Ultrastrong steel via minimal lattice misfit and high-de

Nature 544, 460-464 DOI: 10.1038/nature22032

Citation Report

#	Article	IF	CITATIONS
1	Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition. Acta Materialia, 2017, 129, 52-60.	3.8	224
2	Precipitation strengthening of ductile Cr 15 Fe 20 Co 35 Ni 20 Mo 10 alloys. Scripta Materialia, 2017, 137, 88-93.	2.6	157
3	Nano-sized precipitation arising from partial substitution of Mo for Cr in FeCo-2V-0.5Cr alloy and its role in creep resistance. Materials Characterization, 2017, 130, 74-80.	1.9	1
4	Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700°C. Journal of Alloys and Compounds, 2017, 729, 903-913.	2.8	39
5	High dislocation density–induced large ductility in deformed and partitioned steels. Science, 2017, 357, 1029-1032.	6.0	729
6	Evolution of crystal structure of Cu precipitates in a low carbon steel. Materials and Design, 2017, 135, 92-101.	3.3	77
7	Ultrahigh-strength steels strengthened by nanoparticles. Science Bulletin, 2017, 62, 1043-1044.	4.3	12
8	Making steel strong and cheap. Nature Materials, 2017, 16, 787-789.	13.3	51
9	Seeking comfort in the Iron Age. Nature Materials, 2017, 16, 789-789.	13.3	0
10	Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Materials and Design, 2017, 134, 23-34.	3.3	351
11	Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties. Scientific Reports, 2017, 7, 15619.	1.6	20
12	Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys. Materials Characterization, 2017, 134, 194-201.	1.9	44
13	Interface optimization of CNT/Cu composite by forming TiC nanoprecipitation and low interface energy structure via spark plasma sintering. Journal of Alloys and Compounds, 2017, 722, 852-858.	2.8	52
14	Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test. Materials, 2017, 10, 1129.	1.3	32
15	A New Maraging Stainless Steel with Excellent Strength–Toughness–Corrosion Synergy. Materials, 2017, 10, 1293.	1.3	25
16	Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles. Materials, 2017, 10, 1371.	1.3	9
17	Insight into solid-solution strengthened bulk and stacking faults properties in Ti alloys: a comprehensive first-principles study. Journal of Materials Science, 2018, 53, 7493-7505.	1.7	17
18	The W alloying effect on thermal stability and hardening of nanostructured Cu–W alloyed thin films. Nanotechnology, 2018, 29, 195705.	1.3	12

#	Article	IF	CITATIONS
20	Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Materialia, 2018, 149, 350-363.	3.8	287
21	Microstructure and Mechanical Properties of Al _{25 â~'<i> x</i>} Cr _{25 + 0.5<i>x</i>} Fe ₂₅ Ni _{25â€% (<i>x</i> = 19, 17, 15 at%) Multiâ€Component Alloys. Advanced Engineering Materials, 2018, 20, 1701}		5 & i>x
22	Surface nanocrystallization of 17-4 precipitation-hardening stainless steel subjected to ultrasonic surface rolling process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 69-81.	2.6	105
23	Manipulating nanostructure to simultaneously improve the electrical conductivity and strength in microalloyed Al-Zr conductors. Scientific Reports, 2018, 8, 6202.	1.6	14
24	Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 187-195.	2.6	37
25	Effect of magnesium on microstructure and properties of Cu-Cr alloy. Journal of Alloys and Compounds, 2018, 752, 191-197.	2.8	80
26	Strain partitioning behavior of in situ Ti5Si3/TiAl composites. Journal of Alloys and Compounds, 2018, 744, 182-186.	2.8	21
27	High-temperature strengthening mechanisms of Laves and B2 precipitates in a novel ferritic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 110-116.	2.6	14
28	Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation-hardening martensitic stainless steel 15-5 PH. Materials and Design, 2018, 143, 141-149.	3.3	50
29	Novel high-entropy and medium-entropy stainless steels with enhanced mechanical and anti-corrosion properties. Materials Science and Technology, 2018, 34, 572-579.	0.8	9
30	Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scripta Materialia, 2018, 148, 51-55.	2.6	154
31	Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Materialia, 2018, 147, 213-225.	3.8	252
32	Preparing bulk ultrafine-microstructure high-entropy alloys <i>via</i> direct solidification. Nanoscale, 2018, 10, 1912-1919.	2.8	51
33	Effects of cold rolling on the microstructure and properties of Fe-Cr-Ni-Mo-Ti maraging steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 663-670.	2.6	24
34	Effects of Cobalt on the structure and mechanical behavior of non-equal molar CoxFe50â^'xCr25Ni25 high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 221-228.	2.6	37
35	Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. ACS Applied Materials & Interfaces, 2018, 10, 3609-3615.	4.0	74
36	Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 2018, 146, 280-293.	3.8	131
37	Characterization of cold-rolled heterogeneous microstructure formed by multimodal deformation in an Fe-Ni-Al-C alloy with lattice softening. Materials and Design, 2018, 153, 166-176.	3.3	6

(Citation	Report	

#	Article	IF	CITATIONS
38	Revealing extraordinary strength and toughness of multilayer TWIP/Maraging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 70-77.	2.6	32
39	Dual Phase Synergy Enabled Large Elastic Strains of Nanoinclusions in a Dislocation Slip Matrix Composite. Nano Letters, 2018, 18, 2976-2983.	4.5	12
40	Precipitation hardening effects on extension twinning in magnesium alloys. International Journal of Plasticity, 2018, 106, 186-202.	4.1	89
41	Nature-Inspired Hierarchical Steels. Scientific Reports, 2018, 8, 5088.	1.6	47
42	Strain rate-induced plasticity in bcc β-Ti alloy single crystal micropillars containing brittle ω-precipitates. Materials and Design, 2018, 137, 404-413.	3.3	18
43	Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 2018, 17, 63-71.	13.3	1,517
44	Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. International Journal of Plasticity, 2018, 100, 177-191.	4.1	193
45	Precipitation and growth behavior of mushroom-like Ni3Al. Materials Letters, 2018, 211, 5-8.	1.3	18
46	Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study. Acta Materialia, 2018, 145, 30-40.	3.8	40
47	Self-assembled metal nano-multilayered film prepared by co-sputtering method. Applied Surface Science, 2018, 435, 16-22.	3.1	18
48	Atom probe tomography study of Fe-Ni-Al-Cr-Ti ferritic steels with hierarchically-structured precipitates. Acta Materialia, 2018, 144, 707-715.	3.8	26
49	Microstructure characterization of Cu-rich B2 intermetallic nanoprecipitates in an austenite-based High specific strength steel. IOP Conference Series: Materials Science and Engineering, 0, 418, 012009.	0.3	2
50	Computing the 3D Radial Distribution Function from Particle Positions: An Advanced Analytic Approach. Analytical Chemistry, 2018, 90, 13909-13914.	3.2	23
51	Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review. Entropy, 2018, 20, 878.	1.1	100
52	Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362, 933-937.	6.0	950
53	Ultrastrong nanocrystalline steel with exceptional thermal stability and radiation tolerance. Nature Communications, 2018, 9, 5389.	5.8	88
54	First-principles investigation of Sc-III/IV under high pressure. Physical Review B, 2018, 98, .	1.1	12
55	In-Situ Nanoparticles: A New Strengthening Method for Metallic Structural Material. Applied Sciences (Switzerland), 2018, 8, 2479.	1.3	9

#	Article	IF	CITATIONS
56	An anomalous thermal expansion phenomenon induced by phase transition of Fe-Co-Ni alloys. Journal of Applied Physics, 2018, 124, 215107.	1.1	7
57	Generation of high-performance Ni-Cr-Mo-based superalloys via γ to DO22 superlattice ordered phase transformation upon addition of trace alloying elements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 38-43.	2.6	10
58	Interface dominated cooperative nanoprecipitation in interstitial alloys. Nature Communications, 2018, 9, 4017.	5.8	12
59	High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature Communications, 2018, 9, 4063.	5.8	399
60	Structure and properties of GCr15 modified by multiphase ceramic nanoparticles /Fe-C composite inoculants. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 63-74.	2.6	19
61	Effect of Zr Addition on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Synthesized by Spark Plasma Sintering. Entropy, 2018, 20, 810.	1.1	19
62	Ultrastrong Translucent Glass Ceramic with Nanocrystalline, Biomimetic Structure. Nano Letters, 2018, 18, 7146-7154.	4.5	29
63	Thermodynamic Analysis of Ti3O5Nanoparticles Formed in Melt and Their Effects on Ferritic Steel Microstructure. Materials, 2018, 11, 1343.	1.3	4
64	Numerical Benchmark of Phase-Field Simulations with Elastic Strains: Precipitation in the Presence of Chemo-Mechanical Coupling. Computational Materials Science, 2018, 155, 541-553.	1.4	15
65	Ductilizing brittle high-entropy alloys via tailoring valence electron concentrations of precipitates by controlled elemental partitioning. Materials Research Letters, 2018, 6, 600-606.	4.1	41
66	Deformation-induced nontetragonality of martensite in carbon steels. Materials Letters, 2018, 227, 213-216.	1.3	6
67	On the origin and contribution of extended kinks and jogs and stacking fault ribbons to deformation behavior in an ultrahigh strength cobalt-free maraging steel with high density of low lattice misfit precipitates. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 208-217.	2.6	14
68	Effects of Surface-Modified MgO Nanoparticles on Inclusion Characteristics and Microstructure in Carbon Structural Steel. Jom, 2018, 70, 1136-1142.	0.9	8
69	Tunability of martensitic behavior through coherent nanoprecipitates and other nanostructures. Acta Materialia, 2018, 154, 295-302.	3.8	6
70	Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 119-136.	2.6	23
71	Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. microstructure. Journal of Alloys and Compounds, 2018, 763, 592-605.	2.8	21
72	Precipitation stability and micro-property of (Nb, Ti)C carbides in MMC coating. Journal of Alloys and Compounds, 2018, 763, 670-678.	2.8	42
73	Reversed strength-ductility relationship in microstructurally flexible high entropy alloy. Scripta Materialia, 2018, 154, 163-167.	2.6	72

#	Article	IF	CITATIONS
74	On the nexus between atom probe microscopy and density functional theory simulations. Materials Characterization, 2018, 146, 347-358.	1.9	19
75	Study on the mechanical behavior of twinning-induced plasticity steel processed by warm forging and annealing. Journal of Materials Science, 2018, 53, 14645-14656.	1.7	4
76	L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997.	1.2	86
77	Mechanical Behavior of Twinning Induced Plasticity Steel Processed by Warm Forging and Annealing. Defect and Diffusion Forum, 0, 385, 21-26.	0.4	0
78	Departing from the mutual exclusiveness of strength and ductility in nanocrystalline metals with vacancy induced plasticity. Scripta Materialia, 2018, 157, 39-43.	2.6	6
79	Graphene quality dominated interface deformation behavior of graphene-metal composite: The defective is better. International Journal of Plasticity, 2018, 111, 253-265.	4.1	50
80	A low-alloy high-carbon martensite steel with 2.6â€ [−] GPa tensile strength and good ductility. Acta Materialia, 2018, 158, 247-256.	3.8	124
81	Increasing the creep resistance of Fe-Ni-Al-Cr superalloys via Ti additions by optimizing the B2/L21 ratio in composite nano-precipitates. Acta Materialia, 2018, 157, 142-154.	3.8	51
82	Strain Rate Effect on Tensile Behavior for a High Specific Strength Steel: From Quasi-Static to Intermediate Strain Rates. Metals, 2018, 8, 11.	1.0	40
83	A Review on Nano-Scale Precipitation in Steels. Technologies, 2018, 6, 36.	3.0	48
84	Stress-induced elastic modulus evolution in metallic glasses. Materials Research Express, 2018, 5, 076505.	0.8	1
85	An atomic mechanism for the formation of nanotwins in high carbon martensite. Journal of Alloys and Compounds, 2018, 767, 68-72.	2.8	18
86	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	3.3	114
87	Interface modification of tempered martensite utilizing nano-scale transition carbide via isothermal sub-zero treatment. Materials Letters, 2018, 231, 175-178.	1.3	4
88	Continuous and reversible atomic rearrangement in a multifunctional titanium alloy. Materialia, 2018, 2, 1-8.	1.3	20
89	Effect of secondary phase particles on the tensile behavior of Mg-Zn-Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 288-294.	2.6	32
90	Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering Reports, 2018, 133, 1-59.	14.8	401
91	Revealing the local lattice strains and strengthening mechanisms of Ti alloys. Computational Materials Science, 2018, 152, 169-177.	1.4	29

ARTICLE IF CITATIONS # Parameter free quantitative analysis of atom probe data by correlation functions: Application to the 2.6 55 92 precipitation in Al-Zn-Mg-Cu. Scripta Materialia, 2018, 154, 106-110. Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys. 1.6 Scientific Reports, 2018, 8, 8698. Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. 94 1.6 138 Scientific Reports, 2018, 8, 8816. An investigation on the microstructure and mechanical properties in an ultrafine lamellar martensitic steel processed by heavy warm rolling and tempering. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 369-376. 95 Microstructural evolution and precipitation strengthening in a new 20Cr ferritic trial steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and 96 2.6 13 Processing, 2019, 742, 734-742. Hallâ€"Petch Relationship in Electrically Pulsed Alâ€"Znâ€"Mg Alloys. Advanced Engineering Materials, 1.6 2019, 21, 1900638. Effect of deformation on precipitation hardening behavior of a maraging steel in the aging process. 98 1.9 18 Materials Characterization, 2019, 155, 109827. Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138241. 90 2.6 48 Characterization of nano-sized precipitation and dislocations and the correlation with mechanical 100 properties of a low alloy TRIP-aided steel. Materials Science & amp; Engineering A: Structural Materials: 2.6 15 Properties, Microstructure and Processing, 2019, 763, 138149. Effect of surface-modified MgO nanoparticles on intragranular ferrite nucleated on inclusions in 3.3 low-alloy steel. Materials and Design, 2019, 182, 108004. A new magnesium sheet alloy and its multi-stage homogenization for simultaneously improved 102 49 2.6 ductility and strength at room temperature. Scripta Materialia, 2019, 171, 92-97. On the Formation of Nanoscale Intergranular Intermetallic Compound Films in a Cu-5 at. pct Zr Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1.1 4569-4581 Current-driving dissolution of nanoscale brittle precipitates produced by spinodal decomposition in 104 2.8 32 FeCrAl alloys. Journal of Alloys and Compounds, 2019, 805, 26-32. Co-precipitation kinetics, microstructural evolution and interfacial segregation in multicomponent nano-precipitated steels. Materials Characterization, 2019, 155, 109786. Evolution of B2 and laves phases in a ferritic steel under Fe2+ ion irradiation at 475â€Â°C. Journal of 106 1.3 11 Nuclear Materials, 2019, 525, 102-110. Thermodynamics Analysis of Multiple Microelements' Coupling Behavior in High Fatigue Resistance 50CrVA Śpring Steel with Nanoparticles. Materials, 2019, 12, 2952. Delamination toughening in a low carbon microalloyed steel plate rolled in the dual-phase region. 108 Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and 2.6 17 Processing, 2019, 766, 138342. ODS alloy with ferritic-austenitic duplex matrix and NiAl precipitation prepared by master alloy 109 2.8 approach. Journal of Alloys and Compounds, 2019, 811, 152066.

#	Article	IF	CITATIONS
110	Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 767, 138394.	2.6	25
111	Decreasing yield ratio of 70â€ ⁻ GPa·% grade hot-rolled medium Mn steel by weakening multi-strengthening effects. Vacuum, 2019, 170, 108972.	1.6	6
112	Strategies for improving the sustainability of structural metals. Nature, 2019, 575, 64-74.	13.7	301
113	Effect of selective-precipitations process on the corrosion resistance and hardness of dual-phase high-carbon steel. Scientific Reports, 2019, 9, 15631.	1.6	6
114	Investigation of Temperature and Feature Size Effects on Deformation of Metals by Superplastic Nanomolding. Physical Review Letters, 2019, 122, 016101.	2.9	13
115	Orientation Relationships and Interface Structure in MgAl ₂ O ₄ and MgAlB ₄ Co-Reinforced Al Matrix Composites. ACS Applied Materials & Interfaces, 2019, 11, 42790-42800.	4.0	24
116	Microstructure and Mechanical Property Evolution during Annealing of a Cold-Rolled Metastable Powder Metallurgy High Entropy Alloy. Entropy, 2019, 21, 833.	1.1	5
117	Effect of quenching and tempering temperature on microstructure and tensile properties of microalloyed ultra-high strength suspension spring steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138272.	2.6	55
118	Cyclic oxidation behavior of Ni3Al-basedsuperalloy. Vacuum, 2019, 169, 108938.	1.6	17
119	Microstructure evolution mechanism near the fracture lip of 4Cr5MoSiV1 steel during deforming at 580 ŰC. Journal of Materials Research and Technology, 2019, 8, 6390-6395.	2.6	4
120	Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels. Acta Materialia, 2019, 181, 10-24.	3.8	41
121	Phaseâ€&pecific Precipitation of Intermetallic Phases in Fe Al Mn Ni C Duplex Steels. Steel Research International, 2019, 90, 1800440.	1.0	7
122	Phase Equilibria in the Fe-Mo-Nb System at 1100°C and 1200°C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 377-387.	1.1	2
123	New orientation relationship with low interfacial energy in MC/ferrite system observed in Nb-Ti bearing steel during isothermal quenching process. Scripta Materialia, 2019, 163, 101-106.	2.6	21
124	Microstructure characterization and strengthening behavior of dual precipitation particles in Cu Ti microalloyed dual-phase steels. Materials and Design, 2019, 166, 107613.	3.3	13
125	An Overview of CALPHAD XLVII (Juriquilla, Querétaro, México). Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 67, 101618.	0.7	1
126	Microscopic strain partitioning in Lüders band of an ultrafine-grained medium Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138050.	2.6	35
127	Effect of heat treatment on the microstructure and mechanical properties of spray-formed 7055 aluminium alloy. Philosophical Magazine Letters, 2019, 99, 102-109.	0.5	2

#	Article	IF	CITATIONS
128	High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering. Materials Research Express, 2019, 6, 096513.	0.8	6
129	A Review on Highâ€Strength Titanium Alloys: Microstructure, Strengthening, and Properties. Advanced Engineering Materials, 2019, 21, 1801359.	1.6	144
130	Magnetomechanical coupling enhancement via high-density nanoprecipitation in Co70Fe30 alloy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2658-2661.	0.9	2
131	Simultaneous enhancement of strength and ductility via nanoscale Cu precipitates and ultrafine filmy retained austenite in a novel quench-partitioned and tempered steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 47-57.	2.6	24
132	Heterogeneously tempered martensitic high strength steel by selective laser melting and its micro-lattice: Processing, microstructure, superior performance and mechanisms. Materials and Design, 2019, 178, 107881.	3.3	56
133	Microstructure evolution of in-situ nanoparticles and its comprehensive effect on high strength steel. Journal of Materials Science and Technology, 2019, 35, 1940-1950.	5.6	40
134	Local Lattice Distortion Mediated Formation of Stacking Faults in Mg Alloys. SSRN Electronic Journal, 0, , .	0.4	0
135	Kinetics of Early Decomposition Stages in Diluted bcc Fe–Сu–Ni–Al Alloy: MC+MD Simulation. Physics of the Solid State, 2019, 61, 601-608.	0.2	3
136	Experimental Liquidus Surface Projection and Thermodynamic Modeling of the Fe-Mo-Nb System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3358-3372.	1.1	2
137	Effect of multi-component carbides on the mechanical behavior of a multi-element alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 758, 99-102.	2.6	5
138	A novel strengthening and toughening strategy for T250 maraging steel: Cluster-orientation governed higher strength-ductility combination induced by electropulsing. Materials and Design, 2019, 169, 107686.	3.3	25
139	The microstructure and mechanical properties of novel Al-Cr-Fe-Mn-Ni high-entropy alloys with trimodal distributions of coherent B2 precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 757, 160-171.	2.6	71
140	Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 1-10.	2.6	46
141	Super strength of 65Mn spring steel obtained by appropriate quenching and tempering in an ultrafine grain condition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 1-8.	2.6	22
142	The quantitative relationship between fracture toughness and impact toughness in high-strength steels. Engineering Fracture Mechanics, 2019, 211, 362-370.	2.0	39
143	Micro-properties of (Nb,M)C carbide (M= V, Mo, W and Cr) and precipitation behavior of (Nb,V)C in carbide reinforced coating. Journal of Alloys and Compounds, 2019, 788, 852-860.	2.8	19
144	Tailoring the strength and ductility of T91 steel by partial tempering treatment. Acta Materialia, 2019, 169, 209-224.	3.8	59
145	Local lattice distortion mediated formation of stacking faults in Mg alloys. Acta Materialia, 2019, 170, 231-239.	3.8	45

#	Article	IF	CITATIONS
146	Microstructure and Mechanical Properties of Ti + N Ion Implanted Cronidur30 Steel. Materials, 2019, 12, 427.	1.3	10
147	Damage Evolution and Ductile Fracture. , 2019, , 85-136.		4
148	Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation. Journal of Alloys and Compounds, 2019, 792, 1028-1035.	2.8	87
149	High throughput crystal structure and composition mapping of crystalline nanoprecipitates in alloys by transmission Kikuchi diffraction and analytical electron microscopy. Ultramicroscopy, 2019, 202, 33-43.	0.8	18
150	Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2019, 104, 53-137.	16.0	44
151	Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology, 2019, 30, 294004.	1.3	38
152	Titanium Alloys: From Properties Prediction to Performance Optimization. , 2019, , 1-39.		0
153	Megahertz-wave-transmitting conducting polymer electrode for device-to-device integration. Nature Communications, 2019, 10, 653.	5.8	15
154	Introducing a Crystallography-Mediated Reconstruction (CMR) Approach to Atom Probe Tomography. Microscopy and Microanalysis, 2019, 25, 288-300.	0.2	6
155	Temperature-affected microstructural stability of coherent cuboidal B2 particles in precipitation-strengthened body-centered-cubic Al0.7CoCr2FeNi high-entropy alloy. Journal of Materials Science, 2019, 54, 8696-8710.	1.7	16
156	Precipitation strengthening in an ultralight magnesium alloy. Nature Communications, 2019, 10, 1003.	5.8	88
157	Correlative transmission electron microscopy and atom probe tomography on field evaporation mechanism of a bulk LaAlO3 oxide. Applied Surface Science, 2019, 479, 828-834.	3.1	2
158	Atom Probe Microscopy of Strengthening Effects in Alloy 718. Microscopy and Microanalysis, 2019, 25, 470-480.	0.2	14
159	Engineering Heterogeneous Multiphase Microstructure by Austenite Reverted Transformation Coupled with Ferrite Transformation. Jom, 2019, 71, 1322-1328.	0.9	11
160	Development of New Cobalt-Free Maraging Steel with Superior Mechanical Properties via Electro-Pulsing Technology. Metals, 2019, 9, 1299.	1.0	4
161	Metastable Dispersed States Arising upon Three-Component Alloy Decomposition. Physics of the Solid State, 2019, 61, 2493-2502.	0.2	2
162	Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nature Communications, 2019, 10, 5623.	5.8	289
163	Influence of retained austenite and Cu precipitates on the mechanical properties of a cold-rolled and intercritically annealed medium Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 41-49.	2.6	26

#	ARTICLE	IF	CITATIONS
164	Quantitative determination of the lattice constant in high entropy alloys. Scripta Materialia, 2019, 162, 468-471.	2.6	40
165	Ultrastrong Mediumâ€Entropy Singleâ€Phase Alloys Designed via Severe Lattice Distortion. Advanced Materials, 2019, 31, e1807142.	11.1	301
166	Unique defect evolution during the plastic deformation of a metal matrix composite. Scripta Materialia, 2019, 162, 316-320.	2.6	44
167	Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Materialia, 2019, 165, 444-458.	3.8	336
168	Further improvement in ductility induced by the refined hierarchical structures of pearlite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 176-184.	2.6	26
169	Interface strengthening and fracture behavior of multilayer TWIP/TRIP steel. Materials Chemistry and Physics, 2019, 223, 114-121.	2.0	12
170	Multifunctional Nonâ€Equiatomic High Entropy Alloys with Superelastic, High Damping, and Excellent Cryogenic Properties. Advanced Engineering Materials, 2019, 21, 1800941.	1.6	31
171	Static and dynamic mechanical behaviors of gradient-nanotwinned stainless steel with a composite structure: Experiments and modeling. International Journal of Plasticity, 2019, 114, 272-288.	4.1	30
172	Deformation induced precipitation of MgZn2-type laves phase in Ti-Fe-Co alloy. Journal of Alloys and Compounds, 2019, 778, 795-802.	2.8	6
173	Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0.3 high entropy alloy. Scripta Materialia, 2019, 162, 161-165.	2.6	21
174	Exploring the relationship between the microstructure and strength of fresh and tempered martensite in a maraging stainless steel Fe–15Cr–5Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 420-428.	2.6	54
175	Microstructure evolution and fracture mechanism of H13 steel during high temperature tensile deformation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 127-133.	2.6	47
176	Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. International Journal of Plasticity, 2019, 113, 255-268.	4.1	121
177	Hydrogen embrittlement of high strength steam turbine last stage blade steels: Comparison between PH17-4 steel and PH13-8Mo steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 353-363.	2.6	26
178	A novel ferritic steel family hardened by intermetallic compound G-phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 745, 390-399.	2.6	22
179	Novel metastable engineering in single-phase high-entropy alloy. Materials and Design, 2019, 162, 256-262.	3.3	46
180	Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel. International Journal of Plasticity, 2019, 113, 99-110.	4.1	94
181	Transformation from cluster to nano-precipitate in microalloyed ferritic steel. Scripta Materialia, 2019, 160, 53-57.	2.6	46

#	Article	IF	CITATIONS
182	On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy. Scripta Materialia, 2020, 175, 1-6.	2.6	75
183	Optimisation of deformation properties in as-cast copper by microstructural engineering. Part II. Mechanical properties. Journal of Alloys and Compounds, 2020, 812, 151910.	2.8	11
184	Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel. Journal of Materials Science and Technology, 2020, 37, 161-172.	5.6	14
185	In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138555.	2.6	15
186	Combined effect of nanoparticle and grain refinement on yield stress of nanocomposite. Philosophical Magazine, 2020, 100, 267-311.	0.7	4
187	In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering. Journal of Materials Science and Technology, 2020, 39, 82-88.	5.6	8
188	Effect of aging treatment on microstructure and properties of additively manufactured maraging steel. Ironmaking and Steelmaking, 2020, 47, 980-985.	1.1	5
189	Crystalline Domain Battery Materials. Accounts of Chemical Research, 2020, 53, 368-379.	7.6	37
190	The Deformation Characteristics, Fracture Behavior and Strengthening-Toughening Mechanisms of Laminated Metal Composites: A Review. Metals, 2020, 10, 4.	1.0	21
191	Microstructures and properties of carbidic austempered ductile Iron containing Fe3C particles and superfine ausferrite. Materials and Design, 2020, 186, 108363.	3.3	12
192	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	8.3	73
193	Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites. Carbon, 2020, 159, 201-212.	5.4	73
194	G-phase strengthened iron alloys by design. Acta Materialia, 2020, 183, 350-361.	3.8	22
195	High compressive property of precipitation-hardened Fe75(CoCrMnNi)25 (at.%) medium-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 138702.	2.6	1
196	Microstructural evolution and mechanical behavior of phase reversion-induced bimodal austenitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138669.	2.6	14
197	A new 2.4ÂGPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations. Scripta Materialia, 2020, 178, 285-289.	2.6	59
198	Early stage phase separation of AlCoCr0.75Cu0.5FeNi high-entropy powder at the nanoscale. Journal of Alloys and Compounds, 2020, 820, 153149.	2.8	6
199	Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138681.	2.6	48

ARTICLE IF CITATIONS # Study of the mean size and fraction of the second-phase particles in a 13% chromium steel at high 200 0.7 2 temperature. Philosophical Magazine, 2020, 100, 217-233. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy. Nanomaterials, 2020, 10, 59. Electrochemical dissolution behavior of S-04 high-strength stainless steel in NaNO3 aqueous 202 7 1.5 solution. Journal of Applied Electrochemistry, 2020, 50, 1149-1163. Nanoscale precipitations in deformed dilute alloying Mg-Zn-Gd alloy. Materials and Design, 2020, 196, 109122. Coherent ï‰ phase induced yield strength improvement in Ti-19Nb-1.5Mo-4Zr-8Sn alloy. Results in Physics, 204 2.0 5 2020, 19, 103 366. Extensive nanoprecipitate morphology transformation in a nanostructured ferritic alloy due to 3.8 extreme thermomechanical processing. Acta Materialia, 2020, 200, 922-931. High performance Nb/TiNi nanocomposites produced by packaged accumulative roll bonding. 206 5.9 22 Composites Part B: Engineering, 2020, 202, 108403. Plasticity improvement of Fe-13Cr-6Al-2Mo-0.5Nb alloy with yttrium addition by hindering Laves phase 1.9 precipitation. Materials Characterization, 2020, 170, 110647. Effect of microstructure evolution in austenite zone on mechanical properties of Fe-10Mn-5.5Al-0.25C 208 3.3 4 steel. Materials and Design, 2020, 196, 109163. Evading strength-plasticity conflict in microstructure-optimized Fe-Cu-Ni-P sintered alloy via 209 1.3 layered-composite powder. Materialia, 2020, 14, 100903. In-situ synthesised interlayer enhances bonding strength in additively manufactured multi-material 210 6.2 38 hybrid tooling. International Journal of Machine Tools and Manufacture, 2020, 155, 103592. Size-dependent formation and thermal stability of high-order twins in hierarchical nanotwinned 4.1 metals. International Journal of Plasticity, 2020, 128, 102685. Superior strength-ductility synergy by hetero-structuring high manganese steel. Materials Research 212 4.1 25 Letters, 2020, 8, 417-423. Effect of AlN on microstructure, mechanical and thermophysical properties of NiAl/Fe based alloys 1.6 prepared by vacuum hot-pressing sintering. Vacuum, 2020, 182, 109785. Characterization of ferroelectric domain walls by scanning electron microscopy. Journal of Applied 214 1.1 22 Physics, 2020, 128, . Bragg coherent imaging of nanoprecipitates: role of superstructure reflections. Journal of Applied Crystallography, 2020, 53, 1353-1369. A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel. Materials, 216 1.33 2020, 13, 5382. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation. Science Advances, 2020, 6, .

#	Article	IF	CITATIONS
218	Near-ideal strength and large compressive deformability of a nano-dual-phase glass-crystal alloy in sub-micron. Scripta Materialia, 2020, 188, 290-295.	2.6	10
219	Evidence of disruption of Si-rich microstructure in engineering-lightweight Al–12.2at.%Si alloy melt above liquidus temperature. Scientific Reports, 2020, 10, 12979.	1.6	5
220	Unraveling the dislocation–precipitate interactions in high-entropy alloys. International Journal of Plasticity, 2020, 133, 102819.	4.1	82
221	Hydrogen in Aluminium-Coated Steels Exposed to Synthetic Seawater. Surfaces, 2020, 3, 282-300.	1.0	3
222	A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe. International Journal of Hydrogen Energy, 2020, 45, 27941-27949.	3.8	39
223	A new class of lightweight, stainless steels with ultra-high strength and large ductility. Scientific Reports, 2020, 10, 12140.	1.6	46
224	Effects of Al on the precipitation of B2 Cu-rich particles in Fe–Cu ferritic alloy: Experimental and theoretical study. Journal of Alloys and Compounds, 2020, 846, 156386.	2.8	6
225	High performance and low thermal expansion in Er-Fe-V-Mo dual-phase alloys. Acta Materialia, 2020, 198, 271-280.	3.8	20
226	Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5517-5586.	1.1	115
227	Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Science Advances, 2020, 6, .	4.7	75
228	The mechanical properties and corrosion resistance of selective laser melting 30CrMnSiA steel. Anti-Corrosion Methods and Materials, 2020, 67, 575-581.	0.6	4
229	A new route to fabricate multilayer steel with multiscale hierarchical structure. Materials Characterization, 2020, 169, 110606.	1.9	5
230	Microstructural Influence on Mechanical Properties of a Lightweight Ultrahigh Strength Fe-18Mn-10Al-0.9C-5Ni (wt%) Steel. Metals, 2020, 10, 1305.	1.0	8
231	Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS. Acta Materialia, 2020, 201, 217-230.	3.8	12
232	Towards stronger high-entropy alloy by nanoprecipitation-hardened ultrafine-/nano-grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139474.	2.6	10
233	First-principles study on the interfacial segregation at coherent Cu precipitate/Fe matrix interface. Scripta Materialia, 2020, 185, 42-46.	2.6	23
234	Accelerated Carbon Atoms Diffusion in Bearing Steel Using Electropulsing to Reduce Spheroidization Processing Time and Improve Microstructure Uniformity. Steel Research International, 2020, 91, 2000041.	1.0	18
235	Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy. Nature Communications, 2020, 11, 2390.	5.8	244

#	Article	IF	CITATIONS
236	Diffusional-displacive transformation in a metastable β titanium alloy and its strengthening effect. Acta Materialia, 2020, 195, 151-162.	3.8	40
237	The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys. Journal of Materials Science and Technology, 2020, 48, 146-155.	5.6	27
238	Fine-grain-embedded dislocation-cell structures for high strength and ductility in additively manufactured steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139736.	2.6	27
239	A new magnesium sheet alloy with high tensile properties and room-temperature formability. Scientific Reports, 2020, 10, 10044.	1.6	22
240	Effects of solute content on microstructure of nano precipitate-fine grain synergistically reinforced copper alloys. Materials Science and Technology, 2020, 36, 1065-1075.	0.8	0
241	High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure. Scripta Materialia, 2020, 186, 336-340.	2.6	190
242	Breaking the strength-ductility paradox in advanced nanostructured Fe-based alloys through combined Cu and Mn additions. Scripta Materialia, 2020, 186, 213-218.	2.6	19
243	Homogeneous elasto-plastic deformation and improved strain compatibility between austenite and ferrite in a co-precipitation hardened medium Mn steel with enhanced hydrogen embrittlement resistance. International Journal of Plasticity, 2020, 133, 102805.	4.1	26
244	Enhanced mechanical properties by retained austenite in medium–carbon Si-rich microalloyed steel treated by quenching–tempering, austempering and austempering–tempering processes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139742.	2.6	21
245	High pressure induced ultra-hard twinned lath martensite in binary Fe-15wt.%Cr alloy. Scripta Materialia, 2020, 187, 163-168.	2.6	17
246	Excellent combination of plasticity and ultra-high strength in a low-alloy automotive steel treated by conventional continuous annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 791, 139694.	2.6	12
247	A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks. Journal of Materials Research, 2020, 35, 872-889.	1.2	17
248	Effect of Oxide Particles on Microstructure and Mechanical Properties of the 45 Carbon Structural Steel. Materials, 2020, 13, 1232.	1.3	5
249	Flow Behavior and Microstructure of a Mo–V–Ti Micro-Alloyed High-Strength Steel. Metallography, Microstructure, and Analysis, 2020, 9, 252-260.	0.5	1
250	Mechanical properties and nanoparticles precipitation behavior of multi-component ultra high strength steel. Materials and Design, 2020, 191, 108637.	3.3	29
251	Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Materialia, 2020, 189, 129-144.	3.8	150
252	Dynamic precipitation-induced simultaneous enhancement of the strength and plasticity of hot-rolled Zr–9Al alloy. Journal of Alloys and Compounds, 2020, 829, 154577.	2.8	4
253	High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates. Journal of Materials Science and Technology, 2020, 44, 19-23.	5.6	83

#	Article	IF	CITATIONS
254	Evaluation on the interface characteristics, thermal conductivity, and annealing effect of a hot-forged Cu-Ti/diamond composite. Journal of Materials Science and Technology, 2020, 49, 7-14.	5.6	35
255	Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139242.	2.6	64
256	Deformation of a nanocube with a single incoherent precipitate: role of precipitate size and dislocation looping. Philosophical Magazine, 2020, 100, 1749-1770.	0.7	1
257	Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Science Advances, 2020, 6, eaay1430.	4.7	120
258	Effects of solutes on dislocation nucleation and interface sliding of bimetal semi-coherent interface. International Journal of Plasticity, 2020, 131, 102725.	4.1	18
259	Investigation of hierarchical precipitation on bimodal-grained austenite and mechanical properties in quenching-partitioning-tempering steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139207.	2.6	8
260	Application of nanoparticles in cast steel: An overview. China Foundry, 2020, 17, 111-126.	0.5	23
261	Revealing the two-step nucleation and growth mechanism of vanadium carbonitrides in microalloyed steels. Scripta Materialia, 2020, 187, 350-354.	2.6	24
262	Enhancing resistance to radiation hardening and radiation thermal conductivity degradation by tungsten/graphene interface engineering. Journal of Nuclear Materials, 2020, 539, 152348.	1.3	9
263	Precipitation and recrystallization of HPT-processed Mg-Sm-Ca alloy at low temperatures. Materials Letters, 2020, 277, 128252.	1.3	8
264	Deformation behavior during micro-pillar compression in an ordered phase strengthened single crystalline Ni–Cr–Mo micropillars at room temperature. Journal of Alloys and Compounds, 2020, 843, 155996.	2.8	2
265	Phase Engineering of Highâ€Entropy Alloys. Advanced Materials, 2020, 32, e1907226.	11.1	154
266	Tensile deformation behavior of a solution-treated Ti–33Nb–4Sn alloy with a dual β and α" phases under cyclic loading-unloading. Progress in Natural Science: Materials International, 2020, 30, 80-85.	1.8	4
267	Evolution of Fretting Wear Behaviors and Mechanisms of 20CrMnTi Steel after Carburizing. Metals, 2020, 10, 179.	1.0	15
268	Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5204-5209.	3.3	87
269	Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling. International Journal of Plasticity, 2020, 129, 102700.	4.1	38
270	Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel. International Journal of Plasticity, 2020, 128, 102677.	4.1	72
271	Effect of caliber rolling reduction ratios on the microstructure and mechanical properties of 45 medium carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138954.	2.6	18

#	Article	IF	CITATIONS
272	Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316ÂL stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering, 2020, 128, 106043.	2.0	41
273	Enhanced lithium storage for MoS2-based composites via a vacancy-assisted method. Applied Surface Science, 2020, 515, 146103.	3.1	13
274	Microstructural evolution and mechanical properties of Ni-containing light-weight medium-Mn TRIP steel processed by intercritical annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139289.	2.6	18
275	Preternatural Hexagonal High-Entropy Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2020, 33, 1033-1045.	1.5	32
276	A novel laminated metal composite with superior interfacial bonding composed of ultrahigh-strength maraging steel and 316L stainless steel. Journal of Iron and Steel Research International, 2020, 27, 433-439.	1.4	5
277	Achieving 5.9% elastic strain in kilograms of metallic glasses: Nanoscopic strain engineering goes macro. Materials Today, 2020, 37, 18-26.	8.3	25
278	An overview of tailoring strain delocalization for strength-ductility synergy. Progress in Materials Science, 2020, 113, 100675.	16.0	238
279	Atomic-scale study of precipitates (NbC and Cu-rich phase) at the twin boundary in the long time ageing austenitic stainless steel. Philosophical Magazine, 2020, 100, 1880-1888.	0.7	2
280	Additive Manufacturing and Mechanical Performance of Trifurcated Steel Joints for Architecturally Exposed Steel Structures. Materials, 2020, 13, 1901.	1.3	7
281	Multiphase Strengthening of Nanosized Precipitates in a Costâ€Effective Austenitic Heatâ€Resistant Steel. Steel Research International, 2020, 91, 2000122.	1.0	5
282	Nanostructure Characteristics of Al3Sc1â^xZrx Nanoparticles and Their Effects on Mechanical Property and SCC Behavior of Al–Zn–Mg Alloys. Materials, 2020, 13, 1909.	1.3	10
283	The simultaneous improvements of strength and ductility in W–Y2O3 alloy obtained via an alkaline hydrothermal method and subsequent low temperature sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 784, 139329.	2.6	36
284	Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy. Tribology International, 2021, 154, 106662.	3.0	47
285	Interstitial carbon induced FCC-Ti exhibiting ultrahigh strength in a Ti37Nb28Mo28-C7 complex concentrated alloy. Acta Materialia, 2021, 203, 116456.	3.8	30
286	Approaching to High Elongation of Automotive Steel by Controlled Cooling Strategy. Steel Research International, 2021, 92, .	1.0	1
287	Multiscale Architecture and Superior Highâ€Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Advanced Materials, 2021, 33, e2000688.	11.1	71
288	Machine learning-assisted discovery of strong and conductive Cu alloys: Data mining from discarded experiments and physical features. Materials and Design, 2021, 197, 109248.	3.3	41
289	Clustering, nano-scale precipitation and strengthening of steels. Progress in Materials Science, 2021, 118, 100764.	16.0	103

#	Article	IF	CITATIONS
290	Suppressing precipitation during the reverse transformation from martensite to austenite in a cold-rolled austenite stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140514.	2.6	6
291	Twinning during deformation in a Pt2Mo ordered phase strengthened Ni–Cr–Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140435.	2.6	1
292	Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105454.	1.7	2
293	Microstructure and properties of dual-scale particulate reinforced copper matrix composites with superior comprehensive properties. Journal of Alloys and Compounds, 2021, 860, 157888.	2.8	9
294	Microstructure evolution of carbidic austempered ductile iron at different austempering temperatures. Journal of Materials Science, 2021, 56, 4843-4857.	1.7	6
295	Enhanced precipitation strengthening of multi-principal element alloys by κ- and B2-phases. Materials and Design, 2021, 198, 109315.	3.3	19
296	Effect of pack-forging on microstructure and properties of Mg-Gd-Y-Zn-Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140674.	2.6	11
297	Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140589.	2.6	9
298	Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy. Materials Horizons, 2021, 8, 948-955.	6.4	52
299	Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater. Corrosion Science, 2021, 179, 109176.	3.0	33
300	On the formation of nano-sized precipitates during cooling of NiAl- strengthened ferritic alloys. Materials Characterization, 2021, 171, 110722.	1.9	3
301	Mechanisms for suppressing discontinuous precipitation and improving mechanical properties of NiAl-strengthened steels through nanoscale Cu partitioning. Acta Materialia, 2021, 205, 116561.	3.8	48
302	Improving surface mechanical properties of the selective laser melted 18Ni300 maraging steel via plasma nitriding. Surface and Coatings Technology, 2021, 406, 126675.	2.2	20
303	Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta Materialia, 2021, 202, 211-221.	3.8	85
304	Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability. Journal of Materials Science and Technology, 2021, 75, 139-153.	5.6	13
305	Langer–Schwartz–Kampmann–Wagner precipitation simulations: assessment of models and materials design application for Cu precipitation in PH stainless steels. Journal of Materials Science, 2021, 56, 2650-2671.	1.7	19
306	Study on Mechanical Properties and Microstructure of the Ultrastrong Low Alloy Wearâ€Resistant Steel. Steel Research International, 2021, 92, 2000155.	1.0	3
307	Ultra-high tensile strength via precipitates and enhanced martensite transformation in a FeNiAlC alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140498.	2.6	3

#	Article	IF	CITATIONS
308	The Mechanism of the High Resistance to Hydrogen-Induced Strength Loss in Ultra-High Strength High Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
309	Influence of Carbides Precipitated by Low-temperature Tempering on Room-temperature Mechanical Properties of Grade 91 Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2021, 107, 825-834.	0.1	1
310	Effect of Processing Parameters on Mechanical Properties of Deformed and Partitioned (D&P) Medium Mn Steels. Metals, 2021, 11, 356.	1.0	8
311	Current state and prospect on the development of advanced nuclear fuel system materials: A review. Materials Reports Energy, 2021, 1, 100007.	1.7	12
312	The synergistic effects of ultrafine grains and nano-size Cu-rich precipitates on the mechanical properties of DP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140547.	2.6	8
313	Facile route to bulk ultrafine-grain steels for high strength and ductility. Nature, 2021, 590, 262-267.	13.7	98
314	Low-carbon advanced nanostructured steels: Microstructure, mechanical properties, and applications. Science China Materials, 2021, 64, 1580-1597.	3.5	8
315	Effect of inhomogeneity on the microstructural evolution and mechanical behaviour of a vanadium-containing Fe–Cr–Ni–Mo weld metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140758.	2.6	8
316	Biological Applications of Severely Plastically Deformed Nano-Grained Medical Devices: A Review. Nanomaterials, 2021, 11, 748.	1.9	14
317	In situ high-entropy solid solution and ceramic particles co-reinforced Ni-based composites with outstanding strength-ductility synergy and good pitting resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140842.	2.6	7
318	Dynamic evolution of nanosized NbC precipitates in austenite matrix during deformation and its contribution to strengthening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140816.	2.6	13
319	Effect of aging temperature on the precipitation behavior and mechanical properties of Fe–Cr–Ni maraging stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140763.	2.6	32
320	Role of vanadium additions on tensile and cryogenic-temperature charpy impact properties in hot-rolled high-Mn austenitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141063.	2.6	35
321	Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. International Journal of Plasticity, 2021, 139, 102971.	4.1	38
322	Processing composites reinforced with wood fibers into an ultraâ€strong structural materials. Polymer Composites, 2021, 42, 2872-2881.	2.3	6
323	Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al–Zn–Mg alloy. Acta Materialia, 2021, 207, 116682.	3.8	52
324	Segregation of alloying elements at the bcc-Fe/B2–NiAl interface and the corresponding effects on the interfacial energy. Intermetallics, 2021, 131, 107096.	1.8	18
325	Heterophase Interface Dominated Deformation and Mechanical Properties in Alâ€Cuâ€Li Alloys. Advanced Theory and Simulations, 2021, 4, 2100059.	1.3	5

#	Article	IF	CITATIONS
326	Improved mechanical properties by nanosize tungsten-molybdenum carbides in tungsten containing hot work die steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141140.	2.6	18
327	Synergistic alloying effects on nanoscale precipitation and mechanical properties of ultrahigh-strength steels strengthened by Ni3Ti, Mo-enriched, and Cr-rich co-precipitates. Acta Materialia, 2021, 209, 116788.	3.8	54
328	Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nature Communications, 2021, 12, 3085.	5.8	77
329	Recent progress on high-entropy materials for electrocatalytic water splitting applications. Tungsten, 2021, 3, 161-180.	2.0	60
330	A Crystallography-Mediated Reconstruction (CMR) Approach for Atom Probe Tomography: Solution for a Singleton Pole. Ultramicroscopy, 2021, 224, 113262.	0.8	2
331	Strengthening in Metal/Graphene Composites: Capturing the Transition from Interface to Precipitate Hardening. ACS Applied Materials & Interfaces, 2021, 13, 26610-26620.	4.0	27
332	Effect of Ni and Al on the Decomposition Kinetics and Stability of Cu-Enriched Precipitates in Fe–Cu–Ni–Al Alloys: Results of MD + MC Simulation. Physics of Metals and Metallography, 2021, 122, 498-503.	0.3	2
333	Effect of sink strength on coherency loss of precipitates in dilute Cu-base alloys during in situ ion irradiation. Acta Materialia, 2021, 210, 116812.	3.8	6
334	Ultrafine-grained dual-phase maraging steel with high strength and excellent cryogenic toughness. Acta Materialia, 2021, 211, 116878.	3.8	51
335	Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures. Applied Materials Today, 2021, 23, 101037.	2.3	11
336	Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Science Advances, 2021, 7, .	4.7	176
337	Improvement of mechanical properties for low carbon ultra-high strength steel strengthened by Cu-rich multistructured precipitation via modification to bainite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141337.	2.6	26
338	Designing <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mn>2</mml:mn><mml:mn>1</mml:mn></mml:msub>Al-Cr-Fe-Ni-Ti complex concentrated alloys for high temperature applications. Acta Materialia, 2021, 211,</mml:mi </mml:mrow></mml:math>	nn a:e nrow:	><\$ m ml:mat
339	116890. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	8
340	A generally reliable model for composition-dependent lattice constants of substitutional solid solutions. Acta Materialia, 2021, 211, 116865.	3.8	9
341	Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy. Journal of Materials Science and Technology, 2021, 76, 150-155.	5.6	6
342	Microstructure and mechanical properties of ultrafine grained CoCrFeNi and CoCrFeNiAl0.3 high entropy alloys reinforced with Cr2O3/Al2O3 nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 816, 141313.	2.6	21
343	Enhanced strength-ductility synergy in a novel V-containing γ″-strengthened CoCrNi-based multi-component alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 816, 141289.	2.6	20

#	Article	IF	CITATIONS
344	Dislocations across interphase enable plain steel with high strength-ductility. Science Bulletin, 2021, 66, 1058-1062.	4.3	25
345	Novel high-entropy alloys with high-density ε-D019 and abnormal phase transformation. Scripta Materialia, 2021, 199, 113893.	2.6	14
346	Synergistic strengthening by nano-sized α-Al(Mn,Fe)Si and Al3Zr dispersoids in a heat-resistant Al–Mn–Fe–Si–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141460.	2.6	20
347	Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature, 2021, 595, 245-249.	13.7	141
348	On the role of transmission electron microscopy for precipitation analysis in metallic materials. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 388-414.	6.8	8
349	Strain hardening mediated by coherent nanoprecipitates in ultrahigh-strength steels. Acta Materialia, 2021, 213, 116984.	3.8	34
350	Nucleation and growth mechanisms of γ'' phase with single-unit-cell height in Mg-RE-Zn(Ag) series alloys: a first-principles study. Journal of Materials Science and Technology, 2021, 79, 133-140.	5.6	6
351	Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2021, 120, 100819.	16.0	1
352	Revealing the Local Microstates of Fe–Mn–Al Medium Entropy Alloy: A Comprehensive First-principles Study. Acta Metallurgica Sinica (English Letters), 2021, 34, 1492-1502.	1.5	2
353	HRTEM investigations on nano precipitates in Custom 475 maraging stainless steel. Materials Characterization, 2021, 178, 111216.	1.9	11
354	Achieving high strength and ductility in ODS-W alloy by employing oxide@W core-shell nanopowder as precursor. Nature Communications, 2021, 12, 5052.	5.8	87
355	Spinodal Decomposition in Nanocrystalline Alloys. Acta Materialia, 2021, 215, 117054.	3.8	29
356	Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141740.	2.6	19
357	Nanoparticle enabled high performance high modulus steels. Scripta Materialia, 2021, 201, 113954.	2.6	3
358	Tailoring the metastable reversed austenite from metastable Mn-rich carbides. Acta Materialia, 2021, 214, 116986.	3.8	21
359	TEM observation and strengthening mechanism of cementite nanoparticles of heterogeneous structure 1045 steel. Materials Research Express, 2021, 8, 086502.	0.8	0
360	In situ atomic-scale observation of AuCu alloy nanowire with superplasticity and high strength at room temperature. Materials Today Nano, 2021, 15, 100123.	2.3	7
361	High-density nanoprecipitation mechanism and microstructure evolution of high-performance Al2O3/ZrO2 nanocomposite ceramics. Journal of the European Ceramic Society, 2021, 41, 5269-5279.	2.8	15

#	Article	IF	CITATIONS
362	Enhanced solute diffusion to promote shear-type reverse transformation recovery in metastable austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141684.	2.6	0
363	Aluminum-alloyed lightweight stainless steels strengthened by B2-(Ni,Fe)Al precipitates. Materials and Design, 2021, 206, 109813.	3.3	6
364	Effect of low-temperature tempering on confined precipitation and mechanical properties of carburised steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141688.	2.6	8
365	Bulk nanostructured Al-Si alloy with remarkable improvement in strength and ductility. Scripta Materialia, 2021, 201, 113970.	2.6	20
366	Enhanced strength and plasticity in a novel 55Si2MnMoV spring steel via austempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141887.	2.6	7
367	Deformation mechanism and in-situ TEM compression behavior of TB8 \hat{I}^2 titanium alloy with gradient structure. Journal of Materials Science and Technology, 2021, 84, 105-115.	5.6	22
368	A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies. Additive Manufacturing, 2021, 45, 102068.	1.7	8
369	Improved Mechanical Properties of Two Twinningâ€Induced Plasticity Steels with Novel Grain Morphology. Steel Research International, 0, , 2100355.	1.0	0
370	Influence of cooling rate on phase transformation and precipitation behavior of Ti-bearing steel in continuous cooling process. Journal of Iron and Steel Research International, 2022, 29, 165-174.	1.4	5
371	κ-Carbide assisted nucleation of B2: A novel pathway to develop high specific strength steels. Acta Materialia, 2021, 220, 117349.	3.8	23
372	Microstructure Evolution and Mechanical Properties of X6CrNiMoVNb11-2 Stainless Steel after Heat Treatment. Materials, 2021, 14, 5243.	1.3	4
373	Progress and perspectives in laser additive manufacturing of key aeroengine materials. International Journal of Machine Tools and Manufacture, 2021, 170, 103804.	6.2	156
374	Achieving ultra-high hardness of Mg-Sm-Ca alloy with the unique nanostructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141929.	2.6	9
375	High carbon alloyed design of a hot-rolled high-Mn austenitic steel with excellent mechanical properties for cryogenic application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 141959.	2.6	19
376	Ultrafine lamellar microstructure with greatly enhanced strength and ductility of martensite steel via heavily warm rolling of metastable austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141977.	2.6	17
377	Direct observation of nanocrystal-induced enhancement of tensile ductility in a metallic glass composite. Materials and Design, 2021, 209, 109970.	3.3	5
378	A novel atomic movement mechanism of intersection-induced bct-αÂ→Âbcc-α′ martensitic phase transformation. Scripta Materialia, 2021, 204, 114153.	2.6	10
379	Strengthening ultrafine lamellar Ni-Zr-(Al) eutectic by precipitation hardening. Journal of Alloys and Compounds, 2021, 882, 160684.	2.8	2

		CITATION RE	PORT	
#	ARTICLE	ium Mn steel	IF 1.9	CITATIONS 6
000	alloyed with Cu, Ni and Al. Materials Characterization, 2021, 181, 111486.		1.7	0
381	Insight into the recrystallization behavior and precipitation reaction of in-situ nano TiB composite during heat treatment. Materials Characterization, 2021, 181, 111458.	2/Al Cu Mg	1.9	10
382	Additive manufacturing of high strength copper alloy with heterogeneous grain struct laser powder bed fusion. Acta Materialia, 2021, 220, 117311.	ure through	3.8	36
383	Additive manufacturing of high-entropy alloys by thermophysical calculations and in si Journal of Materials Science and Technology, 2021, 94, 53-66.	tu alloying.	5.6	32
384	Simultaneously achieving excellent mechanical properties and high thermal conductivi Mn-containing Mg-Zn-Ca-Al-Mn sheet alloy. Journal of Alloys and Compounds, 2021, 8	ty in a high 87, 161394.	2.8	33
385	Toughening effect of delta-ferrite in a modified PH13-8Mo steel. Materials Letters, 202	21, 304, 130652.	1.3	7
386	Microstructure evolution and mechanical properties of in-situ multi-component carbid FeCoNi alloy. Journal of Alloys and Compounds, 2021, 886, 161215.	es reinforced	2.8	4
387	Effect of heat treatment on fatigue crack growth behavior of 316NG austenitic stainle deaerated water at 325°C. Journal of Nuclear Materials, 2021, 557, 153298.	ss steel in	1.3	3
388	Properties and precipitates of the high strength and electrical conductivity Cu-Ni-Co-Si Journal of Materials Science and Technology, 2021, 93, 1-6.	i-Cr alloy.	5.6	50
389	Depth-dependent decomposition and property of large magnetostriction Fe-Ga alloys. Science, 2021, 569, 151059.	Applied Surface	3.1	7
390	Designing ultrastrong maraging stainless steels with improved uniform plastic strain v precipitation of coherent nanoparticles. Journal of Materials Science and Technology, 2		5.6	15
391	Superb strength and ductility balance of a Co-free medium-entropy alloy with dual het structures. Journal of Materials Science and Technology, 2022, 98, 197-204.	erogeneous	5.6	33
392	Ultra-high strength yet superplasticity in a hetero-grain-sized nanocrystalline Au nanov of Materials Science and Technology, 2022, 101, 95-106.	vire. Journal	5.6	12
393	Advanced Characterization on Nanostructure in Steels. , 2022, , 250-279.			0
394	Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels. Materials Science and Technology, 2022, 104, 52-58.	Journal of	5.6	32
395	Extraordinary toughening enhancement in nonstoichiometric vanadium carbide. Journ Science and Technology, 2022, 97, 176-181.	al of Materials	5.6	13
396	Metallic Materials for Making Multi-Scaled Metallic Parts and Structures. , 2022, , 19-3	.6.		0
397	Exploration of the processing scheme of a novel Ni(Fe, Al)-maraging steel. Journal of M	laterials	2.6	7

97						
21	Research	and Tech	hnology	v, 2021.	10, 22	25-239

	CITATION	CLFORT	
#	Article	IF	Citations
398	Titanium Alloys: From Properties Prediction to Performance Optimization. , 2020, , 113-151.		3
399	Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105934.	3.8	38
400	A ductile high entropy alloy strengthened by nano sigma phase. Intermetallics, 2020, 122, 106813.	1.8	49
401	Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 2020, 38, 114-135.	8.3	150
402	Enhanced strength-plasticity combination in an Al–Cu–Mg alloy——atomic scale microstructure regulation and strengthening mechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139447.	2.6	35
403	Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al–Mg alloy produced by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139593.	2.6	55
404	Cubic martensite in high carbon steel. Physical Review Materials, 2018, 2, .	0.9	4
405	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:m rare-earth-free permanent magnets: The effects of twinning versus dislocations in Mn-Al magnets. Physical Review Materials. 2020. 4.</mml:m </mml:msub></mml:mrow></mml:math 	nn>10.9	l:mŋ} <mml:a< td=""></mml:a<>
406	Low-Carbon Ti-Mo Microalloyed Hot Rolled Steels: Special Features of the Formation of the Structural State and Mechanical Properties. Metals, 2021, 11, 1584.	1.0	6
407	Nanoprecipitateâ€Strengthened Highâ€Entropy Alloys. Advanced Science, 2021, 8, e2100870.	5.6	97
408	Characterization of Nanoscale Mn/Fe-Rich Intermetallic B2-NiAl in Ultra-Low Carbon Bainitic Steel with Super-High Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5146-5151.	1.1	1
409	Micron-/nano-scale hierarchical structures and hydrogen storage mechanisms in a cast vanadium-based multicomponent alloy. Nano Energy, 2021, 90, 106588.	8.2	5
410	Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening. Journal of Materials Science and Technology, 2022, 108, 125-132.	5.6	32
411	The Influence of Metastable Cellular Structure on Deformation Behavior in Laser Additively Manufactured 316L Stainless Steel. Nanomaterials, 2021, 11, 2859.	1.9	4
412	Effects of aging and irradiation on Fe-Ni-Al alloy. Nuclear Instruments & Methods in Physics Research B, 2021, 509, 55-59.	0.6	1
413	Tailoring co-precipitation behavior by molybdenum microalloying in high-strength steels. Materials Characterization, 2021, 182, 111568.	1.9	4
414	Iron-Based Intermetallics. , 2021, , 423-458.		1
415	A novel approach of high-voltage low-current electric energy input to synthesise cost-effective ultra-strong ductile material. Philosophical Magazine, 2021, 101, 555-575.	0.7	5

#	Article	IF	CITATIONS
416	Influence of Al2Y particles on mechanical properties of Mg-11Y-1Al alloy with different grain sizes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142166.	2.6	15
417	Superior strength-ductility synergy in a novel tailored nanoparticles-strengthened medium-entropy alloy. Scripta Materialia, 2022, 207, 114278.	2.6	31
418	Development of wear resistant Cu-12Sn-1.5Ni alloy via minor addition of Fe during casting process. Applied Surface Science, 2022, 573, 151623.	3.1	8
419	An internal-oxidation-based strategy induced high-density alumina in-situ nanoprecipitation and carbon nanotube interface optimization for co-reinforcing copper matrix composites. Composites Part B: Engineering, 2022, 229, 109455.	5.9	23
420	Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure. Journal of Materials Science and Technology, 2022, 106, 133-138.	5.6	22
421	Nanostructured steels for advanced structural applications. Materials Futures, 2022, 1, 013501.	3.1	3
422	Carbide Precipitation in Austenite of a Titanium-Tungsten-Bearing Low-Carbon Steel. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	0
423	Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. Journal of Materials Science and Technology, 2022, 110, 109-116.	5.6	79
424	Soft or Hard? Investigating the Deformation Mechanisms of Au–Pd and Pd Nanocubes under Compression: An Experimental and Molecular Dynamics Study. Journal of Physical Chemistry C, 2021, 125, 25298-25306.	1.5	9
425	Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates. Acta Materialia, 2022, 223, 117480.	3.8	72
426	Enhanced tensile properties by heterogeneous grain structures and coherent precipitates in a CoCrNi-based medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142440.	2.6	18
427	Microstructure Evolution and Thermal Stability of Mg-Sm-Ca Alloy Processed by High-Pressure Torsion. Journal of Materials Engineering and Performance, 2022, 31, 2644-2652.	1.2	4
428	A new strategy to strength-toughen metals: Tailoring disorder. Theoretical and Applied Mechanics Letters, 2021, 11, 100310.	1.3	2
429	Designing elastic modulus of Al3X precipitates in Al alloys by identifying effective atomic bonds and stabilizing coherent structures. Journal of Alloys and Compounds, 2022, 896, 162619.	2.8	7
430	Coupled Strengthening Effects by Lattice Distortion, Local Chemical Ordering, and Nanoprecipitates in Materials, 2021, 8, .	1.2	2
431	Excellent ballistic impact resistance of Al0.3CoCrFeNi multi-principal element alloy with unique bimodal microstructure. Scientific Reports, 2021, 11, 22715.	1.6	14
432	Atomic-scale observation of non-classical nucleation-mediated phase transformation in a titanium alloy. Nature Materials, 2022, 21, 290-296.	13.3	38
433	A simultaneously improved strength and ductility on carbide free bainite steel via novel ausrolling and twinning process based on SFE controlling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142442.	2.6	5

#	Article	IF	CITATIONS
434	Precipitation strengthening of Cu/NiAl co-precipitates in a martensite-austenite dual-phase steel. Materials Characterization, 2021, 182, 111589.	1.9	8
435	Mechanical Behavior of High-Entropy Alloys: A Review. , 2021, , 435-522.		9
436	Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Materials and Design, 2022, 213, 110356.	3.3	38
437	Investigation on the microstructural evolution and mechanical properties of partially recrystallized Fe-27Mn-10Al-1.4C steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142545.	2.6	17
438	Optimization of the microstructure and mechanical properties of electron beam welded high-strength medium-entropy alloy (NiCoCr)94Al3Ti3. Intermetallics, 2022, 141, 107439.	1.8	10
439	The formation mechanism of complex carbides in Nb-V microalloyed steel. Materials Letters, 2022, 311, 131544.	1.3	7
440	Microstructure evolution and tensile properties of as-rolled Ti-Mo-Si composite. Journal of Alloys and Compounds, 2022, 901, 163521.	2.8	3
441	Effect of Mo Alloying on the Precipitation Behavior of B2 Nano-Particles in Fe-Mn-Al-Ni Shape Memory Alloys. Metals, 2022, 12, 261.	1.0	2
442	Globalâ€Oriented Strategy for Searching Ultrastrength Martensitic Stainless Steels. Advanced Theory and Simulations, 0, , 2100411.	1.3	4
443	Achievement of ultra-high strength in 45Si2MnCr2Mo steel via efficient and low-energy tempering. Materials Research Express, 2022, 9, 026509.	0.8	1
444	Synergy of strengthening and toughening of a Cu-rich precipitate-strengthened steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142487.	2.6	14
445	Effect of Rolling Temperature on the Structural Refinement and Mechanical Properties of Dual-Phase Heterostructured Low-Carbon Steel. Metals, 2022, 12, 115.	1.0	3
446	Influences of manganese content and heat treatment on mechanical properties of precipitation-strengthened steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 837, 142724.	2.6	9
447	Dislocation-induced ultra-high strength in a novel steel fabricated using laser powder-bed-fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142502.	2.6	2
448	Enhancing the properties of Al–Ni added medium Mn steel by tailoring B2–NiAl precipitates through aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 837, 142757.	2.6	15
449	Identification of twin and nanoscale Te precipitations in CdZnTe crystals grown by vertical gradient method with HRTEM. Materials Characterization, 2022, 185, 111739.	1.9	4
450	Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys. Acta Materialia, 2022, 226, 117673.	3.8	29
451	The synergistic addition of Al, Ti, Mo and W to strengthen the equimolar CoCrFeNi high-entropy alloy via thermal-mechanical processing. Journal of Alloys and Compounds, 2022, 902, 163774.	2.8	20

#	Article	IF	CITATIONS
452	Optimizing strength and ductility in 7150 Al alloys via rapid electropulsing cyclic heat treatment. Journal of Alloys and Compounds, 2022, 903, 163985.	2.8	14
453	Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition. Journal of Materials Science and Technology, 2022, 115, 29-39.	5.6	15
454	Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 2022, 153, 103235.	4.1	56
455	Austenite reversion and nano-precipitation during a compact two-step heat treatment of medium-Mn steel containing Cu and Ni. Journal of Materials Research and Technology, 2022, 17, 2601-2613.	2.6	12
456	Frontiers in Organic Corrosion Inhibitors for Chloride and Acidic Media: A Review. Journal of Bio- and Tribo-Corrosion, 2022, 8, 1.	1.2	5
457	Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum. Acta Materialia, 2022, 227, 117725.	3.8	34
458	An investigation on the precipitates in T5 treated high vacuum die-casting AE44–2 magnesium alloy. Materials Research Express, 2022, 9, 020005.	0.8	1
459	Ultra-high strength Mg-Li alloy with B2 particles and spinodal decomposition zones. Fundamental Research, 2023, 3, 430-433.	1.6	5
460	Quantitative analysis of precipitation and strengthening mechanisms of V and V-Ti hot-rolled microalloyed steels. Journal of Materials Science, 2022, 57, 4806-4819.	1.7	10
461	Achieving Superior High-Temperature Strength and Oxidation Resistance of TiAl Nanocomposite through In Situ Semicoherent MAX Phase Precipitation. ACS Applied Materials & Interfaces, 2022, 14, 8394-8403.	4.0	36
462	Tailoring of interface microstructure and bonding property in 1Cr17 / 8Cr13MoV / 1Cr17 stainless steel clad plate with Ni interlayer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142778.	2.6	6
463	Excellent tensile properties induced by heterogeneous grain structure and dual nanoprecipitates in high entropy alloys. Materials Characterization, 2022, 186, 111779.	1.9	15
464	Effect of Aging on the Transformation Behavior of Reverted Austenite and the Impact Toughness in Co-Free Maraging Stainless Steel. SSRN Electronic Journal, 0, , .	0.4	0
465	Achieving High Strength and Deformability in a High Entropy Alloy Containing "Matryoshka Doll―Like Multi-Phase Structure. SSRN Electronic Journal, 0, , .	0.4	0
466	Deformation Mechanisms of a Novel Multiphase Zr-30ti-7nb-4sn Alloy Consisting of Β, Α′ and Α″ Phases. SSRN Electronic Journal, 0, , .	0.4	0
467	Synergistic Enhancement of Strength and Ductility of Maraging Steel Via Nanometer-Scaled Microstructures. SSRN Electronic Journal, 0, , .	0.4	0
468	Microstructure and magnetic properties evolution of Al/CoCrFeNi nanocrystalline high-entropy alloy composite. Rare Metals, 2022, 41, 2038-2046.	3.6	9
469	Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals, 2022, 12, 324.	1.0	3

#	Article	IF	CITATIONS
470	Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Science China Materials, 0, , 1.	3.5	5
471	Making Ultraâ€Tough Nanoceramics by Columnar Submicrocrystals with Three‣evel Microâ€Nano Structures. Small, 2022, 18, 2105367.	5.2	5
472	Obtaining Ultrastrong and Ductile Steel with Hierarchical Lamellar Duplex Phase Microstructure by Two-Stage Martensitic Transformation Mechanism. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1613-1629.	1.1	3
473	The Nexus between ASAT and Density Functional Theory. , 2022, , 201-221.		0
474	Cooling Rate Controlled Aging of a Co-Free Fe-Ni-Cr-Mo-Ti-Al Maraging Steel. Metals, 2022, 12, 538.	1.0	2
475	Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys. Science Advances, 2022, 8, eabm2884.	4.7	22
476	Massive interstitial solid solution alloys achieve near-theoretical strength. Nature Communications, 2022, 13, 1102.	5.8	29
477	Nanoscale Cu particle evolution and its impact on the mechanical properties and strengthening mechanism in precipitation-hardening stainless steel. Materials Characterization, 2022, 188, 111885.	1.9	21
478	Interaction between ÎNi3Ti and reversed austenite within Custom 465 stainless steel: experimental evidence and related patents investigation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142852.	2.6	8
479	Effect of warm-rolling on the strength and ductility of multilayered composite steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 143043.	2.6	5
480	Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143099.	2.6	19
481	Tailoring the microstructure and mechanical properties of FeCrNiCoMo maraging stainless steel after laser melting deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142931.	2.6	1
482	Corrosion resistant and high-strength dual-phase Mg-Li-Al-Zn alloy by friction stir processing. Communications Materials, 2022, 3, .	2.9	31
483	Understanding microstructure-mechanical properties relationship in ZrO2–SiO2 nanocrystalline glass-ceramics: The effect of ZrO2 content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142904.	2.6	7
484	Effect of Nanosized Precipitates on Corrosion Resistance of Nb-Microalloyed Steels. Metals, 2022, 12, 636.	1.0	3
485	Outstanding high-temperature strength of novel Fe–Cr–Ni–Al–V ferritic alloys with hierarchical B2–NiAl precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142999.	2.6	9
486	Phase transformation via atomic-scale periodic interfacial energy. Materials Today Physics, 2022, 24, 100668.	2.9	0
487	Thermal shock resistance and toughening mechanism of W/Ta and W/TiN/Ta laminated composites. International Journal of Refractory Metals and Hard Materials, 2022, 105, 105810.	1.7	1

#	Article	IF	CITATIONS
488	A novel high performance eutectic medium-entropy alloy with nanoprecipitates. Vacuum, 2022, 200, 111017.	1.6	9
489	Preparation and microstructural evolution of cellular submicrocrystal Al2O3/TZP powders. Applied Surface Science, 2022, 587, 152832.	3.1	3
490	L21-strengthened body-centered-cubic high-entropy alloy with excellent mechanical properties. Intermetallics, 2022, 145, 107539.	1.8	12
491	The effect of Ag on the tensile strength and fracture toughness of novel Al-Mg-Zn alloys. Journal of Alloys and Compounds, 2022, 908, 164640.	2.8	15
492	Directional-dependent precipitate microstructure and mechanical properties of tensile and compressive stress-assisted aged Mg-Zn alloys. Journal of Alloys and Compounds, 2022, 909, 164728.	2.8	5
493	A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47%. Journal of Materials Science and Technology, 2022, 117, 225-237.	5.6	10
494	Cu-rich nanoprecipitates modified using Al to simultaneously enhance the strength and ductility of ferritic stainless steel. Journal of Materials Science and Technology, 2022, 121, 93-98.	5.6	4
495	Twin-roll strip casting of advanced metallic materials. Science China Technological Sciences, 2022, 65, 493-518.	2.0	7
496	Effect of Al addition on the microstructures and deformation behaviors of non-equiatomic FeMnCoCr metastable high entropy alloys. Applied Physics Letters, 2021, 119, .	1.5	5
497	The interaction mechanisms between dislocations and nano-precipitates in CuFe alloys: A molecular dynamic simulation. International Journal of Plasticity, 2022, 155, 103317.	4.1	15
498	Control of dislocation density maximizing precipitation strengthening effect. Journal of Materials Science and Technology, 2022, 127, 133-143.	5.6	24
499	Uniting tensile ductility with ultrahigh strength via composition undulation. Nature, 2022, 604, 273-279.	13.7	80
500	Influence of Zn on the microstructure and mechanical properties of Mg-Gd-Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 843, 143136.	2.6	26
501	Strengthening of AlCoCrFeNi based high entropy alloy with nano- Y2O3 dispersion. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115720.	1.7	5
502	Stacking Faults or Twins Mediated Deformation Behavior in a Precipitation-Hardening Ni Base Alloy with Heterogeneous Structures. SSRN Electronic Journal, 0, , .	0.4	0
503	Synergy of Intragranular and Intergranular Precipitation Behaviors in the Al-Mg-Xsi-Cu-Zn Alloys with High Corrosion Resistance. SSRN Electronic Journal, 0, , .	0.4	0
504	Mechanical Properties and Fracture of High-Strength Maraging Steel Fabricated by Selective Laser Melting. Russian Metallurgy (Metally), 2022, 2022, 309-315.	0.1	3
505	Heterogeneous structure induced excellent mechanical and wear properties in Co-free FeCrAlNi medium-entropy alloys. Journal of Materials Research and Technology, 2022, 18, 4169-4180.	2.6	6

ARTICLE IF CITATIONS Unraveling a novel precipitate enrichment dependent strengthening behaviour in nickel-based 506 4.1 6 superalloy. International Journal of Plasticity, 2022, 155, 103333. Corrosion Assessment for Aging Treatment of Rolled and Selective Laser Melting 18Ni 300 Maraging Steel. Corrosion, 2022, 78, 612-624. Controlling the nucleation of multiple precipitates in precipitation-strengthened steel through Mo 508 0.8 0 partitioning. Materials Science and Technology, 2022, 38, 876-881. Effects of precipitate size and spacing on deformation-induced fcc to bcc phase transformation. 509 Materials Research Letters, 2022, 10, 585-592. (FeMnNi)84(AlTi)16 High-Entropy Alloy: Correlation of Microstructure, Strengthening Mechanisms and Hardness at Various Conditions (As-Cast, Solution Treated, Aged). Metallography, 510 0.5 1 Microstructure, and Analysis, 0, , 1. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta Materialia, 2022, 232, 117975. 3.8 High-throughput prediction of intrinsic properties of L12-(Ni1,Cr2,Co3)3(Al1,Ti2) precipitates. Materials 512 0.9 0 Today Communications, 2022, 31, 103655. Deformation mechanisms of a novel multiphase Zrâ€"30Tiâ€"7Nbâ€"4Sn alloy consisting of β, α′ and αâ€3 phases. 513 Materials Today Advances, 2022, 14, 100242. Superb strengthening behavior in a precipitation strengthened Co-rich CoCrNiAlTi medium entropy 514 1.8 7 alloy with acceptable ductility. Intermetallics, 2022, 146, 107582. Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained 5.6 architecture. Journal of Materials Science and Technology, 2022, 126, 228-236. Enhancing yield stress and uniform elongation in an ultrathin packaging steel via controlling 516 21 4.1 dislocation density. International Journal of Plasticity, 2022, 155, 103334. Tensile Behaviors and Strain Hardening Mechanisms in a High-Mn Steel with Heterogeneous 1.3 Microstructure. Materials, 2022, 15, 3542. Effect of thermal deformation and Nb element action on the organization and performance of steel. 518 0.8 1 Materials Research Express, 2022, 9, 056518. Cerium-alloyed ultra-high strength maraging steel with good ductility: Experiments, first-principles calculations and phase-field simulations. Materials Science & amp; Engineering A: Structural Materials: 2.6 Properties, Microstructure and Processing, 2022, 846, 143306. Effect of Tempering on the Stability of Retained Austenite in Carbide-Free Bainitic Steel. SSRN 520 0 0.4 Electronic Journal, 0, , . Microstructure Deformation Mechanism of Cobalt-Free Maraging Steel: In-Situ Synchronous X-Ray 521 Diffraction Study. SSRN Electronic Journal, 0, , . Superior radiation tolerance via reversible disordering–ordering transition of coherent 522 13.331 superlattices. Nature Materials, 2023, 22, 442-449. Strengthening of Ultrafine Lamellar-Structured Martensite Steel via Tempering-Induced 1.5 Nanoprecipitation. Acta Metallurgica Sinica (English Letters), 2022, 35, 1812-1824.

#	Article	IF	CITATIONS
524	A Novel Ordered B2 Particle Strengthened Mg–Li–Zn Alloy. Advanced Engineering Materials, 2022, 24, .	1.6	1
525	A Systematical Evaluation of the Crystallographic Orientation Relationship between MC Precipitates and Ferrite Matrix in HSLA Steels. Materials, 2022, 15, 3967.	1.3	3
526	High Specific Yield Strength Tizralnbv Lightweight High-Entropy Alloys Via Coherent Nanoprecipitates Strengthening. SSRN Electronic Journal, 0, , .	0.4	0
527	Effect of Aging on Transformation Behavior of Reverted Austenite and Toughness in Co-Free Maraging Stainless Steel. Journal of Materials Engineering and Performance, 2022, 31, 9850-9863.	1.2	6
528	Freezing solute atoms in nanograined aluminum alloys via high-density vacancies. Nature Communications, 2022, 13, .	5.8	18
529	Prominent work hardening and ultrahigh yield strength both realized in 3Mn steel multiply alloyed with Cu/Ni/Al/V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143473.	2.6	1
530	D03 order strengthening improves strength–ductility balance of Ni-containing high specific strength steel via annealing followed by fast aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143451.	2.6	2
531	Simultaneously enhanced strength-ductility synergy and corrosion resistance in submerged friction stir welded super duplex stainless steel joint via creating ultrafine microstructure. Journal of Materials Processing Technology, 2022, 307, 117660.	3.1	23
532	Phase Transformation Kinetics in Laser-Powder Bed Fused Fe-Cr-Ni-Al Maraging Stainless Steel. SSRN Electronic Journal, 0, , .	0.4	0
533	Mechanistic Origin of Abnormal Annealing-Induced Hardening in an AlCoCrFeNi _{2.1} Eutectic Multi-Principal-Element Alloy. SSRN Electronic Journal, 0, , .	0.4	0
534	Geometrical Structure Enhanced Strength Combined with Modulate D ÂModulus in Auxetic Meta-Biomaterials Fabricated by Selective Laser Melting. SSRN Electronic Journal, 0, , .	0.4	0
535	Coordinated Matrix Deformation Induced Ductility in Multilayer Graphene/Aluminum Composites. SSRN Electronic Journal, 0, , .	0.4	0
536	Multicomponent Precipitation and Strengthening in Intermetallic-Strengthened Alloys. Frontiers in Materials, 0, 9, .	1.2	2
537	Effect of Ti Addition on the Wear Resistance of Low Alloy Steel. Transactions of the Indian Institute of Metals, 0, , .	0.7	2
538	Laser powder bed fusion of copper matrix iron particle reinforced nanocomposite with high strength and high conductivity. Journal of Materials Science and Technology, 2023, 134, 50-59.	5.6	6
539	Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels. Nature Communications, 2022, 13, .	5.8	27
540	The Importance of Structure and Corrosion Resistance of Steels/Alloys. Coatings, 2022, 12, 997.	1.2	0
541	High strength and deformation stability achieved in CrCoNi alloy containing deformable oxides. Journal of Materials Science and Technology, 2023, 134, 89-94.	5.6	3

	CITATION	Report	
#	Article	IF	CITATIONS
542	Near-Equiatomic μ Phase in Self-Sharpening Tungsten-Based High-Entropy Alloys. Metals, 2022, 12, 1130.	1.0	2
543	Creating win-wins from strength–ductility trade-off in multi-principal element alloys by machine learning. Materials Today Communications, 2022, 32, 104010.	0.9	7
544	The martensitic transition pathway in steel. Journal of Materials Science and Technology, 2023, 134, 244-253.	5.6	9
545	Microstructure, thermodynamics and compressive properties of Al _{0.5} CoCrCuFeNi-X (X=V,Si,VSi) high-entropy alloys. Materials Science and Technology, 2022, 38, 1555-1562.	0.8	0
546	Insight into the increment of the formability and strength in bcc structured Mg–Li–Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143563.	2.6	5
547	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	14.8	65
548	Effect of tempering on the stability of retained austenite in carbide-free bainitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143525.	2.6	12
549	Development of the γ′ phase strengthened high-temperature high-entropy alloys with excellent mechanical properties. Materials and Design, 2022, 221, 110940.	3.3	14
550	Metastable nanostructures with enhanced hardness of Ti-Ni-Al alloy through electrostatic levitation processing. Materials Letters, 2022, 324, 132732.	1.3	4
551	A strong and ductile NiCoCr-based medium-entropy alloy strengthened by coherent nanoparticles with superb thermal-stability. Journal of Materials Science and Technology, 2023, 132, 201-212.	5.6	14
552	An accelerated aging assisted by electric current in a Fe-Mn-Al-C low-density steel. China Foundry, 2022, 19, 395-402.	0.5	1
553	Evolution of Cu-rich phase in Al-modified ferrite stainless steel during short-term ageing. Materials and Design, 2022, 221, 110977.	3.3	4
554	Influence of brazing temperature on interfacial reaction layer characteristics of Cu-Sn-Ti/diamond composites. Diamond and Related Materials, 2022, 128, 109276.	1.8	7
555	Importance of Microstructure on Precipitation in Tempering of Martensitic Steels. IOP Conference Series: Materials Science and Engineering, 2022, 1249, 012066.	0.3	0
556	Enhancing the intergranular corrosion resistance and mechanical properties of Al–Mg–xSi–Cu–Zn alloys by synergistic intergranular and intragranular precipitation behaviors. Journal of Materials Science, 2022, 57, 14490-14510.	1.7	2
557	Alå•金化å⁻¹æ—Co马æ°ë¹⁄2"æ—¶æ•^钢微è§,ç»"æž"ä¸ŽåŠ›å¦æ€§èf¹⁄2çš"å¹⁄2±å"•Zhongguo Kexue Jishı	u Kex oe \$Scie	nti o Sinica Te
558	Elimination of room-temperature brittleness of Fe–Ni–Co–Al–Nb–V alloys by modulating the distribution of Nb through the addition of V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143848.	2.6	5
559	Effects of CeO2 on the phase, microstructure and mechanical properties of Al2O3-ZrO2(CeO2) nanocomposite ceramics (AZC-NCs) by solid solution precipitation. Ceramics International, 2022, 48, 34454-34464.	2.3	3

#	Article	IF	CITATIONS
560	Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile. Nature Communications, 2022, 13, .	5.8	53
561	Porous NiTiNb alloys with superior strength and ductility induced by modulating eutectic microregion. Acta Materialia, 2022, 239, 118295.	3.8	7
562	Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion. Nature Communications, 2022, 13, .	5.8	38
563	Electronically engineering microstructural design for developing advanced steels: An exploration of high Si bainitic steel. Materials and Design, 2022, 221, 111011.	3.3	4
564	Stacking fault induced hardening and grain size effect in nanocrystalline CoNiCrFeMn high-entropy alloy. Extreme Mechanics Letters, 2022, 56, 101875.	2.0	14
565	Development of novel ferritic steels strengthened by the Co16X6Si7-G phase: A theoretical and experimental study. Materials and Design, 2022, 222, 111021.	3.3	1
566	Achieving exceptional strength-ductility synergy in a complex-concentrated alloy via architected heterogeneous grains and nano-sized precipitates. International Journal of Plasticity, 2022, 157, 103398.	4.1	32
567	Phase transformations in an ultralight BCC Mg alloy during anisothermal ageing. Acta Materialia, 2022, 239, 118248.	3.8	114
568	Microstructure and radiation stability of nano-dispersoids in particle-reinforced FeCrAl alloys with different Zr concentrations. Journal of Alloys and Compounds, 2022, 925, 166625.	2.8	9
569	Ultrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-scale heterogeneous structures. Journal of Materials Science and Technology, 2023, 135, 241-249.	5.6	25
570	Influence of WC grain size on the microstructure and wear property enhancement of 18Ni300 coatings. Surface and Coatings Technology, 2022, 447, 128823.	2.2	10
571	Deformation-aging behavior and property evolution of Cu–Ti alloys prepared by accumulative roll bonding-deformation diffusion process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 855, 143915.	2.6	5
572	High power laser powder bed fusion of 18Ni300 maraging steel: Processing optimization, microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 143983.	2.6	9
573	Synergistic reinforcement effect of Fe and in-situ synthesized MgAlB4 whiskers in Al matrix composites. Composites Part B: Engineering, 2022, 246, 110267.	5.9	3
574	Large hardening response mediated by room-temperature dynamic solute clustering behavior in a dilute Mg-Zn-Ca-Sn-Mn alloy. Acta Materialia, 2022, 240, 118308.	3.8	16
575	Strength-plasticity regulation via nanoscale precipitation and coprecipitation in cobalt-free medium-entropy alloys. Materials Characterization, 2022, 193, 112263.	1.9	3
576	Synergistic effects of microalloying and pre-straining on enhanced nanoprecipitation and creep property of alumina-forming austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 857, 143995.	2.6	4
577	In situ observation of bainitic transformation behavior in medium carbon bainitic steel. Journal of Materials Research and Technology, 2022, 21, 330-338.	2.6	2

#	Article	IF	CITATIONS
578	Simultaneous improvement of microstructure and high-temperature tensile properties in CNT-doped Mo-based composites. Vacuum, 2022, 205, 111470.	1.6	3
579	Enhanced strength-ductility synergy in a new 2.2ÂGPa grade ultra-high strength stainless steel with balanced fracture toughness: Elucidating the role of duplex aging treatment. Journal of Alloys and Compounds, 2022, 928, 167135.	2.8	9
580	Ultra-high strength ZrTiAl alloy fabricated by laser metal deposition and subsequent heat treatment. Journal of Alloys and Compounds, 2022, 928, 167144.	2.8	1
581	Intermetallic-Precipitation-Strengthened Steels. Materials Horizons, 2022, , 247-265.	0.3	0
582	Advanced High-Temperature Structural Materials in Petrochemical, Metallurgical, Power, and Aerospace Sectors—An Overview. , 2022, , 79-131.		4
583	Identification of a New Phase of Fe2al5zn0.2 and its Competitive Relationship with Mno in Hot-Dip Galvanized High-Al Low-Si Dual Phase Steels. SSRN Electronic Journal, 0, , .	0.4	0
584	The Superior Strength-Ductility Combination of a (Ni ₂ FeCoCr) _{88.25} -Al ₅ Ti ₃ W _{1.5} Mo _{1.5} Nb _{0.75} High Entropy Alloy Enhanced with the Heterogeneous Microstructure Via Thermo-Mechanical Processing. SSRN	0.4	0
585	Electronic Journal, 0, , . In-Situ Synchrotron X-Ray Diffraction Study on Stress-Induced Martensite Transformation in Maraging Steel with High Strength and Good Ductility. SSRN Electronic Journal, 0, , .	0.4	0
586	Mechanical Properties of Complex Concentrated Alloys: Implications for Structural Integrity. , 2023, , 209-239.		2
587	Critical Review of Factors Hindering Scalability of Complex Concentrated Alloys. , 2023, , 103-121.		2
588	In-Situ Synchrotron X-Ray Diffraction Study on Stress-Induced Martensite Transformation in Maraging Steel with High Strength and Good Ductility. SSRN Electronic Journal, 0, , .	0.4	0
589	In-Situ Fabrication, Microstructure and Mechanical Performance of Nano Iron-Rich Precipitate Reinforced Cu and Cu Alloys. Metals, 2022, 12, 1453.	1.0	4
590	Fabrication Techniques and the Formation Mechanism of Nanoparticles and Nanoclusters in Metal Materials. Metals, 2022, 12, 1420.	1.0	1
591	Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nature Materials, 2022, 21, 1258-1262.	13.3	51
592	Effect of Vanadium on the Microstructure and Mechanical Properties of 2100ÂMPa Ultra-High Strength High Plasticity Spring Steel Processed by a Novel Online Rapid-Induction Heat Treatment. Metals and Materials International, 2023, 29, 922-933.	1.8	3
593	Trifunctional Laves precipitates enabling dual-hierarchical FeCrAl alloys ultra-strong and ductile. International Journal of Plasticity, 2022, 159, 103438.	4.1	17
594	Microstructure Evolution and Mechanical Properties of 20%SiCp/Al Joint Prepared via Laser Welding. Materials, 2022, 15, 6046.	1.3	3
595	Non-Hookean large elastic deformation in bulk crystalline metals. Nature Communications, 2022, 13, .	5.8	8

#	Article	IF	CITATIONS
596	Microstructural evolution and superelastic properties of ultrafine-grained NiTi-based shape memory alloy via sintering of amorphous ribbon precursor. Journal of Materials Science and Technology, 2023, 138, 80-92.	5.6	6
597	A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Science China Materials, 2023, 66, 780-792.	3.5	19
598	Multi-type dislocation substructure evolution in a high-strength and ductile duplex high-entropy nanocomposites. Composites Part B: Engineering, 2022, 247, 110322.	5.9	8
599	Achieving high strength and deformability in a high entropy alloy containing the multiscale phase structure. Materials Today Nano, 2022, 20, 100263.	2.3	2
600	Phase and polarization modulation in two-dimensional In ₂ Se ₃ via in situ transmission electron microscopy. Science Advances, 2022, 8, .	4.7	18
601	Effect of Precipitation Behavior on Mechanical Properties of a Nb-Containing CoCrNi-Based High-Entropy Alloy. Metals and Materials International, 2023, 29, 674-692.	1.8	7
602	Interfacial gradient M7C3 carbides precipitation behavior and strengthening mechanisms of stainless steel/carbon steel clad plates. Journal of Materials Research and Technology, 2022, 21, 3476-3488.	2.6	5
603	Nanoprecipitates assisting subsurface cracking in high-strength steel under very high cycle fatigue. Scripta Materialia, 2023, 224, 115112.	2.6	1
604	High-ductility aluminium alloys including small sub-grains with wide low angle boundary. Journal of Alloys and Compounds, 2023, 934, 167868.	2.8	4
605	Microstructure evolution and yield strength improvement of a low carbon medium manganese steel experienced intercritical annealing, pre-straining and tempering. Materials Characterization, 2022, 194, 112439.	1.9	3
606	Grain boundary relaxation induced ultrastrong-and-ductile bulk pure Ni. Applied Materials Today, 2022, 29, 101653.	2.3	1
607	Rational design and multi-stage formation mechanisms of FeCrNiAl medium-entropy alloy strengthened by multi-scaled dual phases. Materials Characterization, 2022, 194, 112430.	1.9	3
608	Coordinated matrix deformation induced ductility in multilayer graphene/aluminum composites. Carbon, 2023, 202, 31-40.	5.4	5
609	Refinement of carbide precipitates in high-Nb TiAl by cyclic aging treatments. Scripta Materialia, 2023, 224, 115152.	2.6	6
610	Cr-promoted formation of B2+L21 composite nanoprecipitates and enhanced mechanical properties in ferritic alloy. Acta Materialia, 2023, 243, 118506.	3.8	10
611	Improved Strength–Ductility Synergy of a CoCrNi Mediumâ€Entropy Alloy by Ex Situ TiN Nanoparticles. Advanced Engineering Materials, 2023, 25, .	1.6	1
612	Influence of Carbides Precipitated by Low-temperature Tempering on the Room-temperature Mechanical Properties of Grade 91 Steel. ISIJ International, 2022, 62, 2389-2396.	0.6	0
613	The role of alloying elements in NiAl and Ni3Ti strengthened Co-free maraging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 861, 144313.	2.6	5

ARTICLE IF CITATIONS Plastic deformation behavior of Pd-based binary alloys: A first-principles study. Materials Today 0.9 0 614 Communications, 2022, 33, 104877. High specific yield strength TiZrAlNbV high-entropy alloys via coherent nanoprecipitation strengthening. Materials Science & amp; Engineering A: Structural Materials: Properties, 2.6 Microstructure and Processing, 2022, 861, 144346. Enhanced helium ion irradiation tolerance in a Fe-Co-Ni-Cr-Al-Ti high-entropy alloy with L12 616 5.6 10 nanoparticles. Journal of Materials Science and Technology, 2023, 143, 169-177. Enhancing strength and ductility in a near medium Mn austenitic steel via multiple deformation mechanisms through nanoprecipitation. Acta Materialia, 2023, 243, 118538. Warm Rolled Temperature Effect on Microstructure and Mechanical Properties of 18Mn/40Si2CrMo 618 1.0 1 Multilayer Composite Steel. Crystals, 2022, 12, 1652. Developing NiAl-strengthened HSLA steels by controlling nanoscale precipitation and high-angle boundaries. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure 2.6 and Processing, 2022, 861, 144355. Superior fracture toughness with high yield strength in a high-Mn steel induced by heterogeneous 620 3.3 9 grain structure. Materials and Design, 2023, 225, 111473. Microstructures and mechanical properties of Al–Zn–Mg–Cu alloy with the combined addition of Ti 621 2.6 and Zr. Journal of Materials Research and Technology, 2023, 22, 747-761. In-situ high-energy X-ray diffraction study of the early-stage decomposition in 2:17-type Sm-Co-based 622 3.8 4 permanent magnets. Acta Materialia, 2023, 244, 118580. Managing mechanical and electrical properties of nanostructured Cu-Fe composite by aging treatment. Materials Characterization, 2023, 196, 112600. Achieving highest Young's modulus in Al-Li by tracing the size and bonding evolution of Li-rich 624 5.6 8 precipitates. Journal of Materials Science and Technology, 2023, 145, 125-135. The inhibition of MnO on Fe2Al5Znx growth and associated three-dimensional nested phase distribution in the galvanized coating of high-Al low-Si dual phase steel. Applied Surface Science, 2023, 3.1 614, 156153. Ultrahigh tensile strength achieved in a lightweight medium Mn steel via prominent work hardening. 626 5.6 13 Journal of Materials Science and Technology, 2023, 145, 156-164. Recent Advances on Composition-Microstructure-Properties Relationships of Precipitation Hardening 1.3 Stainless Steel. Materials, 2022, 15, 8443. Dual precipitates and heterogeneous fine-grain structure induced strength-ductility synergy in a 629 CoCrNi-based medium-entropy alloy. Materials Science & amp; Engineering A: Structural Materials: 2.6 4 Properties, Microstructure and Processing, 2023, 867, 144504. A novel Fe–Cr–Ni–Co–Mo maraging stainless steel with enhanced strength and cryogenic toughness: Role of austenite with core-shell structures. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 863, 144537. Role of Y on the microstructure and mechanical properties of Mg-Gd-Zr alloy. Materials Science & amp; 631 2.6 7 Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 861, 144371. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial 13.3 ordering. Nature Materials, 2023, 22, 434-441.

#	Article	IF	CITATIONS
633	Corrosion Resistance of Amorphous-Nanocrystalline Composite Structure Materials. ACS Omega, 2023, 8, 3348-3353.	1.6	2
634	Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy. Nature Communications, 2023, 14, .	5.8	13
635	Atomic clusters induced rapid hardening behavior in an early stage of isothermal aging for a high-strength Al alloy produced by laser powder bed fusion additive manufacturing. Journal of Applied Physics, 2023, 133, 025104.	1.1	0
636	High-pressure quenching effect on martensitic transformation characteristics and mechanical properties of low-alloy medium-carbon steel. Journal of Materials Research and Technology, 2023, 23, 765-777.	2.6	2
637	Effect of ausforming on the bainitic transformation and microstructure in medium carbon V–N micro-alloyed steel. Journal of Materials Research and Technology, 2023, 23, 637-647.	2.6	5
638	Laser cladding high-performance maraging-steel coatings on bainitic cross wing rails assisted with in-situ induction heating: Microstructure and performance. Journal of Materials Processing Technology, 2023, 313, 117886.	3.1	2
639	Ductile 2-GPa steels with hierarchical substructure. Science, 2023, 379, 168-173.	6.0	40
640	The intergranular precipitation behavior of G phase in a high-performance complex cast Cu-Ni-Al alloy. Materials Characterization, 2023, 196, 112611.	1.9	2
641	Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review. Journal of Materials Research and Technology, 2023, 23, 172-190.	2.6	35
642	Contribution of coherent precipitates on mechanical properties of CoCrFeNiTi0.2 high-entropy alloy at room and cryogenic temperatures. Intermetallics, 2023, 154, 107820.	1.8	6
643	Microstructure and Mechanical Properties of the 6 wt% Mn-Doped Martensitic Steel Strengthened by Cu/NiAl Nanoparticles. Materials, 2023, 16, 241.	1.3	2
644	Enhancing Compressive Stress–Strain of Ti55531 Alloy via La-Rich Nanoscale Structure at Grain Boundaries. Journal of Materials Engineering and Performance, 0, , .	1.2	0
645	Effect of different isothermal times on the microstructure and mechanical properties of high-strength rebar. High Temperature Materials and Processes, 2023, 42, .	0.6	1
646	How Can We Overcome the Strength–Ductility Tradeoff in Light Alloys and Related Composites?. Materials, 2023, 16, 934.	1.3	1
647	Strengthening mechanism and precipitate evolution of a multi-application special engineering steel designed based on a hybrid idea. Journal of Alloys and Compounds, 2023, 942, 169053.	2.8	4
648	Microstructure and tensile properties of IN718 superalloy aged with temperature/stress coupled field. Journal of Materials Research and Technology, 2023, 23, 4747-4756.	2.6	3
649	Roles of N-Alloying and Austenitizing Temperature in Tuning the Hardness and Strengthening–Toughening Behavior of M42 High-Speed Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2023, 54, 2451-2469.	1.1	3
650	Effects of Cu and Nb on martensite hardening and transformation-induced plastic deformation behavior of maraging TRIP-aided steel. Journal of Materials Research and Technology, 2023, 24, 4271-4284.	2.6	7

#	Article	IF	CITATIONS
651	Achieving strength and ductility synergy via a nanoscale superlattice precipitate in a cast Mg-Y-Zn-Er alloy. International Journal of Plasticity, 2023, 163, 103558.	4.1	14
652	High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy. Acta Materialia, 2023, 248, 118810.	3.8	17
653	Enhanced mechanical properties of a high-carbon martensite steel processed by heavy warm rolling and tempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144958.	2.6	2
654	Effects of Mo content on the precipitation behavior and martensitic transformation in FeNiCoAlMo alloy. Materials Characterization, 2023, 199, 112787.	1.9	1
655	Effect of a direct aging heat treatment on the microstructure and the tensile properties of a 18Ni-300 maraging steel produced by Laser Powder Bed Fusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144921.	2.6	6
656	A novel strategy for architecting low interfacial energy transition phase to enhance thermal stability in a high-entropy alloy. Journal of Alloys and Compounds, 2023, 947, 169570.	2.8	Ο
657	Two novel Zr-rich refractory high-entropy alloys with excellent tensile mechanical properties. Intermetallics, 2023, 157, 107872.	1.8	6
658	Unveiling the unique bifunctionality of L12-structured nanoprecipitates in a FeCoNiAlTi-type high-entropy alloy. , 2023, 2, 100113.		5
659	Interface characteristics and reinforcement mechanism of large-size WC-18Co reinforced Fe-matrix composites. International Journal of Refractory Metals and Hard Materials, 2023, 113, 106166.	1.7	3
660	Nucleation/growth design by thermo-kinetic partition. Journal of Materials Science and Technology, 2023, 155, 72-81.	5.6	6
661	Mechanistic origin of abnormal annealing-induced hardening in an AlCoCrFeNi2.1 eutectic multi-principal-element alloy. Acta Materialia, 2023, 252, 118905.	3.8	9
662	Deformation mechanism of a strong and ductile maraging steel investigated using in-situ X-ray synchrotron diffraction. International Journal of Plasticity, 2023, 165, 103612.	4.1	2
663	Multiscale-phase-driven strength-ductility synergy in Fe3Cr2CoNiAlx high entropy alloys. Intermetallics, 2023, 156, 107865.	1.8	5
664	The role of trace Nb in enhancing the strength-ductility combination of a Ni2CoCrFe-based high-entropy alloy via thermo-mechanical processing. Materials Characterization, 2023, 200, 112866.	1.9	6
665	Investigation of quasi-cleavage in a hydrogen charged maraging stainless steel. Corrosion Science, 2023, 218, 111163.	3.0	4
666	The corrosion response of the heterogeneous nitriding structure originated from the laser additive manufactured steel. Corrosion Science, 2023, 218, 111188.	3.0	5
667	Ultrahigh cryogenic strength and ductility in a duplex metastable ferrous medium-entropy alloy. Scripta Materialia, 2023, 228, 115334.	2.6	11
668	A medium-C martensite steel with 2.6 GPa tensile strength and large ductility. Scripta Materialia, 2023, 228, 115327.	2.6	3

#	Article	IF	CITATIONS
669	Fabrication of high-strength dual FCC phase Co-Cr-Fe-Ni-Cu-Mo high entropy alloy by plasma arc additive manufacturing using a combined cable wire. Materials Letters, 2023, 337, 133983.	1.3	8
670	Breaking strength-ductility trade-off in laser-powder bed fused Fe–Cr–Ni–Al maraging stainless steel: Controlled precipitation and preserved dislocations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 868, 144761.	2.6	4
671	A rapid and effective method for alloy materials design via sample data transfer machine learning. Npj Computational Materials, 2023, 9, .	3.5	2
672	Effect of Hot Torsion on Microstructure and Properties of Precipitation Hardening Martensitic Stainless Steel. Journal of Materials Engineering and Performance, 2024, 33, 807-818.	1.2	0
673	Abnormally high work hardening ability and excellent comprehensive properties of copper alloys due to multiple twins and precipitates. Materials and Design, 2023, 228, 111819.	3.3	8
674	Fe-Mn-Al-C high-entropy steels with superior mechanical properties at 4.2†K. Materials and Design, 2023, 228, 111840.	3.3	3
675	A new Nb-Si-added 2100ÂMPa ultra-strong spring steel designed under the guidance of a strength model. Journal of Materials Science, 2023, 58, 5933-5950.	1.7	2
676	Unveiling the Alloying-Processing-Microstructure Correlations in High-Formability Sheet Magnesium Alloys. Metals, 2023, 13, 704.	1.0	1
677	Highâ€Voltage Spinel and Li ₂ MnO ₃ Composite Structure Construction in LiMn _{0.8} Ni _{0.2} O ₂ for Manganeseâ€Based Lithiumâ€Ion Battery Cathode Materials. Advanced Energy Materials, 2023, 13, .	10.2	2
678	Achieving an extra-high-strength yet ductile steel by synergistic effects of TRIP and maraging. Materials Research Letters, 2023, 11, 578-585.	4.1	7
679	Off-stoichiometry-guided design of high-strength chemically complex intermetallic-based alloys with outstanding ductility. Journal of Materials Science and Technology, 2023, 160, 28-33.	5.6	4
680	The effect of surface nucleation modulation on the mechanical and biocompatibility of metal-polymer biomaterials. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0
681	Strength–ductility balance optimization of Fe2NiCr0.5Cu0.2Al0.3Ti0.1 multicomponent alloy via doping trace amounts of boron. Journal of Materials Science, 0, , .	1.7	0
682	Making a coherent L12-nano-precipitates-reinforced Ni-based alloy ultrastrong and ductile by constructing dual heterogeneous structures. Intermetallics, 2023, 159, 107914.	1.8	4
683	Computational thermodynamics and kinetics-guided re-engineering of a high-performance tool steel. Scripta Materialia, 2023, 232, 115496.	2.6	1
684	Revealing the microstructural evolution and its influence on mechanical properties of heterostructured steel fabricated by laser melting deposition. Journal of Materials Research and Technology, 2023, 24, 4935-4944.	2.6	3
685	The α2 to orthorhombic phase transformation facilitated high elastically mediated strain transfer ability in high Nb-TiAl alloys. Materials Characterization, 2023, 201, 112924.	1.9	1
719	Uncovering dislocation-precipitate interactions during tensile loading of wire arc additive manufactured nickel-aluminum-bronze. MRS Communications, 2023, 13, 1031-1037.	0.8	1

#	Article	IF	CITATIONS
774	Ultrastrong metallic materials via minimal lattice misfit and strong ordering effect. Science China Materials, 2023, 66, 4182-4188.	3.5	0
805	General Aspects of Nanostructure. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 7-29.	1.4	0
808	Short-Range Ordering Engineering. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 147-174.	1.4	0
809	Precipitation Engineering. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 89-117.	1.4	0
826	Digital Design ofÂaÂLightweight andÂLow-Cost UHS Steel. Minerals, Metals and Materials Series, 2024, , 1389-1399.	0.3	0