An Overview of Shape Memory Alloy-Coupled Actuator

Soft Robotics 4, 3-15 DOI: 10.1089/soro.2016.0008

Citation Report

#	Article	IF	CITATIONS
1	Curved shape memory alloy-based soft actuators and application to soft gripper. Composite Structures, 2017, 176, 398-406.	3.1	109
2	Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft Robotics, 2017, 4, 379-389.	4.6	247
3	Self-Healing and Damage Resilience for Soft Robotics: A Review. Frontiers in Robotics and Al, 2017, 4, .	2.0	83
4	A compliant mechanism with variable stiffness achieved by rotary actuators and shape-memory alloy. Meccanica, 2018, 53, 2555-2571.	1.2	7
5	Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions. Sensors and Actuators A: Physical, 2018, 271, 131-138.	2.0	119
6	Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy. Smart Materials and Structures, 2018, 27, 055005.	1.8	15
7	Artificial Heliotropism and Nyctinasty Based on Optomechanical Feedback and No Electronics. Soft Robotics, 2018, 5, 93-98.	4.6	13
8	Key Factors Achieving Large Recovery Strains in Polycrystalline Fe–Mn–Siâ€Based Shape Memory Alloys: A Review. Advanced Engineering Materials, 2018, 20, 1700741.	1.6	31
9	Soft Fabric Actuator for Robotic Applications. , 2018, , .		8
10	Analysis of the present situation of the application of multimedia technology in art design. IOP Conference Series: Earth and Environmental Science, 2018, 199, 032041.	0.2	0
11	Control system of a soft tube-shaped actuator based on SMA. AIP Conference Proceedings, 2018, , .	0.3	0
12	A flex-rigid soft robot for flipping locomotion. , 2018, , .		0
13	Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation. Materials, 2018, 11, 2324.	1.3	41
14	Soft robot with a novel variable friction design actuated by SMA and electromagnet. Smart Materials and Structures, 2018, 27, 115020.	1.8	9
15	Underwater Dynamic Modeling for a Cable-Driven Soft Robot Arm. IEEE/ASME Transactions on Mechatronics, 2018, 23, 2726-2738.	3.7	38
16	An experimentally-driven approach to model bending in a thermally activated SMA-based beam. Smart Materials and Structures, 2018, 27, 125004.	1.8	4
17	Effect of elastic element on self-excited electrostatic actuator. Sensors and Actuators A: Physical, 2018, 279, 725-732.	2.0	7
18	Locomotion analysis and optimization of actinomorphic robots with soft arms actuated by shape memory alloy wires. International Journal of Advanced Robotic Systems, 2018, 15, 172988141878794.	1.3	12

#	Article	IF	CITATIONS
19	Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. Scientific Reports, 2019, 9, 11251.	1.6	111
20	A Soft Pneumatic Inchworm Double balloon (SPID) for colonoscopy. Scientific Reports, 2019, 9, 11109.	1.6	58
21	An Inchworm-inspired Crawling Robot. Journal of Bionic Engineering, 2019, 16, 582-592.	2.7	22
22	Efficiency of Origami-Based Vacuum Pneumatic Artificial Muscle for Off-Grid Operation. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 789-797.	2.7	12
23	Liquidâ€Metalâ€Enhanced Wire Mesh as a Stiffness Variable Material for Making Soft Robotics. Advanced Engineering Materials, 2019, 21, 1900530.	1.6	14
24	Worm-Like Soft Robot for Complicated Tubular Environments. Soft Robotics, 2019, 6, 399-413.	4.6	91
25	Inflatable L-shaped prisms as soft actuators for soft exogloves. Engineering Research Express, 2019, 1, 025009.	0.8	5
26	Variable-model SMA-driven spherical robot. Science China Technological Sciences, 2019, 62, 1401-1411.	2.0	14
27	Film-based anisotropic balloon inflatable bending actuator. Journal of Mechanical Science and Technology, 2019, 33, 4469-4476.	0.7	8
28	Jumping Tensegrity Robot Based on Torsionally Prestrained SMA Springs. ACS Applied Materials & Interfaces, 2019, 11, 40793-40799.	4.0	31
29	Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields. IEEE Transactions on Robotics, 2019, 35, 1150-1165.	7.3	60
30	Robotic Artificial Muscles: Current Progress and Future Perspectives. IEEE Transactions on Robotics, 2019, 35, 761-781.	7.3	225
31	FifoBots: Foldable Soft Robots for Flipping Locomotion. Soft Robotics, 2019, 6, 532-559.	4.6	12
32	Effect of shape memory alloys partial transformation on the response of morphing structures encompassing shape memory alloy wire actuators. Journal of Intelligent Material Systems and Structures, 2019, 30, 1682-1698.	1.4	9
33	Multimaterial 3D Printed Soft Actuators Powered by Shape Memory Alloy Wires. Sensors and Actuators A: Physical, 2019, 290, 177-189.	2.0	56
34	A Biomimetic Flexible Fishtail Embedded With Shape Memory Alloy Wires. IEEE Access, 2019, 7, 166906-166916.	2.6	14
35	Locomotion modeling of a triangular closed-chain soft rolling robot. Mechatronics, 2019, 57, 150-163.	2.0	22
36	Design and Modelling of Flex-Rigid Soft Robot for Flipping Locomotion. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 95, 379-388.	2.0	8

#	Article	IF	CITATIONS
37	Optimal control scheme for pneumatic soft actuator under comparison of proportional and PWM-solenoid valves. Photonic Network Communications, 2019, 37, 153-163.	1.4	15
38	Origami-Based Vacuum Pneumatic Artificial Muscles with Large Contraction Ratios. Soft Robotics, 2019, 6, 109-117.	4.6	117
39	Design of Paired Pouch Motors for Robotic Applications. Advanced Materials Technologies, 2019, 4, 1800414.	3.0	33
40	Application of SMA spring tendons for improved grasping performance. Smart Materials and Structures, 2019, 28, 035006.	1.8	17
41	Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Transactions on Industrial Electronics, 2019, 66, 6108-6116.	5.2	95
42	Shape Memory Alloy-Based Microscale Bending Actuator Fabricated by a Focused Ion Beam Chemical Vapor Deposition (FIB-CVD) Gap-Filling Process. International Journal of Precision Engineering and Manufacturing, 2020, 21, 491-498.	1.1	8
43	Monolithic SMA-reinforced double slotted beam-column connection. Smart Materials and Structures, 2020, 29, 035002.	1.8	7
44	A Bioinspired Soft Swallowing Robot Based on Compliant Guiding Structure. Soft Robotics, 2020, 7, 491-499.	4.6	28
45	On the microstructure and mechanical properties of a two-way shape memory NiTi/NiTiCu bi-layer diaphragm. Materials and Design, 2020, 188, 108464.	3.3	11
46	Design and modeling of a high-load soft robotic gripper inspired by biological winding. Bioinspiration and Biomimetics, 2020, 15, 026006.	1.5	15
47	Hybrid Jamming for Bioinspired Soft Robotic Fingers. Soft Robotics, 2020, 7, 292-308.	4.6	91
48	A Soft Five-Fingered Hand Actuated by Shape Memory Alloy Wires: Design, Manufacturing, and Evaluation. Frontiers in Robotics and Al, 2020, 7, 608841.	2.0	15
49	Intergrated Shape Memory Alloys Soft Actuators with Periodic and Inhomogeneous Deformations by Modulating Elastic Tendon Structures. Advanced Engineering Materials, 2020, 22, 2000640.	1.6	3
50	A Compact and Low-cost Robotic Manipulator Driven by Supercoiled Polymer Actuators. , 2020, , .		10
51	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	3.3	244
52	Magnetorheological Fluidâ€Based Flow Control for Soft Robots. Advanced Intelligent Systems, 2020, 2, 2000139.	3.3	20
53	Compliant closed-chain rolling robot using modular unidirectional SMA actuators. Sensors and Actuators A: Physical, 2020, 310, 112024.	2.0	19
54	Shape memory textile composites with multi-mode actuations for soft morphing skins. Composites Part B: Engineering, 2020, 198, 108170.	5.9	39

CITATION	DEDODT
CITATION	REPORT

#	Article	IF	CITATIONS
55	Soft Thermal Actuators with Embedded Liquid Metal Microdroplets for Improved Heat Management. , 2020, , .		3
56	Underactuated fluidic control of a continuous multistable membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5217-5221.	3.3	21
57	A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. International Journal of Advanced Robotic Systems, 2020, 17, 172988142090781.	1.3	42
58	Fluid–Structure Interaction Based on Meshless Local Petrov–Galerkin Method for Worm Soft Robot Analysis. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 727-742.	2.7	11
59	A small legged deformable robot with multi-mode motion. Journal of Intelligent Material Systems and Structures, 2020, 31, 704-718.	1.4	7
60	Design of dielectric elastomer actuators using topology optimization on electrodes. Smart Materials and Structures, 2020, 29, 075029.	1.8	8
61	Hybrid composite actuator with shape retention capability for morphing flap of unmanned aerial vehicle (UAV). Composite Structures, 2020, 243, 112227.	3.1	18
62	Novel trends in self-healable polymer nanocomposites. Journal of Thermoplastic Composite Materials, 2021, 34, 834-858.	2.6	61
63	Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications. Bio-Design and Manufacturing, 2021, 4, 123-145.	3.9	40
64	Controlling bending deformation of a shape memory alloy-based soft planar gripper to grip deformable objects. International Journal of Mechanical Sciences, 2021, 193, 106181.	3.6	33
65	Actuation Frequency Modeling and Prediction for Shape Memory Alloy Actuators. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1536-1546.	3.7	5
66	Design and Modeling of Tetrahedral Soft-Legged Robot for Multigait Locomotion. IEEE/ASME Transactions on Mechatronics, 2022, 27, 1288-1298.	3.7	3
67	Shape Memory Alloy (SMA) Actuator With Embedded Liquid Metal Curvature Sensor for Closed-Loop Control. Frontiers in Robotics and Al, 2021, 8, 599650.	2.0	10
68	Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation. Sensors and Actuators A: Physical, 2021, 321, 112598.	2.0	38
69	Gaussian Process Dynamics Models for Soft Robots with Shape Memory Actuators. , 2021, , .		6
70	Soft Robotic Manipulators: Designs, Actuation, Stiffness Tuning, and Sensing. Advanced Materials Technologies, 2021, 6, 2100018.	3.0	66
71	Double-Helix Linear Actuators. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	0
72	Armor-Based Stable Force Pneumatic Artificial Muscles for Steady Actuation Properties. Soft Robotics, 2022, 9, 413-424.	4.6	12

#	Article	IF	CITATIONS
73	Optimal Soft Composites for Underâ€Actuated Soft Robots. Advanced Materials Technologies, 2021, 6, 2100361.	3.0	10
74	Design and Control of Robotic Elbow Using Shape Memory Alloy as Actuators. , 2021, , .		1
75	Friction Prediction and Validation of a Variable Stiffness Lower Limb Exosuit Based on Finite Element Analysis. Actuators, 2021, 10, 151.	1.2	2
76	Control-Free Mechanical Oscillator Powered by Shape Memory Alloys. , 2021, , .		1
77	Materials with Electroprogrammable Stiffness. Advanced Materials, 2021, 33, e2007952.	11.1	42
78	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	8.3	150
79	A Review of SMA-Based Actuators for Bidirectional Rotational Motion: Application to Origami Robots. Frontiers in Robotics and Al, 2021, 8, 678486.	2.0	31
80	Characterization and Analysis of a Flexural Shape Memory Alloy Actuator. Actuators, 2021, 10, 202.	1.2	7
81	Soft Robotics: Morphology and Morphology-inspired Motion Strategy. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1500-1522.	8.5	24
82	Model-Free Tracking Control with Prescribed Performance for a Shape Memory Alloy-Based Robotic Hand. Applied Sciences (Switzerland), 2021, 11, 9040.	1.3	1
83	Flexible stimuli-responsive materials for smart personal protective equipment. Materials Science and Engineering Reports, 2021, 146, 100629.	14.8	16
84	Modeling and Motion Control of a Soft SMA Planar Actuator. IEEE/ASME Transactions on Mechatronics, 2022, 27, 916-927.	3.7	11
85	Modeling SMA-enabled soft deployable structures for kirigami/origami reflectors. International Journal of Mechanical Sciences, 2020, 180, 105753.	3.6	19
86	On the design strategies for SMA-based morphing actuators: state of the art and common practices applied to a fascinating case study. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234, 2114-2130.	0.7	6
88	Towards a Multi-imager Compatible Continuum Robot with Improved Dynamics Driven by Modular SMA. , 2021, , .		8
89	An untethered mechanically-intelligent inchworm robot powered by a shape memory alloy oscillator. Sensors and Actuators A: Physical, 2021, 332, 113115.	2.0	12
90	Manufacturing 2DOF Inflatable Joint Actuator by Pneumatic Control. The Journal of Korea Robotics Society, 2018, 13, 92-96.	0.2	1
91	Solar energy-actuated back and forth optical mechanism. Applied Optics, 2019, 58, E7.	0.9	1

#	Article	IF	CITATIONS
92	Review of Flexible Actuators Based on Intelligent Materials. Advances in Astronautics Science and Technology, 2021, 4, 157-171.	0.5	2
93	Review of soft fluidic actuators: classification and materials modeling analysis. Smart Materials and Structures, 2022, 31, 013001.	1.8	31
94	Chemical Systems for Life Science. Reviews on Advanced Materials and Technologies, 2021, 3, 1-28.	0.1	1
95	A Twisted String Actuator-Driven Soft Robotic Manipulator. IFAC-PapersOnLine, 2021, 54, 141-146.	0.5	8
96	Novel Design of a Soft Pump Driven by Super-Coiled Polymer Artificial Muscles. , 2020, , .		6
97	From Two-Dimensional to Three-Dimensional: Diversified Bending Modality of a Cable-Driven Actuator and Its Grasping Characteristics. Soft Robotics, 2022, 9, 1154-1166.	4.6	6
98	Patterned crystal growth and heat wave generation in hydrogels. Nature Communications, 2022, 13, 259.	5.8	10
99	Phase-transforming metamaterial with magnetic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
100	Towards enduring autonomous robots via embodied energy. Nature, 2022, 602, 393-402.	13.7	84
101	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
102	Thermally Driven Vehicle Using Bimetal Rings. Journal of Robotics and Mechatronics, 2022, 34, 131-139.	0.5	1
103	Design and Control of Lightweight Bionic Arm Driven by Soft Twisted and Coiled Artificial Muscles. Soft Robotics, 2023, 10, 17-29.	4.6	2
104	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Advanced Materials, 2022, 34, e2110384.	11.1	133
105	Hybrid Antagonistic System With Coiled Shape Memory Alloy and Twisted and Coiled Polymer Actuator for Lightweight Robotic Arm. IEEE Robotics and Automation Letters, 2022, 7, 4496-4503.	3.3	8
106	High-performance, low-cost nanoporous alloy actuators by one-step dealloying of Al-Ni-Cu precursors. Intermetallics, 2022, 145, 107537.	1.8	4
107	Soft pipe-climbing robot for vertical creeping locomotion. , 2021, , .		1
108	Multiphysics design of programmable shape-memory alloy-based smart structures via topology optimization. Structural and Multidisciplinary Optimization, 2022, 65, 1.	1.7	9
109	Coolingâ€Accelerated Nanowireâ€Nitinol Hybrid Muscle for Versatile Prosthetic Hand and Biomimetic Retractable Claw. Advanced Functional Materials, 2022, 32, .	7.8	13

#	Article	IF	CITATIONS
110	Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. Physics of Metals and Metallography, 2021, 122, 1572-1580.	0.3	6
111	Equipping New SMA Artificial Muscles With Controllable MRF Exoskeletons for Robotic Manipulators and Grippers. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4585-4596.	3.7	6
112	Design and Evaluation of Soft Actuators Including Stretchable Conductive Fibers. Journal of the Korean Society for Precision Engineering, 2022, 39, 307-313.	0.1	0
113	Design of a bidirectional rotational motion actuator by SMA with geometrico-static requirements. , 2022, , .		1
114	An Al-Assisted and Self-Powered Smart Robotic Gripper Based on Eco-EGaIn Nanocomposite for Pick-and-Place Operation. Nanomaterials, 2022, 12, 1317.	1.9	11
116	Trajectory Optimization for Thermally-Actuated Soft Planar Robot Limbs. , 2022, , .		3
117	In-Situ Sensing and Dynamics Predictions for Electrothermally-Actuated Soft Robot Limbs. Frontiers in Robotics and AI, 2022, 9, .	2.0	7
118	Aerospace, Energy Recovery, and Medical Applications: Shape Memory Alloy Case Studies for CASMART 3rd Student Design Challenge. Shape Memory and Superelasticity, 2022, 8, 150-167.	1.1	2
119	Automatic Design of Dielectric Elastomer-Based Crawling Robots Using Shape and Topology Optimization. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	4
120	Design of a Novel Sensing Method for a Pneumatic Artificial Muscle Actuator-Driven 2-Degrees of Freedom Parallel Joint. Soft Robotics, 0, , .	4.6	1
121	Kinematic Modeling and Characterization of Soft Parallel Robots. IEEE Transactions on Robotics, 2022, 38, 3792-3806.	7.3	12
122	A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots. International Journal of Advanced Robotic Systems, 2022, 19, 172988062211049.	1.3	11
123	Shape-reversible 4D printing aided by shape memory alloys. , 2022, , 387-406.		2
124	4D printing mechanics, modeling, and advanced engineering applications. , 2022, , 1-17.		1
125	Insect-Scale SMAW-Based Soft Robot With Crawling, Jumping, and Loading Locomotion. IEEE Robotics and Automation Letters, 2022, 7, 9287-9293.	3.3	6
126	Modeling of viscoelastic dielectric elastomer actuators based on the sparse identification method. , 2022, , .		2
127	Forward Kinematics and Control of a Segmented Tunable-Stiffness 3-D Continuum Manipulator. , 2022, , ,		1
128	Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nature Communications, 2022, 13, .	5.8	24

		CITATION REPORT		
#	Article		IF	CITATIONS
129	Review of Neural Network Modeling of Shape Memory Alloys. Sensors, 2022, 22, 5610.		2.1	11
130	A bioinspired fishbone continuum robot with rigid-flexible-soft coupling structure. Bioins and Biomimetics, 2022, 17, 066012.	piration	1.5	4
131	Using natural language processing to find research topics in Living Machines conference intersections with Bioinspiration & amp; Biomimetics publications. Bioinspiration and Bio 2022, 17, 065008.		1.5	1
133	Modularized Paper Actuator Based on Shape Memory Alloy, Printed Heater, and Origami Intelligent Systems, 2022, 4, .	. Advanced	3.3	5
134	3D Auxetic Metamaterials with Elasticallyâ \in Stable Continuous Phase Transition. Advance 9, .	ed Science, 2022,	5.6	12
135	Manufacturing and Design of Inflatable Kirigami Actuators. IEEE Robotics and Automatic 2022, , 1-8.	n Letters,	3.3	Ο
136	Electromechanics of solenoid electroribbon actuators. European Physical Journal Plus, 20)22, 137, .	1.2	0
137	Dielectric elastomer actuators as artificial muscles for wearable robots. Journal of Intellig Material Systems and Structures, 2023, 34, 1007-1025.	ent	1.4	9
138	Bioinspired Multi-material Polyjet-printed Frog Robot for Synchronous and Asynchronous Journal of Bionic Engineering, 2023, 20, 923-933.	s Swimming.	2.7	1
139	Assessment of Biocompatibility and Physical Properties of Ni–Ti–Zr–Nb Shape Me Transactions of the Indian Institute of Metals, 2023, 76, 1237-1242.	mory Alloys.	0.7	4
140	Kinetostatic Analysis of Pneumatic Bending Soft Actuator Coupling With Revolute Joint. Mechanisms and Robotics, 0, , 1-13.	Journal of	1.5	0
141	Mechanically controlled robotic gripper with bistability for fast and adaptive grasping. Bioinspiration and Biomimetics, 0, , .		1.5	0
142	Flows in Straws: Viscous Flows in One-Dimensional Metamaterial. Physical Review Applie	d, 2022, 18, .	1.5	0
143	A novel dual-stage shape memory alloy actuated gripper. Industrial Robot, 2023, 50, 326	-336.	1.2	2
144	Hierarchically Structured Nanoporous Palladium with Ordered/Disordered Channels for L and Fast Strain. Nano Letters, 2023, 23, 505-513.	lltrahigh	4.5	4
145	Design, Modeling, and Evaluation of a Hybrid Driven Knee-Ankle Orthosis With Shape Me Actuators. Journal of Mechanical Design, Transactions of the ASME, 2023, 145, .	emory Alloy	1.7	5
146	XRtic: A Prototyping Toolkit for XR Applications using Cloth Deformation. , 2022, , .			0
147	Active-Cooling-in-the-Loop Controller Design and Implementation for an SMA-Driven Sof Tentacle. IEEE Transactions on Robotics, 2023, 39, 2325-2341.	t Robotic	7.3	11

#	Article	IF	CITATIONS
148	Selective Voltage Application to Connected Loads Using Soft Matter Computer Based on Conductive Droplet Interval Design. IEEE Robotics and Automation Letters, 2023, 8, 1747-1754.	3.3	0
149	A High-torque Bidirectional Curl Pneumatic Artificial Muscle. , 2022, , .		Ο
150	Novel Bionic Soft Robotic Hand With Dexterous Deformation and Reliable Grasping. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	2.4	3
151	Design of Gusseted Pouch Motors for Improved Soft Pneumatic Actuation. IEEE/ASME Transactions on Mechatronics, 2023, 28, 3053-3063.	3.7	4
152	Electrically Controlled Liquid Crystal Elastomer Surfaces for Dynamic Wrinkling. Advanced Intelligent Systems, 2024, 6, .	3.3	1
158	Recent advancements in polymer composites for damage repair applications. , 2023, , 1-26.		0
171	The motion-based analysis of kinetic shading devices activated by smart materials. AIP Conference Proceedings, 2023, , .	0.3	0
179	Soft actuators in surgical robotics: a state-of-the-art review. Intelligent Service Robotics, 0, , .	1.6	Ο
182	Super twisting sliding mode control of a robotic manipulator actuated by shape memory alloy: Design and experiment. , 2023, , .		0
183	Principles and methods of liquid metal actuators. Soft Matter, 2024, 20, 2196-2211.	1.2	Ο