On Model, Algorithms, and Experiment for Micro-Dopp Targets

IEEE Transactions on Aerospace and Electronic Systems 53, 1088-1108

DOI: 10.1109/taes.2017.2665258

Citation Report

#	Article	IF	CITATIONS
1	Novel Approach for Ballistic Targets Classification from HRRP Frame. , 2017, , .		7
2	Precession feature extraction of ballistic missile warhead with high velocity. AIP Conference Proceedings, 2018, , .	0.3	O
3	Efficient 3DFV for improved discrimination of ballistic warhead. Electronics Letters, 2018, 54, 1452-1454.	0.5	6
4	Feature Extraction of Micro-Motional Targets Via Time-Range Distribution. IEEE Access, 2019, 7, 118889-118897.	2.6	4
5	Learned Micro-Doppler Representations for Targets Classification Based on Spectrogram Images. IEEE Access, 2019, 7, 139377-139387.	2.6	9
6	Efficient Parameter Estimation for Cone-Shaped Target Based on Distributed Radar Networks. IEEE Sensors Journal, 2019, 19, 9736-9747.	2.4	15
7	Micro-Doppler Curves Extraction Based on High-Order Particle Filter Track-Before Detect. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1550-1554.	1.4	8
8	Micro Doppler Reconstruction From Discontinuous Observations Based on Gapped SBL-FBTVAR Method for Spin Stabilized Object. IEEE Access, 2019, 7, 104500-104513.	2.6	3
9	Parametric Representation and Application of Micro-Doppler Characteristics for Cone-Shaped Space Targets. IEEE Sensors Journal, 2019, 19, 11839-11849.	2.4	21
10	Micro-Doppler Gesture Recognition using Doppler, Time and Range Based Features. , 2019, , .		16
11	Novel Classification Algorithm for Ballistic Target Based on HRRP Frame. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 3168-3189.	2.6	31
12	Target Classification and Tracking Based on Aerodynamic Properties and RCS Information Using Rao-Blackwellized Particle Filter. , 2019, , .		1
13	Understanding the potential of Self-Protection Jamming on board of miniature UAVs. , 2019, , .		2
14	A Complete Automatic Target Recognition System of Low Altitude, Small RCS and Slow Speed (LSS) Targets Based on Multi-Dimensional Feature Fusion. Sensors, 2019, 19, 5048.	2.1	10
15	Microâ€Doppler characteristics of streamlined ballistic target. Electronics Letters, 2019, 55, 149-151.	0.5	7
16	High Range Resolution Profile Estimation via a Cognitive Stepped Frequency Technique. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 444-458.	2.6	38
17	Efficient Discrimination of Ballistic Targets With Micromotions. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1243-1261.	2.6	33
18	Optimal Arrangement of Missile Defense Systems Considering Kill Probability. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 972-983.	2.6	8

#	Article	IF	CITATIONS
19	Loudspeaker Analysis: A Radar Based Approach. IEEE Sensors Journal, 2020, 20, 1223-1237.	2.4	9
20	Micro-Doppler-Based Space Target Recognition with a One-Dimensional Parallel Network. International Journal of Antennas and Propagation, 2020, 2020, 1-10.	0.7	9
21	Micro-Doppler based target classification in ground surveillance radar systems. , 2020, 101, 102702.		19
22	Full-Polarization Baseband Echo Simulation of Space Targets for Bistatic Radar. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 396-400.	1.4	3
23	Evidence-Theoretic Reentry Target Classification Using Radar: A Fuzzy Logic Approach. IEEE Access, 2021, 9, 55567-55580.	2.6	2
24	A Fast and Compact Deep Gabor Network for Micro-Doppler Signal Processing and Human Motion Classification. IEEE Sensors Journal, 2021, 21, 23085-23097.	2.4	7
25	A Noise Robust Micro-Range Estimation Method for Precession Cone-Shaped Targets. Remote Sensing, 2021, 13, 1820.	1.8	4
26	Classification of Space Objects by Using Deep Learning with Micro-Doppler Signature Images. Sensors, 2021, 21, 4365.	2.1	8
27	Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition. Sensors, 2021, 21, 381.	2.1	17
28	HRR profile estimation using SLIM. IET Radar, Sonar and Navigation, 2019, 13, 512-521.	0.9	20
29	A Feature-Based Approach for Loaded/Unloaded Drones Classification Exploiting micro-Doppler Signatures. , 2020, , .		16
30	Novel Parameter Estimation Method for a Ballistic Warhead with Micromotion. Journal of Electromagnetic Engineering and Science, 2020, 20, 262-269.	0.7	4
31	Classification of the Front Body of a Missile and Debris in Boosting Part Separation Phase Using Periodic and Statistical Properties of Dynamic RCS. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2018, 29, 540-549.	0.0	4
32	Modeling Method of Receiving Radar Signals from Warhead and Decoy with Micro-Motion. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2019, 30, 243-251.	0.0	1
33	Classification of Warhead and Debris using CFAR and Convolutional Neural Networks. The Journal of Korean Institute of Information Technology, 2019, 17, 85-94.	0.1	2
34	Efficient Recognition Method for Ballistic Warheads by the Fusion of Feature Vectors Based on Flight Phase. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2019, 30, 487-497.	0.0	5
35	Research on the micromotion characteristics of a chaff cloud. Eurasip Journal on Advances in Signal Processing, 2019, 2019, .	1.0	0
36	Effective Discrimination between Warhead and Decoy in Mid-Course Phase of Ballistic Missile. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2020, 31, 468-477.	0.0	2

#	ARTICLE	IF	CITATIONS
37	Micro-Doppler Based Target Recognition With Radars: A Review. IEEE Sensors Journal, 2022, 22, 2948-2961.	2.4	41
39	Multichannel Clutter Modeling, Analysis, and Suppression for Missile-Borne Radar Systems. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 3236-3260.	2.6	14
40	Fusion Recognition of Space Targets With Micromotion. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 3116-3125.	2.6	25
41	Target-attentional CNN for Radar Automatic Target Recognition with HRRP. Signal Processing, 2022, 196, 108497.	2.1	19
42	Space Target Classification Improvement by Generating Micro-Doppler Signatures Considering Incident Angle. Sensors, 2022, 22, 1653.	2.1	6
43	Parameter Estimation for Precession Cone-Shaped Targets Based on Range–Frequency–Time Radar Data Cube. Remote Sensing, 2022, 14, 1548.	1.8	4
44	An Improved Phase-Derived Range Method Based on High-Order Multi-Frame Track-Before-Detect for Warhead Detection. Remote Sensing, 2022, 14, 29.	1.8	3
45	Deep Learning Network for Classifying Target of Same Shape using RCS Time Series., 0, , .		0
46	Unambiguous Estimation of Multidimensional Parameters for Space Precession Targets With Wideband Radar Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	5
47	Pose Measurement and Motion Estimation of Space On-Orbit CubeSats Based on Micro-Doppler Effect Using Laser Coherent Radar. Applied Sciences (Switzerland), 2022, 12, 4021.	1.3	3
48	Measurements of Micro-Doppler Signals Induced by Acoustic Stimulation. IEEE Instrumentation and Measurement Magazine, 2022, 25, 37-41.	1.2	1
49	Cone-Shaped Space Target Inertia Characteristics Identification by Deep Learning With Compressed Dataset. IEEE Transactions on Antennas and Propagation, 2022, 70, 5217-5226.	3.1	13
50	Micro-Doppler Parameters Extraction of Precession Cone-Shaped Targets Based on Rotating Antenna. Remote Sensing, 2022, 14, 2549.	1.8	11
51	Precession Parameter Estimation of Warhead With Fins Based on Micro-Doppler Effect and Radar Network. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 443-459.	2.6	7
52	Ballistic Target Recognition Based on 4-D Point Cloud Using Randomized Stepped Frequency Radar. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 5711-5729.	2.6	1
53	Radar Target Classification Receiver Using Sparse Regression and Target Tailored Matched Filters. IEEE Transactions on Aerospace and Electronic Systems, 2022, , 1-12.	2.6	0
54	Parameter Estimation for Space Precession Targets With Intermittent Observation. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	2
55	Ambiguity Function based High-Order Translational Motion Compensation. IEEE Transactions on Aerospace and Electronic Systems, 2022, , 1-8.	2.6	1

#	Article	IF	CITATIONS
56	Real Micro-Doppler Parameters Extraction of Spinning Targets Based on Rotating Interference Antenna. Remote Sensing, 2022, 14, 5300.	1.8	5
57	Recognition of Ballistic Targets by Fusing Micro-Motion Features with Networks. Remote Sensing, 2022, 14, 5678.	1.8	4
58	Multi-Feature Fusion Recognition of Space Micromotion Target. , 2021, , .		0
59	The Design of the 1D CNN–GRU Network Based on the RCS for Classification of Multiclass Missiles. Remote Sensing, 2023, 15, 577.	1.8	7
60	Space Target Classification With Corrupted HRRP Sequences Based on Temporal–Spatial Feature Aggregation Network. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-18.	2.7	1
61	Study on Intrapulse Modulated Echo Simulation Method for Target with Micro-motion. , 2022, , .		0
62	Use of Stepped Carrier Frequency in Fast Scan Mode to Detect Small Targets on the Sea Surface. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 5363-5377.	2.6	1
63	Signal preprocessing routines for the detection and classification of human microâ€Doppler radar signatures. Microwave and Optical Technology Letters, 2023, 65, 2132-2149.	0.9	2