyrphus nemorum (Fabricius, 1805). Wellcome Open Research, 0, 9, 23.	1.8	0
1722	The genome sequence of a stiletto fly, Thereva unica (Harris, 1780). Wellcome Open Research, 0, 9, 27.	1.8	0
1723	The genome sequence of the Top-horned Hunchback fly, Acrocera orbiculus (Fabricius, 1787). Wellcome Open Research, 0, 9, 25.	1.8	0
1724	The genome sequence of the Scarlet Tiger moth, Callimorpha dominula (Linnaeus, 1758). Wellcome Open Research, 0, 9, 31.	1.8	0
1725	MicroMPN: methods and software for high-throughput screening of microbe suppression in mixed populations. Microbiology Spectrum, 2024, 12, .	3.0	0
1726	Mapping Meiotic DNA Breaks: Two Fully-Automated Pipelines to Analyze Single-Strand DNA Sequencing Data, hotSSDS and hotSSDS-extra. Methods in Molecular Biology, 2024, , 227-261.	0.9	0
1727	The genome sequence of the spotted cranefly, Nephrotoma appendiculata (Pierre, 1919). Wellcome Open Research, 0, 9, 38.	1.8	0
1728	Mobilisation and analyses of publicly available SARS-CoV-2 data for pandemic responses. Microbial Genomics, 2024, 10, .	2.0	0
1729	The genome sequence of the forest hoverfly, Brachypalpus laphriformis (Fallén, 1816). Wellcome Open Research, 0, 9, 39.	1.8	0
1730	The genome sequence of the Stripe-backed Dasysyrphus, Dasysyrphus albostriatus (Fallén, 1817). Wellcome Open Research, 0, 9, 34.	1.8	0
1731	The genome sequence of the Oak Beauty, Biston strataria (Hufnagel, 1767). Wellcome Open Research, O, 9, 35.	1.8	0
1733	Transcriptional profiling of peripheral blood mononuclear cells identifies inflammatory phenotypes in Ataxia Telangiectasia. Orphanet Journal of Rare Diseases, 2024, 19, .	2.7	0
1734	The genome sequence of the hawthorn leaf beetle, Lochmaea crataegi (Forster, 1771). Wellcome Open Research, 0, 9, 80.	1.8	0
1735	The genome sequence of the spotted Meliscaeva, Meliscaeva auricollis (Meigen, 1822). Wellcome Open Research, 0, 9, 82.	1.8	0

ARTICLE IF CITATIONS # The genome sequence of the Pale Pinion, Lithophane socia (Hufnagel, 1766). Wellcome Open Research, 1736 1.8 0 0, 9, 73. The genome sequence of the March moth, Alsophila aescularia (Denis & amp; Schiffermļller). 1.8 Wellcome Open Research, 0, 9, 50. The genome sequence of a hoverfly, Syrphus vitripennis (Meigen, 1822). Wellcome Open Research, 0, 9, 1738 0 1.8 78. CNT: Semi-Automatic Translation from CWL to Nextflow for Genomic Workflows., 2023, , . The genome sequence of the Straw Underwing, Thalpophila matura (Hufnagel, 1766). Wellcome Open 1740 1.8 0 Research, 0, 9, 71. The genome sequence of the Large Nutmeg, Apamea anceps (Denis & amp; Schiffermul'iller, 1775). Wellcome 1741 1.8 Open Research, 0, 9, 61. The genome sequence of a hoverfly, Merodon equestris (Fabricius, 1794). Wellcome Open Research, 0, 1742 1.8 0 9,67. The genome sequence of the Red Chestnut moth, Cerastis rubricosa (SchiffermuÌ'ller, 1775). Wellcome 1743 1.8 Open Research, 0, 9, 88. The genome sequence of the giant willow aphid, Tuberolachnus salignus (Gmelin, 1790). Wellcome 1744 1.8 0 Open Research, 0, 9, 59. The genome sequence of the Large-spurred Digger Wasp, Nysson spinosus (Forster, 1771). Wellcome 1745 1.8 Open Research, 0, 9, 84. The genome sequence of the Hebrew Character, Orthosia gothica (Linnaeus, 1758). Wellcome Open 1746 0 1.8 Research, 0, 9, 90. The genome sequence of the Emperor moth, Saturnia pavonia (Linnaeus, 1758). Wellcome Open 1747 1.8 Research, 0, 9, 48. The genome sequence of the common pond skater, Gerris lacustris (Linnaeus, 1758). Wellcome Open 1748 1.8 0 Research, 0, 9, 51. The genome sequence of a ground beetle, Agonum fuliginosum (Panzer, 1809). Wellcome Open 1749 1.8 Research, 0, 9, 81. The genome sequence of the Dotted Grey Groundling, Athrips mouffetella (Linnaeus, 1758). Wellcome 1750 1.8 0 Open Research, 0, 9, 42. The genome sequence of the Peppered Grey, Eudonia truncicolella (Stainton, 1849). Wellcome Open 1.8 Research, 0, 9, 44. The genome sequence of a muscid fly, Hydrotaea cyrtoneurina (Zetterstedt, 1845). Wellcome Open 1752 1.8 0 Research, 0, 9, 60. The genome sequence of the black-footed limpet, Patella depressa (Pennant, 1777). Wellcome Open 1.8 Research, 0, 9, 47.

ARTICLE IF CITATIONS # The genome sequence of the Centre-barred Sallow, Atethmia centrago (Haworth, 1809). Wellcome 1754 1.8 0 Open Research, 0, 9, 53. The genome sequence of a metallic wood-boring beetle, Agrilus cyanescens (Ratzeburg, 1837). 1.8 Wellcome Open Research, 0, 9, 46. The genome sequence of Vine's Rustic moth, Hoplodrina ambigua (Denis & Schiffermul̀`ller, 1775). 1756 0 1.8 Wellcome Open Research, 0, 9, 89. The genome sequence of a spongefly, Sisyra terminalis (Curtis, 1854). Wellcome Open Research, 0, 9, 49. 1.8 The genome sequence of the parsley Cheilosia, Cheilosia pagana (Meigen, 1822). Wellcome Open 1758 1.8 0 Research, 0, 9, 54. The genome sequence of a barkfly, Mesopsocus fuscifrons Meinander, 1966. Wellcome Open Research, 0, 9, 72. 1759 1.8 1760 The genome sequence of a hoverfly, Cheilosia impressa (Loew, 1840). Wellcome Open Research, 0, 9, 74. 1.8 0 The genome sequence of the Lobe-spurred Furrow Bee, Lasioglossum pauxillum (Schenck, 1853). 1761 1.8 Wellcome Open Research, 0, 9, 86. The genome sequence of the White-point, Mythimna albipuncta (Denis & amp; Schiffermul'îller, 1775). 1762 1.8 0 Wellcome Open Research, 0, 9, 62. The genome sequence of a pipunculid fly, Nephrocerus scutellatus (Macquart, 1834). Wellcome Open 1763 1.8 Research, 0, 9, 41. The genome sequence of the Red Twin-spot Carpet, Xanthorhoe spadicearia (Denis & amp;) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 342 Tc 1764 The genome sequence of the drosophilid fruit fly, Drosophila phalerata (Meigen, 1830). Wellcome Open 1.8 Research, 0, 9, 63. The genome sequence of Ramsons hoverfly, Portevinia maculata (Fallén, 1817). Wellcome Open 1766 1.8 0 Research, 0, 9, 52. The genome sequence of a hoverfly, Brachyopa scutellaris Robineau-Desvoidy, 1843. Wellcome Open 1767 1.8 Research, 0, 9, 66. The genome sequence of a hoverfly, Eristalinus aeneus (Scopoli, 1763). Wellcome Open Research, 0, 9, 1768 1.8 0 69. The genome sequence of a drosophilid fruit fly, Drosophila histrio (Meigen, 1830). Wellcome Open 1769 1.8 Research, 0, 9, 56. The genome sequence of the Mottled Pug, Eupithecia exiguata (Hulrbner, 1813). Wellcome Open Research, 1770 1.8 0 0, 9, 65. The genome sequence of a muscid fly, Polietes domitor (Harris, 1780). Wellcome Open Research, 0, 9, 58. 1771 1.8
CITATION REPORT

#	Article	IF	CITATIONS
1772	ViromeFlowX: a Comprehensive Nextflow-based Automated Workflow for Mining Viral Genomes from Metagenomic Sequencing Data. Microbial Genomics, 2024, 10, .	2.0	0
1773	Transcriptomic basis of sex loss in the pea aphid. BMC Genomics, 2024, 25, .	2.8	0
1774	The genome sequence of the Mournful Wasp, Pemphredon lugubris (Fabricius, 1793). Wellcome Open Research, 0, 9, 93.	1.8	0
1775	The genome sequence of the little shaggy moss, Rhytidiadelphus loreus (Hedw.) Warnst. (Hylocomiaceae). Wellcome Open Research, 0, 9, 94.	1.8	0
1777	Whole-genome sequencing of SARS-CoV-2 from the initial cases of domestic cat infections in Canada. Microbiology Resource Announcements, 2024, 13, .	0.6	0
1779	Bashing irreproducibility with shournal. Scientific Reports, 2024, 14, .	3.3	0
1780	Chemical modification patterns for microRNA therapeutic mimics: a structure-activity relationship (SAR) case-study on miR-200c. Nucleic Acids Research, 2024, 52, 2792-2807.	14.5	0
1781	The genome sequence of the White-triangle Button, Acleris holmiana (Linnaeus, 1758). Wellcome Open Research, 0, 9, 97.	1.8	0
1782	The genome sequence of a conopid fly, Myopa testacea (Linnaeus, 1767). Wellcome Open Research, 0, 9, 99.	1.8	0
1783	The genome sequence of the White-pinion Spotted, Lomographa bimaculata (Fabricius, 1775). Wellcome Open Research, 0, 9, 96.	1.8	0
1784	The genome sequence of field madder, Sherardia arvensis L., 1753 (Rubiaceae). Wellcome Open Research, 0, 9, 126.	1.8	0
1785	The genome sequence of the ten-spot ladybird, Adalia decempunctata (Linnaeus, 1758). Wellcome Open Research, 0, 9, 106.	1.8	Ο
1786	The genome sequence of the Greater Wax Moth, Galleria mellonella Linnaeus, 1758. Wellcome Open Research, 0, 9, 101.	1.8	0
1787	The genome sequence of the wood-carving leafcutter bee, Megachile ligniseca (Kirby, 1802). Wellcome Open Research, 0, 9, 103.	1.8	Ο
1788	The genome sequence of the Chalk Hill Pearl moth Mecyna flavalis (Denis & Schiffermüller, 1775). Wellcome Open Research, 0, 9, 118.	1.8	0
1789	The genome sequence of spotted medick, Medicago arabica (L.) Huds. (Fabaceae). Wellcome Open Research, 0, 9, 116.	1.8	Ο
1790	The genome sequence of weasel's snout, Misopates orontium (L.) Raf. (Plantaginaceae). Wellcome Open Research, 0, 9, 123.	1.8	0
1791	The genome sequence of the Blood-vein moth, Timandra comae Schmidt, 1931. Wellcome Open Research, 0, 9, 100.	1.8	0

CITATION REPORT

#	Article	IF	CITATIONS
1792	The genome sequence of a mirid plant bug, Pilophorus perplexus Douglas and Scott, 1875. Wellcome Open Research, 0, 9, 122.	1.8	0
1793	The genome sequence of the Black Lace-weaver spider, Amaurobius ferox (Walckenaer, 1830). Wellcome Open Research, 0, 9, 105.	1.8	0
1794	The genome sequence of the Green Silver-lines, Pseudoips prasinana (Linnaeus, 1758). Wellcome Open Research, 0, 9, 117.	1.8	0
1795	The genome sequence of a hoverfly, Cheilosia scutellata (FalleÌn, 1817). Wellcome Open Research, 0, 9, 125.	1.8	0
1796	The genome sequence of the Case-bearing Clothes moth, Tinea pellionella (Linnaeus, 1758). Wellcome Open Research, 0, 9, 119.	1.8	0
1797	The genome sequence of the dark-based cluster fly, Pollenia labialis Robineau-Desvoidy, 1863. Wellcome Open Research, 0, 9, 110.	1.8	0
1798	The genome sequence of a click beetle, Melanotus villosus (Geoffroy in Fourcroy, 1785). Wellcome Open Research, 0, 9, 108.	1.8	0
1799	The genome sequence of the Elephant Hawk-moth, Deilephila elpenor (Linnaeus, 1758). Wellcome Open Research, 0, 9, 104.	1.8	0
1800	The genome sequence of common knotgrass, Polygonum aviculare L. (Polygonaceae). Wellcome Open Research, 0, 9, 112.	1.8	0
1801	The genome sequence of a soldier beetle, Malthinus flaveolus (Herbst, 1786). Wellcome Open Research, 0, 9, 121.	1.8	0
1802	The genome sequence of the Annual Mercury, Mercurialis annua L., 1753 (Euphorbiaceae). Wellcome Open Research, 0, 9, 102.	1.8	0
1803	The genome sequence of Daubenton's bat, Myotis daubentonii (Kuhl, 1817). Wellcome Open Research, 0, 9, 107.	1.8	0
1804	The genome sequence of a parasitoid wasp, Gasteruption jaculator (Linnaeus, 1758). Wellcome Open Research, 0, 9, 109.	1.8	0
1805	The genome sequence of great wood-rush, Luzula sylvatica (Huds) Gaudin. Wellcome Open Research, 0, 9, 124.	1.8	0
1806	The genome sequence of the big-headed mining bee, Andrena bucephala (Stephens, 1846). Wellcome Open Research, 0, 9, 111.	1.8	0
1807	The genome sequence of the semaphore fly, Poecilobothrus nobilitatus (Linnaeus, 1767). Wellcome Open Research, 0, 9, 91.	1.8	0
1808	How tool combinations in different pipeline versions affect the outcome in RNA-seq analysis. NAR Genomics and Bioinformatics, 2024, 6, .	3.2	0
1810	The genome sequence of the meadow plant bug, Leptopterna dolabrata (Linnaeus, 1758). Wellcome Open Research, 0, 9, 128.	1.8	0

#	Article	IF	CITATIONS
1811	The genome sequence of the Rivulet moth, Perizoma affinitatum (Stephens, 1831). Wellcome Open Research, 0, 9, 127.	1.8	0
1812	Validation of RNA Extraction Methods and Suitable Reference Genes for Gene Expression Studies in Developing Fetal Human Inner Ear Tissue. International Journal of Molecular Sciences, 2024, 25, 2907.	4.1	0
1813	A metagenomic prospective cohort study on gut microbiome composition and clinical infection in small bowel transplantation. Gut Microbes, 2024, 16, .	9.8	0
1814	CASZ1 Is Essential for Skin Epidermal Terminal Differentiation. Journal of Investigative Dermatology, 2024, , .	0.7	0
1815	Multi-omic dataset of patient-derived tumor organoids of neuroendocrine neoplasms. GigaScience, 2024, 13, .	6.4	0
1816	The genome sequence of a heart cockle, Fragum fragum (Linnaeus, 1758). Wellcome Open Research, 0, 9, 129.	1.8	0
1817	The genome sequence of the horse's hoof clam, Hippopus hippopus (Linnaeus, 1758). Wellcome Open Research, 0, 9, 131.	1.8	0
1818	The genome sequence of a heart cockle, Fragum whitleyi Iredale, 1929. Wellcome Open Research, 0, 9, 130.	1.8	0
1819	The genome sequence of the Summer Chafer, Amphimallon solstitiale (Linnaeus, 1758). Wellcome Open Research, 0, 9, 138.	1.8	0
1820	The genome sequence of the Beautiful China-mark moth Nymphula nitidulata (Hufnagel, 1767). Wellcome Open Research, 0, 9, 135.	1.8	0
1821	Long-read sequencing for fast and robust identification of correct genome-edited alleles: PCR-based and Cas9 capture methods. PLoS Genetics, 2024, 20, e1011187.	3.5	0
1822	The genome sequence of Gwynne's mining bee, Andrena bicolor Fabricius, 1775. Wellcome Open Research, 0, 9, 140.	1.8	0
1823	The genome sequence of the Four-banded Bee-grabber, Conops quadrifasciatus De Geer, 1776. Wellcome Open Research, 0, 9, 136.	1.8	0
1824	The genome sequence of the Golden-brown Fern moth, Musotima nitidalis (Walker, [1866]). Wellcome Open Research, 0, 9, 132.	1.8	0
1825	The genome sequence of the Water Veneer, Acentria ephemerella (Denis & SchiffermuÌ`ller, 1775). Wellcome Open Research, 0, 9, 134.	1.8	0
1826	AlphaPept: a modern and open framework for MS-based proteomics. Nature Communications, 2024, 15, .	12.8	0
1827	Enhancing coevolutionary signals in protein–protein interaction prediction through clade-wise alignment integration. Scientific Reports, 2024, 14, .	3.3	0
1829	Multiorientation mapping of white matter fiber microstructures in whole mouse brains using serial optical coherence tomography. , 2024, , .		0

#	ARTICLE	IF	CITATIONS
1831	infections. MBio, 2024, 15, .	4.1	0
1832	A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces. Biomaterials, 2024, 307, 122527.	11.4	0
1833	The genome sequence of the thickback sole, Microchirus variegatus (Donovan, 1808). Wellcome Open Research, 0, 9, 152.	1.8	0
1834	The genome sequence of the giant clam, Tridacna gigas (Linnaeus, 1758). Wellcome Open Research, 0, 9, 145.	1.8	0
1835	The genome sequence of the Brown China-mark moth, Elophila nymphaeata (Linnaeus, 1758). Wellcome Open Research, 0, 9, 155.	1.8	0
1836	The genome sequence of the John Dory, Zeus faber Linnaeus, 1758. Wellcome Open Research, 0, 9, 150.	1.8	0
1837	The genome sequence of the Black Goby, Gobius niger Linnaeus, 1758. Wellcome Open Research, 0, 9, 153.	1.8	0
1838	The genome sequence of strawberry clover, Trifolium fragiferum L. (Fabaceae). Wellcome Open Research, 0, 9, 158.	1.8	0
1839	The genome sequence of the Orange-tailed Clearwing, Synanthedon andrenaeformis (Laspeyres, 1801). Wellcome Open Research, 0, 9, 160.	1.8	0
1840	The genome sequence of the Lesser Skullcap, Scutellaria minor Huds., 1762 (Lamiaceae). Wellcome Open Research, 0, 9, 165.	1.8	0
1841	Creating cloud platforms for supporting FAIR data management in biomedical research projects F1000Research, 0, 13, 8.	1.6	0
1842	Translating genetic findings to epigenetics: identifying the mechanisms associated with aging after high-radiation exposure on earth and in space. Frontiers in Public Health, 0, 12, .	2.7	0
1843	Validity constraints for data analysis workflows. Future Generation Computer Systems, 2024, 157, 82-97.	7.5	0
1844	A novel large intragenic DPYD deletion causing dihydropyrimidine dehydrogenase deficiency: a case report. BMC Medical Genomics, 2024, 17, .	1.5	0
1846	Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nature Communications, 2024, 15, .	12.8	0
1848	The genome sequence of the Crescent Groundling, Teleiodes luculella (Hübner, 1813). Wellcome Open Research, 0, 9, 143.	1.8	0
1849	Protocol for identifying differentially expressed genes using the RumBall RNA-seq analysis platform. STAR Protocols, 2024, 5, 102926.	1.2	0
1850	The genome sequence of the Judas Tree Seed Beetle, Bruchidius siliquastri Delobel, 2007. Wellcome Open Research, 0, 9, 142.	1.8	0

CITATION REPORT

ARTICLE

The genome sequence of the European shag, Gulosus aristotelis (previously Phalacrocorax) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 Tc 1851

1852	Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics, 2024, 25, .	2.8	0
1853	Differentiation is accompanied byÂa progressive loss in transcriptional memory. BMC Biology, 2024, 22, .	3.8	0
1854	Exploring associations between the teat apex metagenome and <i>Staphylococcus aureus</i> intramammary infections in primiparous cows under organic directives. Applied and Environmental Microbiology, 2024, 90, .	3.1	0
1855	The genome sequence of the Orange-tipped sea squirt, Corella eumyota Traustedt, 1882. Wellcome Open Research, 0, 9, 146.	1.8	0
1856	Sequencing technologies and hardware-accelerated parallel computing transform computational genomics research. Frontiers in Bioinformatics, 0, 4, .	2.1	0
1857	The genome sequence of the Orchid Beetle, Dascillus cervinus (Linnaeus, 1758). Wellcome Open Research, 0, 9, 148.	1.8	0
1858	The genome sequence of the yellow-legged black legionnaire, Beris chalybata (Forster, 1771). Wellcome Open Research, 0, 9, 151.	1.8	0
1859	The Flux Operator. F1000Research, 0, 13, 203.	1.6	0
1861	Simultaneously decreasing arsenic and cadmium in rice by soil sulfate and limestone amendment under intermittent flooding. Environmental Pollution, 2024, 347, 123786.	7.5	0
1862	The genome sequence of the Green Carpet moth, Colostygia pectinataria (Knoch, 1781). Wellcome Open Research, 0, 9, 159.	1.8	0
1863	Dietary fiber is a critical determinant of pathologic ILC2 responses and intestinal inflammation. Journal of Experimental Medicine, 2024, 221, .	8.5	0
1864	The genome sequence of Willughby's leafcutter bee, Megachile willughbiella (Kirby, 1802). Wellcome Open Research, 0, 9, 164.	1.8	0
1865	The genome sequence of the Red-belted Clearwing, Synanthedon myopaeformis (Borkhausen, 1789). Wellcome Open Research, 0, 9, 162.	1.8	0
1866	The genome sequence of rosebay willowherb Chamaenerion angustifolium (L.) Scop., 1771 (syn.) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf !

1867	The genome sequence of the Cretan wall lizard, Podarcis cretensisA(Wettstein, 1952). Wellcome Open Research, 0, 9, 161.	1.8	Ο	