Purely Organic Thermally Activated Delayed Fluorescen Lightâ€Emitting Diodes

Advanced Materials 29, 1605444 DOI: 10.1002/adma.201605444

Citation Report

#	Article	IF	CITATIONS
1	Multifunctional Materials for High-Performance Double-Layer Organic Light-Emitting Diodes: Comparison of Isomers with and without Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2017, 9, 17279-17289.	4.0	16
2	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 8818-8822.	7.2	118
3	Aromaticâ€Imideâ€Based Thermally Activated Delayed Fluorescence Materials for Highly Efficient Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 8944-8948.	1.6	20
4	Blueâ€toâ€Green Delayed Fluorescence of 2â€Aminoisophthalic Acid Diesters Dispersed in Polymer Film. European Journal of Organic Chemistry, 2017, 2017, 4695-4702.	1.2	4
5	Scale-up Chemical Synthesis of Thermally-activated Delayed Fluorescence Emitters Based on the Dibenzothiophene-S,S-Dioxide Core. Journal of Visualized Experiments, 2017, , .	0.2	3
6	Triplet decay-induced negative temperature dependence of the transient photoluminescence decay of thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2017, 5, 12077-12084.	2.7	48
7	A new molecular design based on hybridized local and charge transfer fluorescence for highly efficient (>6%) deep-blue organic light emitting diodes. Chemical Communications, 2017, 53, 11802-11805.	2.2	75
8	Highâ€Efficiency Nearâ€Infrared Fluorescent Organic Lightâ€Emitting Diodes with Small Efficiency Rollâ€Off: A Combined Design from Emitters to Devices. Advanced Functional Materials, 2017, 27, 1703283.	7.8	48
9	Design of encapsulated hosts and guests for highly efficient blue and green thermally activated delayed fluorescence OLEDs based on a solution-process. Chemical Communications, 2017, 53, 11834-11837.	2.2	31
10	Bright white electroluminescence from a single polymer containing a thermally activated delayed fluorescence unit and a solution-processed orange OLED approaching 20% external quantum efficiency. Journal of Materials Chemistry C, 2017, 5, 10715-10720.	2.7	96
11	Impact of Donor Substitution Pattern on the TADF Properties in the Carbazolyl-Substituted Triazine Derivatives. Journal of Physical Chemistry C, 2017, 121, 23618-23625.	1.5	52
12	A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures. Advanced Materials, 2017, 29, 1702767.	11.1	215
13	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie, 2017, 129, 13151-13156.	1.6	62
14	New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. Journal of the American Chemical Society, 2017, 139, 10948-10951.	6.6	361
15	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition, 2017, 56, 12971-12976.	7.2	320
16	Isobenzofuranone- and Chromone-Based Blue Delayed Fluorescence Emitters with Low Efficiency Roll-Off in Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 8012-8020.	3.2	68
17	Allochroic thermally activated delayed fluorescence diodes through field-induced solvatochromic effect. Science Advances, 2017, 3, e1700904.	4.7	51
18	Climbing up the Ladder: Intermediate Triplet States Promote the Reverse Intersystem Crossing in the Efficient TADF Emitter ACRSA. Journal of Physical Chemistry C, 2017, 121, 21145-21153.	1.5	57

#	Article	IF	CITATIONS
19	Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solutionâ€Processed OLEDs. Angewandte Chemie, 2017, 129, 14224-14229.	1.6	38
20	Highly Luminescent Pincer Gold(III) Aryl Emitters: Thermally Activated Delayed Fluorescence and Solutionâ€Processed OLEDs. Angewandte Chemie - International Edition, 2017, 56, 14036-14041.	7.2	133
21	Versatile Donorâ~π–Acceptor-Type Aggregation-Enhanced Emission Active Fluorophores as Both Highly Efficient Nondoped Emitter and Excellent Host. ACS Applied Materials & Interfaces, 2017, 9, 32946-32956.	4.0	40
22	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 27090-27101.	4.0	54
23	Thermally Activated Delayed Fluorescence in Cu ^I Complexes Originating from Restricted Molecular Vibrations. Chemistry - A European Journal, 2017, 23, 11761-11766.	1.7	45
24	Recent Advances in Polymer Organic Light-Emitting Diodes (PLED) Using Non-conjugated Polymers as the Emitting Layer and Contrasting Them with Conjugated Counterparts. Journal of Electronic Materials, 2017, 46, 6246-6281.	1.0	51
25	Sky Blue-Emitting Iridium(III) Complexes Bearing Nonplanar Tetradentate Chromophore and Bidentate Ancillary. Inorganic Chemistry, 2017, 56, 10054-10060.	1.9	28
26	Toward Efficient and Metal-Free Emissive Devices: A Solution-Processed Host–Guest Light-Emitting Electrochemical Cell Featuring Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2017, 9, 28810-28816.	4.0	57
27	Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. Journal of the American Chemical Society, 2017, 139, 17739-17742.	6.6	311
28	Donor–l̈́f–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie - International Edition, 2017, 56, 16536-16540.	7.2	109
29	Donor–Îf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Angewandte Chemie, 2017, 129, 16763-16767.	1.6	25
30	Phenothiazine-oxadiazole push-pull fluorophores: Combining high quantum efficiency, excellent electrochemical stability and facile functionalization. Dyes and Pigments, 2017, 145, 542-549.	2.0	15
31	Novel iridium(<scp>iii</scp>) complexes bearing dimesitylboron groups with nearly 100% phosphorescent quantum yields for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 7871-7883.	2.7	49
32	Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications. Journal of Materials Chemistry C, 2017, 5, 8622-8653.	2.7	262
33	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nature Communications, 2017, 8, 2250.	5.8	159
34	Triarylborane-Based Materials for OLED Applications. Molecules, 2017, 22, 1522.	1.7	92
35	Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nature Materials, 2018, 17, 329-334.	13.3	168
36	Multicolor Luminescence Switching and Controllable Thermally Activated Delayed Fluorescence Turn on/Turn off in Carbazole–Quinoxaline–Carbazole Triads. Journal of Physical Chemistry Letters, 2018, 9. 1172-1177	2.1	77

#	Article	IF	CITATIONS
37	Solution-processed thermally activated delayed fluorescence organic light-emitting diodes using a new polymeric emitter containing non-conjugated cyclohexane units. Polymer Chemistry, 2018, 9, 1318-1326.	1.9	73
38	4-Diphenylaminocarbazole: Switching Substituent Position for Voltage Reduction and Efficiency Enhancement of OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 8893-8900.	4.0	14
39	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	7.8	302
40	A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridine–Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.7	12
41	Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 2018, 12, 235-240.	15.6	669
42	Modeling TADF in organic emitters requires a careful consideration of the environment and going beyond the Franck–Condon approximation. Physical Chemistry Chemical Physics, 2018, 20, 12454-12469.	1.3	44
43	Sensitivity of Redox and Optical Properties of Electroactive Carbazole Derivatives to the Molecular Architecture and Methoxy Substitutions. Journal of Physical Chemistry C, 2018, 122, 10138-10152.	1.5	24
44	Recent progress in solution processable TADF materials for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5577-5596.	2.7	370
45	Perspective: Toward efficient GaN-based red light emitting diodes using europium doping. Journal of Applied Physics, 2018, 123, .	1.1	100
46	Electrochemically synthesised xanthone-cored conjugated polymers as materials for electrochromic windows. Electrochimica Acta, 2018, 273, 264-272.	2.6	26
47	Blue thermally activated delayed fluorescence materials based on bi/tri-carbazole derivatives. Organic Electronics, 2018, 58, 238-244.	1.4	4
48	Tunable Photoluminescence Including Whiteâ€Light Emission Based on Noncovalent Interactionâ€Locked <i>N</i> , <i>N</i> ′â€Disubstituted Dihydrodibenzo[<i>a</i> , <i>c</i>]phenazines. Advanced Optical Materials, 2018, 6, 1800074.	3.6	47
49	Aggregationâ€Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9â€Phenylâ€9 <i>H</i> â€Carbazole: Effects of Methoxy and <i>tert</i> â€Butyl Substituents. Chemistry - A European Journal, 2018, 24, 9581-9591.	1.7	52
50	Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS Applied Materials & Interfaces, 2018, 10, 19279-19304.	4.0	288
51	A dendrimer emitter doped in a dendrimer host: efficient thermally activated delayed fluorescence OLEDs with fully-solution processed organic-layers. Materials Chemistry Frontiers, 2018, 2, 1097-1103.	3.2	45
52	Integrating the Emitter and Host Characteristics of Donor–Acceptor Systems through Edge‧piro Effect Toward 100% Exciton Harvesting in Blue and White Fluorescence Diodes. Advanced Optical Materials, 2018, 6, 1800165.	3.6	62
53	All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials, 2018, 3, .	23.3	1,097
54	A Novel Benzo[d,e]Chromene for Organic Light Emitting Diodes (OLEDs). Applied Mechanics and Materials 0, 876, 71-75	0.2	О

#	Article	IF	CITATIONS
55	Carbazole-dendronized thermally activated delayed fluorescent molecules with small singlet-triplet gaps for solution-processed organic light-emitting diodes. Dyes and Pigments, 2018, 153, 92-98.	2.0	16
56	High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 2018, 12, 98-104.	15.6	421
57	Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie, 2018, 130, 2939-2943.	1.6	57
58	Highly Efficient, Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed-Fluorescence Emitter with a Mixed Polymer Interlayer. ACS Applied Energy Materials, 2018, 1, 543-551.	2.5	29
59	Thermally Activated Delayed Fluorescence Conjugated Polymers with Backboneâ€Donor/Pendantâ€Acceptor Architecture for Nondoped OLEDs with High External Quantum Efficiency and Low Rollâ€Off. Advanced Functional Materials, 2018, 28, 1706916.	7.8	113
60	Highly Efficient Red–Orange Delayed Fluorescence Emitters Based on Strong Ï€â€Accepting Dibenzophenazine and Dibenzoquinoxaline Cores: toward a Rational Pureâ€Red OLED Design. Advanced Optical Materials, 2018, 6, 1701147.	3.6	169
61	Efficient Blue and Yellow Organic Light-Emitting Diodes Enabled by Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2018, 10, 3838-3847.	4.0	85
62	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	7.8	195
63	Prediction of Intramolecular Charge-Transfer Excitation for Thermally Activated Delayed Fluorescence Molecules from a Descriptor-Tuned Density Functional. Journal of Physical Chemistry C, 2018, 122, 7816-7823.	1.5	36
64	A novel class of photoinitiators with a thermally activated delayed fluorescence (TADF) property. New Journal of Chemistry, 2018, 42, 8261-8270.	1.4	29
65	Diversified Photo/Electronic Functions Based on a Simple Chalcone Skeleton: Effects of Substitution Pattern and Molecular Packing. Advanced Functional Materials, 2018, 28, 1706506.	7.8	29
66	Molecular Design Strategy for a Two-Component Gel Based on a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Energy Materials, 2018, 1, 649-654.	2.5	15
67	Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence. Polymer Chemistry, 2018, 9, 1303-1308.	1.9	26
68	Stable Enantiomers Displaying Thermally Activated Delayed Fluorescence: Efficient OLEDs with Circularly Polarized Electroluminescence. Angewandte Chemie - International Edition, 2018, 57, 2889-2893.	7.2	350
69	Molecular engineering of phosphacycle-based thermally activated delayed fluorescence materials for deep-blue OLEDs. Journal of Materials Chemistry C, 2018, 6, 3578-3583.	2.7	32
70	X-ray Generated Recombination Exciplexes of Substituted Diphenylacetylenes with Tertiary Amines: A Versatile Experimental Vehicle for Targeted Creation of Deep-Blue Electroluminescent Systems. Journal of Physical Chemistry A, 2018, 122, 1235-1252.	1.1	6
71	Solutionâ€Processed Warm White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescence Dendrimer. ChemPlusChem, 2018, 83, 274-278.	1.3	21
72	Tuning electrical properties of phenanthroimidazole derivatives to construct multifunctional deep-blue electroluminescent materials. Journal of Materials Chemistry C, 2018, 6, 3584-3592.	2.7	57

#	Article	IF	CITATIONS
73	Versatile Indolocarbazoleâ€Isomer Derivatives as Highly Emissive Emitters and Ideal Hosts for Thermally Activated Delayed Fluorescent OLEDs with Alleviated Efficiency Rollâ€Off. Advanced Materials, 2018, 30, 1705406.	11.1	217
74	Adamantyl Substitution Strategy for Realizing Solutionâ€Processable Thermally Stable Deepâ€Blue Thermally Activated Delayed Fluorescence Materials. Advanced Materials, 2018, 30, 1705641.	11.1	196
75	Substituent Effect in the First Excited Singlet State of Monosubstituted Benzenes. Journal of Physical Chemistry A, 2018, 122, 4609-4621.	1.1	21
76	Heavy Atom Effect of Bromine Significantly Enhances Exciton Utilization of Delayed Fluorescence Luminogens. ACS Applied Materials & Interfaces, 2018, 10, 17327-17334.	4.0	91
77	Study of processes of reverse intersystem crossing (RISC) and thermally activated delayed fluorescence (TADF) in organic light emitting diodes (OLEDs). Organic Electronics, 2018, 59, 121-124.	1.4	23
78	Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids. Organic Electronics, 2018, 59, 32-38.	1.4	35
79	Boron-based donor-spiro-acceptor compounds exhibiting thermally activated delayed fluorescence (TADF). Dalton Transactions, 2018, 47, 10394-10398.	1.6	42
80	Cyanopyrimidine–Carbazole Hybrid Host Materials for High-Efficiency and Low-Efficiency Roll-Off TADF OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 12930-12936.	4.0	62
81	Photoconductive Cathode Interlayer for Enhanced Electron Injection in Inverted Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 11377-11381.	4.0	13
82	Effects of Ortho-Phenyl Substitution on the rISC Rate of D–A Type TADF Molecules. Journal of Physical Chemistry C, 2018, 122, 7627-7634.	1.5	48
83	Optically Triggered Planarization of Boryl-Substituted Phenoxazine: Another Horizon of TADF Molecules and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 12886-12896.	4.0	75
84	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	2.7	20
85	Simple phenyl bridge between cyano and pyridine units to weaken the electron-withdrawing property for blue-shifted emission in efficient blue TADF OLEDs. Organic Electronics, 2018, 57, 247-254.	1.4	17
86	The theory of thermally activated delayed fluorescence for organic light emitting diodes. Chemical Communications, 2018, 54, 3926-3935.	2.2	239
87	Systematically tuning of optoelectronic properties from electron donating to accepting substituents on bicarbazole/cyanobenzene hybrids: Host to dopant materials for phosphorescent and delayed fluorescence OLEDs. Organic Electronics, 2018, 52, 22-31.	1.4	13
88	Efficient non-doped yellow OLEDs based on thermally activated delayed fluorescence conjugated polymers with an acridine/carbazole donor backbone and triphenyltriazine acceptor pendant. Journal of Materials Chemistry C, 2018, 6, 568-574.	2.7	61
89	Diarylmaleimide-based branched oligomers: strong full-color emission in both solution and solid films. Organic and Biomolecular Chemistry, 2018, 16, 130-139.	1.5	13
90	Triplet emitters versus TADF emitters in OLEDs: A comparative study. Polyhedron, 2018, 140, 51-66.	1.0	61

#	Article	IF	CITATIONS
91	Nâ€doped cycloparaphenylenes: Tuning electronic properties for applications in thermally activated delayed fluorescence. International Journal of Quantum Chemistry, 2018, 118, e25562.	1.0	9
92	Recent advances in luminescent dinuclear iridium(III) complexes and their application in organic electroluminescent devices. Polyhedron, 2018, 140, 146-157.	1.0	42
93	Dicationic and monocationic benzobisthiazolium salts as potential NLO chromophores. Dyes and Pigments, 2018, 149, 597-611.	2.0	12
94	Blackening of aza-BODIPY analogues by simple dimerization: panchromatic absorption of a pyrrolopyrrole aza-BODIPY dimer. Materials Chemistry Frontiers, 2018, 2, 112-120.	3.2	40
95	Purely organic materials for extremely simple all-TADF white OLEDs: a new carbazole/oxadiazole hybrid material as a dual-role non-doped light blue emitter and highly efficient orange host. Journal of Materials Chemistry C, 2018, 6, 3675-3682.	2.7	67
96	Marching Toward Highly Efficient, Pureâ€Blue, and Stable Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1802558.	7.8	489
97	Highly efficient non-doped OLEDs using aggregation-induced delayed fluorescence materials based on 10-phenyl-10 <i>H</i> -phenothiazine 5,5-dioxide derivatives. Journal of Materials Chemistry C, 2018, 6, 11436-11443.	2.7	59
98	An iminodibenzyl–quinoxaline–iminodibenzyl scaffold as a mechanochromic and dual emitter: donor and bridge effects on optical properties. Chemical Communications, 2018, 54, 13857-13860.	2.2	39
99	Polymorphism of derivatives of <i>tert</i> -butyl substituted acridan and perfluorobiphenyl as sky-blue OLED emitters exhibiting aggregation induced thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 13179-13189.	2.7	51
100	Control of Singlet Emission Energy in a Diphenyloxadiazole Containing Fluorophore Leading To Thermally Activated Delayed Fluorescence. ACS Omega, 2018, 3, 14918-14923.	1.6	5
101	Origin of High Efficiencies for Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes: Atomistic Insight into Molecular Orientation and Torsional Disorder. Journal of Physical Chemistry C, 2018, 122, 27191-27197.	1.5	48
102	Spin–Orbit Charge Recombination Intersystem Crossing in Phenothiazine–Anthracene Compact Dyads: Effect of Molecular Conformation on Electronic Coupling, Electronic Transitions, and Electron Spin Polarizations of the Triplet States. Journal of Physical Chemistry C, 2018, 122, 27850-27865.	1.5	76
103	Annealing Solution-Processed CuSCN Hole Injection Layer for Blue Phosphorescent Organic Light-Emitting Diodes with Extremely Low Efficiency Roll-Off. ACS Sustainable Chemistry and Engineering, 2018, 6, 17178-17183.	3.2	14
104	Decoration of Dibenzofuran Using Cyanocarbazole via 6â€Position as a Molecular Design Approach for Highâ€Tripletâ€Energy Bipolar Host Materials. Chemistry - an Asian Journal, 2019, 14, 313-321.	1.7	4
105	Importance of Chromophore Rigidity on the Efficiency of Blue Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2018, 122, 28564-28575.	1.5	35
106	Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications, 2018, 9, 5036.	5.8	113
108	Reversible Mechanochromic Delayed Fluorescence in 2D Metal–Organic Micro/Nanosheets: Switching Singlet–Triplet States through Transformation between Exciplex and Excimer. Advanced Science, 2018, 5, 1801187.	5.6	61
109	Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead. Journal of Physical Chemistry Letters, 2018, 9, 6149-6163.	2.1	121

#	Article	IF	CITATIONS
110	Rational design of time-resolved turn-on fluorescence sensors: exploiting delayed fluorescence for hydrogen peroxide sensing. Chemical Communications, 2018, 54, 12069-12072.	2.2	25
111	A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor–Acceptor Cyanoarenes. Journal of the American Chemical Society, 2018, 140, 15353-15365.	6.6	435
112	Incorporating Thermally Activated Delayed Fluorescence into Mechanochromic Luminescent Emitters: Highâ€Performance Solutionâ€Processed Yellow Organic Light Emitting Diodes. Advanced Optical Materials, 2018, 6, 1801071.	3.6	39
113	New Generation of High Efficient OLED Using Thermally Activated Delayed Fluorescent Materials. , 2018, , .		1
114	Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 33360-33372.	4.0	67
115	Efficient donor-acceptor-donor borylated compounds with extremely small ΔEST for thermally activated delayed fluorescence OLEDs. Organic Electronics, 2018, 63, 166-174.	1.4	30
116	Fluorescence, Phosphorescence, or Delayed Fluorescence?—A Theoretical Exploration on the Reason Why a Series of Similar Organic Molecules Exhibit Different Luminescence Types. Journal of Physical Chemistry C, 2018, 122, 23091-23101.	1.5	27
117	Exciplex Cohosts Employing Nonconjugated Linked Dicarbazole Donors for Highly Efficient Thermally Activated Delayed Fluorescence-Based Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 34435-34442.	4.0	21
118	lsomeric spiro-[acridine-9,9â€2-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances. Journal of Materials Chemistry C, 2018, 6, 10088-10100.	2.7	46
119	Accurate Treatment of Charge-Transfer Excitations and Thermally Activated Delayed Fluorescence Using the Particle–Particle Random Phase Approximation. Journal of Chemical Theory and Computation, 2018, 14, 3196-3204.	2.3	12
120	A high fluorescence rate is key for stable blue organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 7728-7733.	2.7	43
121	Câ^'H Borylation/Crossâ€Coupling Forms Twisted Donor–Acceptor Compounds Exhibiting Donorâ€Dependent Delayed Emission. Chemistry - A European Journal, 2018, 24, 10521-10530.	1.7	4
122	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2018, 57, 9290-9294.	7.2	219
123	Highâ€Performance Nonâ€doped OLEDs with Nearly 100 % Exciton Use and Negligible Efficiency Rollâ€Off. Angewandte Chemie, 2018, 130, 9434-9438.	1.6	34
124	20â€1: <i>Invited Paper:</i> Towards Deepâ€Blue Materials with Efficient Triplet Harvesting. Digest of Technical Papers SID International Symposium, 2018, 49, 239-242.	0.1	1
125	Rigidity and Polarity Effects on the Electronic Properties of Two Deep Blue Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2018, 122, 11961-11972.	1.5	13
126	Fluorescence/phosphorescence-conversion in self-assembled organic microcrystals. Chemical Communications, 2018, 54, 5895-5898.	2.2	11
127	High-performance organic light-emitting diodes comprising ultrastable glass layers. Science Advances, 2018, 4, eaar8332.	4.7	113

#	Article	IF	CITATIONS
128	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie - International Edition, 2018, 57, 11316-11320.	7.2	314
129	Dipole-Dipole Interaction Management for Efficient Blue Thermally Activated Delayed Fluorescence Diodes. CheM, 2018, 4, 2154-2167.	5.8	106
130	Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes. Chemical Communications, 2018, 54, 8261-8264.	2.2	44
131	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	6.6	153
132	Vibrationally Assisted Intersystem Crossing in Benchmark Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry Letters, 2018, 9, 4053-4058.	2.1	69
133	Ionic Organic Small Molecules as Hosts for Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2018, 10, 24699-24707.	4.0	25
134	Organic emitter integrating aggregation-induced delayed fluorescence and room-temperature phosphorescence characteristics, and its application in time-resolved luminescence imaging. Chemical Science, 2018, 9, 6150-6155.	3.7	111
135	Highâ€Performance Dibenzoheteraborinâ€Based Thermally Activated Delayed Fluorescence Emitters: Molecular Architectonics for Concurrently Achieving Narrowband Emission and Efficient Triplet–Singlet Spin Conversion. Advanced Functional Materials, 2018, 28, 1802031.	7.8	264
136	Highâ€Efficiency Sky Blue to Ultradeep Blue Thermally Activated Delayed Fluorescent Diodes Based on <i>Ortho</i> â€Carbazoleâ€Appended Triarylboron Emitters: Above 32% External Quantum Efficiency in Blue Devices. Advanced Optical Materials, 2018, 6, 1800385.	3.6	104
137	Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification. Journal of Materials Chemistry C, 2018, 6, 8280-8325.	2.7	84
138	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie, 2018, 130, 11486-11490.	1.6	77
139	(Deep) blue through-space conjugated TADF emitters based on [2.2]paracyclophanes. Chemical Communications, 2018, 54, 9278-9281.	2.2	106
140	Phenoxy-benzothiadiazole dyes: Synthesis, photophysical properties and preliminary application in OLEDs. Tetrahedron Letters, 2018, 59, 2994-2999.	0.7	18
141	Tuning the Photophysical and Electroluminescence Properties in Asymmetrically Tetrasubstituted Bipolar Carbazoles by Functional Group Disposition. ACS Applied Materials & Interfaces, 2018, 10, 24013-24027.	4.0	45
142	Excited state engineering for efficient reverse intersystem crossing. Science Advances, 2018, 4, eaao6910.	4.7	294
143	Bisâ€Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blueâ€Emitting OLEDs. Advanced Science, 2018, 5, 1800846.	5.6	75
144	New red-emitting Schiff base chelates: promising dyes for sensing and imaging of temperature and oxygen <i>via</i> phosphorescence decay time. Journal of Materials Chemistry C, 2018, 6, 8999-9009.	2.7	35
145	Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nature Communications, 2018, 9, 3111.	5.8	112

#	Article	IF	CITATIONS
146	Reversible Mechanochromic Luminescence of a Heteroatom-Free Helically Chiral Hydrocarbon. Chemistry Letters, 2018, 47, 1228-1231.	0.7	2
147	Efficient Bipolar Blue AlEgens for Highâ€Performance Nondoped Blue OLEDs and Hybrid White OLEDs. Advanced Functional Materials, 2018, 28, 1803369.	7.8	130
148	Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer. Journal of Physical Chemistry A, 2018, 122, 6673-6682.	1.1	40
149	Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein Journal of Organic Chemistry, 2018, 14, 282-308.	1.3	159
150	Aggregation-induced emission and thermally activated delayed fluorescence of 2,6-diaminobenzophenones. Science China Chemistry, 2018, 61, 925-931.	4.2	12
151	D–A–D-type orange-light emitting thermally activated delayed ï¬,uorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies. Beilstein Journal of Organic Chemistry, 2018, 14, 672-681.	1.3	22
152	Eaton's reagent assisted aromatic C–C coupling of carbazoles for optoelectronic applications. New Journal of Chemistry, 2018, 42, 14704-14708.	1.4	7
153	Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances. Applied Sciences (Switzerland), 2018, 8, 494.	1.3	51
154	Carbazole/α-carboline hybrid bipolar compounds as electron acceptors in exciplex or non-exciplex mixed cohosts and exciplex-TADF emitters for high-efficiency OLEDs. Journal of Materials Chemistry C, 2018, 6, 8784-8792.	2.7	25
155	Rh-Catalyzed regioselective C–H activation and C–C bond formation: synthesis and photophysical studies of indazolo[2,3- <i>a</i>]quinolines. Organic Chemistry Frontiers, 2018, 5, 2630-2635.	2.3	40
156	Red Organic Lightâ€Emitting Diode with External Quantum Efficiency beyond 20% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Science, 2018, 5, 1800436.	5.6	186
157	Photoinduced Energy and Electron Transfer Between a Photoactive Cage Based on a Thermally Activate Delayed Fluorescence Ligand and Encapsulated Fluorescent Dyes. ACS Applied Energy Materials, 2018, 1, 2971-2978.	2.5	29
158	Boosting the electroluminescence efficiency of solution-processed thermally activated delayed fluorescence OLEDs with a versatile hole-transporting layer of organic–inorganic hybrid perovskite. Journal of Materials Chemistry C, 2018, 6, 6305-6311.	2.7	4
159	A simple and broadly applicable synthesis of fluorene-coupled D–Ìf–A type molecules: towards high-triplet-energy bipolar hosts for efficient blue thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2018, 6, 6949-6957.	2.7	12
160	High performance blue-emitting organic light-emitting diodes from thermally activated delayed fluorescence: A guest/host ratio study. Journal of Applied Physics, 2018, 124, .	1.1	25
161	Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Accounts of Chemical Research, 2018, 51, 2215-2224.	7.6	382
162	Design Strategy for Solutionâ€Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800568.	3.6	199
163	<i>Nido</i> â€Carboranes: Donors for Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 12483-12488.	7.2	70

#	Article	IF	CITATIONS
164	<i>Nido</i> arboranes: Donors for Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2018, 130, 12663-12668.	1.6	24
165	Thermally activated delayed fluorescence processes for Cu(<scp>i</scp>) complexes in solid-state: a computational study using quantitative prediction. RSC Advances, 2018, 8, 28421-28432.	1.7	8
166	Synthesis and electroluminescent performance of thermally activated delayed fluorescenceâ€conjugated polymers with simple formylphenyl as pendant acceptor. Journal of Polymer Science Part A, 2018, 56, 1989-1996.	2.5	7
167	Triplet-triplet annihilation in a thermally activated delayed fluorescence emitter lightly doped in a host. Applied Physics Letters, 2018, 113, .	1.5	21
168	Strategy Toward Tuning Emission of Star-Shaped Tetraphenylethene-Substituted Truxenes for Sky-Blue and Greenish-White Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2018, 122, 15614-15624.	1.5	23
169	Exciton energy transfer in organic light emitting diodes with thermally activated delayed fluorescence dopants. Journal of Materials Chemistry C, 2018, 6, 6860-6868.	2.7	12
170	Design of Conformationally Distorted Donor–Acceptor Dyads Showing Efficient Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 3692-3697.	2.1	36
171	One-step synthesis of cyclic compounds towards easy room-temperature phosphorescence and deep blue thermally activated delayed fluorescence. Chemical Communications, 2018, 54, 7850-7853.	2.2	32
172	Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials & amp; Interfaces, 2019, 11, 32209-32217.	4.0	46
173	Spatial separation of a TADF sensitizer and fluorescent emitter with a core-dendron system to block the energy loss in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 11005-11013.	2.7	30
174	Triazine-Acceptor-Based Green Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Materials, 2019, 12, 2646.	1.3	21
175	High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation <i>via</i> a spiro-linked double D–A molecular architecture. Journal of Materials Chemistry C, 2019, 7, 10851-10859.	2.7	40
176	Interface-Dependent Aggregation-Induced Delayed Fluorescence in Bottlebrush Polymer Nanofibers. Journal of the American Chemical Society, 2019, 141, 13970-13976.	6.6	72
177	Molecular Design Strategies for Color Tuning of Blue TADF Emitters. ACS Applied Materials & Interfaces, 2019, 11, 27125-27133.	4.0	97
178	Novel oxacalix[2]arene[2]triazines with thermally activated delayed fluorescence and aggregation-induced emission properties. Chemical Communications, 2019, 55, 9559-9562.	2.2	16
179	Feasible Modification of PEDOT:PSS by Poly(4-styrenesulfonic acid): A Universal Method to Double the Efficiencies for Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 29105-29112.	4.0	37
180	Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 9966-9974.	2.7	20
181	Predicting intersystem crossing efficiencies of organic molecules for efficient thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 9523-9530.	2.7	52

#	Article	IF	CITATIONS
182	Revealing resonance effects and intramolecular dipole interactions in the positional isomers of benzonitrile-core thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 9184-9194.	2.7	42
183	Effects of <i>N</i> â€&ubstitution on the Property of Acridone. ChemistrySelect, 2019, 4, 7797-7804.	0.7	13
184	Two-channel emission controlled by a conjugation valve for the color switching of thermally activated delayed fluorescence emission. Journal of Materials Chemistry C, 2019, 7, 9908-9916.	2.7	18
185	Large Increase in External Quantum Efficiency by Dihedral Angle Tuning in a Skyâ€Blue Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2019, 7, 1900476.	3.6	25
186	A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donorâ€i€â€Acceptor Phosphonium Fluorophores. Angewandte Chemie, 2019, 131, 13590-13599.	1.6	9
187	A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donorâ€i€â€Acceptor Phosphonium Fluorophores. Angewandte Chemie - International Edition, 2019, 58, 13456-13465.	7.2	47
188	Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. ACS Applied Materials & Interfaces, 2019, 11, 28096-28105.	4.0	30
189	D–A ₃ TADF emitters: the role of the density of states for achieving faster triplet harvesting rates. Journal of Materials Chemistry C, 2019, 7, 12942-12952.	2.7	22
190	Design of a New Mechanism beyond Thermally Activated Delayed Fluorescence toward Fourth Generation Organic Light Emitting Diodes. Chemistry of Materials, 2019, 31, 6110-6116.	3.2	44
191	Solution processible triphenylphosphine-oxide-cored dendritic hosts featuring thermally activated delayed fluorescence for power-efficient blue electrophosphorescent devices. Journal of Materials Chemistry C, 2019, 7, 9850-9855.	2.7	5
192	Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Feasible for Both Thermal Evaporation and Solution Process. ACS Applied Materials & Interfaces, 2019, 11, 29086-29093.	4.0	57
193	Heterocycle Effects on the Liquid Crystallinity of Terthiophene Analogues. Materials, 2019, 12, 2314.	1.3	6
194	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorganic Chemistry, 2019, 58, 10944-10954.	1.9	33
195	Highly efficient deep-blue organic light-emitting diodes based on pyreno[4,5- <i>d</i>]imidazole-anthracene structural isomers. Journal of Materials Chemistry C, 2019, 7, 10273-10280.	2.7	43
196	Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Science China Chemistry, 2019, 62, 1090-1098.	4.2	269
197	Influence of Linked Bridges on Thermally Activated Delayed Fluorescence Characteristic for DCBPy Emitter. Advanced Theory and Simulations, 2019, 2, 1900076.	1.3	5
198	Towards boosting the exciton lifetime and efficiency of near-infrared aggregation induced emitters with hybridized local and charge transfer excited states: a multiscale study. Journal of Materials Chemistry C, 2019, 7, 8874-8887.	2.7	35
199	Organic Emitters with a Rigid 9-Phenyl-9-phosphafluorene Oxide Moiety as the Acceptor and Their Thermally Activated Delayed Fluorescence Behavior. ACS Applied Materials & Interfaces, 2019, 11, 27112-27124.	4.0	35

#	Article	IF	CITATIONS
200	Multiple Resonance Effect-Induced Sky-Blue Thermally Activated Delayed Fluorescence with a Narrow Emission Band. Organic Letters, 2019, 21, 9311-9314.	2.4	157
201	Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angewandte Chemie - International Édition, 2019, 58, 16912-16917.	7.2	356
202	Redâ€Emitting Delayed Fluorescence and Room Temperature Phosphorescence from Coreâ€6ubstituted Naphthalene Diimides. Chemistry - A European Journal, 2019, 25, 16007-16011.	1.7	34
203	Thermally Activated Delayed Fluorescent Properties of Ortho arbazoleâ€Appended Triazine Compounds. Bulletin of the Korean Chemical Society, 2019, 40, 1112-1116.	1.0	1
204	Bisâ€tridentate Ir ^{III} Phosphors Bearing Two Fused Fiveâ€Sixâ€Membered Metallacycles: A Strategy to Improved Photostability of Blue Emitters. Chemistry - A European Journal, 2019, 25, 15375-15386.	1.7	27
205	2D organic semiconductors, the future of green nanotechnology. Nano Materials Science, 2019, 1, 246-259.	3.9	45
206	Novel Carbazole/Fluorene-Based Host Material for Stable and Efficient Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 40320-40331.	4.0	39
207	Organic Light-Emitting Diodes Based on Conjugation-Induced Thermally Activated Delayed Fluorescence Polymers: Interplay Between Intra- and Intermolecular Charge Transfer States. Frontiers in Chemistry, 2019, 7, 688.	1.8	29
208	Multiâ€Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angewandte Chemie, 2019, 131, 17068-17073.	1.6	91
209	Facile Generation of Thermally Activated Delayed Fluorescence and Fabrication of Highly Efficient Nonâ€Doped OLEDs Based on Triazine Derivatives. Chemistry - A European Journal, 2019, 25, 16699-16711.	1.7	21
210	Wavelength-Turnable Organic Microring Laser Arrays from Thermally Activated Delayed Fluorescent Emitters. ACS Photonics, 2019, 6, 3208-3214.	3.2	42
211	Achieving Enhanced Thermally Activated Delayed Fluorescence Rates and Shortened Exciton Lifetimes by Constructing Intramolecular Hydrogen Bonding Channels. ACS Applied Materials & Interfaces, 2019, 11, 45999-46007.	4.0	43
212	Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.	1.5	22
213	Getting the Right Twist: Influence of Donor–Acceptor Dihedral Angle on Exciton Kinetics and Singlet–Triplet Gap in Deep Blue Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 27778-27784.	1.5	40
214	A Simple Molecular Design Strategy for Delayed Fluorescence toward 1000 nm. Journal of the American Chemical Society, 2019, 141, 18390-18394.	6.6	137
215	High-triplet-energy Bipolar Host Materials Based on Phosphine Oxide Derivatives for Efficient Sky-blue Thermally Activated Delayed Fluorescence Organic Light-emitting Diodes with Reduced Roll-off. Chemistry Letters, 2019, 48, 1225-1228.	0.7	4
216	Aggregation-Induced Delayed Fluorescence Luminogens with Accelerated Reverse Intersystem Crossing for High-Performance OLEDs. , 2019, 1, 613-619.		51
217	Aggregationâ€Induced and Polymorphismâ€Dependent Thermally Activated Delayed Fluorescence (TADF) Characteristics of an Oligothiophene: Applications in Timeâ€Dependent Live Cell Multicolour Imaging. Chemistry - an Asian Journal, 2019, 14, 4588-4593.	1.7	16

#	Article	IF	CITATIONS
218	Effect of a Pendant Acceptor on Thermally Activated Delayed Fluorescence Properties of Conjugated Polymers with Backboneâ€Donor/Pendantâ€Acceptor Architecture. Chemistry - an Asian Journal, 2019, 14, 574-581.	1.7	14
219	The Renaissance of Bridged Triarylphosphines: Towards Organophosphorus Molecular Bowls. Chemistry Letters, 2019, 48, 1358-1367.	0.7	4
220	Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Organic Electronics, 2019, 75, 105422.	1.4	109
221	The Effect of Acceptor Structure on Emission Color Tuning in Organic Semiconductors with D–Ĩ€â€"A–Ĩ€â€"D Structures. Nanomaterials, 2019, 9, 1179.	1.9	7
222	Suppression of benzophenone-induced triplet quenching for enhanced TADF performance. Journal of Materials Chemistry C, 2019, 7, 11522-11531.	2.7	48
223	Molecular engineering on all ortho-linked carbazole/oxadiazole hybrids toward highly-efficient thermally activated delayed fluorescence materials in OLEDs. Chinese Chemical Letters, 2019, 30, 1955-1958.	4.8	18
224	Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors. Nature Materials, 2019, 18, 1084-1090.	13.3	271
225	Dendritic host materials with non-conjugated adamantane cores for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2019, 7, 11845-11850.	2.7	23
226	Theoretical Study of the Mechanism of Aggregation-Caused Quenching in Near-Infrared Thermally Activated Delayed Fluorescence Molecules: Hydrogen-Bond Effect. Journal of Physical Chemistry C, 2019, 123, 24705-24713.	1.5	89
227	Multifunctional applications of triazine/carbazole hybrid thermally activated delayed fluorescence emitters in organic light emitting diodes. Journal of Materials Chemistry C, 2019, 7, 12470-12481.	2.7	30
228	Highly efficient TADF OLEDs with low efficiency roll-off based on novel acridine–carbazole hybrid donor-substituted pyrimidine derivatives. Journal of Materials Chemistry C, 2019, 7, 12248-12255.	2.7	40
229	Highly efficient electroluminescence from evaporation- and solution-processable orange–red thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 12321-12327.	2.7	31
230	An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. Journal of Materials Chemistry A, 2019, 7, 1539-1547.	5.2	49
231	Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 330-339.	2.7	42
232	CN substituted indolocarbazole as a core structure of exciton harvesting and lifetime extending host for green thermally activated delayed fluorescent emitter. Dyes and Pigments, 2019, 164, 233-236.	2.0	7
233	Through-space charge transfer hexaarylbenzene dendrimers with thermally activated delayed fluorescence and aggregation-induced emission for efficient solution-processed OLEDs. Chemical Science, 2019, 10, 2915-2923.	3.7	126
234	Exploiting synergy between ligand design and counterion interactions to boost room temperature phosphorescence from Cu(<scp>i</scp>) compounds. Journal of Materials Chemistry C, 2019, 7, 3772-3778.	2.7	32
235	Achieving Deep-Blue Thermally Activated Delayed Fluorescence in Nondoped Organic Light-Emitting Diodes through a Spiro-Blocking Strategy. ACS Omega, 2019, 4, 1861-1867.	1.6	36

#	Article	IF	CITATIONS
236	Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging. ChemBioChem, 2019, 20, 1628-1636.	1.3	29
237	Large current efficiency enhancement in the CsPbBr3 perovskite light-emitting diodes assisted by an ultrathin buffer layer. Journal of Luminescence, 2019, 209, 251-257.	1.5	9
238	Beyond OLED: Efficient Quantum Dot Lightâ€Emitting Diodes for Display and Lighting Application. Chemical Record, 2019, 19, 1729-1752.	2.9	95
239	Towards red-light <i>o</i> -carborane derivatives with both aggregation induced emission and thermally activated delayed fluorescence combining quantum chemistry calculation with molecular dynamics simulation. Journal of Materials Chemistry C, 2019, 7, 2699-2709.	2.7	23
240	Convenient Oneâ€Pot Synthesis of 1,2,3,4â€Thiatriazoles Towards a Novel Electron Acceptor for Highlyâ€Efficient Thermallyâ€Activated Delayedâ€Fluorescence Emitters. Chemistry - A European Journal, 2019, 25, 2457-2462.	1.7	7
241	Phenazasiline/Spiroacridine Donor Combined with Methyl-Substituted Linkers for Efficient Deep Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2019, 11, 7199-7207.	4.0	61
242	New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study. Journal of Molecular Modeling, 2019, 25, 42.	0.8	9
243	Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nature Communications, 2019, 10, 597.	5.8	253
244	Control of the dual emission from a thermally activated delayed fluorescence emitter containing phenothiazine units in organic light-emitting diodes. RSC Advances, 2019, 9, 4336-4343.	1.7	25
245	Phosphane tuning in heteroleptic [Cu(N^N)(P^P)] ⁺ complexes for light-emitting electrochemical cells. Dalton Transactions, 2019, 48, 446-460.	1.6	44
246	A universal host material with a simple structure for monochrome and white phosphorescent/TADF OLEDs. Journal of Materials Chemistry C, 2019, 7, 558-566.	2.7	39
247	Selective synthesis and optical properties of diimidazo[1,2-a:5′,1′-c]quinoxaline derivatives. Tetrahedron, 2019, 75, 3657-3665.	1.0	1
248	A red thermally activated delayed fluorescence emitter employing dipyridophenazine with a gradient multi-inductive effect to improve radiation efficiency. Journal of Materials Chemistry C, 2019, 7, 7525-7530.	2.7	54
249	Realizing 22.5% External Quantum Efficiency for Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Advanced Materials, 2019, 31, e1901404.	11.1	175
250	Combining the qualities of carbazole and tetraphenyl silane in a desirable main chain for thermally activated delayed fluorescence polymers. Polymer Chemistry, 2019, 10, 4201-4208.	1.9	17
251	Tri‣piral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie, 2019, 131, 11423-11427.	1.6	28
252	Design, synthesis, crystal structures, and photophysical properties of tetraphenylethene-based quinoline derivatives. Dyes and Pigments, 2019, 171, 107657.	2.0	9
253	Tetracyano-substituted spiro[fluorene-9,9′-xanthene] as electron acceptor for exciplex thermally activated delayed fluorescence. Journal of Molecular Structure, 2019, 1196, 132-138.	1.8	8

#	Article	IF	CITATIONS
254	Extracting Design Principles for Efficient Thermally Activated Delayed Fluorescence (TADF) from a Simple Four-State Model. Chemistry of Materials, 2019, 31, 6995-7006.	3.2	84
255	Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. ACS Applied Materials & Interfaces, 2019, 11, 26165-26173.	4.0	90
256	Thermally activated delayed fluorescence emitters with low concentration sensitivity for highly efficient organic light emitting devices. Journal of Materials Chemistry C, 2019, 7, 8923-8928.	2.7	14
257	Locking excitons in two-dimensional emitting layers for efficient monochrome and white organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 8929-8937.	2.7	5
258	Highly efficient yellow nondoped thermally activated delayed fluorescence OLEDs by utilizing energy transfer between dual conformations based on phenothiazine derivatives. Dyes and Pigments, 2019, 170, 107636.	2.0	35
259	Hole Transport Property of α-phenyl-4'-(diphenylamino)stilbene Single Crystal Prepared Based on Solubility and Supersolubility Curves. IEICE Transactions on Electronics, 2019, E102.C, 132-137.	0.3	2
260	On the geometry dependence of tunedâ€range separated hybrid functionals. Journal of Computational Chemistry, 2019, 40, 2191-2199.	1.5	19
261	Turn on of sky-blue thermally activated delayed fluorescence and circularly polarized luminescence (CPL) <i>via</i> increased torsion by a bulky carbazolophane donor. Chemical Science, 2019, 10, 6689-6696.	3.7	135
262	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	2.7	53
263	Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). Journal of Physical Chemistry Letters, 2019, 10, 3260-3268.	2.1	68
264	15 <i>H</i> -Diindolo[2,3- <i>b</i> :1′,2′,3′-lm]carbazole: a novel rigid donor for highly efficient thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 8037-8044.	2.7	17
265	A yellow organic emitter with novel D-A3 architecture and hidden delayed fluorescence for highly efficient monochromatic OLEDs. Organic Electronics, 2019, 73, 102-108.	1.4	1
266	Green solution-processed thermally activated delayed fluorescence OLEDs with improved performance by using interfacial exciplex host. Organic Electronics, 2019, 73, 36-42.	1.4	13
267	Exciplex System with Increased Donor–Acceptor Distance as the Sensitizing Host for Conventional Fluorescent OLEDs with High Efficiency and Extremely Low Roll-Off. ACS Applied Materials & Interfaces, 2019, 11, 22595-22602.	4.0	40
268	Solution-Processed Highly Efficient Bluish-Green Thermally Activated Delayed Fluorescence Emitter Bearing an Asymmetric Oxadiazole–Difluoroboron Double Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 24339-24348.	4.0	38
269	Triâ€Spiral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie - International Edition, 2019, 58, 11301-11305.	7.2	198
270	High efficiency green TADF emitters of acridine donor and triazine acceptor D–A–D structures. Journal of Materials Chemistry C, 2019, 7, 7672-7680.	2.7	40
271	Stimuli responsive and reversible crystalline–amorphous transformation in a molecular solid: fluorescence switching and enhanced phosphorescence in the amorphous state. Journal of Materials Chemistry C, 2019, 7, 7083-7089.	2.7	32

ARTICLE IF CITATIONS # Acridanâ€Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavyâ€Atom Effect for Highlý Efficient Skyâ€Blue TADF Electrolumínescence. Angewandte Chemie, 2019, 272 0 1.6 131, 11439-11445. Acridanâ€Grafted Poly(biphenyl germanium) with High Triplet Energy, Low Polarizability, and an External Heavyâ€Atom Effect for Highlý Efficient Skyâ€Blue TADF Electroluminescence. Angewandte Chemie -273 7.2 International Edition, 2019, 58, 11317-11323. Non-doped and doped circularly polarized organic light-emitting diodes with high performances based on chiral octahydro-binaphthyl delayed fluorescent luminophores. Journal of Materials 274 2.7 56 Chemistry C, 2019, 7, 7045-7052. Chiral Octahydroâ€Binaphthol Compoundâ€Based Thermally Activated Delayed Fluorescence Materials for Circularly Polarized Electroluminescence with Superior EQE of 32.6% and Extremely Low Efficiency Rollâ€Off. Advanced Materials, 2019, 31, e1900524. 11.1 198 Pyridine-Carbonitrile–Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance. ACS Applied Materials & amp; Interfaces, 2019, 11, 276 4.0 40 21042-21048. Modulation of Thermally Activated Delayed Fluorescence in Waterborne Polyurethanes via Charge†Transfer Effect. Chemistry - an Asian Journal, 2019, 14, 2302-2308. 277 1.7 Synthesis of delayed-emissive poly(2,7-carbazole)s having an anchored triazine pendant at the 278 1.9 2 <i>N</i>position. Polymer Chemistry, 2019, 10, 3318-3324. Highly Efficient Thermally Activated Delayed Fluorescence via Jâ€Aggregates with Strong 279 11.1 278 Intermolecular Charge Transfer. Advanced Materials, 2019, 31, e1808242. Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W 280 2.1 46 Power Efficiency. Journal of Physical Chemistry Letters, 2019, 10, 2811-2816. Novel small-molecule electron donor for solution-processed ternary exciplex with 24% external 6.4 quantum efficiency in organic light-emitting diode. Materials Horizons, 2019, 6, 1425-1432. Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 282 2.7 39 6664-6671. TADF activation by solvent freezing: The role of nonradiative triplet decay and spin-orbit coupling in 2.1 carbazole benzonítrile derivatives. Synthetic Metals, 2019, 252, 62-68. Aggregation-Induced Emission Materials with Narrowed Emission Band by Light-Harvesting Strategy: 284 3.2 122 Fluorescence and Chemiluminescence Imaging. Chemistry of Materials, 2019, 31, 3573-3581. Integrating TADF luminogens with AIE characteristics using a novel acridine–carbazole hybrid as donor for high-performance and low efficiency roll-off OLEDs. Journal of Materials Chemistry C, 2019, 7, 9487-9495. 2.7 Enhancing Spin–Orbit Coupling by Introducing a Lone Pair Electron with p Orbital Character in a Thermally Activated Delayed Fluorescence Emitter: Photophysics and Devices. Journal of Physical 286 2.1 38 Chemistry Letters, 2019, 10, 2669-2675. Facile color tuning of thermally activated delayed fluorescence by substituted ortho-carbazole-appended triarylboron emitters. Dyes and Pigments, 2019, 168, 273-280. Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of 288 Intermolecular Steric Hindrance between the Donor and Acceptor Pair. ACS Applied Materials & amp; 4.0 34 Interfaces, 2019, 11, 19294-19300. Fourâ€Coordinate Boron Emitters with Tridentate Chelating Ligand for Efficient and Stable Thermally 289 1.6 Activated Delayed Fluorescence Organic Lightâ€Emitting Devices. Angewandte Chemie, 2019, 131, 9186-9192.

#	Article	IF	CITATIONS
290	Quinolinylmethanone-Based Thermally Activated Delayed Fluorescence Emitters and the Application in OLEDs: Effect of Intramolecular H-Bonding. ACS Applied Materials & (Interfaces, 2019, 11, 17128-17133.	4.0	30
291	Fourâ€Coordinate Boron Emitters with Tridentate Chelating Ligand for Efficient and Stable Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Devices. Angewandte Chemie - International Edition, 2019, 58, 9088-9094.	7.2	84
292	Developing Through‧pace Charge Transfer Polymers as a General Approach to Realize Fullâ€Color and White Emission with Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 8493-8497.	1.6	35
293	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		Ο
294	Syntheses, crystal structures, chirality and aggregation-induced phosphorescence of stacked binuclear platinum(<scp>ii</scp>) complexes with bridging Salen ligands. Materials Chemistry Frontiers, 2019, 3, 1199-1208.	3.2	22
295	Bipolar Poly(arylene phosphine oxide) Hosts with Widely Tunable Triplet Energy Levels for High-Efficiency Blue, Green, and Red Thermally Activated Delayed Fluorescence Polymer Light-Emitting Diodes. Macromolecules, 2019, 52, 3394-3403.	2.2	24
296	Orthogonally arranged tripyrrin–BODIPY conjugates with an "edge to plane―mode. Organic Chemistry Frontiers, 2019, 6, 2266-2274.	2.3	14
297	Measurement of the triplet exciton diffusion length in organic semiconductors. Journal of Materials Chemistry C, 2019, 7, 5695-5701.	2.7	10
298	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 6607-6615.	2.7	30
299	Design of Efficient Exciplex Emitters by Decreasing the Energy Gap Between the Local Excited Triplet (3LE) State of the Acceptor and the Charge Transfer (CT) States of the Exciplex. Frontiers in Chemistry, 2019, 7, 188.	1.8	7
300	Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fineâ€Tuning and Throughâ€Space TADF Emission. Chemistry - an Asian Journal, 2019, 14, 1921-1925.	1.7	34
301	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2019, 123, 10081-10086.	1.5	53
302	Bis(tercarbazole) pyrene and tetrahydropyrene derivatives: photophysical and electrochemical properties, theoretical modeling, and OLEDs. Journal of Materials Chemistry C, 2019, 7, 5009-5018.	2.7	16
303	Almost complete radiationless energy transfer from excited triplet state of a dim phosphor to a covalently linked adjacent fluorescent dye in purely organic tandem luminophores doped into PVA matrix. Journal of Materials Chemistry C, 2019, 7, 6571-6577.	2.7	8
304	Nondoped deep-blue fluorescent organic electroluminescent device with CIEy = 0.06 and low efficiency roll-off based on carbazole/oxadiazole derivatives. Organic Electronics, 2019, 69, 77-84.	1.4	8
305	Development of Materials for Blue Organic Light Emitting Devices. Chemical Record, 2019, 19, 1667-1692.	2.9	23
306	A spiro-silafluorene–phenazasiline donor-based efficient blue thermally activated delayed fluorescence emitter and its host-dependent device characteristics. Journal of Materials Chemistry C, 2019, 7, 4191-4198.	2.7	25
307	Effect of end group functionalisation of small molecules featuring the fluorene–thiophene–benzothiadiazole motif as emitters in solution-processed red and orange organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 3934-3944.	2.7	14

#	Article	IF	CITATIONS
308	Excited State Intramolecular Proton Transfer Dynamics for Triplet Harvesting in Organic Molecules. Journal of Physical Chemistry A, 2019, 123, 2640-2649.	1.1	20
309	Isomeric Bright Skyâ€Blue TADF Emitters Based on Bisacridine Decorated DBNA: Impact of Donor Locations on Luminescent and Electroluminescent Properties. Advanced Optical Materials, 2019, 7, 1900130.	3.6	82
310	Impact of Methoxy Substituents on Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in All-Organic Donor–Acceptor Systems. Journal of Organic Chemistry, 2019, 84, 3801-3816.	1.7	43
311	Thermally activated delayed fluorescence <i>vs.</i> room temperature phosphorescence by conformation control of organic single molecules. Journal of Materials Chemistry C, 2019, 7, 6616-6621.	2.7	74
312	Temperature-Controlled Locally Excited and Twisted Intramolecular Charge-Transfer State-Dependent Fluorescence Switching in Triphenylamine–Benzothiazole Derivatives. ACS Omega, 2019, 4, 5147-5154.	1.6	22
313	Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS Applied Materials & Interfaces, 2019, 11, 13460-13471.	4.0	84
314	Dibenzofuran/dibenzothiophene as the secondary electron-donors for highly efficient blue thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 4475-4483.	2.7	15
315	Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence. Chemical Communications, 2019, 55, 5215-5218.	2.2	17
316	High-Efficiency Sky Blue-To-Green Fluorescent Emitters Based on 3-Pyridinecarbonitrile Derivatives. Frontiers in Chemistry, 2019, 7, 254.	1.8	3
317	Limitations and Perspectives on Tripletâ€Materialâ€Based Organic Photovoltaic Devices. Advanced Materials, 2019, 31, e1900690.	11.1	50
318	Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties. Chemistry - an Asian Journal, 2019, 14, 2251-2258.	1.7	17
319	Toward an Accurate Description of Thermally Activated Delayed Fluorescence: Equal Importance of Electronic and Geometric Factors. Journal of Physical Chemistry C, 2019, 123, 13869-13876.	1.5	11
320	Developing Throughâ€Space Charge Transfer Polymers as a General Approach to Realize Fullâ€Color and White Emission with Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 8405-8409.	7.2	196
321	Crystallization/aggregation enhanced emissive smart fluorophores for rewritable fluorescent platform: Alkoxy chain length controlled solid state fluorescence. Journal of Luminescence, 2019, 211, 355-362.	1.5	15
322	Halogen Atom and Position Dependent Strong Enhancement of Solidâ€ S tate Fluorescence and Stimuli Responsive Reversible Fluorescence Switching. ChemistrySelect, 2019, 4, 3884-3890.	0.7	23
323	Novel phenanthro[9,10-d]imidazole derivatives - effect of thienyl and 3,4-(ethylenedioxy)thienyl substituents. Synthetic Metals, 2019, 251, 40-48.	2.1	5
324	Blue TADF Emitters Based on Indenocarbazole Derivatives with High Photoluminescence and Electroluminescence Efficiencies. ACS Applied Materials & Interfaces, 2019, 11, 10758-10767.	4.0	44
325	Recent Advancements in and the Future of Organic Emitters: TADF―and RTPâ€Active Multifunctional Organic Materials. Chemistry - an Asian Journal, 2019, 14, 1613-1636.	1.7	139

#	Article	IF	CITATIONS
326	A sky-blue thermally activated delayed fluorescence emitter based on multimodified carbazole donor for efficient organic light-emitting diodes. Organic Electronics, 2019, 68, 113-120.	1.4	20
327	Recent Advances in OLED Optical Design. Advanced Functional Materials, 2019, 29, 1808803.	7.8	350
328	Nonsymmetrical Connection of Two Identical Building Blocks: Constructing Donor–Acceptor Molecules as Deep Blue Emitting Materials for Efficient Organic Emitting Diodes. Journal of Physical Chemistry Letters, 2019, 10, 842-847.	2.1	45
329	A Series of Dibenzofuranâ€Based nâ€Type Exciplex Host Partners Realizing Highâ€Efficiency and Stable Deepâ€Red Phosphorescent OLEDs. Chemistry - A European Journal, 2019, 25, 7308-7314.	1.7	45
330	Organic light-emitting diodes. , 2019, , 695-726.		11
331	Novel V- and Y-Shaped Light-Emitting Liquid Crystals with Pentafluorinated Bistolane-Based Luminophores. ACS Omega, 2019, 4, 3922-3932.	1.6	13
332	Fabrication-method Independence of Organic Long-persistent Luminescence Performance. Chemistry Letters, 2019, 48, 270-273.	0.7	19
333	Steric Switching for Thermally Activated Delayed Fluorescence by Controlling the Dihedral Angles between Donor and Acceptor in Organoboron Emitters. ACS Applied Materials & Interfaces, 2019, 11, 10768-10776.	4.0	49
334	Exciton―and Polaronâ€Induced Reversible Dipole Reorientation in Amorphous Organic Semiconductor Films. Advanced Optical Materials, 2019, 7, 1801644.	3.6	44
335	Efficiency loss processes in hyperfluorescent OLEDs: A kinetic Monte Carlo study. Applied Physics Letters, 2019, 114, .	1.5	31
336	Hinged and Wide: A New P^P Ligand for Emissive [Cu(P^P)(N^N)][PF6] Complexes. Molecules, 2019, 24, 3934.	1.7	10
337	Origin of dual emission in σ-bridged donor–acceptor TADF compounds. Journal of Materials Chemistry C, 2019, 7, 12601-12609.	2.7	32
338	Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. Journal of Materials Chemistry C, 2019, 7, 13218-13223.	2.7	11
339	6 <i>H</i> -Benzo[4,5]thieno[2,3- <i>b</i>]indole as a novel donor for efficient thermally activated delayed fluorescence emitters with EQEs over 20%. Journal of Materials Chemistry C, 2019, 7, 13912-13919.	2.7	11
340	Photoluminescent manipulation of phenoxazine-based molecules <i>via</i> regulating conformational isomerization, and the corresponding electroluminescent properties. Journal of Materials Chemistry C, 2019, 7, 14255-14263.	2.7	18
341	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. Chemical Communications, 2019, 55, 15125-15128.	2.2	16
342	Aggregation-enhanced emissive mechanofluorochromic carbazole-halogen positional isomers: tunable fluorescence <i>via</i> conformational polymorphism and crystallization-induced fluorescence switching. CrystEngComm, 2019, 21, 6604-6612.	1.3	26
343	Dibenzo[<i>c</i> , <i>g</i>]indolo[3,2,1- <i>jk</i>]carbazole as a new chromophore for blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 14301-14305.	2.7	13

#	Article	IF	CITATIONS
344	Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide–Phenothiazine Electron Donor/Acceptor Dyads. Journal of Physical Chemistry C, 2019, 123, 30171-30186.	1.5	63
345	Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell. Nature Communications, 2019, 10, 5307.	5.8	55
346	Dyes in modern organic chemistry. Beilstein Journal of Organic Chemistry, 2019, 15, 2798-2800.	1.3	1
347	Synthesis and Electroluminescent Properties of Through-Space Charge Transfer Polymers Containing Acridan Donor and Triarylboron Acceptors. Frontiers in Chemistry, 2019, 7, 854.	1.8	24
348	Acceptor Derivatization of the 4CzIPN TADF System: Color Tuning and Introduction of Functional Groups. ChemistryOpen, 2019, 8, 1413-1420.	0.9	10
349	Inverting singlet and triplet excited states using strong light-matter coupling. Science Advances, 2019, 5, eaax4482.	4.7	116
350	Synthesis and optoelectronic properties of benzoquinone-based donor–acceptor compounds. Beilstein Journal of Organic Chemistry, 2019, 15, 2914-2921.	1.3	1
351	Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. Chemical Communications, 2019, 55, 14190-14193.	2.2	26
352	TADF and exciplex emission in a xanthone–carbazole derivative and tuning of its electroluminescence with applied voltage. RSC Advances, 2019, 9, 40248-40254.	1.7	10
353	Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs. Chemical Science, 2019, 10, 10687-10697.	3.7	99
354	Effects of intramolecular hydrogen bonding on the conformation and luminescence properties of dibenzoylpyridine-based thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 13104-13110.	2.7	16
355	A Series of Imidazo[1,2â€f]phenanthridineâ€Based Skyâ€Blue TADF Emitters Realizing EQE of over 20%. Advanced Optical Materials, 2019, 7, 1801282.	3.6	47
356	Monothiatruxeneâ€Based, Solutionâ€Processed Green, Skyâ€Blue, and Deepâ€Blue Organic Lightâ€Emitting Diodes with Efficiencies Beyond 5% Limit. Advanced Functional Materials, 2019, 29, 1807572.	7.8	16
357	Highly-Efficient Doped and Nondoped Organic Light-Emitting Diodes with External Quantum Efficiencies over 20% from a Multifunctional Green Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2019, 123, 1015-1020.	1.5	42
358	Alleviating Efficiency Roll-Off of Hybrid Single-Emitting Layer WOLED Utilizing Bipolar TADF Material as Host and Emitter. ACS Applied Materials & Interfaces, 2019, 11, 2197-2204.	4.0	56
359	High-triplet-level phthalimide based acceptors for exciplexes with multicolor emission. Dyes and Pigments, 2019, 162, 872-882.	2.0	26
360	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. Chemistry of Materials, 2019, 31, 6453-6464.	3.2	44
361	Understanding Solid-State Solvation-Enhanced Thermally Activated Delayed Fluorescence Using a Descriptor-Tuned Screened Range-Separated Functional. Journal of Physical Chemistry C, 2019, 123, 4407-4416	1.5	36

#	Article	IF	CITATIONS
362	Dual Interface Exciplex Emission of Quinoline and Carbazole Derivatives for Simplified Nondoped White OLEDs. Journal of Physical Chemistry C, 2019, 123, 2386-2397.	1.5	32
363	Enhancing Reverse Intersystem Crossing via Secondary Acceptors: toward Sky-Blue Fluorescent Diodes with 10-Fold Improved External Quantum Efficiency. ACS Applied Materials & Interfaces, 2019, 11, 4185-4192.	4.0	23
364	Strong Emission Enhancement in pHâ€Responsive 2:2 Cucurbit[8]uril Complexes. Chemistry - A European Journal, 2019, 25, 3257-3261.	1.7	29
365	Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole- <i>ran</i> -acridine)s with Aggregation-Induced Emission and Delayed Fluorescence. ACS Applied Polymer Materials, 2019, 1, 221-229.	2.0	33
366	Hydrophilic, Redâ€Emitting, and Thermally Activated Delayed Fluorescence Emitter for Timeâ€Resolved Luminescence Imaging by Mitochondrionâ€Induced Aggregation in Living Cells. Advanced Science, 2019, 6, 1801729.	5.6	80
367	Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry - A European Journal, 2019, 25, 5623-5642.	1.7	168
368	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	2.2	19
369	Triindoloâ€Truxene Derivatives: Design, Synthesis, and Fineâ€Tuning of Electronic Properties and Molecular Assembly through Molecular Engineering. Chemistry - A European Journal, 2019, 25, 1293-1299.	1.7	2
370	Highâ€Performance Organic Electroluminescence: Design from Organic Lightâ€Emitting Materials to Devices. Chemical Record, 2019, 19, 1531-1561.	2.9	79
371	Quantifying partial hole-particle distance at the excited state: A revised version of the DCT index. Chemical Physics Letters, 2019, 714, 81-86.	1.2	17
372	Effect of intermolecular interaction on excited-state properties of thermally activated delayed fluorescence molecules in solid phase: A QM/MM study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 209, 248-255.	2.0	12
373	Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes. Chemical Record, 2019, 19, 1499-1517.	2.9	33
374	Synthesis of Linear and Vâ€Shaped Carbazolylâ€Substituted Pyridineâ€3,5â€dicarbonitriles Exhibiting Efficient Bipolar Charge Transport and Eâ€Type Fluorescence. Chemistry - A European Journal, 2019, 25, 3325-3336.	1.7	16
375	High Performance Thermally Activated Delayed Fluorescence Sensitized Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1611-1623.	2.9	49
376	Unveiling the Role of Langevin and Trap-Assisted Recombination in Long Lifespan OLEDs Employing Thermally Activated Delayed Fluorophores. ACS Applied Materials & Interfaces, 2019, 11, 1096-1108.	4.0	47
377	Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence. Journal of Physical Chemistry C, 2019, 123, 265-274.	1.5	79
378	Thermally Activated Delayed Fluorescence (Green) in Undoped Film and Exciplex Emission (Blue) in Acridone–Carbazole Derivatives for OLEDs. Journal of Physical Chemistry C, 2019, 123, 1003-1014.	1.5	36
379	A theoretical investigation on the thermally activated delayed fluorescence characteristics of the isomers of DTCBPy. Journal of Molecular Graphics and Modelling, 2019, 86, 125-131.	1.3	5

#	Article	IF	CITATIONS
380	Thermally activated delayed fluorescence (TADF) dyes as efficient organic photosensitizers for photocatalytic water reduction. Catalysis Communications, 2019, 119, 11-15.	1.6	18
381	Specific solvent effect on the photophysical behavior of substituted chromones: A combined fluorescence, DFT and MD study. Chemical Physics, 2019, 517, 67-79.	0.9	16
382	Stable deep blue organic light emitting diodes with CIE of y < 0.10 based on quinazoline and carbazole units. Chinese Chemical Letters, 2020, 31, 1188-1192.	4.8	21
383	Comparative study of multi-functional luminogens with 1,3,5-triazine as the core and phenothiazine or phenoxy donors as the peripheral moieties for non-doped/doped fluorescent and red phosphorescent OLEDs. Dyes and Pigments, 2020, 173, 107793.	2.0	16
384	CNâ€Modified Imidazopyridine as a New Electron Accepting Unit of Thermally Activated Delayed Fluorescent Emitters. Chemistry - A European Journal, 2020, 26, 845-852.	1.7	10
385	Multi-substituted dibenzo[a,c]phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes. Dyes and Pigments, 2020, 173, 107957.	2.0	17
386	Circularly Polarized Luminescence in Nanoassemblies: Generation, Amplification, and Application. Advanced Materials, 2020, 32, e1900110.	11.1	602
387	Spectrally resolved luminescence lifetime detection for measuring the energy splitting of the long-lived excited states. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117434.	2.0	6
388	Highly efficient ternary polymer-based solution-processable exciplex with over 20% external quantum efficiency in organic light-emitting diode. Organic Electronics, 2020, 76, 105449.	1.4	22
389	Differently substituted benzonitriles for non-doped OLEDs. Dyes and Pigments, 2020, 172, 107789.	2.0	15
390	Bright Deep Blue TADF OLEDs: The Role of Triphenylphosphine Oxide in NPB/TPBi:PPh ₃ O Exciplex Emission. Advanced Optical Materials, 2020, 8, 0191282.	3.6	6
391	Synthesis and performance of non-conjugated main-chain thermally activated delayed fluorescence polymers with arylsilanes as host. Organic Electronics, 2020, 77, 105539.	1.4	4
392	Cruciform Molecules Bearing Bis(phenylsulfonyl)benzene Moieties for Highâ€Efficiency Solution Processable OLEDs: When Thermally Activated Delayed Fluorescence Meets Mechanochromic Luminescence. Advanced Optical Materials, 2020, 8, 1901021.	3.6	25
393	From sky blue to orange red: Accomplishment of single-emitter full-color electroluminescence via manipulating intermolecular π-π interactions. Organic Electronics, 2020, 78, 105550.	1.4	6
394	Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Emitters. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900616.	0.8	13
395	Molecular Design of Nonâ€doped OLEDs Based on a Twisted Heptagonal Acceptor: A Delicate Balance between Rigidity and Rotatability. Angewandte Chemie, 2020, 132, 10078-10082.	1.6	18
396	Fluorene based amorphous hole transporting materials for solution processed organic light-emitting diodes. Organic Electronics, 2020, 79, 105633.	1.4	20
397	Nondoped organic light-emitting diodes with low efficiency roll-off: the combination of aggregation-induced emission, hybridized local and charge-transfer state as well as high photoluminescence efficiency. Journal of Materials Chemistry C, 2020, 8, 3079-3087.	2.7	25

#	Article	IF	CITATIONS
398	Molecular Design of Nonâ€doped OLEDs Based on a Twisted Heptagonal Acceptor: A Delicate Balance between Rigidity and Rotatability. Angewandte Chemie - International Edition, 2020, 59, 9992-9996.	7.2	82
399	A novel design strategy for deeper blue and more stable thermally activated delayed fluorescent emitters. Organic Electronics, 2020, 78, 105610.	1.4	4
400	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	2.2	11
401	Molecular design featuring carbazole-decorated 15H-diindolo[2,3-b:1′,2′,3′-lm]carbazole for improved efficiency and lifetime of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 2491-2499.	2.7	7
402	Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D–A type polymer dots for biosensing. Analyst, The, 2020, 145, 233-239.	1.7	20
403	Preparation and luminescence properties of a M ₁₆ heterometallic coinage metal chalcogenide cluster. Dalton Transactions, 2020, 49, 593-597.	1.6	4
404	Preparation of high-efficiency near-infrared aggregation-induced emission nanoparticles based on FRET and their use in bio-imaging. Methods and Applications in Fluorescence, 2020, 8, 015007.	1.1	3
405	Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 1482-1491.	6.6	114
406	Solvent-controlled assembly of pillar[5]arene-based supramolecular networks <i>via</i> π–π interactions for white light modulation. Organic Chemistry Frontiers, 2020, 7, 399-404.	2.3	20
407	Remarkable mechanofluorochromism and low efficiency-off electroluminescence from a fully aromatic D-A cruciform emitter. Dyes and Pigments, 2020, 175, 108170.	2.0	3
408	Fusing acridine and benzofuran/benzothiophene as a novel hybrid donor for high-performance and low efficiency roll-off TADF OLEDs. Journal of Materials Chemistry C, 2020, 8, 1864-1870.	2.7	19
409	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. Dyes and Pigments, 2020, 176, 108179.	2.0	23
410	Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie - International Edition, 2020, 59, 9977-9981.	7.2	129
411	Donor–Acceptor Materials Exhibiting Thermally Activated Delayed Fluorescence Using a Planarized <i>N</i> -Phenylbenzimidazole Acceptor. Journal of Organic Chemistry, 2020, 85, 108-117.	1.7	24
412	Molecular Design Strategy of Thermally Activated Delayed Fluorescent Emitters Using CNâ€Substituted Imidazopyrazine as a New Electronâ€Accepting Unit. Chemistry - an Asian Journal, 2020, 15, 122-128.	1.7	5
413	The role of chemical design in the performance of organic semiconductors. Nature Reviews Chemistry, 2020, 4, 66-77.	13.8	444
414	A Pd ₃ L ₆ supramolecular cage incorporating photoactive [2.2]paracyclophane units. Inorganic Chemistry Frontiers, 2020, 7, 232-238.	3.0	12
415	Spin–Vibronic Model for Quantitative Prediction of Reverse Intersystem Crossing Rate in Thermally Activated Delayed Fluorescence Systems. Journal of Chemical Theory and Computation, 2020, 16, 621-632.	2.3	53

#	Article	IF	CITATIONS
416	Harnessing a New Co-Host System and Low Concentration of New TADF Emitters Equipped with Trifluoromethyl- and Cyano-Substituted Benzene as Core for High-Efficiency Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 2724-2732.	4.0	23
417	Facile structure-modification of xanthenone based OLED emitters exhibiting both aggregation induced emission enhancement and thermally activated delayed fluorescence. Journal of Luminescence, 2020, 220, 116955.	1.5	9
418	Cyclohexane-cored dendritic host materials with high triplet energy for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 174, 108097.	2.0	9
419	Efficient solution processed hybrid white organic light-emitting diodes based on a blue thermally activated delayed fluorescence emitter. Thin Solid Films, 2020, 695, 137753.	0.8	8
420	Suppression of Concentration Quenching in Orthoâ€ S ubstituted Thermally Activated Delayed Fluorescence Emitters. Advanced Theory and Simulations, 2020, 3, 1900185.	1.3	17
421	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 1084-1093.	4.0	31
422	Diphenylsulfone-based hosts for electroluminescent devices: Effect of donor substituents. Dyes and Pigments, 2020, 175, 108104.	2.0	11
423	Bipyridine ontaining Host Materials for High Performance Yellow Thermally Activated Delayed Fluorescenceâ€Based Organic Light Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Optical Materials, 2020, 8, 1901283.	3.6	18
424	Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Angewandte Chemie, 2020, 132, 10063-10067.	1.6	82
425	Pentacyclic Ladder-Heteraborin Emitters Exhibiting High-Efficiency Blue Thermally Activated Delayed Fluorescence with an Ultrashort Emission Lifetime. , 2020, 2, 28-34.		61
426	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67
427	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie - International Edition, 2020, 59, 3209-3217.	7.2	98
428	Improving Processability and Efficiency of Resonant TADF Emitters: A Design Strategy. Advanced Optical Materials, 2020, 8, 1901627.	3.6	182
429	Universal blue emitters for high efficiency thermally activated delayed fluorescence and fluorescent organic light-emitting diodes. Dyes and Pigments, 2020, 174, 108070.	2.0	12
430	OBO-Fused Benzo[fg]tetracene as Acceptor With Potential for Thermally Activated Delayed Fluorescence Emitters. Frontiers in Chemistry, 2020, 8, 563411.	1.8	2
431	Pâ€183: Development of Highly Efficient Long Wavelength Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes Using an Auxiliary Acceptor as Reverse Intersystem Crossing Promoter. Digest of Technical Papers SID International Symposium, 2020, 51, 2063-2066.	0.1	0
432	Efficient Skyâ€Blue Organic Lightâ€Emitting Diodes Using a Highly Horizontally Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2020, 8, 2001354.	3.6	31
433	Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donorâ€Acceptorâ€Donorâ€Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chemistry - an Asian Journal, 2020, 15, 4098-4103.	1.7	3

#	Article	IF	CITATIONS
434	White-light electroluminescence from a layer incorporating a single fully-organic spiro compound with phosphine oxide substituents. Journal of Materials Chemistry C, 2020, 8, 14462-14468.	2.7	15
435	Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Science Advances, 2020, 6, .	4.7	80
436	Efficient Exciplexâ€based Green and Nearâ€Infrared Organic Lightâ€Emitting Diodes Employing a Novel Donorâ€Acceptor Type Donor. Chemistry - an Asian Journal, 2020, 15, 4093-4097.	1.7	10
437	Highly efficient and air-stable Eu(II)-containing azacryptates ready for organic light-emitting diodes. Nature Communications, 2020, 11, 5218.	5.8	48
438	Tris(triazolo)triazine-based emitters for solution-processed blue thermally activated delayed fluorescence organic light-emitting diodes. Materials Advances, 2020, 1, 2862-2871.	2.6	11
439	Impact of secondary donor units on the excited-state properties and thermally activated delayed fluorescence (TADF) efficiency of pentacarbazole-benzonitrile emitters. Journal of Chemical Physics, 2020, 153, 144708.	1.2	14
440	Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coordination Chemistry Reviews, 2020, 425, 213545.	9.5	68
441	Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. Journal of the American Chemical Society, 2020, 142, 17756-17765.	6.6	174
442	An experimental and theoretical study of exciplex-forming compounds containing trifluorobiphenyl and 3,6-di- <i>tert</i> -butylcarbazole units and their performance in OLEDs. Journal of Materials Chemistry C, 2020, 8, 14186-14195.	2.7	5
443	Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. Chemical Science, 2020, 11, 11315-11321.	3.7	22
444	Through‧pace Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 20174-20182.	7.2	110
445	Enhancing the thermally activated delayed fluorescence of nido-carborane-appended triarylboranes by steric modification of the phenylene linker. Inorganic Chemistry Frontiers, 2020, 7, 3456-3464.	3.0	13
446	Highly Efficient Deepâ€Red Nonâ€Doped Diodes Based on a Tâ€Shape Thermally Activated Delayed Fluorescence Emitter. Angewandte Chemie, 2020, 132, 19204-19209.	1.6	16
447	Highly Efficient Deepâ€Red Nonâ€Doped Diodes Based on a Tâ€Shape Thermally Activated Delayed Fluorescence Emitter. Angewandte Chemie - International Edition, 2020, 59, 19042-19047.	7.2	108
448	Recent progress of narrowband TADF emitters and their applications in OLEDs. Journal of Materials Chemistry C, 2020, 8, 11340-11353.	2.7	191
449	Partial Modification of Electron-withdrawing Groups in Thermally-activated Delayed Fluorescence Materials Aimed to Improve Efficiency and Stability. Chemistry Letters, 2020, 49, 1189-1193.	0.7	0
450	TADF Technology for Efficient Blue OLEDs: Status and Challenges from an Industrial Point of View. , 2020, , .		3
451	Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine–Pyrimidine Structure. ACS Applied Materials & Interfaces, 2020, 12, 10727-10736.	4.0	32

#	Article	IF	CITATIONS
452	Manipulation of the sterically hindering effect to realize AIE and TADF for high-performing nondoped solution-processed OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 11850-11859.	2.7	16
453	Charge-transfer transition regulation of thermally activated delayed fluorescence emitters by changing the valence of sulfur atoms. Journal of Materials Chemistry C, 2020, 8, 17457-17463.	2.7	11
454	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 53, 10375-10385.	2.2	25
455	Intramolecular-rotation driven triplet-to-singlet upconversion and fluctuation induced fluorescence activation in linearly connected donor–acceptor molecules. Journal of Chemical Physics, 2020, 153, 204702.	1.2	15
456	Highly Efficient Ultrathin Fluorescent OLEDs through Synergistic Sensitization Effects of Phosphor and Exciplex. ACS Applied Electronic Materials, 2020, 2, 3704-3710.	2.0	10
457	Development of polymeric active layer for RGB light-emitting devices: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 21856-21895.	1.1	5
458	9,9-Dimethyl Dihydroacridine-Based Organic Photocatalyst for Atom Transfer Radical Polymerization from Modifying "Unstable―Electron Donor. Macromolecules, 2020, 53, 7053-7062.	2.2	19
459	Transformation from Nonthermally Activated Delayed Fluorescence Molecules to Thermally Activated Delayed Fluorescence Molecules. Advanced Optical Materials, 2020, 8, 2001025.	3.6	17
460	Dual Emission: Classes, Mechanisms, and Conditions. Angewandte Chemie - International Edition, 2021, 60, 22624-22638.	7.2	158
461	Throughâ€Space Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 20349-20357.	1.6	20
462	Hybrid Whiteâ€Lightâ€Emitting Electrochemical Cells Based on a Blue Cationic Iridium(III) Complex and Red Quantum Dots. Chemistry - A European Journal, 2020, 26, 13668-13676.	1.7	7
463	Room temperature perylene based columnar liquid crystals as solid-state fluorescent emitters in solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 12485-12494.	2.7	31
464	Exploiting trifluoromethyl substituents for tuning orbital character of singlet and triplet states to increase the rate of thermally activated delayed fluorescence. Materials Chemistry Frontiers, 2020, 4, 3602-3615.	3.2	35
465	High Triplet Energy Host Materials for Blue TADF OLEDs—A Tool Box Approach. Frontiers in Chemistry, 2020, 8, 657.	1.8	18
466	Fineâ€Tuning the Physicochemical and Electroluminescence Properties of Multiplyâ€Substituted Bipolar Carbazoles by Functional Group Juggling. ChemPhotoChem, 2020, 4, 5364-5375.	1.5	2
467	Recent Advances in Metal-TADF Emitters and Their Application in Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 653.	1.8	38
468	The electron inductive effect of dual non-conjugated trifluoromethyl acceptors for highly efficient thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 183, 108705.	2.0	6
469	A Simple and Strong Electronâ€Deficient 5,6â€Dicyano[2,1,3]benzothiadiazoleâ€Cored Donorâ€Acceptorâ€Dono Compound for Efficient Near Infrared Thermally Activated Delayed Fluorescence. Chemistry - an Asian Journal, 2020, 15, 3029-3036.	or 1.7	52

#	ARTICLE	IF	CITATIONS
470	Sky-Blue Thermally Activated Delayed Fluorescence with Intramolecular Spatial Charge Transfer Based on a Dibenzothiophene Sulfone Emitter. Journal of Organic Chemistry, 2020, 85, 10628-10637.	1.7	39
471	Frustrated Lewis pairs with thermally activated delayed fluorescence properties: activation of formaldehyde. Dalton Transactions, 2020, 49, 13198-13201.	1.6	1
472	<i>>S</i> -Vinyl Sulfide-Derived Pendant-Type Sulfone/Phenoxazine-Based Polymers Exhibiting Thermally Activated Delayed Fluorescence: Synthesis and Photophysical Property Characterization. ACS Applied Polymer Materials, 2020, 2, 3310-3318.	2.0	11
473	Excited-State Dynamics and Thermally Activated Delayed Fluorescence in the Classic Electron Acceptor Tetracyanoquinodimethane. Journal of Physical Chemistry B, 2020, 124, 7918-7928.	1.2	5
474	A printable thermally activated delayed fluorescence polymer light emitting diode. Journal of Materials Chemistry C, 2020, 8, 13001-13009.	2.7	12
475	Enhancing the efficiency of red TADF OLED by optimizing the guest-host matrix and charge balance engineering. Synthetic Metals, 2020, 270, 116599.	2.1	8
476	Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor–Acceptor System Realizing EQE of Over 30%. Advanced Materials, 2020, 32, e2003885.	11.1	148
477	Luminescent Dinuclear Copper(I) Complexes Bearing an Imidazolylpyrimidine Bridging Ligand. Inorganic Chemistry, 2020, 59, 14772-14784.	1.9	26
478	Highly Efficient, Red Delayed Fluorescent Emitters with Exothermic Reverse Intersystem Crossing via Hot Excited Triplet States. Journal of Physical Chemistry C, 2020, 124, 20816-20826.	1.5	14
479	Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. Advanced Theory and Simulations, 2020, 3, 2000110.	1.3	4
480	Thermally Activated Delayed Fluorescence: Beyond the Single Molecule. Frontiers in Chemistry, 2020, 8, 716.	1.8	23
481	Solid-State Effect Induced Thermally Activated Delayed Fluorescence with Tunable Emission: A Multiscale Study. Journal of Physical Chemistry A, 2020, 124, 8540-8550.	1.1	18
482	Benzodithienyl Silanes for Organic Electronics: AIE Solidâ€State Blue Emitters and High Triplet Energy Chargeâ€Transport Materials. Advanced Optical Materials, 2020, 8, 2001018.	3.6	4
483	Turn-on solid state luminescence by solvent-induced modification of intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 15742-15750.	2.7	10
484	Molecular designs offer fast exciton conversion. Nature Photonics, 2020, 14, 593-594.	15.6	15
485	Solutionâ€Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect. Advanced Materials, 2020, 32, e2004072.	11.1	254
486	Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet–Triplet-Annihilation Upconversion. Inorganic Chemistry, 2020, 59, 14731-14745.	1.9	23
487	Effects of exciton deconfinement on the transient photoluminescence from thermally activated delayed fluorescence host–guest systems. Journal of Applied Physics, 2020, 128, 075501.	1.1	4

#	Article	IF	CITATIONS
488	Three―and Fourâ€Coordinate, Boronâ€Based, Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2020, 8, 2000922.	3.6	102
489	What Controls the Orientation of TADF Emitters?. Frontiers in Chemistry, 2020, 8, 750.	1.8	45
490	A π–D and π–A Exciplexâ€Forming Host for Highâ€Efficiency and Longâ€Lifetime Singleâ€Emissiveâ€Layer Fluorescent White Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e2004040.	11.1	76
491	Donor and acceptor interlock by a planar indolo[3,2,1- <i>jk</i>]carbazole for a suppressed non-radiative mechanism in thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2020, 8, 14490-14498.	2.7	7
492	Insights into Charge Transport in High-Efficiency Green Solution-Processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with a Single Emitting Layer. Journal of Physical Chemistry C, 2020, 124, 21935-21947.	1.5	4
493	Rigidity and Polymerization Amplified Red Thermally Activated Delayed Fluorescence Polymers for Constructing Red and Singleâ€Emissiveâ€Layer White OLEDs. Advanced Functional Materials, 2020, 30, 2002493.	7.8	51
494	High triplet energy bipolar host materials with the combination of dibenzofuran and benziimidazobenzoimidazole moieties for blue thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2020, 8, 13811-13818.	2.7	13
495	Thermally Activated Delayed Fluorescence in 1,3,4-Oxadiazoles with π-Extended Donors. Journal of Organic Chemistry, 2020, 85, 11094-11103.	1.7	17
496	Synthesis and structural characterisation of bulky heptaaromatic (hetero)aryl <i>o</i> -substituted <i>s</i> -aryltetrazines. New Journal of Chemistry, 2020, 44, 15235-15243.	1.4	5
497	Theoretical Study on Thermally Activated Delayed Fluorescence Emitters in White Organic Light-Emitting Diodes: Emission Mechanism and Molecular Design. Journal of Physical Chemistry A, 2020, 124, 7526-7537.	1.1	14
498	Maximizing Chiral Perturbation on Thermally Activated Delayed Fluorescence Emitters and Elaboration of the First Topâ€Emission Circularly Polarized OLED. Advanced Functional Materials, 2020, 30, 2004838.	7.8	94
499	A Pureâ€Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie, 2020, 132, 23230-23234.	1.6	8
500	A Pureâ€Red Doublet Emission with 90 % Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angewandte Chemie - International Edition, 2020, 59, 23030-23034.	7.2	54
501	Polymorphism Dependent 9-Phosphoanthracene Derivative Exhibiting Thermally Activated Delayed Fluorescence: A Computational Investigation. Journal of Physical Chemistry A, 2020, 124, 11025-11037.	1.1	17
502	Cu(I) and Ag(I) Complexes with a New Type of Rigid Tridentate N,P,P-Ligand for Thermally Activated Delayed Fluorescence and OLEDs with High External Quantum Efficiency. Chemistry of Materials, 2020, 32, 10365-10382.	3.2	45
503	High performance TADF-phosphorescence hybrid warm-white organic light-emitting diodes with a simple fully doping-free device structure. Journal of Applied Physics, 2020, 128, 165501.	1.1	0
504	Cation doping and strain engineering of CsPbBr ₃ -based perovskite light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 6640-6653.	2.7	32
505	Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte Chemie - International Edition, 2020, 59, 13955-13961.	7.2	64

#	Article	IF	CITATIONS
506	General Density-Based Index to Analyze Charge Transfer Phenomena: From Models to Butterfly Molecules. Journal of Chemical Theory and Computation, 2020, 16, 4543-4553.	2.3	21
507	A novel donor moiety 9,9,9′9′-tetramethyl-9,9′10,10′-tetrahydro-2,10′-biacridine <i>via</i> one-pot arylation for TADF emitters and their application in highly efficient solution-processable OLEDs. Journal of Materials Chemistry C, 2020, 8, 8971-8979.	: C–H 2.7	14
508	Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Frontiers in Chemistry, 2020, 8, 403.	1.8	18
509	Mechanochromic Delayed Fluorescence Switching in Propellerâ€Shaped Carbazole–Isophthalonitrile Luminogens with Stimuliâ€Responsive Intramolecular Chargeâ€Transfer Excited States. Angewandte Chemie, 2020, 132, 14059-14065.	1.6	15
510	Molecular Orientations of Delayed Fluorescent Emitters in a Series of Carbazole-Based Host Materials. Frontiers in Chemistry, 2020, 8, 427.	1.8	24
511	Highly Emissive <i>ortho</i> -Donor–Acceptor Triarylboranes: Impact of Boryl Acceptors on Luminescence Properties. Organometallics, 2020, 39, 2235-2244.	1.1	10
512	Highly Fluorescent Emitters Based on Triphenylamineâ€Ï€â€Triazine (Dâ€Ï€â€A) System: Effect of Extended Conjugation on Singletâ€Triplet Energy Gap. Asian Journal of Organic Chemistry, 2020, 9, 1277-1285.	1.3	9
513	The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl system. Materials Chemistry Frontiers, 2020, 4, 2018-2022.	3.2	81
514	Superacid-catalyzed Friedel–Crafts polyhydroxyalkylation: a straightforward method to construct sky-blue thermally activated delayed fluorescence polymers. Polymer Chemistry, 2020, 11, 3481-3487.	1.9	9
515	Multiresonant Thermally Activated Delayed Fluorescence Emitters Based on Heteroatomâ€Doped Nanographenes: Recent Advances and Prospects for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908677.	7.8	385
516	Aryl-substituted acridanes as hosts for TADF-based OLEDs. Beilstein Journal of Organic Chemistry, 2020, 16, 989-1000.	1.3	1
517	Highly efficient luminescence from space-confined charge-transfer emitters. Nature Materials, 2020, 19, 1332-1338.	13.3	413
518	New donor-acceptor-donor type of organic semiconductors based on the regioisomers of diketopyrrolopyrroles: A DFT study. Materials Today Communications, 2020, 25, 101364.	0.9	11
519	Effect of <i>ortho</i> -biphenyl substitution on the excited state dynamics of a multi-carbazole TADF molecule. Journal of Materials Chemistry C, 2020, 8, 12075-12084.	2.7	29
520	Efficient aggregation-induced delayed fluorescent materials based on bipolar carrier transport materials for the fabrication of high-performance nondoped OLEDs with very small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 9549-9557.	2.7	20
521	Highly efficient solution-processed red phosphorescent organic light-emitting diodes employing an interface exciplex host. Journal of Materials Chemistry C, 2020, 8, 9909-9915.	2.7	18
522	Different RISC rates in benzoylpyridine-based TADF compounds and their implications for solution-processed OLEDs. Dyes and Pigments, 2020, 182, 108579.	2.0	12
523	Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D–A Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 29528-29539.	4.0	8

#	Article	IF	CITATIONS
524	Electronic coupling and spin–orbit charge transfer intersystem crossing (SOCT-ISC) in compact BDP–carbazole dyads with different mutual orientations of the electron donor and acceptor. Journal of Chemical Physics, 2020, 152, 114701.	1.2	40
525	Twisted acceptors in the design of deep-blue TADF emitters: crucial role of excited-state relaxation in the photophysics of methyl-substituted s-triphenyltriazine derivatives. Journal of Materials Chemistry C, 2020, 8, 6052-6062.	2.7	14
526	<i>tert</i> -Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs. Journal of Materials Chemistry C, 2020, 8, 5769-5776.	2.7	68
527	Achievement of Highâ€Performance Nondoped Blue OLEDs Based on AlEgens via Construction of Effective Highâ€Lying Chargeâ€Transfer State. Advanced Optical Materials, 2020, 8, 1902195.	3.6	29
528	Multifunctional Janus Particles Composed of Azo Polymer and Pyrene-Containing Polymer. Langmuir, 2020, 36, 3159-3173.	1.6	11
529	Combined ultrafast spectroscopic and TDDFT theoretical studies on dual fluorescence emissions promoted by ligand-to-metal charge transfer (LMCT) excited states of tungsten-containing organometallic complexes. Chemical Physics Letters, 2020, 748, 137396.	1.2	3
530	C1-, C2-, and C3-Modified Carbazole Derivatives as Promising Host Materials for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2020, 22, 2786-2790.	2.4	20
531	Effect of the substituent position on the electrochemical, optical and structural properties of donor–acceptor type acridone derivatives. Physical Chemistry Chemical Physics, 2020, 22, 8522-8534.	1.3	10
532	Rational Molecular Design of Highly Efficient Yellow-Red Thermally Activated Delayed Fluorescent Emitters: A Combined Effect of Auxiliary Fluorine and Rigidified Acceptor Unit. ACS Applied Materials & Interfaces, 2020, 12, 18730-18738.	4.0	48
533	TADF-Emitting Zn(II)-Benzoporphyrin: An Indicator for Simultaneous Sensing of Oxygen and Temperature. ACS Sensors, 2020, 5, 1020-1027.	4.0	32
534	Single Whiteâ€Emitting Polymers with High Efficiency, Low Rollâ€Off, and Enhanced Device Stability by Using Throughâ€Space Charge Transfer Polymer with Blue Delayed Fluorescence as Host for Yellow Phosphor. Advanced Optical Materials, 2020, 8, 1902100.	3.6	17
535	Efficient and Stable Deepâ€Blue Fluorescent Organic Lightâ€Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion. Advanced Materials, 2020, 32, e1908355.	11.1	242
536	An Isonicotinonitrile-based Blue Thermally Activated Delayed Fluorescence Emitter. Chemistry Letters, 2020, 49, 210-213.	0.7	0
537	Blue to Yellow Thermally Activated Delayed Fluorescence with Quantum Yields near Unity in Acrylic Polymers Based on Dâ~'l€â€"A Pyrimidines. Macromolecules, 2020, 53, 2039-2050.	2.2	26
538	Stimuli-Responsive Thermally Activated Delayed Fluorescence in Polymer Nanoparticles and Thin Films: Applications in Chemical Sensing and Imaging. Frontiers in Chemistry, 2020, 8, 229.	1.8	41
539	Molecularâ€Structure and Deviceâ€Configuration Optimizations toward Highly Efficient Green Electroluminescence with Narrowband Emission and High Color Purity. Advanced Optical Materials, 2020, 8, 1902142.	3.6	218
540	Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2020, 124, 6364-6370.	1.5	22
541	Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied. Materials Horizons, 2020, 7, 1210-1217.	6.4	73

#	Article	IF	CITATIONS
542	Recent Developments on Multi-Functional Metal-Free Mechanochromic Luminescence and Thermally Activated Delayed Fluorescence Organic Materials. Frontiers in Chemistry, 2020, 8, 483.	1.8	45
543	Improving the Efficiency of Red Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diode by Rational Isomer Engineering. Advanced Functional Materials, 2020, 30, 2002681.	7.8	121
544	An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9%. Advanced Materials, 2020, 32, e2001248.	11.1	134
545	Alchemy of donor–acceptor–donor multi-photofunctional organic materials: from construction of electron-deficient azaaromatics to exploration of functions. Chemical Communications, 2020, 56, 8884-8894.	2.2	35
546	Polymer Featuring Thermally Activated Delayed Fluorescence as Emitter in Light-Emitting Electrochemical Cells. Journal of Physical Chemistry Letters, 2020, 11, 6227-6234.	2.1	15
547	Regulating the photophysical properties of highly twisted TADF emitters by concurrent through-space/-bond charge transfer. Chemical Engineering Journal, 2020, 402, 126173.	6.6	49
548	A Multifunctional Blueâ€Emitting Material Designed via Tuning Distribution of Hybridized Excitedâ€State for Highâ€Performance Blue and Hostâ€Sensitized OLEDs. Advanced Functional Materials, 2020, 30, 2002323.	7.8	108
549	An axially chiral thermally activated delayed fluorescent emitter with a dual emitting core for a highly efficient organic light-emitting diode. Chemical Communications, 2020, 56, 9380-9383.	2.2	44
550	Nearâ€Infrared BODIPYâ€Acridine Dyads Acting as Heavyâ€Atomâ€Free Dualâ€Functioning Photosensitizers. Chemistry - A European Journal, 2020, 26, 15212-15225.	1.7	14
551	A new mechanistic study of a second generation TADF material based on the path integral approach incorporating HerzbergဓTeller and Duschinsky rotation effects. Journal of Materials Chemistry C, 2020, 8, 10369-10381.	2.7	13
552	Effects of the relative position and number of donors and acceptors on the properties of TADF materials. Journal of Materials Chemistry C, 2020, 8, 9476-9494.	2.7	50
553	Optimization of the carbazole–pyrimidine linking pattern for achieving efficient TADF. Journal of Materials Chemistry C, 2020, 8, 11192-11200.	2.7	18
554	Impact of Boron Acceptors on the TADF Properties of Ortho-Donor-Appended Triarylboron Emitters. Frontiers in Chemistry, 2020, 8, 538.	1.8	9
555	Asymmetrically phosphorylated carbazole host for highly efficient blue and white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2020, 401, 126049.	6.6	14
556	Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie, 2020, 132, 17652-17656.	1.6	72
557	Achieving Pure Green Electroluminescence with CIEy of 0.69 and EQE of 28.2% from an Azaâ€Fused Multiâ€Resonance Emitter. Angewandte Chemie - International Edition, 2020, 59, 17499-17503.	7.2	211
558	Finding the optimal exchange–correlation functional to describe the excited state properties of push–pull organic dyes designed for thermally activated delayed fluorescence. Physical Chemistry Chemical Physics, 2020, 22, 16387-16399.	1.3	20
559	Competition between the heavy atom effect and vibronic coupling in donor–bridge–acceptor organometallics. Physical Chemistry Chemical Physics, 2020, 22, 4659-4667.	1.3	41

#	Article	IF	CITATIONS
560	The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polymer Chemistry, 2020, 11, 1555-1571.	1.9	58
561	High triplet energy materials for efficient exciplex-based and full-TADF-based white OLEDs. Dyes and Pigments, 2020, 177, 108259.	2.0	5
562	A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation. Advanced Functional Materials, 2020, 30, 1908839.	7.8	129
563	Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 49.	1.8	3
564	Computational Studies of Molecular Materials for Unconventional Energy Conversion: The Challenge of Light Emission by Thermally Activated Delayed Fluorescence. Molecules, 2020, 25, 1006.	1.7	18
565	Organic Thermally Activated Delayed Fluorescence Materials for Timeâ€Resolved Luminescence Imaging and Sensing. Advanced Optical Materials, 2020, 8, 1902187.	3.6	91
566	Delayed Fluorescence Emitter Enables Near 17% Efficiency Ternary Organic Solar Cells with Enhanced Storage Stability and Reduced Recombination Energy Loss. Advanced Functional Materials, 2020, 30, 1909837.	7.8	108
567	A strategy to construct multifunctional TADF materials for deep blue and high efficiency yellow fluorescent devices. Journal of Materials Chemistry C, 2020, 8, 4818-4826.	2.7	8
568	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	1.6	96
569	Triarylboron-based TADF emitters with perfluoro substituents: high-efficiency OLEDs with a power efficiency over 100 lm W ^{â°'1} . Journal of Materials Chemistry C, 2020, 8, 4253-4263.	2.7	23
570	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	7.2	821
571	Recent advances in thermally activated delayed fluorescence for white OLEDs applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 4444-4462.	1.1	20
572	Benzimidazole–triazine based exciplex films as emitters and hosts to construct highly efficient OLEDs with a small efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 2700-2708.	2.7	27
573	Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416.	1.7	25
574	Dinuclear metal complexes: multifunctional properties and applications. Chemical Society Reviews, 2020, 49, 765-838.	18.7	148
575	Exciton efficiency beyond the spin statistical limit in organic light emitting diodes based on anthracene derivatives. Journal of Materials Chemistry C, 2020, 8, 3773-3783.	2.7	27
576	Low turn-on voltage of doped organic light emitting diodes based on food dyes. Results in Engineering, 2020, 5, 100099.	2.2	3
577	Color-Tunable Thermally Activated Delayed Fluorescence in Oxadiazole-Based Acrylic Copolymers: Photophysical Properties and Applications in Ratiometric Oxygen Sensing. ACS Applied Materials & Interfaces, 2020, 12, 6525-6535.	4.0	52

#	Article	IF	CITATIONS
578	Mixed-Host Systems with a Simple Device Structure for Efficient Solution-Processed Organic Light-Emitting Diodes of a Red-Orange TADF Emitter. ACS Omega, 2020, 5, 2196-2204.	1.6	19
579	Luminescent solar concentrators based on thermally activated delayed fluorescence dyes. Journal of Materials Chemistry A, 2020, 8, 3708-3716.	5.2	27
580	Pure-blue fluorescent organic light-emitting diodes by co-doping a supplementary host material into a light-emitting layer as an electron transport ladder. Journal of Materials Chemistry C, 2020, 8, 3438-3444.	2.7	15
581	Symmetrical spirobi[xanthene] based locally asymmetrical phosphine oxide host for low-voltage-driven highly efficient white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2020, 392, 124870.	6.6	17
582	Molecular engineering by σ-Bond spacer enables solution-processable host materials for TADF emitter towards high-performance OLEDs. Chemical Engineering Journal, 2020, 396, 125276.	6.6	20
583	Rigid indolocarbazole donor moiety for highly efficient thermally activated delayed fluorescent device. Dyes and Pigments, 2020, 180, 108485.	2.0	12
584	Conformation-dependent degradation of thermally activated delayed fluorescence materials bearing cycloamino donors. Communications Chemistry, 2020, 3, .	2.0	7
585	Simultaneous realization of high-efficiency, low-drive voltage, and long lifetime TADF OLEDs by multifunctional hole-transporters. Journal of Materials Chemistry C, 2020, 8, 7200-7210.	2.7	30
586	Understanding and Designing Thermally Activated Delayed Fluorescence Emitters: Beyond the Energy Gap Approximation. Chemical Record, 2020, 20, 831-856.	2.9	49
587	Imidazo[1,2- <i>b</i>]pyridazine as Building Blocks for Host Materials for High-Performance Red-Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 19701-19709.	4.0	23
588	Highly efficient blue organic light-emitting diodes based on carbene-metal-amides. Nature Communications, 2020, 11, 1758.	5.8	69
589	High-efficiency organic electroluminescent materials based on the D–A–D type with sterically hindered methyl groups. Journal of Materials Chemistry C, 2020, 8, 6851-6860.	2.7	15
590	Reducing the Singletâ~'Triplet Energy Gap by Endâ€Group Ï€â~'Ï€ Stacking Toward Highâ€Efficiency Organic Photovoltaics. Advanced Materials, 2020, 32, e2000975.	11.1	77
591	Organic and quantum-dot hybrid white LEDs using a narrow bandwidth blue TADF emitter. Journal of Materials Chemistry C, 2020, 8, 10831-10836.	2.7	5
592	Diboron-Based Delayed Fluorescent Emitters with Orange-to-Red Emission and Superior Organic Light-Emitting Diode Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 23199-23206.	4.0	64
593	Color tuning of dibenzo[<i>a</i> , <i>c</i>]phenazine-2,7-dicarbonitrile-derived thermally activated delayed fluorescence emitters from yellow to deep-red. Journal of Materials Chemistry C, 2020, 8, 7059-7066.	2.7	21
594	Ïf–π and p–π conjugation induced NIR-emitting iridium(<scp>iii</scp>) complexes anchored by flexible side chains in a rigid dibenzo[<i>a</i> , <i>c</i>]phenazine moiety and their application in highly efficient solution-processable NIR-emitting devices. Journal of Materials Chemistry C, 2020, 8, 7079-7088.	2.7	48
595	Three-dimensional organic cage with narrowband delayed fluorescence. Science China Chemistry, 2020, 63, 897-903.	4.2	8

#	Article	IF	CITATIONS
596	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71
597	11,11-Dimethyl-11H-indeno[1,2-b]indolo[1,2,3-jk]carbazole: A rigid chromophore with novel amalgamation strategy for long lifetime blue fluorescent organic light-emitting diodes. Chemical Engineering Journal, 2020, 395, 125125.	6.6	11
598	Halogenated π-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes. Nano Energy, 2020, 73, 104800.	8.2	59
599	Rotation-restricted thermally activated delayed fluorescence compounds for efficient solution-processed OLEDs with EQEs of up to 24.3% and small roll-off. Chemical Communications, 2020, 56, 5957-5960.	2.2	51
600	Spirobiacridine-based Host Material for Highly Efficient Blue Phosphorescent Organic Light-emitting Devices. Chemistry Letters, 2020, 49, 228-231.	0.7	1
601	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
602	Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chemical Engineering Journal, 2021, 420, 127591.	6.6	47
603	Aromatic-imide-based TADF material as emitter for efficient yellow and white organic light-emitting diodes. Organic Electronics, 2021, 88, 106017.	1.4	12
604	Intramolecular hydrogen bond – enhanced electroluminescence performance of hybridized local and charge transfer (HLCT) excited-state blue-emissive materials. Journal of Materials Chemistry C, 2021, 9, 497-507.	2.7	24
605	Integrating molecular rigidity and chirality into thermally activated delayed fluorescence emitters for highly efficient sky-blue and orange circularly polarized electroluminescence. Materials Horizons, 2021, 8, 547-555.	6.4	76
606	1,8-Naphthalimide-based hybrids for efficient red thermally activated delayed fluorescence organic light-emitting diodes. Organic Electronics, 2021, 88, 106012.	1.4	14
607	Thermally activated delayed fluorescence material-sensitized helicene enantiomer-based OLEDs: a new strategy for improving the efficiency of circularly polarized electroluminescence. Science China Materials, 2021, 64, 899-908.	3.5	36
608	Efficient Solutionâ€Processed Hyperfluorescent OLEDs with Spectrally Narrow Emission at 840Ânm. Advanced Functional Materials, 2021, 31, .	7.8	46
609	Duale Emission: Klassen, Mechanismen und Bedingungen. Angewandte Chemie, 2021, 133, 22804-22820.	1.6	10
610	Photophysics of 9,9â€Dimethylacridanâ€Substituted Phenylstyrylpyrimidines Exhibiting Longâ€Lived Intramolecular Chargeâ€Transfer Fluorescence and Aggregationâ€Induced Emission Characteristics. Chemistry - A European Journal, 2021, 27, 1145-1159.	1.7	20
611	Highâ€Mobility Organic Lightâ€Emitting Semiconductors and Its Optoelectronic Devices. Small Structures, 2021, 2, 2000083.	6.9	47
612	High-efficiency red thermally activated delayed fluorescence emitters based on benzothiophene-fused spiro-acridine donor. Chemical Engineering Journal, 2021, 405, 126663.	6.6	36
613	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Up onversion in Red TADF Emitters That Are Available for Both Vacuumâ€and Solutionâ€Processes. Angewandte Chemie - International Edition, 2021, 60, 2478-2484.	7.2	116

#	Article	IF	CITATIONS
614	Dearomatizing [4+1] Spiroannulation of Naphthols: Discovery of Thermally Activated Delayed Fluorescent Materials. Angewandte Chemie - International Edition, 2021, 60, 3493-3497.	7.2	29
615	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. Science China Materials, 2021, 64, 920-930.	3.5	27
616	Cyclophane Molecules Exhibiting Thermally Activated Delayed Fluorescence: Linking Donor Units to Influence Molecular Conformation. Journal of Organic Chemistry, 2021, 86, 429-445.	1.7	13
617	Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chemical Science, 2021, 12, 1495-1502.	3.7	48
618	Carbazoleâ€Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2021, 133, 2918-2922.	1.6	59
619	Iridium Complexes Embedding Rigid D-A-Type Coordinated Cores: Facile Synthesis and High-Efficiency Near-Infrared Emission in Solution-Processed Polymer Light-Emitting Diodes. Journal of Organometallic Chemistry, 2021, 931, 121615.	0.8	6
620	Recent progress in hot exciton materials for organic light-emitting diodes. Chemical Society Reviews, 2021, 50, 1030-1069.	18.7	353
621	Synthesis and Delayed Fluorescent Properties of pâ€Nido â€Carboraneâ€Triarylborane Conjugates with a Methylâ€5ubstituted Phenylene Linker. Bulletin of the Korean Chemical Society, 2021, 42, 43-47.	1.0	5
622	Reversible Crystalâ€toâ€Crystal Phase Transitions with Highâ€Contrast Luminescent Alterations for a Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2021, 31, 2007511.	7.8	54
623	Carbazoleâ€Based DABNA Analogues as Highly Efficient Thermally Activated Delayed Fluorescence Materials for Narrowband Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2021, 60, 2882-2886.	7.2	184
624	Ï€-Conjugated polymeric light emitting diodes with sky-blue emission by employing thermally activated delayed fluorescence mechanism. Chemical Engineering Journal, 2021, 417, 128089.	6.6	24
625	High efficiency and long lifetime orange-red thermally activated delayed fluorescent organic light emitting diodes by donor and acceptor engineering. Journal of Materials Chemistry C, 2021, 9, 528-536.	2.7	32
626	Twisted Biphenylâ€Ðiimide Derivatives with Aggregationâ€Induced Emission and Thermally Activated Delayed Fluorescence for High Performance OLEDs. Advanced Optical Materials, 2021, 9, 2001764.	3.6	15
627	Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero―or Polycyclic Aromatics. Angewandte Chemie, 2021, 133, 15877-15900.	1.6	21
628	Understanding TADF: a joint experimental and theoretical study of DMAC-TRZ. Physical Chemistry Chemical Physics, 2021, 23, 378-387.	1.3	29
629	Highly efficient full-fluorescence organic light-emitting diodes with exciplex cohosts. Organic Electronics, 2021, 88, 106004.	1.4	4
630	A quantum dynamics study of the hyperfluorescence mechanism. Journal of Materials Chemistry C, 2021, 9, 1362-1369.	2.7	21
631	V-shaped fluorophores with a 1-methyl-4,5-bis(arylethynyl)imidazole skeleton displaying solid-state fluorescence, acid responsiveness, and remarkable fluorescence solvatochromism. New Journal of Chemistry, 2021, 45, 898-905.	1.4	5

#	Article	IF	CITATIONS
632	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Upâ€Conversion in Red TADF Emitters That Are Available for Both Vacuum―and Solutionâ€Processes. Angewandte Chemie, 2021, 133, 2508-2514.	1.6	24
633	Dearomatizing [4+1] Spiroannulation of Naphthols: Discovery of Thermally Activated Delayed Fluorescent Materials. Angewandte Chemie, 2021, 133, 3535-3539.	1.6	5
634	Optimizing molecular rigidity and thermally activated delayed fluorescence (TADF) behavior of phosphoryl center l€-conjugated heterocycles-based emitters by tuning chemical features of the tether groups. Chemical Engineering Journal, 2021, 413, 127445.	6.6	13
635	Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Materials Horizons, 2021, 8, 401-425.	6.4	81
636	Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero―or Polycyclic Aromatics. Angewandte Chemie - International Edition, 2021, 60, 15743-15766.	7.2	108
637	Organoimido functionalized trinuclear gold(I) clusters with fluorescent chromophore. Rare Metals, 2021, 40, 1437-1442.	3.6	4
638	Synthesis and molecular properties of isomeric thienoisoindigo. Journal of Materials Chemistry C, 2021, 9, 13218-13225.	2.7	4
639	Advantages of naphthalene as a building block for organic solid state laser dyes: smaller energy gaps and enhanced stability. Journal of Materials Chemistry C, 2021, 9, 4112-4118.	2.7	5
640	Fast Delayed Emission in New Pyridazine-Based Compounds. Frontiers in Chemistry, 2020, 8, 572862.	1.8	7
641	Recent development of heavy-atom-free triplet photosensitizers: molecular structure design, photophysics and application. Journal of Materials Chemistry C, 2021, 9, 11944-11973.	2.7	55
642	Exploring the possibility of using fluorine-involved non-conjugated electron-withdrawing groups for thermally activated delayed fluorescence emitters by TD-DFT calculation. Beilstein Journal of Organic Chemistry, 2021, 17, 210-223.	1.3	2
643	CN-substituted <i>ortho</i> -terphenyl core based high triplet energy bipolar host materials for stable and efficient blue TADF devices. Journal of Materials Chemistry C, 2021, 9, 7426-7435.	2.7	11
644	Triangular boron carbon nitrides: an unexplored family of chromophores with unique properties for photocatalysis and optoelectronics. Physical Chemistry Chemical Physics, 2021, 23, 12968-12975.	1.3	28
645	New thiophene-based conjugated macrocycles for optoelectronic applications. Journal of Materials Chemistry C, 2021, 9, 16257-16271.	2.7	14
646	Revealing the internal heavy chalcogen atom effect on the photophysics of the dibenzo[<i>a,j</i>]phenazine-cored donor–acceptor–donor triad. Journal of Materials Chemistry C, 2021, 9, 13942-13953.	2.7	29
647	Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2021, 13, 5302-5311.	4.0	78
648	Synthesis, Study, and Application of Pd(II) Hydrazone Complexes as the Emissive Components of Single-Layer Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2021, 60, 982-994.	1.9	19
649	Highly efficient room-temperature organic afterglow achieved by collaboration of luminescent dimeric TADF dopants and rigid matrices. Journal of Materials Chemistry C, 2021, 9, 3939-3947.	2.7	31

#	Article	IF	CITATIONS
650	Origin of High-Efficiency Near-Infrared Organic Thermally Activated Delayed Fluorescence: The Role of Electronic Polarization. Journal of Physical Chemistry C, 2021, 125, 1249-1255.	1.5	11
651	Strategic molecular design of <i>closo-ortho</i> -carboranyl luminophores to manifest thermally activated delayed fluorescence. Chemical Science, 2021, 12, 8411-8423.	3.7	18
652	Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polymer Chemistry, 2021, 12, 1030-1039.	1.9	14
653	State of the Art in the Preparation and Properties of Molecular Monomeric <i>s</i> -Heptazines: Syntheses, Characteristics, and Functional Applications. Chemical Reviews, 2021, 121, 2515-2544.	23.0	63
654	Electron-withdrawing group modified carbazolophane donors for deep blue thermally activated delayed fluorescence OLEDs. Materials Advances, 2021, 2, 6684-6693.	2.6	5
655	Recent advances in excited state intramolecular proton transfer mechanism-based solid state fluorescent materials and stimuli-responsive fluorescence switching. CrystEngComm, 2021, 23, 3771-3789.	1.3	45
656	Toward High Efficiency Organic Lightâ€Emitting Diodes: Role of Nanoparticles. Advanced Optical Materials, 2021, 9, 2001710.	3.6	13
657	Phenanthroimidazole derivatives showing mild intramolecular charge transfer and high quantum yields and their applications in OLEDs. New Journal of Chemistry, 2021, 45, 16238-16247.	1.4	12
658	Thermally activated delayed fluorescence materials as organic photosensitizers. Chemical Communications, 2021, 57, 10675-10688.	2.2	21
659	Organoboron compounds constructed through the tautomerization of 1 <i>H</i> -indole to 3 <i>H</i> -indole for red OLEDs. Journal of Materials Chemistry C, 2021, 9, 6834-6840.	2.7	12
660	Red to orange thermally activated delayed fluorescence polymers based on 2-(4-(diphenylamino)-phenyl)-9 <i>H</i> -thioxanthen-9-one-10,10-dioxide for efficient solution-processed OLEDs. RSC Advances, 2021, 11, 24794-24806.	1.7	12
661	Liquid-crystalline TADF materials based on substituted carbazoles and terephthalonitrile. Journal of Materials Chemistry C, 2021, 9, 6528-6535.	2.7	9
662	Enhancement of the electroluminescence properties of iridium-complexes by decorating the ligand with hole-transporting carbazole dendrons. New Journal of Chemistry, 2021, 45, 7694-7704.	1.4	4
663	The recombination zone adjusted by the gradient doping of TPA-DCPP for efficient and stable deep red organic light emitting diodes. RSC Advances, 2021, 11, 24436-24442.	1.7	3
664	An unsymmetrical thermally activated delayed fluorescence emitter enables orange-red electroluminescence with 31.7% external quantum efficiency. Materials Horizons, 2021, 8, 2286-2292.	6.4	41
665	Novel thermally activated delayed fluorescence materials by high-throughput virtual screening: going beyond donor–acceptor design. Journal of Materials Chemistry C, 2021, 9, 3324-3333.	2.7	27
666	Journal of Materials Chemistry C Editor's choice web collection: â€~Spiro compounds for electronics'. Journal of Materials Chemistry C, 0, , .	2.7	3
667	Phenylâ€ŧriggered photophysical switching between normal fluorescence and delayed fluorescence in phthalonitrileâ€based luminophores. Aggregate, 2021, 2, 145-150.	5.2	16

#	Article	IF	CITATIONS
668	Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chemical Society Reviews, 2021, 50, 7587-7680.	18.7	205
669	A Brief History of OLEDs—Emitter Development and Industry Milestones. Advanced Materials, 2021, 33, e2005630.	11.1	551
670	All-organic fast intersystem crossing assisted exciplexes exhibiting sub-microsecond thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2021, 9, 4532-4543.	2.7	18
671	Negative Singlet–Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. Journal of Physical Chemistry A, 2021, 125, 513-522.	1.1	41
672	TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. Journal of Physical Chemistry A, 2021, 125, 1234-1242.	1.1	13
673	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie - International Edition, 2021, 60, 7643-7648.	7.2	74
674	Isotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	5.8	22
675	Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. ACS Applied Materials & Interfaces, 2021, 13, 8997-9005.	4.0	14
676	Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence. Science Advances, 2021, 7, .	4.7	79
677	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie, 2021, 133, 7721-7726.	1.6	16
678	The Role of Intermolecular Interactions on the Performance of Organic Thermally Activated Delayed Fluorescence (TADF) Materials. Advanced Optical Materials, 2021, 9, 2002135.	3.6	22
679	Intramolecularâ€Locked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
680	Novel thermally activated delayed fluorescence nano-micelle for tumor imaging. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102178.	1.3	2
681	Design, synthesis and structure-property relationship of fluorenone-based derivatives for fluorescent OLEDs. Molecular Crystals and Liquid Crystals, 2021, 718, 1-15.	0.4	1
682	Click-To-Twist Strategy To Build Blue-to-Green Emitters: Bulky Triazoles for Electronically Tunable and Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2021, 13, 12286-12295.	4.0	10
683	Optical Outcoupling Efficiency of Organic Lightâ€Emitting Diodes with a Broad Recombination Profile. Advanced Optical Materials, 2021, 9, 2001812.	3.6	13
684	Efficient Direct Reverse Intersystem Crossing between Charge Transferâ€Type Singlet and Triplet States in a Purely Organic Molecule. ChemPhysChem, 2021, 22, 625-632.	1.0	14
685	Dibenzothiophene/Terpyridine Conjugated Asymmetric Electron-Transporters for High-efficiency and Long-life Green Phosphorescent OLEDs. Chemistry Letters, 2021, 50, 534-537.	0.7	1

#	Article	IF	CITATIONS
686	Photoinduced Metal-Free α-C(sp ³)–H Carbamoylation of Saturated <i>Aza</i> -Heterocycles via Rationally Designed Organic Photocatalyst. ACS Catalysis, 2021, 11, 3466-3472.	5.5	40
687	Thermally Activated Delayed Fluorescence Emitters with Intramolecular Proton Transfer for High Luminance Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 15459-15474.	4.0	30
688	Sterically‣ocked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2021, 133, 9721-9727.	1.6	14
689	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	3.6	35
690	A TADF Emitter Featuring Linearly Arranged Spiroâ€Donor and Spiroâ€Acceptor Groups: Efficient Nondoped and Doped Deepâ€Blue OLEDs with ClE _{<i>y</i>} <0.1. Angewandte Chemie - International Edition, 2021, 60, 9598-9603.	7.2	106
691	Thermally Activated Delayed Fluorescence beyond Throughâ€Bond Charge Transfer for Highâ€Performance OLEDs. Advanced Optical Materials, 2021, 9, 2002204.	3.6	83
692	A TADF Emitter Featuring Linearly Arranged Spiroâ€Donor and Spiroâ€Acceptor Groups: Efficient Nondoped and Doped Deepâ€Blue OLEDs with CIE _{<i>y</i>} <0.1. Angewandte Chemie, 2021, 133, 9684-9689.	1.6	26
693	Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling. Nature Communications, 2021, 12, 1364.	5.8	89
694	Acceleration of Reverse Intersystem Crossing using Different Types of Charge Transfer States. Chemistry - an Asian Journal, 2021, 16, 1073-1076.	1.7	6
695	Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. Journal of the American Chemical Society, 2021, 143, 5239-5246.	6.6	31
696	High-Efficiency Red Electroluminescence Based on a Carbene–Cu(I)–Acridine Complex. ACS Applied Materials & Interfaces, 2021, 13, 13478-13486.	4.0	46
697	Designs and Applications of Circularly Polarized Thermally Activated Delayed Fluorescence Molecules. Advanced Functional Materials, 2021, 31, 2010281.	7.8	141
698	Sterically‣ocked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 9635-9641.	7.2	61
699	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
700	Indolo[3,2,1â€ <i>jk</i>]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue Electroluminescence with EQEâ‰^34.7 % and CIE _y â‰^0.085. Angewandte Chemie, 2021, 133, 12377-12381.	1.6	22
701	Thermally activated delayed fluorescence: A critical assessment of environmental effects on the singlet–triplet energy gap. Journal of Chemical Physics, 2021, 154, 134112.	1.2	16
702	Functional Pyrene–Pyridine-Integrated Hole-Transporting Materials for Solution-Processed OLEDs with Reduced Efficiency Roll-Off. ACS Omega, 2021, 6, 10515-10526.	1.6	12
703	Room-Temperature Stable Noncovalent Charge-Transfer Dianion Biradical to Produce Singlet Oxygen by Visible or Near-Infrared Light Photoexcitation. Journal of Physical Chemistry Letters, 2021, 12, 4306-4312.	2.1	5

#	Article	IF	CITATIONS
704	Impact of boryl acceptors in para-acridine-appended triarylboron emitters on blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2021, 188, 109224.	2.0	9
705	Indolo[3,2,1â€ <i>jk</i>]carbazole Embedded Multipleâ€Resonance Fluorophors for Narrowband Deepâ€blue Electroluminescence with EQEâ‰^34.7 % and CIE _y â‰^0.085. Angewandte Chemie - Internation Edition, 2021, 60, 12269-12273.	n al. 2	106
706	Flexible all fluorescence white organic light emitting device with over 22% EQE by stepped reverse intersystem crossing channels based on ternary exciplex. Organic Electronics, 2021, 91, 106076.	1.4	7
707	Efficient Red Thermally Activated Delayed Fluorescence Emitters Based on a Dibenzonitrile-Substituted Dipyrido[3,2-a:2′,3′-c]phenazine Acceptor. Molecules, 2021, 26, 2427.	1.7	3
708	Ambient Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence from a Core-Substituted Pyromellitic Diimide Derivative. Journal of Physical Chemistry B, 2021, 125, 4520-4526.	1.2	21
709	Novel Deepâ€Blue Hybridized Local and Chargeâ€Transfer Host Emitter for Highâ€Quality Fluorescence/Phosphor Hybrid Quasiâ€White Organic Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100704.	7.8	63
710	Vibrational Damping Reveals Vibronic Coupling in Thermally Activated Delayed Fluorescence Materials. Chemistry of Materials, 2021, 33, 3066-3080.	3.2	47
711	Cyclometallated 2â€Phenylpyrimidine Derived Platinum Complexes: Synthesis and Photophysical Properties. European Journal of Inorganic Chemistry, 2021, 2021, 1592-1600.	1.0	6
712	Effect of TADF Assistance on Performance Enhancement in Solution Processed Green Phosphorescent OLEDs. Polymers, 2021, 13, 1148.	2.0	3
713	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes and Pigments, 2021, 188, 109192.	2.0	3
714	Highly efficient near-infrared thermally activated delayed fluorescence material based on a spirobifluorene decorated donor. Organic Electronics, 2021, 91, 106088.	1.4	18
715	High-power-efficiency thermally activated delayed fluorescence white organic light-emitting diodes based on asymmetrical host engineering. Nano Energy, 2021, 83, 105746.	8.2	12
716	High efficiency and extremely low roll-off solution- and vacuum-processed OLEDs based on isophthalonitrile blue TADF emitter. Chemical Engineering Journal, 2021, 412, 128574.	6.6	30
717	Thermally Activated Delayed Fluorescence Warm White Organic Light Emitting Devices with External Quantum Efficiencies Over 30%. Advanced Functional Materials, 2021, 31, 2101647.	7.8	34
718	Emerging Biomedical Applications of Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100269.	3.6	49
719	Benzofurodibenzofuran as a universal chemical platform of highly efficient sky-blue thermally activated delayed fluorescence emitters and hosts. Chemical Engineering Journal, 2021, 411, 128550.	6.6	5
720	Applications of quantum computing for investigations of electronic transitions in phenylsulfonyl-carbazole TADF emitters. Npj Computational Materials, 2021, 7, .	3.5	32
721	Optimizing Charge Transfer and Out oupling of A Quasiâ€Planar Deepâ€Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angewandte Chemie - International Edition, 2021, 60, 14846-14851.	7.2	110

#	Article	IF	CITATIONS
722	Achieving High Afterglow Brightness in Organic Dopantâ€Matrix Systems. Advanced Optical Materials, 2021, 9, 2100353.	3.6	54
723	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	7.8	157
724	Alternating Donor–Acceptor Ï€â€Conjugated Macrocycle Exhibiting Efficient Thermally Activated Delayed Fluorescence and Spontaneous Horizontal Molecular Orientation. Advanced Photonics Research, 2021, 2, 2100021.	1.7	14
725	Efficient light-emitting diodes from organic radicals with doublet emission. Journal of Applied Physics, 2021, 129, .	1.1	47
726	Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter, 2021, 4, 1654-1682.	5.0	67
727	Bee-shaped host with ideal polarity and energy levels for high-efficiency blue and white fluorescent organic light-emitting diodes. Chemical Engineering Journal, 2021, 411, 128457.	6.6	13
728	C2-, C3- spirobifluorene fused carbazole modified triazine as an electron transport type host of exciplex. Dyes and Pigments, 2021, 189, 109247.	2.0	3
729	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie - International Edition, 2021, 60, 12066-12073.	7.2	32
730	19â€1: <i>Invited Paper:</i> Stable Pureâ€Blue Hyperfluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.1	1
731	Management of Locally Excited States for Purine-based TADF Emitters: A Method to Reduce Device Efficiency Roll-Off. Organic Letters, 2021, 23, 3839-3843.	2.4	6
732	Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter**. Angewandte Chemie, 2021, 133, 12173-12180.	1.6	4
733	Planar Chiral [2.2]Paracyclophane-Based Thermally Activated Delayed Fluorescent Materials for Circularly Polarized Electroluminescence. ACS Applied Materials & Interfaces, 2021, 13, 25186-25192.	4.0	46
734	28â€1: <i>Invited Paper:</i> Efficient Thermally Activated Delayed Fluorescence Emitters with Preferentially Horizontal Dipole Orientations. Digest of Technical Papers SID International Symposium, 2021, 52, 349-350.	0.1	0
735	19â€2: <i>Invited Paper:</i> Design of Multiâ€Resonance Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 228-231.	0.1	1
736	Donor–Acceptor Conjugated Polymers with Efficient Thermally Activated Delayed Fluorescence: Random versus Alternative Polymerization. Macromolecules, 2021, 54, 5260-5266.	2.2	14
737	Optimizing Charge Transfer and Outâ€Coupling of A Quasiâ€Planar Deepâ€Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angewandte Chemie, 2021, 133, 14972-14977.	1.6	6
738	Donorâ€Acceptorâ€Donor Thienopyrazineâ€Based Dyes as NIRâ€Emitting AlEgens. European Journal of Organic Chemistry, 2021, 2021, 2655-2664.	1.2	15
739	Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nature Communications, 2021, 12, 3255.	5.8	46

#	Article	IF	CITATIONS
740	TADFâ€Type Organic Afterglow. Angewandte Chemie - International Edition, 2021, 60, 17138-17147.	7.2	115
741	Pâ^©N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules, 2021, 26, 3415.	1.7	9
742	Revealing the role of 1,2,4-triazolate fragment of blue-emitting bis-tridentate Ir(III) phosphors: photophysical properties, photo-stabilities, and applications. Materials Today Energy, 2021, 20, 100636.	2.5	10
743	Fluoreneâ€based <scp>donorâ€acceptorâ€</scp> type multifunctional polymer with bicarbazole pendant moiety for optoelectronic applications. Journal of Polymer Science, 2021, 59, 1829-1840.	2.0	8
744	Manipulation of Charge-Transfer States by Molecular Design: Perspective from "Dynamic Exciton― Accounts of Materials Research, 2021, 2, 501-514.	5.9	42
745	3D Triptyceneâ€Fused Acridine Electron Donor Enables Highâ€Efficiency Nondoped Thermally Activated Delayed Fluorescent OLEDs. Advanced Optical Materials, 2021, 9, 2100273.	3.6	16
746	Molecular Design of Luminescent Gold(III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chemical Reviews, 2021, 121, 7249-7279.	23.0	100
747	ï€-Stacked Thermally Activated Delayed Fluorescence Emitters with Alkyl Chain Modulation. CCS Chemistry, 2021, 3, 1757-1763.	4.6	15
748	Three States Involving Vibronic Resonance is a Key to Enhancing Reverse Intersystem Crossing Dynamics of an Organoboron-Based Ultrapure Blue Emitter. Jacs Au, 2021, 1, 987-997.	3.6	48
749	Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs. Reactive and Functional Polymers, 2021, 163, 104898.	2.0	8
750	Ultraâ€Deepâ€Blue Aggregationâ€Induced Delayed Fluorescence Emitters: Achieving Nearly 16% EQE in Solutionâ€Processed Nondoped and Doped OLEDs with CIE <i>_y</i> Â< 0.1. Advanced Functional Materials, 2021, 31, 2102588.	7.8	69
751	TADFâ€ T ype Organic Afterglow. Angewandte Chemie, 2021, 133, 17275-17284.	1.6	17
752	Top-emitting thermally activated delayed fluorescence organic light-emitting devices with weak light-matter coupling. Light: Science and Applications, 2021, 10, 116.	7.7	55
753	Highly efficient thermally activated delayed fluorescence devices using a phosphorescent dye as host. Optics Communications, 2021, 488, 126854.	1.0	0
754	Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. Small Science, 0, , 2100022.	5.8	4
755	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	1.9	14
756	Efficient blue thermally activated delayed fluorescence emitters showing very fast reverse intersystem crossing. Applied Physics Express, 2021, 14, 071003.	1.1	21
757	Improved Efficiency and Lifetime of Deepâ€Blue Hyperfluorescent Organic Lightâ€Emitting Diode using Pt(II) Complex as Phosphorescent Sensitizer. Advanced Science, 2021, 8, e2100586.	5.6	91

#	Article	IF	CITATIONS
758	Dihedral Angle Distribution of Thermally Activated Delayed Fluorescence Molecules in Solids Induces Dual Phosphorescence from Charge-Transfer and Local Triplet States. Chemistry of Materials, 2021, 33, 5618-5630.	3.2	31
759	Acridones: Strongly Emissive HIGHrISC Fluorophores. Journal of Physical Chemistry Letters, 2021, 12, 5703-5709.	2.1	6
760	Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence. Dyes and Pigments, 2021, 190, 109301.	2.0	7
761	Wide-Bite-Angle Diphosphine Ligands in Thermally Activated Delayed Fluorescent Copper(I) Complexes: Impact on the Performance of Electroluminescence Applications. Inorganic Chemistry, 2021, 60, 10323-10339.	1.9	28
762	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie, 2021, 133, 19513-19522.	1.6	4
763	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie - International Edition, 2021, 60, 19364-19373.	7.2	67
764	Are Heptazine-Based Organic Light-Emitting Diode Chromophores Thermally Activated Delayed Fluorescence or Inverted Singlet–Triplet Systems?. Journal of Physical Chemistry Letters, 2021, 12, 6852-6860.	2.1	45
765	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie - International Edition, 2021, 60, 18059-18064.	7.2	109
766	A novel molecular design featuring the conversion of inefficient TADF emitters into efficient TADF emitters for deep-blue organic light emitting diodes. Chemical Engineering Journal, 2021, 416, 129097.	6.6	40
767	Modeling Molecular Emitters in Organic Light-Emitting Diodes with the Quantum Mechanical Bespoke Force Field. Journal of Chemical Theory and Computation, 2021, 17, 5021-5033.	2.3	6
768	A Novel Deep Blue LE-Dominated HLCT Excited State Design Strategy and Material for OLED. Molecules, 2021, 26, 4560.	1.7	22
769	Chiral Thermally Activated Delayed Fluorescence Materials Based on <i>R</i> < <i>S</i> â€ai>N ² , <i>N</i> ² â€a€Diphenylâ€[1,1â€aêbinaphthalene]â€a Donor with Narrow Emission Spectra for Highly Efficient Circularly Polarized Electroluminescence. Advanced Functional Materials. 2021. 31. 2103875.	2,2′â€d 7.8	iamine
770	Modern History of Organic Conductors: An Overview. Crystals, 2021, 11, 838.	1.0	23
771	Hypsochromic Shift of Multipleâ€Resonanceâ€Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angewandte Chemie - International Edition, 2021, 60, 17910-17914.	7.2	152
772	Hypsochromic Shift of Multipleâ€Resonanceâ€Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angewandte Chemie, 2021, 133, 18054-18058.	1.6	39
773	Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling. Journal of Organic Chemistry, 2021, 86, 14095-14101.	1.7	17
774	Why Do We Still Need a Stable Long Lifetime Deep Blue OLED Emitter?. ACS Applied Materials & Interfaces, 2022, 14, 20463-20467.	4.0	107
775	Triarylamineâ€Pyridineâ€Carbonitriles for Organic Lightâ€Emitting Devices with EQE Nearly 40%. Advanced Materials, 2021, 33, e2008032.	11.1	97

#	Article	IF	CITATIONS
776	Approaching Efficient and Narrow RGB Electroluminescence from D–A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor. ACS Applied Materials & Interfaces, 2021, 13, 36089-36097.	4.0	64
777	Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block Ï€-Conjugated Polymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2290-2301.	2.0	20
778	Multichromophore Molecular Design for Thermally Activated Delayed-Fluorescence Emitters with Near-Unity Photoluminescence Quantum Yields. Journal of Organic Chemistry, 2021, 86, 11531-11544.	1.7	5
779	Highâ€Efficiency Solutionâ€Processable OLEDs by Employing Thermally Activated Delayed Fluorescence Emitters with Multiple Conversion Channels of Triplet Excitons. Advanced Science, 2021, 8, e2101326.	5.6	43
780	Multistimuli Responsive Solid-State Emission of a Zinc(II) Complex with Multicolour Switching. Inorganic Chemistry, 2021, 60, 11609-11615.	1.9	21
781	Regulation of Thermally Activated Delayed Fluorescence to Roomâ€Temperature Phosphorescent Emission Channels by Controlling the Excitedâ€States Dynamics via J―and Hâ€Aggregation. Angewandte Chemie, 2021, 133, 18207-18212.	1.6	15
782	Variations in Complementary Hydrogen Bonds Direct Assembly Patterns of Isosteric Polyheteroaromatics at Surfaces. Chemistry - A European Journal, 2021, 27, 13887-13893.	1.7	4
783	Highâ€Efficiency Circularly Polarized Electroluminescence from TADFâ€Sensitized Fluorescent Enantiomers. Angewandte Chemie, 2021, 133, 20896-20901.	1.6	9
784	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie - International Edition, 2021, 60, 20280-20285.	7.2	144
785	PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet–Triplet Gaps with Chemical Accuracy from Open-Shell Kohn–Sham Reaction-Field Calculations. Journal of Physical Chemistry Letters, 2021, 12, 8470-8480.	2.1	23
786	Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatomâ€Based Deep Blue TADF Sensitized Host. Advanced Functional Materials, 2021, 31, 2105805.	7.8	143
787	Highâ€Efficiency Circularly Polarized Electroluminescence from TADFâ€Sensitized Fluorescent Enantiomers. Angewandte Chemie - International Edition, 2021, 60, 20728-20733.	7.2	49
788	The Many Facets of Molecular Orientation in Organic Optoelectronics. Advanced Optical Materials, 2021, 9, 2101004.	3.6	35
789	Organic Light-Emitting Diodes Based on Luminescent Self-Assembled Materials of Copper(I). Energy & Fuels, 2021, 35, 18982-18999.	2.5	30
790	Dicyanoâ€Imidazole: A Facile Generation of Pure Blue TADF Materials for OLEDs. Chemistry - A European Journal, 2021, 27, 12998-13008.	1.7	19
791	Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2100677.	11.1	99
792	Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2, 326-346.	6.4	88
793	Visualization of Frontier Molecular Orbital Separation of a Single Thermally Activated Delayed Fluorescence Emitter by STM. Journal of Physical Chemistry Letters, 2021, 12, 7512-7518.	2.1	9

_	_	
CITATION	u Dru	
CHAHOP		UKI

#	Article	IF	CITATIONS
794	Substitution Effects on a New Pyridylbenzimidazole Acceptor for Thermally Activated Delayed Fluorescence and Their Use in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100846.	3.6	6
795	Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry - an Asian Journal, 2021, 16, 2817-2829.	1.7	41
796	Maximizing TADF via Conformational Optimization. Journal of Physical Chemistry A, 2021, 125, 7644-7654.	1.1	11
797	Fusedâ€Nonacyclic Multiâ€Resonance Delayed Fluorescence Emitter Based on Ladderâ€Thiaborin Exhibiting Narrowband Skyâ€Blue Emission with Accelerated Reverse Intersystem Crossing. Angewandte Chemie, 2021, 133, 20442-20447.	1.6	41
798	Rational Utilization of Intramolecular Hydrogen Bonds to Achieve Blue TADF with EQEs of Nearly 30% and Single Emissive Layer All-TADF WOLED. ACS Applied Materials & Interfaces, 2021, 13, 44615-44627.	4.0	27
799	Highly twisted α-diketone-based thermally activated delayed fluorescence emitters and their use in organic light-emitting diodes. Canadian Journal of Chemistry, 2022, 100, 224-233.	0.6	1
800	Chiral TADFâ€Active Polymers for Highâ€Efficiency Circularly Polarized Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2021, 133, 23811-23816.	1.6	22
801	Improving reverse intersystem crossing in exciplex-forming hosts by introducing heavy atom effect. Materials Today Energy, 2021, 21, 100705.	2.5	17
802	Phosphorescent dye doped electron transport layer for yellow thermally activated delayed fluorescent electroluminescence device. Optik, 2021, 241, 166857.	1.4	2
803	Asymmetric Blue Multiresonance TADF Emitters with a Narrow Emission Band. ACS Applied Materials & Interfaces, 2021, 13, 45798-45805.	4.0	76
804	Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry A, 2021, 125, 8074-8089.	1.1	47
805	Efficient Exciplex-Based Deep-Blue Organic Light-Emitting Diodes Employing a Bis(4-fluorophenyl)amine-Substituted Heptazine Acceptor. Molecules, 2021, 26, 5568.	1.7	3
806	Efficient and stable deep-blue narrow-spectrum electroluminescence based on hybridized local and charge-transfer (HLCT) state. Dyes and Pigments, 2021, 193, 109482.	2.0	28
807	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie, 2021, 133, 23326-23331.	1.6	35
808	Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Throughâ€space Charge Transfers. Angewandte Chemie, 2021, 133, 23964-23969.	1.6	18
809	Highâ€Performance Ultraviolet Organic Lightâ€Emitting Diode Enabled by Highâ€Lying Reverse Intersystem Crossing. Angewandte Chemie, 2021, 133, 22415-22421.	1.6	10
810	High-performance red and white organic light-emitting diodes based on a novel red thermally activated delayed fluorescence emitter in an exciplex matrix. Materials Today Energy, 2021, 21, 100818.	2.5	2
811	Highâ€Performance Solutionâ€Processed Nondoped Circularly Polarized OLEDs with Chiral Triptycene Scaffoldâ€Based TADF Emitters Realizing Over 20% External Quantum Efficiency. Advanced Functional Materials, 2021, 31, 2106418.	7.8	52

~	~
CITATION	REDUBL
CHAILON	KLI OKI

#	Article	IF	CITATIONS
812	Chiral TADFâ€Active Polymers for Highâ€Efficiency Circularly Polarized Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2021, 60, 23619-23624.	7.2	75
813	Aggregation-Induced Emission and Temperature-Dependent Luminescence of Potassium Perylenetetracarboxylate. Journal of Fluorescence, 2021, 31, 1855-1862.	1.3	4
814	Spiro-Based Thermally Activated Delayed Fluorescence Emitters with Reduced Nonradiative Decay for High-Quantum-Efficiency, Low-Roll-Off, Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 44628-44640.	4.0	15
815	Blue TADF Emitters Based on <i>B</i> -Heterotriangulene Acceptors for Highly Efficient OLEDs with Reduced Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 45778-45788.	4.0	22
816	Highâ€Performance Ultraviolet Organic Lightâ€Emitting Diode Enabled by Highâ€Lying Reverse Intersystem Crossing. Angewandte Chemie - International Edition, 2021, 60, 22241-22247.	7.2	68
817	Saccharin-derived multifunctional emitters featuring concurrently room temperature phosphorescence, thermally activated delayed fluorescence and aggregation-induced enhanced emission. Chemical Engineering Journal, 2021, 419, 129628.	6.6	10
818	Wideâ€Range Color Tuning of Narrowband Emission in Multiâ€resonance Organoboron Delayed Fluorescence Materials through Rational Imine/Amine Functionalization. Angewandte Chemie - International Edition, 2021, 60, 23142-23147.	7.2	156
819	Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Throughâ€space Charge Transfers. Angewandte Chemie - International Edition, 2021, 60, 23771-23776.	7.2	100
820	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie, 2021, 133, 23827-23832.	1.6	19
821	Realizing Recordâ€High Electroluminescence Efficiency of 31.5 % for Red Thermally Activated Delayed Fluorescence Molecules. Angewandte Chemie - International Edition, 2021, 60, 23635-23640.	7.2	147
822	A versatile carbazole donor design strategy for blue emission switching from normal fluorescence to thermally activated delayed fluorescence. Dyes and Pigments, 2021, 194, 109581.	2.0	18
823	Low efficiency roll-off thermally activated delayed fluorescence emitters for non-doped OLEDs: Substitution effect of thioether and sulfone groups. Dyes and Pigments, 2021, 194, 109649.	2.0	8
824	Emitting layer analysis of blue thermally activated delayed fluorescence devices using capacitance–voltage method. Current Applied Physics, 2021, 31, 46-51.	1.1	1
825	Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen. Journal of Advanced Research, 2021, 33, 41-51.	4.4	12
826	Fluorescent pyrene-imidazole material for deep-blue organic light-emitting devices. Optical Materials, 2021, 121, 111582.	1.7	11
827	Co-deposited copper(I) complexes integrating phosphorescence and TADF properties for highly efficient OLEDs. Journal of Luminescence, 2021, 239, 118354.	1.5	7
828	Light-emitting high birefringence chlorinated bistolanes. Journal of Molecular Liquids, 2021, 341, 117267.	2.3	2
829	Managing local triplet excited states of boron-based TADF emitters for fast spin-flip process: Toward highly efficient TADF-OLEDs with low efficiency roll-off. Chemical Engineering Journal, 2021, 423, 130224.	6.6	35

#	Article	IF	CITATIONS
830	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chemical Engineering Journal, 2021, 426, 131169.	6.6	122
831	A phosphorated spirobi[thioxanthene] host matrix enables high-efficiency simple white thermally activated delayed fluorescence diodes. Chemical Engineering Journal, 2022, 429, 132320.	6.6	8
832	Orange–red organic light emitting diodes with high efficiency and low efficiency roll-off: boosted by a fused acceptor composed of pyrazine and maleimide. Chemical Engineering Journal, 2022, 428, 131186.	6.6	19
833	<i>peri</i> -Acenoacene molecules: tuning of the singlet and triplet excitation energies by modifying their radical character. Physical Chemistry Chemical Physics, 2021, 23, 24016-24028.	1.3	5
834	Why triage materials with low luminescence quantum efficiency: the use of 35Cbz4BzCN as a universal host for organic light emitting diodes through effective triplet energy transfer. Journal of Materials Chemistry C, 2021, 9, 2381-2391.	2.7	3
835	Upper-Year Materials Chemistry Computational Modeling Module for Organic Display Technologies. Journal of Chemical Education, 2021, 98, 805-811.	1.1	7
836	Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nature Photonics, 2021, 15, 203-207.	15.6	449
837	Long-lived highly emissive MOFs as potential candidates for multiphotonic applications. Journal of Materials Chemistry C, 2021, 9, 15463-15469.	2.7	13
838	Theoretical Insight into Molecular Orientation for Thermally Activated Delayed Fluorescence Emitters in Vacuum Deposition. Journal of Physical Chemistry C, 2021, 125, 1665-1672.	1.5	5
839	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
840	Molecular design of thermally activated delayed fluorescent emitters for narrowband orange–red OLEDs boosted by a cyano-functionalization strategy. Chemical Science, 2021, 12, 9408-9412.	3.7	161
842	Singleâ€Molecular Whiteâ€Light Emitters and Their Potential WOLED Applications. Advanced Materials, 2020, 32, e1903269.	11.1	185
843	Dimethyl Dihydroacridines as Photocatalysts in Organocatalyzed Atom Transfer Radical Polymerization of Acrylate Monomers. Angewandte Chemie, 2020, 132, 3235-3243.	1.6	25
844	Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes. Science China Chemistry, 2020, 63, 1112-1120.	4.2	50
845	Recent progress of electronic materials based on 2,1,3-benzothiadiazole and its derivatives: synthesis and their application in organic light-emitting diodes. Science China Chemistry, 2021, 64, 341-357.	4.2	44
846	High performance non-doped blue-hazard-free hybrid white organic light-emitting diodes with stable high color rendering index and low efficiency roll-off. Optical Materials, 2020, 106, 109991.	1.7	10
847	End-group functionalization of a conjugated azomethine with ureas for property tailoring. New Journal of Chemistry, 2020, 44, 18813-18822.	1.4	2
848	Boron-containing D–A–A type TADF materials with tiny singlet–triplet energy splittings and high photoluminescence quantum yields for highly efficient OLEDs with low efficiency roll-offs. Journal of Materials Chemistry C, 2020, 8, 3846-3854.	2.7	26

		CITATION REPORT		
#	Article		IF	Citations
849	Circularly polarized luminescence from AlEgens. Journal of Materials Chemistry C, 2020), 8, 3284-3301.	2.7	141
850	Optical spectra of organic dyes in condensed phases: the role of the medium polarizab Chemistry Chemical Physics, 2020, 22, 25483-25491.	ility. Physical	1.3	10
851	Stable and efficient blue and green organic light emitting diodes employing tetradenta complexes. Applied Physics Letters, 2020, 117, 253301.	te Pt(II)	1.5	13
852	Solvent-dependent investigation of carbazole benzonitrile derivatives: does the LE3â~'0 facilitate thermally activated delayed fluorescence?. Journal of Photonics for Energy, 20		0.8	27
853	Recent progress of pyrimidine derivatives for high-performance organic light-emitting o Journal of Photonics for Energy, 2018, 8, 1.	levices.	0.8	70
854	A Quantum-Chemical Insight into the Role of Charge-Transfer States in Organic Emitte Electroluminescence. CCS Chemistry, 2020, 2, 1256-1267.	rs for	4.6	18
855	Towards Highly Efficient TADF Yellow-Red OLEDs Fabricated by Solution Deposition Me Influence of the Active Layer Morphology. Nanomaterials, 2020, 10, 101.	zthods: Critical	1.9	19
856	Weaving host matrices with intermolecular hydrogen bonds for high-efficiency white the activated delayed fluorescence. Chemical Science, 2021, 12, 14519-14530.	nermally	3.7	8
857	Ni-catalyzed cascade coupling reactions: synthesis and thermally-activated delayed fluc characterization of quinazolinone derivatives. New Journal of Chemistry, 2021, 45, 206		1.4	4
858	High performance non-doped green organic light emitting diodes <i>via</i> delayed flu Journal of Materials Chemistry C, 2021, 9, 15583-15590.	iorescence.	2.7	5
859	Constitutional isomers of carbazole–benzoyl-pyrimidine-based thermally activated d fluorescence emitters for efficient OLEDs. Journal of Materials Chemistry C, 2021, 9, 1	elayed 5900-15909.	2.7	6
860	Suppressing exciton deconfinement and dissociation for efficient thermally activated c fluorescence OLEDs. Journal of Applied Physics, 2021, 130, 155501.	lelayed	1.1	0
861	Novel V-Shaped Bipolar Host Materials for Solution-Processed Thermally Activated Dela Fluorescence OLEDs. ACS Applied Materials & Interfaces, 2021, 13, 49076-49084		4.0	21
862	Highly Efficient and Solutionâ€Processed Singleâ€Emissiveâ€Layer Hybrid White Orga Diodes with Tris(triazolo)triazineâ€Based Blue Thermally Activated Delayed Fluorescen Advanced Optical Materials, 2021, 9, 2101518.		3.6	21
863	Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molec optimizing horizontal dipole orientation. Science Advances, 2021, 7, eabj2504.	cules by	4.7	58
865	Design of Circularly Polarized Thermally Activated Delayed Fluorescence Emitters. , 202	20, , 293-308.		0
866	Highly Efficient Thermally Activated Delayed Fluorescence from Pyrazineâ€Fused Carbe Chemistry - A European Journal, 2021, 27, 17834-17842.	ne Au(I) Emitters.	1.7	27
867	Multifunctional luminophores with dual emitting cores: TADF emitters with AIE propert efficient solution- and evaporation-processed doped and non-doped OLEDs. Chemical I Journal, 2022, 431, 133249.		6.6	14

#	Article	IF	CITATIONS
868	Chiral thermally activated delayed fluorescence emitters for circularly polarized luminescence and efficient deep blue OLEDs. Dyes and Pigments, 2022, 197, 109860.	2.0	10
869	Realizing performance improvement of borylated TADF materials for OLEDs. Dyes and Pigments, 2022, 197, 109892.	2.0	5
870	Molecular engineering by Ïf-linkers enables delayed fluorescence emitters for high-efficiency sky-blue solution-processed OLEDs. Chemical Engineering Journal, 2022, 430, 133078.	6.6	14
871	Toward phosphorescent and delayed fluorescent carbon quantum dots for next-generation electroluminescent displays. Journal of Materials Chemistry C, 2022, 10, 2333-2348.	2.7	23
872	A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6′-dimethyl-substituted 2,2′-bipyridine ligands for light-emitting electrochemical cells. Dalton Transactions, 2021, 50, 17920-17934.	1.6	17
873	Construction and Properties of Octahydrobinaphthol-based Chiral Luminescent Materials with Large Steric Hindrance. Acta Chimica Sinica, 2021, 79, 1401.	0.5	13
874	Molecular conformational twist-controlled wide fluorescence tuning and white light emission in a single fluorophore <i>via</i> halochromism. New Journal of Chemistry, 2021, 45, 22450-22460.	1.4	8
875	Secondary ligands and the intramolecular hydrogen bonds drive photoluminescence quantum yields from aminopyrazine coordination polymers. New Journal of Chemistry, 2020, 44, 20259-20266.	1.4	3
876	Multi-stimuli-responsive Zn(<scp>ii</scp>)-Schiff base complexes adjusted by rotatable aromatic rings. Dalton Transactions, 2021, 50, 16803-16809.	1.6	5
877	Ester-functionalized thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2022, 10, 4574-4578.	2.7	1
878	Selfâ€Host Thermally Activated Delayed Fluorescence Material with Aggregationâ€Induced Emission Character: Multiâ€Functional Applications in OLEDs. Advanced Optical Materials, 2021, 9, 2100970.	3.6	7
879	Diarylethenes in Optically Switchable Organic Lightâ€Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process. Advanced Optical Materials, 2022, 10, 2101116.	3.6	4
880	Theoretical study on electro-optical properties of cyclopentadithiophene based material for OLED. , 2020, , .		1
881	Temporally modulated energy shuffling in highly interconnected nanosystems. Nanophotonics, 2020, 10, 851-876.	2.9	5
882	Low efficiency roll-off blue TADF OLEDs employing a novel acridine–pyrimidine based high triplet energy host. Journal of Materials Chemistry C, 2021, 9, 17471-17482.	2.7	14
883	Highly efficient blue electroluminescence based on TADF emitters with spiroacridine donors: methyl group effect on photophysical properties. Journal of Materials Chemistry C, 2022, 10, 4614-4619.	2.7	7
884	An extended π-backbone for highly efficient near-infrared thermally activated delayed fluorescence with enhanced horizontal molecular orientation. Materials Horizons, 2022, 9, 772-779.	6.4	26
885	Observation of up-conversion fluorescence from exciplex of m-MTDATA:TPBi blend. Journal of Luminescence, 2022, 243, 118655.	1.5	6

			_
#	ARTICLE Computational Search to Find Efficient Red/Nearâ€Infrared Emitting Organic Molecules Based on	IF	CITATIONS
886	Thermally Activated Delayed Fluorescence for Organic Lightâ€Emitting Diodes. Advanced Theory and Simulations, 2022, 5, 2100416.	1.3	3
887	Chiral Thermally Activated Delayed Fluorescence Emitters-Based Efficient Circularly Polarized Organic Light-Emitting Diodes Featuring Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2021, 13, 56413-56419.	4.0	16
888	Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. Micromachines, 2021, 12, 1500.	1.4	10
889	Spiro Compounds for Organic Light-Emitting Diodes. Accounts of Materials Research, 2021, 2, 1261-1271.	5.9	64
890	Two-Component Design Strategy: Achieving Intense Organic Afterglow and Diverse Functions in Coronene-Matrix Systems. Journal of Physical Chemistry C, 2021, 125, 26986-26998.	1.5	30
891	Managing Intersegmental Chargeâ€Transfer and Multiple Resonance Alignments of D ₃ â€A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Advanced Optical Materials, 2022, 10, 2101789.	3.6	41
892	Metal–Organic Framework Based Thermally Activated Delayed Fluorescence Emitter with Oxygenâ€Insensitivity for Cell Imaging. Advanced Optical Materials, 2022, 10, .	3.6	5
893	Synthesis and Photophysical Properties of Purine-Phenoxazine and Purine-Phenothiazine Conjugates. Key Engineering Materials, 0, 903, 155-161.	0.4	1
894	Heating-Induced Self-Healing of Tin Incorporated Copper Microfiber Network for Recoverable Transparent Conductive Electrodes. Jom, 2021, 73, 3710-3717.	0.9	0
895	Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes. Science Advances, 2021, 7, eabj9961.	4.7	7
896	Simulation of Low-Lying Singlet and Triplet Excited States of Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Emitters by Delta Self-Consistent Field (ΔSCF) Method. Journal of Physical Chemistry A, 2021, 125, 10373-10378.	1.1	2
897	Insight into Regioselective Control in Aerobic Oxidative C–H/C–H Coupling for C3-Arylation of Benzothiophenes: Toward Structurally Nontraditional OLED Materials. Journal of the American Chemical Society, 2021, 143, 21066-21076.	6.6	28
898	TADF‣ensitized Fluorescent Enantiomers: A New Strategy for High‣fficiency Circularly Polarized Electroluminescence**. Chemistry - A European Journal, 2022, 28, .	1.7	6
899	Narrowing the Electroluminescence Spectra of Multiresonance Emitters for High-Performance Blue OLEDs by a Peripheral Decoration Strategy. ACS Applied Materials & Interfaces, 2021, 13, 59035-59042.	4.0	34
900	Violation of Hund's rule in molecules: Predicting the excited-state energy inversion by TD-DFT with double-hybrid methods. Journal of Chemical Physics, 2022, 156, 034105.	1.2	26
901	Improving Efficiency of Red Thermally Activated Delayed Fluorescence Emitter by Introducing <scp>Quasiâ€Degenerate</scp> Orbital Distribution. Chinese Journal of Chemistry, 2022, 40, 911-917.	2.6	20
902	Aggregation induced bright organic luminogens: Design strategies, advanced bio-imaging and theranostic applications. Progress in Molecular Biology and Translational Science, 2021, 185, 75-112.	0.9	1
903	Ultrathin non-doped thermally activated delayed fluorescence emitting layer for highly efficient OLEDs. Chemical Communications, 2021, 57, 13728-13731.	2.2	7

#	Article	IF	CITATIONS
904	Asymmetric sky-blue thermally-activated delayed fluorescence emitters bearing tris(triazolo)triazine moiety for solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 4837-4844.	2.7	5
905	A Bipolar Delayed Fluorescence Luminogen with Fast Reverse Intersystem Crossing and High Horizontal Dipole Orientation for Highâ€Performance Skyâ€Blue and White OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	10
906	Delayed Dual Emission of Two-Dimensional Copper Nanocluster Assembly. Journal of Physical Chemistry C, 2022, 126, 997-1005.	1.5	7
907	Vibronic Coupling Effect on the Vibrationally Resolved Electronic Spectra and Intersystem Crossing Rates of a TADF Emitter: 7-PhQAD. Journal of Physical Chemistry A, 2022, 126, 239-248.	1.1	25
908	An umpolung strategy for rapid access to thermally activated delayed fluorescence (TADF) materials based on phenazine. Chemical Communications, 2022, 58, 1581-1584.	2.2	6
909	Creation of efficient solution-processed OLEDs via a strategy of the host-guest system constructing with two small cross-linkable TADF molecules. Organic Electronics, 2022, 101, 106417.	1.4	3
910	Electroplex hosts for highly efficient phosphorescent organic light-emitting diodes with extremely small efficiency roll-offs. Chemical Engineering Journal, 2022, 432, 134314.	6.6	10
911	Two-component design strategy: TADF-Type organic afterglow for time-gated chemodosimeters. Chemical Engineering Journal, 2022, 431, 134197.	6.6	25
912	Rational design of CN substituted dibenzo[a,c]phenazine acceptor for color tuning of thermally activated delayed fluorescent emitters. Chemical Engineering Journal, 2022, 431, 134216.	6.6	22
913	Highly efficient blue and white phosphorescent organic light-emitting diodes with low-efficiency roll-off utilizing thermally activated delayed fluorescent-based co-host architecture. Journal of Luminescence, 2022, 244, 118686.	1.5	2
914	Aggregation-induced delayed fluorescence molecules with mechanochromic behaviors for efficient blue organic light-emitting diodes. Cell Reports Physical Science, 2022, 3, 100733.	2.8	8
915	An imidazoacridine-based TADF material as an effective organic photosensitizer for visible-light-promoted [2 + 2] cycloaddition. Chemical Science, 2022, 13, 2296-2302.	3.7	20
916	Status and future outlook of TADF materials and OLEDs. , 2022, , 449-461.		0
917	Efficient Stable Green Hybrid Light-Emitting Devices Using Cathode Interlayer. Industrial & Engineering Chemistry Research, 2022, 61, 1355-1366.	1.8	2
918	A deep blue thermally activated delayed fluorescence emitter: balance between charge transfer and color purity. Journal of Materials Chemistry C, 2022, 10, 4886-4893.	2.7	12
919	Diindolocarbazole $\hat{a} \in$ achieving multiresonant thermally activated delayed fluorescence without the need for acceptor units. Materials Horizons, 2022, 9, 1068-1080.	6.4	48
920	Timeâ€Resolved Xâ€Ray Spectroscopy to Study Luminophores with Relevance for OLEDs. ChemPhotoChem, 0, , .	1.5	0
921	A reverse intersystem crossing managing assistant dopant for high external quantum efficiency red organic light-emitting diodes. Journal of Materials Chemistry C, 0, , .	2.7	10

	CITATION	Report	
#	Article	IF	CITATIONS
922	Achieving two things at one stroke: crystal engineering simultaneously optimizes the emission and mechanical compliance of organic crystals. Journal of Materials Chemistry C, 2022, 10, 3894-3900.	2.7	8
923	Constructing Soluble Anthraceneâ€Based Blue Emitters Free of Electrically Inert Alkyl Chains for Efficient Evaporation―and Solutionâ€Based OLEDs. ChemPlusChem, 2022, 87, e202100517.	1.3	4
924	Enhanced blue TADF in a D–A–D type naphthyridine derivative with an asymmetric carbazole-donor motif. Journal of Materials Chemistry C, 2022, 10, 4813-4820.	2.7	4
925	Extremely High Power Efficiency Solutionâ€Processed Orangeâ€Red TADF OLEDs via a Synergistic Strategy of Molecular and Device Engineering. Advanced Optical Materials, 2022, 10, .	3.6	11
926	A systematic review on 1,8-naphthalimide derivatives as emissive materials in organic light-emitting diodes. Journal of Materials Science, 2022, 57, 105-139.	1.7	28
927	Aromatic-imide-based TADF enantiomers for efficient circularly polarized electroluminescence. Journal of Materials Chemistry C, 2022, 10, 4805-4812.	2.7	16
928	Boosting organic afterglow efficiency <i>via</i> triplet–triplet annihilation and thermally-activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 4795-4804.	2.7	7
929	Highly efficient and stable blue thermally activated delayed fluorescent organic light-emitting diodes. , 2022, , 117-191.		1
930	Orange, red, and near-infrared thermally activated delayed fluorescent emitters. , 2022, , 193-234.		0
931	Achieving Ultimate Narrowband and Ultrapure Blue Organic Lightâ€Emitting Diodes Based on Polycycloâ€Heteraborin Multiâ€Resonance Delayedâ€Fluorescence Emitters. Advanced Materials, 2022, 34, e2107951.	11.1	133
932	Fluorinated dibenzo[<i>a</i> , <i>c</i>]-phenazine-based green to red thermally activated delayed fluorescent OLED emitters. Journal of Materials Chemistry C, 2022, 10, 4757-4766.	2.7	7
933	Structure–property relationship study of blue thermally activated delayed fluorescence molecules with different donor and position substitutions: theoretical perspective and molecular design. Journal of Materials Chemistry C, 2022, 10, 4723-4736.	2.7	17
934	Conformational disorder enabled emission phenomena in heavily doped TADF films. Physical Chemistry Chemical Physics, 2021, 24, 313-320.	1.3	8
935	Application of time-resolved electron paramagnetic resonance spectroscopy in the mechanistic study of thermally activated delayed fluorescence (TADF) materials. Journal of Materials Chemistry C, 0, , .	2.7	8
936	Bipolar 1,8-naphthalimides showing high electron mobility and red AIE-active TADF for OLED applications. Physical Chemistry Chemical Physics, 2022, 24, 5070-5082.	1.3	16
937	Purely Organic Emitters for Multiresonant Thermally Activated Delay Fluorescence: Design of Highly Efficient Sulfur and Selenium Derivatives. , 2022, 4, 440-447.		33
938	A solution-processable near-infrared thermally activated delayed fluorescent dye with a fused aromatic acceptor and aggregation induced emission behavior. Journal of Materials Chemistry C, 2022, 10, 4831-4836.	2.7	9
939	Thermally activated delayed fluorescence in an optically accessed soft matter environment. Journal of Materials Chemistry C, 2022, 10, 4533-4545.	2.7	3

#	Article	IF	CITATIONS
940	Highly stable and efficient deep-red phosphorescent organic light-emitting devices using a phenanthroline derivative as an n-type exciplex host partner. Journal of Materials Chemistry C, 2022, 10, 2073-2079.	2.7	10
941	TADF dendronized polymer with vibrationally enhanced direct spin-flip between charge-transfer states for efficient non-doped solution-processed OLEDs. Chemical Engineering Journal, 2022, 435, 134924.	6.6	26
942	Enhancing Thermally Activated Delayed Fluorescence by Fine-Tuning the Dendron Donor Strength. Journal of Physical Chemistry B, 2022, 126, 552-562.	1.2	7
943	Intermolecular TADF: bulk and interface exciplexes. Journal of Materials Chemistry C, 2022, 10, 4521-4532.	2.7	25
944	Accelerating Radiative Decay in Blue Throughâ€Space Charge Transfer Emitters by Minimizing the Faceâ€toâ€Face Donor–Acceptor Distances. Angewandte Chemie, 0, , .	1.6	11
945	Four Dibenzofuranâ€Terminated Highâ€Tripletâ€Energy Hole Transporters for Highâ€Efficiency and Longâ€Life Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2022, 28, .	1.7	7
946	Highly efficient non-doped deep-blue OLED with NTSC CIEy and negligible efficiency roll-off based on emitter possessing hydrogen bond and hybridized excited state. Dyes and Pigments, 2022, 200, 110135.	2.0	10
947	Accelerating Radiative Decay in Blue Throughâ€Space Charge Transfer Emitters by Minimizing the Faceâ€toâ€Face Donor–Acceptor Distances. Angewandte Chemie - International Edition, 2022, 61, .	7.2	56
948	Review on recent trends and prospects in π onjugated luminescent aggregates for biomedical applications. Aggregate, 2022, 3, .	5.2	42
949	Creation of a thermally cross-linkable encapsulated TADF molecule for highly efficient solution-processed hybrid white OLEDs. Organic Electronics, 2022, 102, 106442.	1.4	3
950	Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs. Organic Electronics, 2022, 102, 106450.	1.4	9
951	Dual-acceptor thermally activated delayed fluorescence emitters: Achieving high efficiency and long lifetime in orange-red OLEDs. Chemical Engineering Journal, 2022, 434, 134728.	6.6	10
952	Controlling the electronic structures of triphenylene based sky blue TADF emitters by chemical modifications for high efficiency with shorter emission lifetimes. Chemical Engineering Journal, 2022, 435, 134925.	6.6	1
953	Using fullerene fragments as acceptors to construct thermally activated delayed fluorescence emitters for high-efficiency organic light-emitting diodes. Chemical Engineering Journal, 2022, 435, 134731.	6.6	7
954	Creating efficient delayed fluorescence luminogens with acridine-based spiro donors to improve horizontal dipole orientation for high-performance OLEDs. Chemical Engineering Journal, 2022, 435, 134934.	6.6	19
955	Solution-processable phenothiazine and phenoxazine substituted fluorene cored nanotextured hole transporting materials for achieving high-efficiency OLEDs. Journal of Materials Chemistry C, 2022, 10, 3593-3608.	2.7	20
956	Dual-channel charge transfer-based thermally activated delayed fluorescence emitter facilitating efficient and low roll-off non-doped devices. Chemical Engineering Journal, 2022, 436, 135234.	6.6	10
957	Do any types of double-hybrid models render the correct order of excited state energies in inverted singlet–triplet emitters?. Journal of Chemical Physics, 2022, 156, 064302.	1.2	6

#	Article	IF	CITATIONS
958	Numerical Device Model for Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Advanced Electronic Materials, 2022, 8, .	2.6	6
959	A Calix[3]acridanâ€Based Host–Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
960	Regulating Photophysical Property of Aggregationâ€Induced Delayed Fluorescence Luminogens via Heavy Atom Effect to Achieve Efficient Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	15
961	Efficient Narrowband Red Electroluminescence from a Thermally Activated Delayed Fluorescence Polymer and Quantum Dot Hybrid. Chemical Engineering Journal, 2022, , 135221.	6.6	5
962	A Calix[3]acridanâ€Based Host–Guest Cocrystal Exhibiting Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2022, 134, .	1.6	13
963	2,3-Dicyanopyrazino phenanthroline enhanced charge transfer for efficient near-infrared thermally activated delayed fluorescent diodes. Chemical Engineering Journal, 2022, 436, 135080.	6.6	23
964	Diazine-based thermally activated delayed fluorescence chromophores. Dyes and Pigments, 2022, 200, 110157.	2.0	22
965	Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today, 2022, 27, 101407.	2.3	9
966	Manipulation of Triplet Excited States for Long‣ived and Efficient Organic Afterglow. Advanced Optical Materials, 2022, 10, .	3.6	34
967	One-Shot Synthesis of Expanded Heterohelicene Exhibiting Narrowband Thermally Activated Delayed Fluorescence. Journal of the American Chemical Society, 2022, 144, 106-112.	6.6	133
968	Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chemical Science, 2022, 13, 3625-3651.	3.7	90
969	Dominant dimer emission provides colour stability for red thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2022, 10, 5840-5848.	2.7	4
970	Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline. Acta Chimica Sinica, 2022, 80, 359.	0.5	5
971	Quantum simulations of thermally activated delayed fluorescence in an all-organic emitter. Physical Chemistry Chemical Physics, 2022, 24, 10101-10113.	1.3	6
972	Thermally activated delayed fluorescence in luminescent cationic copper(<scp>i</scp>) complexes. RSC Advances, 2022, 12, 10653-10674.	1.7	14
973	Isomer engineering of dipyrido[3,2- <i>a</i> :3′,4′- <i>c</i>]phenazine-acceptor-based red thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2022, 10, 6043-6049.	2.7	11
974	Determining non-radiative decay rates in TADF compounds using coupled transient and steady state optical data. Journal of Materials Chemistry C, 2022, 10, 4878-4885.	2.7	7
975	Nickel-Catalyzed <i>N</i> -Arylation of Diarylamines for Triarylamine Synthesis. Organometallics, 2022, 41, 509-513.	1.1	4

#	Article	IF	CITATIONS
976	Zinc Donor–Acceptor Schiff Base Complexes as Thermally Activated Delayed Fluorescence Emitters. Chemosensors, 2022, 10, 91.	1.8	3
977	Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. Science China Chemistry, 2022, 65, 740-745.	4.2	18
978	Exceptionally stable blue phosphorescent organic light-emitting diodes. Nature Photonics, 2022, 16, 212-218.	15.6	133
979	Theoretical Studies on the Photophysical Properties of the Ag(I) Complex for Thermally Activated Delayed Fluorescence Based on TD-DFT and Path Integral Dynamic Approaches. ACS Omega, 2022, 7, 7380-7392.	1.6	8
980	Approaching the Spin-Statistical Limit in Visible-to-Ultraviolet Photon Upconversion. Journal of the American Chemical Society, 2022, 144, 3706-3716.	6.6	45
981	Effects of intermolecular interactions on luminescence property in organic molecules. Chinese Journal of Chemical Physics, 2022, 35, 38-51.	0.6	6
982	Thermally Activated Delayed Fluorescence Mechanism of a Bicyclic "Carbene–Metal–Amide―Copper Compound: DFT/MRCI Studies and Roles of Excited-State Structure Relaxation. Inorganic Chemistry, 2022, 61, 7673-7681.	1.9	13
983	A Novel Strategy toward Thermally Activated Delayed Fluorescence from a Locally Excited State. Journal of Physical Chemistry Letters, 2022, 13, 2653-2660.	2.1	25
984	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing. Advanced Science, 2022, 9, e2200525.	5.6	30
985	Modular Nitrogenâ€Doped Concave Polycyclic Aromatic Hydrocarbons for Highâ€Performance Organic Lightâ€Emitting Diodes with Tunable Emission Mechanisms**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
986	Long-Lived Triplet Charge Separated State and Thermally Activated Delayed Fluorescence in a Compact Orthogonal Anthraquinone–Phenothiazine Electron Donor–Acceptor Dyad. Journal of Physical Chemistry Letters, 2022, 13, 2533-2539.	2.1	16
987	A robust vertical nanoscaffold for recyclable, paintable, and flexible light-emitting devices. Science Advances, 2022, 8, eabn2225.	4.7	10
988	Exciplex-Forming Systems of Physically Mixed and Covalently Bonded Benzoyl-1 <i>H</i> -1,2,3-Triazole and Carbazole Moieties for Solution-Processed White OLEDs. Journal of Organic Chemistry, 2022, 87, 4040-4050.	1.7	13
989	Liquid-Crystalline Thermally Activated Delayed Fluorescence: Design, Synthesis, and Application in Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 15437-15447.	4.0	8
990	Determining the Energy Gap between the S ₁ and T ₁ States of Thermally Activated Delayed Fluorescence Molecular Systems Using Transient Fluorescence Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 2507-2515.	2.1	12
991	Spin-Enhanced Reverse Intersystem Crossing and Electroluminescence in Copper Acetate-Doped Thermally Activated Delayed Fluorescence Material. Journal of Physical Chemistry Letters, 2022, 13, 2516-2522.	2.1	5
992	TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. CheM, 2022, 8, 1705-1719.	5.8	34
993	Modular, nâ€Doped Concave PAHs for Highâ€Performance OLEDs with Tunable Emission Mechanisms Angewandte Chemie, 0, , .	1.6	7

#	Article	IF	CITATIONS
994	Impact of Intermolecular Nonâ€Covalent Interactions in a Cu ^I ₈ Pd ^{II} ₁ Discrete Assembly: Conformers' Geometries and Stimuliâ€Sensitive Luminescence Properties. Chemistry - A European Journal, 2022, 28, .	1.7	2
995	Deepâ€Blue OLEDs with Rec.2020 Blue Gamut Compliance and EQE Over 22% Achieved by Conformation Engineering. Advanced Materials, 2022, 34, e2200537.	11.1	46
996	Design of High-Performance Thermally Activated Delayed Fluorescence Emitters Containing <i>s</i> -Triazine and <i>s</i> -Heptazine with Molecular Orbital Visualization by STM. Chemistry of Materials, 2022, 34, 2624-2635.	3.2	17
997	Designing Stable Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters through Controlling the Intrinsic Stability of Triplet Excitons. Advanced Optical Materials, 2022, 10, .	3.6	7
998	Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS Applied Materials & Interfaces, 2022, 14, 14703-14711.	4.0	15
999	Boronâ€Based Multiâ€Resonance TADF Emitter with Suppressed Intermolecular Interaction and Isomer Formation for Efficient Pure Blue OLEDs. Small, 2022, 18, e2107574.	5.2	40
1000	Role of Linker Functionality in Polymers Exhibiting Main hain Thermally Activated Delayed Fluorescence. Advanced Science, 2022, 9, e2200056.	5.6	13
1001	Thermally Activated Delayed Fluorescent Dendrimers that Underpin Highâ€Efficiency Hostâ€Free Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2110344.	11.1	30
1002	Management of Multiâ€Energyâ€Transfer Channels and Exciton Harvesting for Powerâ€Efficient White Thermally Activated Delayed Fluorescence Diodes. Advanced Optical Materials, 2022, 10, .	3.6	4
1003	Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly BT.2020 Green Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	95
1004	Fusion of Multiâ€Resonance Fragment with Conventional Polycyclic Aromatic Hydrocarbon for Nearly BT.2020 Green Emission. Angewandte Chemie, 2022, 134, .	1.6	19
1005	Stable organic light-emitting diodes based on thioxanthone derivative with shortened photoluminescence delayed lifetime. Organic Electronics, 2022, 104, 106490.	1.4	2
1006	Aggregation-induced delayed fluorescence for time-resolved luminescence sensing of carboxylesterase in living cells. Chemical Engineering Journal, 2022, 437, 135396.	6.6	12
1007	Polycyclic phenazine-derived rigid donors construct thermally activated delayed fluorescence emitters for highly efficient orange OLEDs with extremely low roll-off. Chemical Engineering Journal, 2022, 438, 135571.	6.6	21
1008	Controlling the conjugation extension inside acceptors for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 440, 135775.	6.6	9
1009	Intrinsically Ionic, Thermally Activated Delayed Fluorescent Materials for Efficient, Bright, and Stable Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	7.8	22
1010	Advances in organic micro/nanocrystals with tunable physicochemical properties. Science China Materials, 2022, 65, 593-611.	3.5	5
1011	Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode. Beilstein Journal of Organic Chemistry, 2021, 17, 2894-2905.	1.3	1

#	Article	IF	CITATIONS
1012	Functionalization of Biphenylcarbazole (CBP) with Siloxane-Hybrid Chains for Solvent-Free Liquid Materials. Molecules, 2022, 27, 89.	1.7	4
1013	Highly Efficient TADFâ€Type Organic Afterglow of Long Emission Wavelengths. Advanced Functional Materials, 2022, 32, .	7.8	50
1014	Chiral Conjugated Thermally Activated Delayed Fluorescent Polymers for Highly Efficient Circularly Polarized Polymer Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 1578-1586.	4.0	26
1015	Organic fluorophores that emit ultraviolet light in the aggregated state. Aggregate, 2022, 3, .	5.2	18
1016	Through-Space Charge-Transfer Emitters Developed by Fixing the Acceptor for High-Efficiency Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2021, 13, 60269-60278.	4.0	31
1017	Intense Organic Afterglow Enabled by Molecular Engineering in Dopant-Matrix Systems. ACS Applied Materials & Interfaces, 2022, 14, 1587-1600.	4.0	26
1018	3-Cyanocarbazole/phosphine oxide hybrid host with increased molecular polarity towards universally enhanced efficiency for TADF OLEDs. Journal of Materials Chemistry C, 2022, 10, 7103-7110.	2.7	2
1019	Comprehensive understanding of multiple resonance thermally activated delayed fluorescence through quantum chemistry calculations. Communications Chemistry, 2022, 5, .	2.0	33
1020	Through-Space Interaction of Tetraphenylethylene: What, Where, and How. Journal of the American Chemical Society, 2022, 144, 7901-7910.	6.6	72
1021	Nearâ€Infrared Roomâ€Temperature Phosphorescence in Arylselanyl BODIPYâ€Doped Materials. ChemPhotoChem, 2022, 6, .	1.5	4
1022	High luminance/efficiency monochrome and white organic light emitting diodes based pure exciplex emission. Organic Electronics, 2022, 106, 106528.	1.4	7
1023	Red Lightâ€Emitting Thermallyâ€Activated Delayed Fluorescence of Naphthalimideâ€Phenoxazine Electron Donorâ€Acceptor Dyad: Timeâ€Resolved Optical and Magnetic Spectroscopic Studies. Chemistry - A European Journal, 2022, 28, .	1.7	12
1037	Regiochemistry of Donor Dendrons Controls the Performance of Thermally Activated Delayed Fluorescence Dendrimer Emitters for High Efficiency Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Science, 2022, 9, e2201470.	5.6	19
1038	How to calibrate luminescent crossover thermometers: a note on "quasi―Boltzmann systems. Journal of Materials Chemistry C, 2022, 10, 13805-13814.	2.7	9
1039	Circularly polarized-thermally activated delayed fluorescent materials based on chiral bicarbazole donors. Chemical Communications, 2022, 58, 6554-6557.	2.2	5
1040	Electro-optical π-radicals: design advances, applications and future perspectives. Journal of Materials Chemistry C, 2022, 10, 7368-7403.	2.7	21
1041	Thermally Activated Delayed Fluorescence Materials Based on Cocrystals of Supramolecular Host and Guest. Chinese Journal of Organic Chemistry, 2022, 42, 1256.	0.6	1
1042	Transition-Based Constrained DFT for the Robust and Reliable Treatment of Excitations in Supramolecular Systems. Journal of Chemical Theory and Computation, 2022, 18, 3027-3038.	2.3	2

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
1043	Theory of Exciton Dynamics in Thermally Activated Delayed Fluorescence. ChemPhotoChem, 2022, 6, .	1.5	1
1044	Modulating the Carbonization Degree of Carbon Dots for Multicolor Afterglow Emission. ACS Applied Materials & amp; Interfaces, 2022, 14, 22363-22371.	4.0	33
1045	Imidazole Acceptor for Both Vacuum-Processable and Solution-Processable Efficient Blue Thermally Activated Delayed Fluorescence. ACS Omega, 0, , .	1.6	5
1046	Blue Thermally Activated Delayed Fluorescence with Subâ€Microsecond Short Exciton Lifetimes: Acceleration of Triplet–Singlet Spin Interconversion via Quadrupolar Chargeâ€Transfer States. Advanced Optical Materials, 2022, 10, .	3.6	11
1047	Triptycene-derived thermally activated delayed fluorescence emitters with combined through-bond and through-space charge transfers. Dyes and Pigments, 2022, 204, 110397.	2.0	11
1048	A Family of Planar Luminogens with Active Photoluminescence in both Dispersion and Aggregation States. ChemPhotoChem, 0, , .	1.5	1
1049	Excited-State Modulation in Donor-Substituted Multiresonant Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & amp; Interfaces, 2022, 14, 22341-22352.	4.0	47
1050	Geometric structural insights for enhanced radiative efficiency: Spiro[fluorene–carbazole]â€based <scp><i>ortho</i>â€carboranyl</scp> luminophores. Bulletin of the Korean Chemical Society, 2022, 43, 918-927.	1.0	4
1051	Indolo[3,2,1- <i>jk</i>]carbazole-Derived Narrowband Violet–Blue Fluorophores: Tuning the Optical and Electroluminescence Properties by Chromophore Juggling. Journal of Organic Chemistry, 2022, 87, 6668-6679.	1.7	2
1052	Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- <i>tert</i> -butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein Journal of Organic Chemistry, 0, 18, 497-507.	1.3	2
1053	Through-space charge-transfer emitters featuring high radiative decay rates for efficient organic light-emitting diodes. Dyes and Pigments, 2022, 204, 110389.	2.0	7
1054	Emergence of ligand-to-metal charge transfer in homogeneous photocatalysis and photosensitization. Chemical Physics Reviews, 2022, 3, .	2.6	12
1055	Thermally activated delayed fluorescence poly(dendrimer)s – detrapping excitons for reverse intersystem crossing. Journal of Materials Chemistry C, 2022, 10, 8109-8124.	2.7	1
1056	High performance of solution-processed green phosphorescent light emitting-diodes based on a new Pt(II)-complex. Journal of Luminescence, 2022, , 118938.	1.5	0
1057	Theoretical insights into molecular design of hot-exciton based thermally activated delayed fluorescence molecules. Materials Advances, 2022, 3, 4954-4963.	2.6	12
1058	<i>Spiro</i> -configured dibenzosuberene compounds as deep-blue emitters for organic light-emitting diodes with a CIE <i>y</i> of 0.04. Materials Chemistry Frontiers, 2022, 6, 1803-1813.	3.2	14
1059	De novo design of single white-emitting polymers based on one chromophore with multi-excited states. Chemical Engineering Journal, 2022, 446, 137004.	6.6	10
1060	Discs to a â€~Bright' Future: Exploring Discotic Liquid Crystals in Organic Light Emitting Diodes in the Era of Newâ€Age Smart Materials. Chemical Record, 2022, 22, e202200056.	2.9	12

#	Article	IF	CITATIONS
1061	Inert polymer modification of an exciplex emitter enhances the light-emitting efficiency and reduces the efficiency roll-off of solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 8459-8465.	2.7	2
1062	Increase the molecular length and donor strength to boost horizontal dipole orientation for high-efficiency OLEDs. Journal of Materials Chemistry C, 2022, 10, 9241-9248.	2.7	3
1063	A multifunctional hole-transporter for high-performance TADF OLEDs and clarification of factors governing the transport property by multiscale simulation. Journal of Materials Chemistry C, 2022, 10, 8694-8701.	2.7	15
1064	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie, 2022, 134, .	1.6	16
1065	tert-Butyltriazine-Diphenylaminocarbazole based TADF materials: π-Bridge modification for enhanced kRISC and efficiency stability. Dyes and Pigments, 2022, 204, 110430.	2.0	3
1066	SimStack: An Intuitive Workflow Framework. Frontiers in Materials, 2022, 9, .	1.2	5
1067	Efficient Adversarial Generation of Thermally Activated Delayed Fluorescence Molecules. ACS Omega, 2022, 7, 18179-18188.	1.6	5
1068	Highly Efficient Sensitized Chiral Hybridized Local and Chargeâ€Transfer Emitter Circularly Polarized Electroluminescence. Advanced Functional Materials, 2022, 32, .	7.8	24
1069	Intramolecular Câ^'H Activation as an Easy Toolbox to Synthesize Pyridineâ€Fused Bipolar Hosts for Blue Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1070	Intramolecular Câ~'H Activation as an Easy Toolbox to Synthesize Pyridineâ€Fused Bipolar Hosts for Blue Organic Lightâ€Emitting Diodes. Angewandte Chemie, 0, , .	1.6	0
1071	Ultrafast Triplet–Singlet Exciton Interconversion in Narrowband Blue Organoboron Emitters Doped with Heavy Chalcogens. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
1072	Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. ChemPhotoChem, 2022, 6, .	1.5	3
1073	Naphthalimide–Carbazole Compact Electron Donor–Acceptor Dyads: Effect of Molecular Geometry and Electron-Donating Capacity on the Spin-Orbit Charge Transfer Intersystem Crossing. Journal of Physical Chemistry A, 2022, 126, 3653-3668.	1.1	6
1074	Intramolecular-locked triazatruxene-based thermally activated delayed fluorescence emitter for efficient solution-processed deep-blue organic light emitting diodes. Chemical Engineering Journal, 2022, 446, 137372.	6.6	9
1075	Methoxy-substituted carbazole-based polymers obtained by RAFT polymerization for solution-processable organic light-emitting devices. European Polymer Journal, 2022, 174, 111323.	2.6	1
1077	Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.	2.7	11
1078	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	3.7	8
1079	Computational descriptor analysis on excited state behaviours of a series of TADF and non-TADF compounds. Physical Chemistry Chemical Physics, 2022, 24, 16167-16182.	1.3	6

#	Article	IF	CITATIONS
1080	Anionâ^'Ï€-Induced Room Temperature Phosphorescence from Emissive Charge-Transfer States . Journal of the American Chemical Society, 2022, 144, 10854-10861.	6.6	46
1081	Apply a TADF emitter with twist configuration for high-performance green OLEDs. Applied Physics Express, 2022, 15, 071012.	1.1	1
1082	Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Lightâ€Emitting Diodes: A New Molecular Design Approach. Angewandte Chemie, 0, , .	1.6	4
1083	Eliminating the Reverse ISC Bottleneck of TADF Through Excited State Engineering and Environmentâ€Tuning Toward State Resonance Leading to Monoâ€Exponential Subâ€Âµs Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting. Advanced Functional Materials, 2022. 32	7.8	19
1084	Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Lightâ€Emitting Diodes: A New Molecular Design Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
1085	Development of Pure Green Thermally Activated Delayed Fluorescence Material by Cyano Substitution. Advanced Materials, 2022, 34, .	11.1	62
1086	Thermally Activated Delayed Fluorescence of a Pyromellitic Diimide Derivative in the Film Environment Investigated by Combined QM/MM and MS-CASPT2 Methods. Journal of Physical Chemistry A, 2022, 126, 4176-4184.	1.1	5
1087	Highly Efficient Blue Thermally Activated Delayed Fluorescence Emitters Based on Multi-Donor Modified Oxygen-Bridged Boron Acceptor. Molecules, 2022, 27, 4048.	1.7	3
1088	Emission and Absorption Tuning in TADF B,Nâ€Doped Heptacenes: Toward Idealâ€Blue Hyperfluorescent OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	28
1089	Alkoxy-capped carbazole dendrimers as host materials for highly efficient narrowband electroluminescence by solution process. Chemical Engineering Journal, 2022, 447, 137517.	6.6	17
1090	Multiplying the efficiency of red thermally activated delayed fluorescence emitter by introducing intramolecular hydrogen bond. Chemical Engineering Journal, 2022, 448, 137717.	6.6	12
1091	Optimising conformational effects on thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2022, 10, 10699-10707.	2.7	5
1092	Novel D–A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence. Physical Chemistry Chemical Physics, 2022, 24, 17770-17781.	1.3	6
1093	Selective decoration of dibenzofuran with multi-donors and a triazine acceptor for triplet to singlet up-conversion. Journal of Materials Chemistry C, O, , .	2.7	0
1094	Rational molecular design of TADF emitters towards highly efficient yellow electroluminescence with a nearly 30% external quantum efficiency and low roll-off. Journal of Materials Chemistry C, 2022, 10, 11239-11245.	2.7	4
1095	A dual rigid donor and acceptor enabling red thermally activated delayed fluorescence emitters for efficient OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2022, 10, 10255-10261.	2.7	9
1096	Effect of Phosphorescent and TADF Guests on the Absorption, Emission, and Nanoscale Morphological Properties of Thin Emissive Layer. Brazilian Journal of Physics, 2022, 52, .	0.7	1
1097	Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 3410-3419.	2.1	7

#	Article	IF	CITATIONS
1098	Pâ€126: Magnetic Field Effects on Electroplexâ€Based Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2022, 53, 1484-1487.	0.1	0
1099	Intersystem and Reverse-Intersystem Crossings in Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 6177-6180.	2.1	2
1100	Push–Pull Derivatives Based on 2,4′-Biphenylene Linker with Quinoxaline, [1,2,5]Oxadiazolo[3,4-B]Pyrazine and [1,2,5]Thiadiazolo[3,4-B]Pyrazine Electron Withdrawing Parts. Molecules, 2022, 27, 4250.	1.7	12
1101	Moving Beyond Cyanoarene Thermally Activated Delayed Fluorescence Compounds as Photocatalysts: An Assessment of the Performance of a Pyrimidyl Sulfone Photocatalyst in Comparison to 4CzIPN. Journal of Organic Chemistry, 2023, 88, 6364-6373.	1.7	16
1102	Acceptor Interlocked Molecular Design for Solutionâ€Processed Stable Deepâ€Blue TADF and Hyper Fluorescence Organic LED Enabling Highâ€Efficiency. Advanced Optical Materials, 2022, 10, .	3.6	14
1103	Multipleâ€Resonance Extension and Spinâ€Vibronicâ€Couplingâ€Based Narrowband Blue Organic Fluorescence Emitters with Over 30% Quantum Efficiency. Advanced Materials, 2022, 34, .	11.1	51
1104	Excited State Properties of Aggregationâ€Induced Delayed Fluorescence Molecules: A Microscopic Insight. Advanced Optical Materials, 2022, 10, .	3.6	2
1105	Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons. Beilstein Journal of Organic Chemistry, 0, 18, 825-836.	1.3	1
1106	Novel <i>Ortho</i> â€Linkage Donorâ€Acceptor Type Host Materials for Efficiently Red Phosphorescence Organic Lightâ€Emitting Diodes. ChemistrySelect, 2022, 7, .	0.7	5
1107	High-PLQY and Efficient Upconverted Fluorescence of the TAPC/PBD Exciplex with Fluorescent Guests. Journal of Physical Chemistry C, 2022, 126, 11229-11237.	1.5	0
1108	Modeling of Multiresonant Thermally Activated Delayed Fluorescence Emitters─Properly Accounting for Electron Correlation Is Key!. Journal of Chemical Theory and Computation, 2022, 18, 4903-4918.	2.3	32
1109	Singlet-triplet energy gap of multiresonant molecular systems: A double hybrid time-dependent density functional theory study. Chemical Physics Letters, 2022, 804, 139895.	1.2	3
1110	Multiple resonance thermally activated delayed fluorescence enhanced by halogen atoms. Journal of Materials Chemistry C, 2022, 10, 11855-11861.	2.7	5
1111	Engineering Intramolecular Ï€â€Stacking Interactions of Throughâ€Space Chargeâ€Transfer TADF Emitters for Highly Efficient OLEDs with Improved Color Purity. Advanced Optical Materials, 2022, 10, .	3.6	10
1112	Oxalamide/Amide Ligands: Enhanced and Copper-Catalyzed C–N Cross-Coupling for Triarylamine Synthesis. Organic Letters, 2022, 24, 5817-5824.	2.4	8
1113	Intramolecular Hydrogen Bonding in Thermally Activated Delayed Fluorescence Emitters: Is There Evidence Beyond Reasonable Doubt?. Journal of Physical Chemistry Letters, 2022, 13, 8221-8227.	2.1	8
1114	Benchmarking time-dependent density functional theory for singlet excited states of thermally activated delayed fluorescence chromophores. Physical Review Research, 2022, 4, .	1.3	10
1115	Synergistic Control of Hot Exciton Relaxation and Exciton–Polaron Dispersion Using a Polaron Retarder for Long Lifetime in Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	12

#	Article	IF	Citations
1116	Spaceâ€Confined Donorâ€Acceptor Strategy Enables Fast Spinâ€Flip of Multiple Resonance Emitters for Suppressing Efficiency Rollâ€Off. Angewandte Chemie, 2022, 134, .	1.6	8
1117	When Poor Lightâ€Emitting Spiro Compounds in Solution Turn into Emissive Pure Layers in Organic Lightâ€Emitting Diodes: The Key Role of Phosphine Substituents. Advanced Photonics Research, 2022, 3, .	1.7	3
1118	Ornamenting of Blue Thermally Activated Delayed Fluorescence Emitters by Anchor Groups for the Minimization of Solid-State Solvation and Conformation Disorder Corollaries in Non-Doped and Doped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 40158-40172.	4.0	11
1119	Spaceâ€Confined Donorâ€Acceptor Strategy Enables Fast Spinâ€Flip of Multiple Resonance Emitters for Suppressing Efficiency Rollâ€Off. Angewandte Chemie - International Edition, 2022, 61, .	7.2	69
1120	Tuning the Properties of Donor–Acceptor and Acceptor–Donor–Acceptor Boron Difluoride Hydrazones <i>via</i> Extended π-Conjugation. ACS Omega, 2022, 7, 32727-32739.	1.6	5
1121	Ultrapure Blue Thermally Activated Delayed Fluorescence (TADF) Emitters Based on Rigid Sulfur/Oxygen-Bridged Triarylboron Acceptor: MR TADF and D–A TADF. Journal of Physical Chemistry Letters, 2022, 13, 7561-7567.	2.1	21
1122	Thermally Activated Delayed Fluorescence: Polarity, Rigidity, and Disorder in Condensed Phases. Journal of the American Chemical Society, 2022, 144, 15211-15222.	6.6	27
1123	Structural Insight of Anthracene Orientation by Halogen Substitution: Impact on Solid-State Fluorescence and Stimuli-Induced Fluorescence Switching. Crystal Growth and Design, 2022, 22, 5432-5440.	1.4	6
1124	Molecular design of blue thermally activated delayed fluorescent emitters for high efficiency solution processable OLED via an intramolecular locking strategy. Chemical Engineering Journal, 2022, 450, 138459.	6.6	11
1125	Boron, sulfur-doped polycyclic aromatic hydrocarbon emitters with multiple-resonance-dominated lowest excited states for efficient narrowband deep-blue emission. Chemical Engineering Journal, 2023, 451, 138545.	6.6	15
1126	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
1127	Adjustable and smart AIEgens for nondoped blue and deep blue organic light-emitting diodes. Coordination Chemistry Reviews, 2022, 473, 214843.	9.5	20
1128	Propeller-shape isomers with turn-on through-space charge transfer for solution-processed non-doped organic light-emitting diodes. Chemical Engineering Journal, 2023, 452, 139120.	6.6	5
1129	Synthesis and excited state modulation of organic blue light emitters based on 2,4,6-triphenyl-1,3,5-triazine and carbazole derivatives through <i>ortho</i> -positioned linking models. New Journal of Chemistry, 2022, 46, 16121-16129.	1.4	2
1130	Tandem rigidification and π-extension as a key tool for the development of a narrow linewidth yellow hyperfluorescent OLED system. Chemical Science, 2022, 13, 10119-10128.	3.7	10
1131	The future of solution processing toward organic semiconductor devices: a substrate and integration perspective. Journal of Materials Chemistry C, 2022, 10, 12468-12486.	2.7	11
1132	Highly efficient thermally activated delayed fluorescence emitter based on the 5 <i>H</i> -benzo[<i>d</i>]benzo[4,5]imidazo[1,2- <i>a</i>]imidazole donor. Materials Chemistry Frontiers, 2022, 6, 3382-3390.	3.2	1
1133	Toward highly efficient hyperfluorescence-based emitters through excited-states alignment using novel optimally tuned range-separated models. Physical Chemistry Chemical Physics, 2022, 24, 23718-23736.	1.3	2

#	Article	IF	CITATIONS
1134	Room temperature charge-transfer phosphorescence from organic donor–acceptor Co-crystals. Chemical Science, 2022, 13, 10011-10019.	3.7	37
1135	An intramolecular-locked strategy for designing nonlinear optical materials with remarkable first hyperpolarizability. Physical Chemistry Chemical Physics, 2022, 24, 21800-21805.	1.3	2
1136	Probing disorder in 2CzPN using core and valence states. Physical Chemistry Chemical Physics, 2022, 24, 23329-23339.	1.3	1
1137	Recent progress in imidazole based efficient near ultraviolet/blue hybridized local charge transfer (HLCT) characteristic fluorophores for organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 16173-16217.	2.7	23
1138	Photochemical CO2 Reduction. , 2022, , .		0
1139	Recent progress of single-halide perovskite nanocrystals for advanced displays. Nanoscale, 2022, 14, 13990-14007.	2.8	5
1140	Turning conventional non-TADF units into high-lying reverse intersystem crossing TADF emitters: different symmetric D–A–D-type modified donor units. New Journal of Chemistry, 2022, 46, 15168-15174.	1.4	1
1141	Two boron atoms <i>versus</i> one: high-performance deep-blue multi-resonance thermally activated delayed fluorescence emitters. Chemical Communications, 2022, 58, 9377-9380.	2.2	15
1142	Multistimuli-responsive materials based on a zinc(<scp>ii</scp>) complex with high-contrast and multicolor switching. Dalton Transactions, 2022, 51, 15370-15375.	1.6	4
1143	Recent advances of NIR-TADF (<i>λ</i> maxPL/EL > 700 nm) emitters and their applications in OLEDs. Journal of Materials Chemistry C, 2022, 10, 15681-15707.	2.7	14
1144	Design of highly stable thermally activated delayed fluorescence emitters via the overlap degree of HOMO-LUMO distributions. Journal of Molecular Structure, 2023, 1272, 134213.	1.8	9
1145	Achieving over 36% EQE in blue OLEDs using rigid TADF emitters based on spiro-donor and spiro-B-heterotriangulene acceptors. Chemical Engineering Journal, 2023, 452, 139387.	6.6	16
1146	Efficient and Bright Blue Thermally Activated Delayed Fluorescence from Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	7.8	14
1147	Boronâ€Based Narrowband Multiresonance Delayed Fluorescent Emitters for Organic Lightâ€Emitting Diodes. Advanced Photonics Research, 2022, 3, .	1.7	53
1148	Benefits of the Exciplex-like Framework in Reducing the Singlet-Triplet Energy Difference: A Theoretical Perspective on the Role of the Exciton Binding Energy. Journal of Physical Chemistry A, 2022, 126, 6575-6580.	1.1	3
1149	1,3,5â€Triazineâ€Functionalized Thermally Activated Delayed Fluorescence Emitters for Organic Lightâ€Emitting Diodes. Advanced Photonics Research, 2022, 3, .	1.7	9
1150	The Relationship Between Internet Addiction, Cyberbullying and Parental Attitudes. Journal of Pediatric Research, 2022, 9, 274-285.	0.1	0
1151	Enhancement of Thermally Activated Delayed Fluorescence (TADF) in Multi-Resonant Emitters via Control of Chalcogen Atom Embedding. Chemistry of Materials, 2022, 34, 8022-8030.	3.2	15

#	Article	IF	CITATIONS
1152	Simplified Green-Emitting Single-Layer Phosphorescent Organic Light-Emitting Diodes with an External Quantum Efficiency > 22%. Chemistry of Materials, 2022, 34, 8345-8355.	3.2	5
1153	Robust Spirobifluorene Core Based Hole Transporters with High Mobility for Longâ€Life Green Phosphorescent Organic Lightâ€Emitting Devices. Chemistry - A European Journal, 2023, 29, .	1.7	3
1154	Exceeding 30 % External Quantum Efficiency in Nonâ€doped OLEDs Utilizing Solution Processable TADF Emitters with High Horizontal Dipole Orientation via Anchoring Strategy. Angewandte Chemie, 2022, 134, .	1.6	2
1155	Enhancing Horizontal Ratio of Transition Dipole Moment in Homoleptic Ir Complexes for High Outcoupling Efficiency of Organic Lightâ€Emitting Diodes. Advanced Science, 2022, 9, .	5.6	8
1156	Exceeding 30 % External Quantum Efficiency in Nonâ€doped OLEDs Utilizing Solution Processable TADF Emitters with High Horizontal Dipole Orientation via Anchoring Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1157	Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation. Beilstein Journal of Organic Chemistry, 0, 18, 1177-1187.	1.3	3
1158	Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells. Beilstein Journal of Organic Chemistry, 0, 18, 1311-1321.	1.3	7
1159	Highâ€Performance Deepâ€Blue OLEDs Harnessing Triplet–Triplet Annihilation Under Low Dopant Concentration. Advanced Photonics Research, 2023, 4, .	1.7	5
1160	Facially Coordinated, <i>Tris</i> â€bidentate Purinâ€8â€ylidene Ir(III) Complexes for Blue Electrophosphorescence and Hyperluminescence. Advanced Optical Materials, 2022, 10, .	3.6	15
1161	Spin-orbit coupling in organic microcavities: Lower polariton splitting, triplet polaritons, and disorder-induced dark-state relaxation. Physical Review A, 2022, 106, .	1.0	3
1162	Molecular Engineering of Pushâ€Pull Diphenylsulfone Derivatives towards Aggregationâ€Induced Narrowband Deep Blue Thermally Activated Delayed Fluorescence (TADF) Emitters. Chemistry - A European Journal, 2022, 28, .	1.7	3
1163	Narrowband Emissive Thermally Activated Delayed Fluorescence Materials. Advanced Optical Materials, 2022, 10, .	3.6	145
1164	Influence of Sulfur Atoms on TADF Properties from Throughâ€ S pace Charge Transfer Excited States. Chemistry - A European Journal, 2022, 28, .	1.7	7
1165	Effect of host polarity on efficiency of thermally activated delayed fluorescent and hyperfluorescent organic light emitting devices. Journal of Industrial and Engineering Chemistry, 2023, 117, 140-148.	2.9	3
1166	It's all about kinetics: Performance of Boltzmann and crossover single-emitter luminescent thermometers and their recommended operation modes. Optical Materials: X, 2022, , 100195.	0.3	0
1167	Linear, two- and four-armed pyridine-decorated thiazolo[5,4-d]thiazole fluorophores: Synthesis, photophysical study and computational investigation. Dyes and Pigments, 2023, 208, 110780.	2.0	4
1168	Substituent engineering of the diboron molecular architecture for a nondoped and ultrathin emitting layer. Chemical Science, 2022, 13, 12996-13005.	3.7	6
1169	Recent Advances in Structural Design of Efficient Nearâ€Infrared Lightâ€Emitting Organic Small Molecules. Advanced Functional Materials, 2023, 33, .	7.8	21

~		_	
Citati	ON	REDU	PT
CHAH		NLFU	

#	Article	IF	CITATIONS
1170	Advances in Solutionâ€Processed OLEDs and their Prospects for Use in Displays. Advanced Materials, 2023, 35, .	11.1	26
1171	Selenium-Doped Polycyclic Aromatic Hydrocarbon Multiresonance Emitters with Fast Reverse Intersystem Crossing for Narrowband Blue Emission. ACS Applied Materials & Interfaces, 2022, 14, 49995-50003.	4.0	24
1172	Delayed Luminescence in 2-Methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole Derivatives. Journal of Physical Chemistry A, 2022, 126, 7480-7490.	1.1	3
1173	Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nature Photonics, 2022, 16, 803-810.	15.6	190
1174	Carbonyl ontaining Thermally Activated Delayed Fluorescence Emitters for Narrowâ€Band Electroluminescence. Chemistry - A European Journal, 2023, 29, .	1.7	19
1175	Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. Biosensors, 2022, 12, 892.	2.3	22
1176	Highly Efficient Green and Red Narrowband Emissive Organic Lightâ€Emitting Diodes Employing Multiâ€Resonant Thermally Activated Delayed Fluorescence Emitters**. Angewandte Chemie, 2022, 134, .	1.6	2
1177	45.2: The Architecture of Hyperâ€fluorescent Emitter via Proper Management of Molecular Aggregation. Digest of Technical Papers SID International Symposium, 2022, 53, 454-458.	0.1	0
1178	Highly Efficient Green and Red Narrowband Emissive Organic Lightâ€Emitting Diodes Employing Multiâ€Resonant Thermally Activated Delayed Fluorescence Emitters**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
1179	Dual-State Emission of 2-(Butylamino)Cinchomeronic Dinitrile Derivatives. Molecules, 2022, 27, 7144.	1.7	2
1180	Achieving 34.3% External Quantum Efficiency for Red Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diode by Molecular Isomer Engineering. Advanced Optical Materials, 2023, 11, .	3.6	24
1181	Donor or Acceptor: Molecular Engineering Based on dibenzo[a,c]phenazine Backbone for Highly Efficient Thermallyâ€Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	8
1182	From single molecule to molecular aggregation science. Coordination Chemistry Reviews, 2023, 475, 214872.	9.5	29
1183	Chiral sulfoximine-based TADF emitter for circularly polarized luminescence and highly efficient OLEDs. Chemical Engineering Journal, 2023, 454, 140070.	6.6	5
1184	Nanohybrids as a tool to control the dispersion of organic emitters in solution-processed electroluminescent layers. New Journal of Chemistry, 0, , .	1.4	1
1185	A Ï€-extended benzothiadiazole derivative for high-efficiency TADF-sensitized ï¬,uorescent organic light-emitting diode. Chemical Communications, 0, , .	2.2	3
1186	The arylvinylpyrimidine scaffold: a tunable platform for luminescent and optical materials. Organic and Biomolecular Chemistry, 2022, 21, 39-52.	1.5	6
1187	Tailoring Donorâ€Acceptor Emitters to Minimise Localisation Induced Quenching of Thermally Activated Delayed Fluorescence. ChemPhotoChem, 2023, 7, .	1.5	1

#	Article	IF	CITATIONS
1188	Efficient TADF from carbonâ^'carbon bonded donorâ^'acceptor molecules based on boron-carbonyl hybrid acceptor. Dyes and Pigments, 2023, 209, 110937.	2.0	3
1189	<scp>Skyâ€Blue Aggregationâ€Induced</scp> Delayed Fluorescence Luminogens with High Horizontal Dipole Orientation for Efficient Organic <scp>Lightâ€Emitting</scp> Diodes ^{â€} . Chinese Journal of Chemistry, 2023, 41, 527-534.	2.6	6
1190	A Materials Acceleration Platform for Organic Laser Discovery. Advanced Materials, 2023, 35, .	11.1	10
1191	Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes. Communications Chemistry, 2022, 5, .	2.0	53
1192	A sensitization strategy for highly efficient blue fluorescent organic light-emitting diodes. Frontiers of Optoelectronics, 2022, 15, .	1.9	2
1193	Ultraâ€Narrowband Blue Multiâ€Resonance Thermally Activated Delayed Fluorescence Materials. Advanced Science, 2023, 10, .	5.6	33
1194	Exciplex Emission and Property Investigation Based on Cyano-substituted 9-Phenylfluorene Derivative. Acta Chimica Sinica, 2022, 80, 1476.	0.5	2
1195	Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives. Physical Chemistry Chemical Physics, 2023, 25, 2729-2741.	1.3	8
1196	Effect of substitution position of dibenzofuran-terminated robust hole-transporters on physical properties and TADF OLED performances. Molecular Systems Design and Engineering, 2023, 8, 388-393.	1.7	4
1197	Modulating the peripheral large steric hindrance of iridium complexes for achieving narrowband emission and pure red OLEDs with an EQE up to 32.0%. Inorganic Chemistry Frontiers, 2023, 10, 1018-1026.	3.0	9
1198	Achieving long-lived room-temperature phosphorescence via charge transfer technology and dopant-matrix design strategy. Dyes and Pigments, 2023, 210, 110984.	2.0	4
1199	Syntheses and Properties of Heteroatom-Doped Conjugated Nanohoops. Chinese Journal of Organic Chemistry, 2022, 42, 3437.	0.6	4
1200	Indirect Control of Donor/Acceptor Interactions for Highly Efficient Spaceâ€Confined Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2023, 33, .	7.8	16
1201	Either Accurate Singlet–Triplet Gaps or Excited-State Structures: Testing and Understanding the Performance of TD-DFT for TADF Emitters. Journal of Chemical Theory and Computation, 2022, 18, 7702-7713.	2.3	7
1202	Polymer-Based TADF-Type Organic Afterglow. Journal of Physical Chemistry C, 2022, 126, 20728-20738.	1.5	5
1203	Metalâ€Perturbed Multiresonance TADF Emitter Enables Highâ€Efficiency and Ultralow Efficiency Rollâ€Off Nonsensitized OLEDs with Pure Green Gamut. Advanced Materials, 2023, 35, .	11.1	32
1204	Progress in the Development of Imidazopyridine-Based Fluorescent Probes for Diverse Applications. Critical Reviews in Analytical Chemistry, 0, , 1-18.	1.8	7
1205	Poly(acridan-grafted biphenyl germanium) with High Triplet Energy as a Universal Host for High-Efficiency Thermally Activated Delayed Fluorescence Full-Color Devices and Their Hybrid with Phosphor for White Light Electroluminescence. ACS Applied Materials & Interfaces, 2022, 14, 55873-55885.	4.0	3

#	Article	IF	CITATIONS
1206	In Search of Hosts for Blue OLEDs:ÂComputational Design and Experimental Validation. Chemistry - A European Journal, 0, , .	1.7	1
1207	Triplet-Polaron-Annihilation-Induced Degradation of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Physical Review Applied, 2022, 18, .	1.5	9
1208	Asymmetric intramolecular charge transfer enables highly efficient red thermally activated delayed fluorescent emitters. Chemical Engineering Journal, 2023, 457, 141061.	6.6	6
1209	Aggregation-Induced Emission Metallocuboctahedra for White Light Devices. Jacs Au, 2022, 2, 2809-2820.	3.6	2
1210	Dualâ€Rotor Luminescence Based on Supramolecular Secondary Reassembly. Advanced Optical Materials, 2023, 11, .	3.6	6
1211	Repair and Splicing of Centimeterâ€Size Organic Crystalline Optical Waveguides. Advanced Functional Materials, 2023, 33, .	7.8	5
1212	Advanced charge transfer technology for highly efficient and long-lived TADF-type organic afterglow with near-infrared light-excitable property. Science China Chemistry, 2023, 66, 1120-1131.	4.2	18
1213	Isomeric thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Chemical Science, 2023, 14, 1551-1556.	3.7	12
1214	Supramolecular Selfâ€Assembly as a Tool To Preserve the Electronic Purity of Perylene Diimide Chromophores**. Angewandte Chemie, 2023, 135, .	1.6	5
1215	Manipulation of Organic Afterglow in Fluorantheneâ€Containing Dopantâ€Matrix Systems: From Conventional Roomâ€Temperature Phosphorescence to Efficient Red TADFâ€Type Organic Afterglow. Chemistry - A European Journal, 2023, 29, .	1.7	7
1216	Supramolecular Selfâ€Assembly as a Tool To Preserve the Electronic Purity of Perylene Diimide Chromophores**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1217	Light emission mechanism in dimers of carbene–metal–amide complexes. Physical Chemistry Chemical Physics, 2023, 25, 3220-3231.	1.3	5
1218	Phosphorus-containing aromatic polymers: Synthesis, structure, properties and membrane-based applications. Progress in Polymer Science, 2023, 138, 101646.	11.8	11
1219	Cyano-capped molecules: versatile organic materials. Journal of Materials Chemistry A, 2023, 11, 3753-3770.	5.2	8
1220	Macrocycleâ€Based Crystalline Supramolecular Assemblies Built with Intermolecular Chargeâ€Transfer Interactions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
1221	Macrocycleâ€Based Crystalline Supramolecular Assemblies Built with Intermolecular Chargeâ€Transfer Interactions. Angewandte Chemie, 0, , .	1.6	4
1222	Interplay of molecular dynamics and radiative decay of a TADF emitter in a glass-forming liquid. Physical Chemistry Chemical Physics, 2023, 25, 3151-3159.	1.3	2
1223	Influence of terminal alkyl groups on the structure, electrical and sensory properties of thin films of self-assembling organosilicon derivatives of benzothieno[3,2-b][1]benzothiophene. Journal of Materials Chemistry C, O, , .	2.7	1

#	Article	IF	CITATIONS
1224	Spiral donor-based host materials for highly efficient blue thermally activated delayed fluorescence OLEDs. Chemical Engineering Journal, 2023, 458, 141416.	6.6	2
1225	Intersystem crossing, phosphorescence, and spin-orbit coupling. Two contrasting Cu(I)-TADF dimers investigated by milli- to micro-second phosphorescence, femto-second fluorescence, and theoretical calculations. Coordination Chemistry Reviews, 2023, 478, 214975.	9.5	10
1226	Crystallization control based on A-site cation strategy for blue FAPbBr3 perovskite nanoplatelets with pure emission. Applied Surface Science, 2023, 615, 156355.	3.1	3
1227	A TADF Emitter with Dual Para-Positioned Donors Enables OLEDs with Improved Efficiency and CIE Coordinates Close to the Rec. 2020 Red Standard. ACS Applied Materials & Interfaces, 2023, 15, 1685-1692.	4.0	8
1228	Role of the Intramolecular‣ocking Strategy in the Construction of Organic Thermally Activated Delayed Fluorescence Emitters with Rotationâ€Restricted Acceptors. Advanced Optical Materials, 2023, 11, .	3.6	9
1229	Spiroborateâ€Based Host Materials with High Triplet Energies and Ambipolar Chargeâ€Transport Properties. Angewandte Chemie, 0, , .	1.6	0
1230	Efficient pure blue hyperfluorescence devices utilizing quadrupolar donor-acceptor-donor type of thermally activated delayed fluorescence sensitizers. Nature Communications, 2023, 14, .	5.8	35
1231	Spiroborateâ€Based Host Materials with High Triplet Energies and Ambipolar Chargeâ€Transport Properties. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1232	Solutionâ€Processed Pure Red TADF Organic Lightâ€Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. Advanced Materials, 2023, 35, .	11.1	20
1233	Rational Molecular Design Strategy for High-Efficiency Ultrapure Blue TADF Emitters: Symmetrical and Rigid Sulfur-Bridged Boron-Based Acceptors. ACS Applied Materials & Interfaces, 2023, 15, 5529-5537.	4.0	7
1234	Locally Excited States Guided Enhancement in Reverse Intersystem Crossing Rate in Unconventional Acceptor-free Thermally Activated Delayed Emitters. Journal of Physical Chemistry C, 2023, 127, 2398-2406.	1.5	2
1235	Efficient thermally activated delayed fluorescence emitters with regioisomeric effects for red/near-infrared organic light-emitting diodes. Materials Chemistry Frontiers, 2023, 7, 1633-1641.	3.2	5
1236	Halogenated Thermally Activated Delayed Fluorescence Materials for Efficient Scintillation. Research, 2023, 6, .	2.8	4
1237	Multiple charge-transfer excited state induced efficient and stable thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2023, 11, 4210-4218.	2.7	1
1238	Rhodium-Catalyzed Tandem Acylmethylation/Annulation Reactions of 2-Aryl-2 <i>H</i> -indazoles with Sulfoxonium Ylides: Easy Access to 6-Arylindazolo[2,3- <i>a</i>]quinolines. Chinese Journal of Organic Chemistry, 2023, 43, 1187.	0.6	1
1239	Organic Light-Emitting Diodes. , 2023, , 79-94.		0
1240	Extracting Polaron Recombination from Electroluminescence in Organic Lightâ€Emitting Diodes by Artificial Intelligence. Advanced Materials, 2023, 35, .	11.1	2
1241	Multi-stimuli responsive behavior of two Schiff base complexes with high contrast multicolor switching and wearable applications for rapid detection of HCl and NH3 vapor. Dyes and Pigments, 2023, 212, 111149.	2.0	5

#	Article	IF	CITATIONS
1242	Finely-tuned heteroleptic phosphorescent Ir(III) complexes for CIEyÂ<Â0.2-based pure blue organic light-emitting diodes with external quantum efficienciesÂ>Â30%. Chemical Engineering Journal, 2023, 463, 142493.	6.6	1
1243	Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coordination Chemistry Reviews, 2023, 483, 215100.	9.5	13
1244	Rational control of ï€-conjugation and CT component in hybridized local and charge transfer molecules for high performance deep blue emitters. Dyes and Pigments, 2023, 213, 111185.	2.0	2
1245	Sulfone-incorporated thermally activated delayed fluorescence emitters enable organic light-emitting diodes with low efficiency roll-off. Dyes and Pigments, 2023, 214, 111225.	2.0	1
1246	Constructing high-efficiency aggregation-induced delayed fluorescence molecules and OLEDs applying C-H···N hydrogen bond manipulation strategy. Dyes and Pigments, 2023, 215, 111298.	2.0	4
1247	Recent Developments on Understanding Charge Transfer in Molecular Electron Donorâ€Acceptor Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1248	Recent Developments on Understanding Charge Transfer in Molecular Electron Donorâ€Acceptor Systems. Angewandte Chemie, 2023, 135, .	1.6	3
1249	Suppressing the Undesirable Energy Loss in Solutionâ€Processed Hyperfluorescent <scp>OLEDs</scp> Employing <scp>BODIPY</scp> â€Based Hybridized Local and Chargeâ€Transfer Emitter. Energy and Environmental Materials, 2024, 7, .	7.3	4
1250	Contributing to Biochemistry and Optoelectronics: Pyrrolo[1′,2′:2,3]imidazo[1,5-a]indoles and Cyclohepta[4,5]pyrrolo[1,2-c]pyrrolo[1,2-a]imidazoles via [3+2] Annulation of Acylethynylcycloalka[b]pyrroles with î"1-Pyrrolines. International Journal of Molecular Sciences, 2023, 24, 3404.	1.8	3
1251	Mesogenic Groups Control the Emitter Orientation in Multiâ€Resonance TADF Emitter Films**. Angewandte Chemie, 2023, 135, .	1.6	0
1252	Mesogenic Groups Control the Emitter Orientation in Multiâ€Resonance TADF Emitter Films**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1253	Enhancing reverse intersystem crossing rate of red thermally activated delayed fluorescence emitters by simultaneously involving locally excited triplet states from donor and acceptor segments. Chemical Engineering Journal, 2023, 461, 141915.	6.6	5
1254	Modular Synthesis of Triarylamines and Poly(triarylamine)s through a Radical Mechanism. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
1255	Realization of Highly Efficient InP Quantum Dot Lightâ€Emitting Diodes through Inâ€Depth Investigation of Excitonâ€Harvesting Layers. Advanced Optical Materials, 2023, 11, .	3.6	2
1256	Electronic Structure of Exciplexes and the Role of Local Triplet States on Efficiency of Thermally Activated Delayed Fluorescence. ACS Applied Electronic Materials, 2023, 5, 1489-1501.	2.0	3
1257	Helically Chiral Donor–Acceptor Double Hetero[4]helicenes with Circularly Polarized Thermally Activated Delayed Fluorescence. Advanced Optical Materials, 2023, 11, .	3.6	9
1258	Highly Luminescent Aluminum Complex with Î ² -Diketone Ligands Exhibiting Near-Unity Photoluminescence Quantum Yield, Thermally Activated Delayed Fluorescence, and Rapid Radiative Decay Rate Properties in Solution-Processed Organic Light-Emitting Devices. Bulletin of the Chemical Society of Japan, 2023, 96, 183-189.	2.0	6
1259	Control of the Organization of 4,4′-bis(carbazole)-1,1′-biphenyl (CBP) Molecular Materials through Siloxane Functionalization. Molecules, 2023, 28, 2038.	1.7	1

#	Article	IF	CITATIONS
1260	Thermally Activated Delayed Fluorescence Driven by Conformation Distortion-Coupled Intramolecular Charge Transfer of Anthraquinone Derivatives. Journal of Physical Chemistry C, 2023, 127, 4784-4791.	1.5	1
1261	An Oligomer Approach for Blue Thermally Activated Delayed Fluorescent Emitters Based on Twisted Donor–Acceptor Units. Chemistry of Materials, 2023, 35, 2027-2037.	3.2	1
1262	Blue emitters with various electron-donors attached to the 9-phenyl-9-phosphafluorene oxide (PhFIOP) moiety and their thermally activated delayed fluorescence (TADF) behavior. Materials Chemistry Frontiers, 2023, 7, 1841-1854.	3.2	1
1263	Sulfurâ€Decorated Nonaromatic Amine Emitters Towards Efficient Triplet Exciton Utilization in Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2023, 29, .	1.7	1
1264	Theoretical insights into luminescence mechanism of Naphthyridine-based thermally activated delayed fluorescence emitter with aggregation-induced emission. Chemical Physics Letters, 2023, 817, 140407.	1.2	3
1265	Triphenylamine–boron complexes: molecular thermometry and alkyl chain controlled molecular fluorescent liquids. New Journal of Chemistry, 2023, 47, 7288-7298.	1.4	0
1266	Tetrapyridine/triphenyltriazine-conjugated electron transporters for low-power-consumption, high-stability phosphorescent OLEDs. Journal of Materials Chemistry C, 2023, 11, 4129-4135.	2.7	5
1267	Narrowband emission: organic thermally-activated delayed fluorescence materials and underlying mechanisms. Materials Chemistry Frontiers, 2023, 7, 2809-2827.	3.2	12
1268	Luminescence and Palladium: The Odd Couple. Molecules, 2023, 28, 2663.	1.7	6
1269	Quinoxaline-based thermally activated delayed fluorescence emitters for highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2023, 11, 5217-5224.	2.7	1
1270	Impact of π-Expanded Boron-Carbonyl Hybrid Acceptors on TADF Properties: Controlling Local Triplet Excited States and Unusual Emission Tuning. ACS Applied Materials & Interfaces, 2023, 15, 15758-15767.	4.0	3
1271	Highly efficient and stable green fluorescent OLEDs with high color purity using a BODIPY derivative. Molecular Systems Design and Engineering, 2023, 8, 866-873.	1.7	4
1272	Roles of Molecular Spatial Arrangement in Exciton Energy Transfer in Organic Light-Emitting Diodes: A Theoretical Study. Journal of Physical Chemistry C, 2023, 127, 5950-5957.	1.5	0
1273	Multiple resonance induced thermally activated delayed fluorescence: effect of chemical modification. Electronic Structure, 2023, 5, 014010.	1.0	1
1274	Thermally Activated Delayed Fluorescence from Perovskiteâ€Derivative CsAgCl ₂ Nanocrystals for Highâ€Resolution Xâ€Ray Imaging. Advanced Optical Materials, 2023, 11, .	3.6	4
1275	Bathochromic Shift of Fluorescence Peak in Dipyrrolo[1,2-a:2′,1′-c]quinoxaline by Introducing Each of Electron-Donating and Electron-Withdrawing Substituent. Molecules, 2023, 28, 2896.	1.7	4
1276	Donor–acceptor–donor molecules for high performance near ultraviolet organic light-emitting diodes <i>via</i> hybridized local and charge-transfer processes. Journal of Materials Chemistry C, O, ,	2.7	0
1277	Modulating the Alkylation Position on Terminal Thiophene Ring of Naphtho[2,3- <i>b</i> :6,7- <i>b</i> ′] Bithieno[2,3- <i>d</i>] Thiophene (NBTT) for High-Performance Organic Optoelectronic Devices. ACS Applied Materials & Interfaces, 2023, 15, 16930-16941.	4.0	2

#	Article	IF	CITATIONS
1278	Development of a deep-blue exciplex as an emitter and a host for highly efficient and wide-color OLEDs. Journal of Materials Chemistry C, 2023, 11, 6354-6359.	2.7	1
1279	Design of Intramolecular Dihedral Angle between Electronic Donor and Acceptor in Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry Letters, 2023, 14, 3335-3342.	2.1	1
1280	Solutionâ€processed highâ€performance organic lightâ€emitting diodes containing a greenâ€emitting multiresonant thermally activated delayed fluorescent dendrimer. Journal of the Society for Information Display, 0, , .	0.8	2
1281	Assessing Intersystem Crossing Rates in Donor- and/Acceptor-Functionalized Corroles: A Computational Study. Journal of Physical Chemistry A, 2023, 127, 3347-3355.	1.1	4
1282	A π-stacked pure organic material with room temperature phosphorescence. New Journal of Chemistry, 0, , .	1.4	0
1283	Dibenzo[<i>b,d</i>]furan/thiophene-fused double boron-based multiresonance emitters with narrowband ultrapure green electroluminescence. Chemical Communications, 2023, 59, 5126-5129.	2.2	6
1284	Crystalline matrix-activated spin-forbidden transitions of engineered organic crystals. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1285	Molecular geometry and the photophysics of thermally activated delayed fluorescence: the strange case of DMAC-py-TRZ. Journal of Materials Chemistry C, 2023, 11, 8284-8292.	2.7	7
1286	Theoretical study on the relationship between the molecular structures and optoelectronic properties of aromatic-fluorinated sumanene derivatives. New Journal of Chemistry, 2023, 47, 8867-8876.	1.4	4
1287	Recent progress and prospects of fluorescent materials based on narrow emission. Journal of Materials Chemistry C, 2023, 11, 6471-6511.	2.7	18
1288	Conformation- and Coordination Mode-Dependent Stimuli-Responsive Salicylaldehyde Hydrazone Zn(II) Complexes. Inorganic Chemistry, 2023, 62, 6323-6331.	1.9	6
1289	Highly Efficient Solution-Processed Bluish-Green Thermally Activated Delayed Fluorescence Compounds Using Di(pyridin-3-yl)methanone as Acceptor. Photonics, 2023, 10, 456.	0.9	0
1290	Regio-isomer enabling efficient red TADF emitters based on pyridobenzoquinoxaline. Journal of Materials Chemistry C, 2023, 11, 6685-6694.	2.7	7
1291	Molecular engineering of locked alkyl aryl carbonyl-based thermally activated delayed fluorescence emitters <i>via</i> a cascade C–H activation process. Chemical Science, 2023, 14, 5125-5131.	3.7	2
1326	A deep learning framework for predictions of excited state properties of light emissive molecules. New Journal of Chemistry, 2023, 47, 9550-9554.	1.4	0
1328	Efficient and air-stable n-type doping in organic semiconductors. Chemical Society Reviews, 2023, 52, 3842-3872.	18.7	15
1346	Integrating the atomically separated frontier molecular orbital distribution of two multiple resonance frameworks through a single bond for high-efficiency narrowband emission. Materials Horizons, 2023, 10, 4224-4231.	6.4	2
1357	Light-Emitting Diodes Based on Upconversion Nanoparticles. Progress in Optical Science and Photonics, 2023, , 275-303.	0.3	0

IF ARTICLE CITATIONS Roll-to-roll processed organic light-emitting devices., 2024, , 37-56. 1385 0 Emerging hyperfluorescent emitters for solid-state lighting. Journal of Materials Chemistry C, 2023, 11, 13647-13656. 1391 2.7 A High-Performance Dual-Functional Organic Upconversion Device with Detectivity Approaching 1394 6.4 0 10¹³ Jones and Photon-to-Photon Efficiency over 20%. Materials Horizons, 0, , . Acceptor–donor–acceptor based thermally activated delayed fluorescent materials: structure–property insights and electroluminescence performances. Materials Chemistry Frontiers, 1417 Liquid-crystalline circularly polarised TADF emitters for high-efficiency, solution-processable 1428 6.4 0 organic light-emitting diodes. Materials Horizons, 2024, 11, 1251-1260. Charge transporting and thermally activated delayed fluorescence materials for OLED applications. Physical Chemistry Chemical Physics, 2024, 26, 3711-3754. 1.3 Heptagonal intramolecular-lock strategy enables high-performance thermally activated delayed 1445 4.2 0 fluorescence emitters. Science China Chemistry, 0, , . High-Efficiency Functional Materials: Challenges and Developments in Solution and Dry Processed 1452 1.9 Green OLEDs. Reaction Chemistry and Engineering, 2024, 9, 496-527. Robotic Process Automation-Driven Quantum Chemistry Approach in the Search of New Metal-Free 1457 0 Emitters., 2023,,. Recent Progress in Phenoxazine-Based Thermally Activated Delayed Fluorescent Compounds and Their 1464 Full-Color Organic Light-Emitting Diodes. Topics in Current Chemistry, 2024, 382, .