Micro/nanorobots for biomedicine: Delivery, surgery, se

Science Robotics

2,

DOI: 10.1126/scirobotics.aam6431

Citation Report

#	Article	IF	CITATIONS
1	Bio-templated silica composites for next-generation biomedical applications. Advances in Colloid and Interface Science, 2017, 249, 272-289.	7.0	50
2	Nanomotor-Enabled pH-Responsive Intracellular Delivery of Caspase-3: Toward Rapid Cell Apoptosis. ACS Nano, 2017, 11, 5367-5374.	7.3	159
3	Self-thermophoretic motion of controlled assembled micro-/nanomotors. Physical Chemistry Chemical Physics, 2017, 19, 23606-23613.	1.3	55
4	Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells. Nanoscale, 2017, 9, 18423-18429.	2.8	65
5	Perspectives on Janus micromotors: Materials and applications. Applied Materials Today, 2017, 9, 407-418.	2.3	88
6	Assembly of a functional and responsive microstructure by heat bonding of DNA-grafted colloidal brick. Scientific Reports, 2017, 7, 9104.	1.6	4
7	Topographical Manipulation of Microparticles and Cells with Acoustic Microstreaming. ACS Applied Materials & Interfaces, 2017, 9, 38870-38876.	4.0	60
8	Ultrasound propulsion of micro-/nanomotors. Applied Materials Today, 2017, 9, 493-503.	2.3	182
9	Biomedical nanomotors: efficient glucose-mediated insulin release. Nanoscale, 2017, 9, 14307-14311.	2.8	49
10	The use of soft robotics in cardiovascular therapy. Expert Review of Cardiovascular Therapy, 2017, 15, 767-774.	0.6	17
11	Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chemical Science, 2017, 8, 6750-6763.	3.7	104
12	ZnO-based microrockets with light-enhanced propulsion. Nanoscale, 2017, 9, 15027-15032.	2.8	53
13	Magnetotactic Bacteria Powered Biohybrids Target <i>E. coli</i> Biofilms. ACS Nano, 2017, 11, 9968-9978.	7.3	154
14	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie - International Edition, 2017, 56, 12127-12131.	7.2	126
15	Microfluidic Lithography of Bioinspired Helical Micromotors. Angewandte Chemie, 2017, 129, 12295-12299.	1.6	37
16	Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano, 2017, 11, 9268-9275.	7.3	107
17	Photochemically Activated Motors: From Electrokinetic to Diffusion Motion Control. ACS Applied Materials & Interfaces, 2017, 9, 44948-44953.	4.0	15
18	Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2017, 2, .	9.9	594

ARTICLE IF CITATIONS # Orthogonal navigation of multiple visible-light-driven artificial microswimmers. Nature 19 5.8 89 Communications, 2017, 8, 1438. Active colloidal particles at fluid-fluid interfaces. Current Opinion in Colloid and Interface Science, 3.4 2017, 32, 57-68. 21 Highly Efficient Freestyle Magnetic Nanoswimmer. Nano Letters, 2017, 17, 5092-5098. 4.5 182 2017 Roadmap for Innovation—ACCÂHealth Policy Statement on Healthcare Transformation in the EraÂof Digital Health, Big Data, and ÂPrecision Health. Journal of the American College of Cardiology, 2017, 70, 2696-2718. Magnetically guided actuation of ferromagnetic bodies on the planar surfaces: Numerical modeling 23 1 and experimental verification., 2017,,. Swimming Characteristics of Bioinspired Helical Microswimmers Based on Soft Lotus-Root Fibers. 1.4 Micromachines, 2017, 8, 349. 25 Implantable Bio-MEMS applications: A review., 2017,,. 3 "Z―Shaped Rotational Au/Pt Micro-Nanorobot. Micromachines, 2017, 8, 183. 1.4 26 27 Finding Consensus Without Computation. IEEE Robotics and Automation Letters, 2018, 3, 1346-1353. 3.3 15 Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic 1.6 Self-Diffusiophoresis. Langmuir, 2018, 34, 3289-3295. Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Materials Science 29 14.8 48 and Engineering Reports, 2018, 128, 1-31. Ballistic impact response of lipid membranes. Nanoscale, 2018, 10, 4761-4770. 2.8 Maneuverability of Magnetic Nanomotors Inside Living Cells. Advanced Materials, 2018, 30, e1800429. $\mathbf{31}$ 11.1 126 Magnetically driven omnidirectional artificial microswimmers. Soft Matter, 2018, 14, 3415-3422. 1.2 Locomotion of two vibration-driven modules connected by a mechanical position limiter. 33 7 3.6 International Journal of Mechanical Sciences, 2018, 137, 252-262. Collective motion and dynamic self-assembly of colloid motors. Current Opinion in Colloid and 48 Interface Science, 2018, 35, 51-58. Looking aheadâ€" <i>Science Robotics</i> in its second year. Science Robotics, 2018, 3, . 35 9.9 5 Progress toward Catalytic Micro―and Nanomotors for Biomedical and Environmental Applications. 11.1 184 Advanced Materials, 2018, 30, e1703660.

#	Article	IF	CITATIONS
37	Magnetically Actuated Peanut Colloid Motors for Cell Manipulation and Patterning. ACS Nano, 2018, 12, 2539-2545.	7.3	153
38	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
39	Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing. Advanced Functional Materials, 2018, 28, 1705867.	7.8	117
40	Janus Microdimer Surface Walkers Propelled by Oscillating Magnetic Fields. Advanced Functional Materials, 2018, 28, 1706066.	7.8	105
41	Small‣cale Machines Driven by External Power Sources. Advanced Materials, 2018, 30, e1705061.	11.1	186
42	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie, 2018, 130, 2687-2691.	1.6	20
43	Medical Imaging for the Tracking of Micromotors. ACS Nano, 2018, 12, 1220-1227.	7.3	139
44	Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale, 2018, 10, 2327-2332.	2.8	39
45	Micromotors Go In Vivo: From Test Tubes to Live Animals. Advanced Functional Materials, 2018, 28, 1705640.	7.8	106
46	Engineering of Selfâ€Propelling Microbots and Microdevices Powered by Magnetic and Electric Fields. Advanced Functional Materials, 2018, 28, 1705953.	7.8	109
47	Magnetically Actuated Rolling of Starâ€6haped Hydrogel Microswimmer. Macromolecular Chemistry and Physics, 2018, 219, 1700540.	1.1	36
48	Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials, 2018, 28, 1705421.	7.8	99
49	Selfâ€Propelled Rolledâ€Up Polyelectrolyte Multilayer Microrockets. Advanced Functional Materials, 2018, 28, 1705684.	7.8	46
50	Helical Nanomachines as Mobile Viscometers. Advanced Functional Materials, 2018, 28, 1705687.	7.8	63
51	Mobile Magnetic Nanocatalysts for Bioorthogonal Targeted Cancer Therapy. Advanced Functional Materials, 2018, 28, 1705920.	7.8	92
52	Mobile nanotweezers for active colloidal manipulation. Science Robotics, 2018, 3, .	9.9	83
53	Tubular Micro/Nanomachines: From the Basics to Recent Advances. Advanced Functional Materials, 2018, 28, 1705872.	7.8	97
54	Active Intracellular Delivery of a Cas9/sgRNA Complex Using Ultrasoundâ€Propelled Nanomotors. Angewandte Chemie - International Edition, 2018, 57, 2657-2661.	7.2	187

#	Article	IF	CITATIONS
55	Electric-Field-Guided Precision Manipulation of Catalytic Nanomotors for Cargo Delivery and Powering Nanoelectromechanical Devices. ACS Nano, 2018, 12, 1179-1187.	7.3	120
56	Lightâ€Ultrasound Driven Collective "Firework―Behavior of Nanomotors. Advanced Science, 2018, 5, 1800122.	5.6	81
57	3D Nanoporous Gold‣upported Pt Nanoparticles as Highly Accelerating Catalytic Auâ€Pt Micromotors. Advanced Materials Interfaces, 2018, 5, 1701689.	1.9	11
58	Catalytic Tubular Microjet Navigating in Confined Microfluidic Channels: Modeling and Optimization. Journal of Microelectromechanical Systems, 2018, 27, 333-343.	1.7	1
59	Model-Free Trajectory Tracking Control of Two-Particle Magnetic Microrobot. IEEE Nanotechnology Magazine, 2018, 17, 697-700.	1.1	46
60	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	6.6	464
61	Advances in liquid metals for biomedical applications. Chemical Society Reviews, 2018, 47, 2518-2533.	18.7	332
62	Light-Powered Nanoconverters Cytotoxic to Breast Cancer Cells. Journal of Physical Chemistry C, 2018, 122, 7916-7924.	1.5	7
63	Magnetic field concentration using ferromagnetic material to propel a wireless power transfer based micro-robot. AIP Advances, 2018, 8, 056723.	0.6	1
64	Kink and Delta Self-Actuating Platinum Micro-Robot. IEEE Nanotechnology Magazine, 2018, 17, 603-606.	1.1	3
65	Precision-Guided Nanospears for Targeted and High-Throughput Intracellular Gene Delivery. ACS Nano, 2018, 12, 4503-4511.	7.3	103
66	Nanoparticle-based local antimicrobial drug delivery. Advanced Drug Delivery Reviews, 2018, 127, 46-57.	6.6	248
67	Targeting and isolation of cancer cells using micro/nanomotors. Advanced Drug Delivery Reviews, 2018, 125, 94-101.	6.6	125
68	Biomimetic Plateletâ€Camouflaged Nanorobots for Binding and Isolation of Biological Threats. Advanced Materials, 2018, 30, 1704800.	11.1	139
69	Magnetotaxis Enables Magnetotactic Bacteria to Navigate in Flow. Small, 2018, 14, 1702982.	5.2	27
70	Effect of tapering on elastic filament microswimming under planar body actuation. Biomedical Physics and Engineering Express, 2018, 4, 015019.	0.6	4
71	Automating Robot Motion Planning for Magnetic Resonance Navigation Using Q-Learning. , 2018, , .		3
72	Automating Regularized Sensitivity Encoding Reconstruction via Genetic Algorithm for MRI Robotics. , 2018, , .		0

#	Article	IF	CITATIONS
73	Lab-on-a-micromotor: catalytic Janus particles as mobile microreactors for tailored synthesis of nanoparticles. Chemical Science, 2018, 9, 8056-8064.	3.7	15
74	Enhanced Removal of Toxic Heavy Metals Using Swarming Biohybrid Adsorbents. Advanced Functional Materials, 2018, 28, 1806340.	7.8	118
75	Intelligent Micro/nanomotors with Taxis. Accounts of Chemical Research, 2018, 51, 3006-3014.	7.6	118
76	Robotic Path Planning Using A* Algorithm for Automatic Navigation in Magnetic Resonance Angiography. , 2018, 2018, 734-737.		2
77	Frontiers of Medical Micro/Nanorobotics: in vivo Applications and Commercialization Perspectives Toward Clinical Uses. Frontiers in Bioengineering and Biotechnology, 2018, 6, 170.	2.0	86
78	Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. Biosensors, 2018, 8, 100.	2.3	15
79	Automated Control of Multifunctional Magnetic Spores Using Fluorescence Imaging for Microrobotic Cargo Delivery. , 2018, , .		4
80	Fabrication and Locomotion of Flexible Nanoswimmers. , 2018, , .		2
81	ZnO/ZnO ₂ /Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Applied Materials & Interfaces, 2018, 10, 42688-42697.	4.0	70
82	Highâ€Motility Visible Lightâ€Driven Ag/AgCl Janus Micromotors. Small, 2018, 14, e1803613.	5.2	56
83	Stress-based navigation for microscopic robots in viscous fluids. Journal of Micro-Bio Robotics, 2018, 14, 59-67.	2.1	2
84	Untethered Miniature Soft Robots: Modeling and Design of a Millimeter-Scale Swimming Magnetic Sheet. Soft Robotics, 2018, 5, 761-776.	4.6	65
85	Programmable Medicine: Autonomous, Ingestible, Deployable Hydrogel Patch and Plug for Stomach Ulcer Therapy. , 2018, , .		12
86	Micro-/Nanorobots Propelled by Oscillating Magnetic Fields. Micromachines, 2018, 9, 540.	1.4	34
87	A Review of Fast Bubble-Driven Micromotors Powered by Biocompatible Fuel: Low-Concentration Fuel, Bioactive Fluid and Enzyme. Micromachines, 2018, 9, 537.	1.4	44
88	A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances, 2018, 4, eaat4388.	4.7	402
89	Chemically Self-Propelled 3D-Printed Microbots. , 2018, , .		0
90	Paper Origamiâ€Inspired Design and Actuation of DNA Nanomachines with Complex Motions. Small, 2018, 14, e1802580.	5.2	32

#	Article	IF	CITATIONS
91	A Fish-Like Magnetically Propelled Microswimmer Fabricated by 3D Laser Lithography. , 2018, , .		4
92	Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale, 2018, 10, 16398-16415.	2.8	73
93	Cooperative Multifunctional Selfâ€Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Advanced Functional Materials, 2018, 28, 1804343.	7.8	81
94	Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps. Accounts of Chemical Research, 2018, 51, 1921-1930.	7.6	37
95	3D Printed Enzymatically Biodegradable Soft Helical Microswimmers. Advanced Functional Materials, 2018, 28, 1804107.	7.8	222
96	Shape-Transformable, Fusible Rodlike Swimming Liquid Metal Nanomachine. ACS Nano, 2018, 12, 10212-10220.	7.3	186
97	Multiplex recognition and logic devices for molecular robot prototype based on an europium(iii)–cyclen system. Biosensors and Bioelectronics, 2018, 122, 1-7.	5.3	11
98	Photocatalytic Micro/Nanomotors: From Construction to Applications. Accounts of Chemical Research, 2018, 51, 1940-1947.	7.6	130
99	A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface. Nanoscale, 2018, 10, 19673-19677.	2.8	30
100	Photothermal effects in mobile nanotweezers. , 2018, , .		4
101	Electrically Controlled Biochemical Release from Micro/Nanostructures for in vitro and in vivo Applications: A Review. ChemNanoMat, 2018, 4, 1023-1038.	1.5	8
102	Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics, 2018, 3, .	9.9	190
103	Micro- and nanorobots based sensing and biosensing. Current Opinion in Electrochemistry, 2018, 10, 174-182.	2.5	76
104	Elastohydrodynamics of microfilament under distributed body actuation. AIP Conference Proceedings, 2018, , .	0.3	3
105	Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano, 2018, 12, 8397-8405.	7.3	104
106	Investigation of Magnetotaxis of Reconfigurable Microâ€Origami Swimmers with Competitive and Cooperative Anisotropy. Advanced Functional Materials, 2018, 28, 1802110.	7.8	40
107	Cell-Like Micromotors. Accounts of Chemical Research, 2018, 51, 1901-1910.	7.6	128
108	Cell Membrane–Camouflaged Colloid Motors for Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800056.	1.6	46

#	Article	IF	CITATIONS
109	Nanomotors for Nucleic Acid, Proteins, Pollutants and Cells Detection. International Journal of Molecular Sciences, 2018, 19, 1579.	1.8	13
110	Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains. Micromachines, 2018, 9, 68.	1.4	62
111	Tubular Micro/Nanomotors: Propulsion Mechanisms, Fabrication Techniques and Applications. Micromachines, 2018, 9, 78.	1.4	45
112	Mini-EmulsionFabricated Magnetic and Fluorescent Hybrid Janus Micro-Motors. Micromachines, 2018, 9, 83.	1.4	10
113	Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. International Journal of Robotics Research, 2018, 37, 912-930.	5.8	129
114	Bioinspired microrobots. Nature Reviews Materials, 2018, 3, 113-124.	23.3	472
115	Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 2018, 12, 4877-4885.	7.3	168
116	Controlled Propulsion of Twoâ€Dimensional Microswimmers in a Precessing Magnetic Field. Small, 2018, 14, e1800722.	5.2	42
117	An Intravascular Magnetic Catheter Enables the Retrieval of Nanoagents from the Bloodstream. Advanced Science, 2018, 5, 1800807.	5.6	37
118	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie - International Edition, 2018, 57, 12463-12467.	7.2	173
119	Selfâ€Propelled Nanomotors for Thermomechanically Percolating Cell Membranes. Angewandte Chemie, 2018, 130, 12643-12647.	1.6	27
120	Fuel-Free Light-Powered TiO ₂ /Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS Applied Materials & Interfaces, 2018, 10, 22427-22434.	4.0	108
121	A Human Microrobot Interface Based on Acoustic Manipulation. ACS Nano, 2019, 13, 11443-11452.	7.3	58
122	Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics, 2019, 11, 390.	2.0	47
123	Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Applied Materials Today, 2019, 16, 508-517.	2.3	101
124	Liquid Metal Gallium Micromachines Speed Up in Confining Channels. Advanced Intelligent Systems, 2019, 1, 1900064.	3.3	11
125	One body, two hands: photocatalytic function- and Fenton effect-integrated light-driven micromotors for pollutant degradation. Nanoscale, 2019, 11, 16592-16598.	2.8	41
126	DeltaMag: An Electromagnetic Manipulation System with Parallel Mobile Coils. , 2019, , .		37

# 127	ARTICLE Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments. Small, 2019, 15, e1901197.	IF 5.2	Citations 37
128	Micromotors as "Motherships― A Concept for the Transport, Delivery, and Enzymatic Release of Molecular Cargo via Nanoparticles. Langmuir, 2019, 35, 10618-10624.	1.6	18
129	Robust orientation control of multiâ€ĐOF cell based on uncertainty and disturbance estimation. International Journal of Robust and Nonlinear Control, 2019, 29, 4859-4871.	2.1	20
130	Highâ€Resolution SPECT Imaging of Stimuliâ€Responsive Soft Microrobots. Small, 2019, 15, e1900709.	5.2	62
131	Smallâ€Scale Robots in Fluidic Media. Advanced Intelligent Systems, 2019, 1, 1900035.	3.3	7
132	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angewandte Chemie - International Edition, 2019, 58, 12200-12205.	7.2	85
133	Macroscale Chemotaxis from a Swarm of Bacteriaâ€Mimicking Nanoswimmers. Angewandte Chemie, 2019, 131, 12328-12333.	1.6	19
134	The optoelectronic microrobot: A versatile toolbox for micromanipulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14823-14828.	3.3	79
135	A microrobotic system guided by photoacoustic computed tomography for targeted navigation in in intestines in vivo. Science Robotics, 2019, 4, .	9.9	321
136	Translational prospects of untethered medical microrobots. Progress in Biomedical Engineering, 2019, 1, 012002.	2.8	120
137	Dynamics near planar walls for various model self-phoretic particles. Soft Matter, 2019, 15, 5644-5672.	1.2	15
138	Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. Advanced Materials, 2019, 31, e1901895.	11.1	84
139	Confined 1D Propulsion of Metallodielectric Janus Micromotors on Microelectrodes under Alternating Current Electric Fields. ACS Nano, 2019, 13, 8842-8853.	7.3	49
140	A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media. Robotics, 2019, 8, 87.	2.1	20
141	Surface Wettability-Directed Propulsion of Glucose-Powered Nanoflask Motors. ACS Nano, 2019, 13, 12758-12766.	7.3	63
142	Radioactive Uranium Preconcentration <i>via</i> Self-Propelled Autonomous Microrobots Based on Metal–Organic Frameworks. ACS Nano, 2019, 13, 11477-11487.	7.3	90
143	Railâ€Assisted Dynamic Assembly of Metallic Nanowires. Advanced Intelligent Systems, 2019, 1, 1900100.	3.3	1
144	Selective Manipulation and Trapping of Magnetically Barcoded Materials. Advanced Materials Interfaces, 2019, 6, 1901312.	1.9	1

	CHATION R	EPUKI	
# 145	ARTICLE Nanomagnetic encoding of shape-morphing micromachines. Nature, 2019, 575, 164-168.	lF 13.7	Citations 307
146	Design considerations for effective thermal management in mobile nanotweezers. , 2019, , .		1
147	Magnetic Actuation of Multiple Robots by the Coplanar Coils System. , 2019, , .		5
148	Sideâ€Viewing Endoscopic Raman Spectroscopy for Angleâ€Resolved Analysis of Luminal Organs. Advanced Materials Technologies, 2019, 4, 1900364.	3.0	6
149	Cancer Cell Membrane amouflaged Micromotor. Advanced Therapeutics, 2019, 2, 1900096.	1.6	33
150	Design and control of a piezoactuated microfeed mechanism for cell injection. International Journal of Advanced Manufacturing Technology, 2019, 105, 4941-4952.	1.5	12
151	Multifunctional Nanorobot System for Active Therapeutic Delivery and Synergistic Chemo-photothermal Therapy. Nano Letters, 2019, 19, 8550-8564.	4.5	79
152	Magnetically Actuated SiCNâ€Based Ceramic Microrobot for Guided Cell Delivery. Advanced Healthcare Materials, 2019, 8, e1900739.	3.9	29
153	Laser Controlled 65 Micrometer Long Microrobot Made of Niâ€ī Shape Memory Alloy. Advanced Materials Technologies, 2019, 4, 1900583.	3.0	22
154	A Node Activation-Based Routing Scheme in Micro/Nanobots Networks. IEEE Access, 2019, 7, 144075-144089.	2.6	2
155	Targeted Singleâ€Cell Therapeutics with Magnetic Tubular Micromotor by Oneâ€Step Exposure of Structured Femtosecond Optical Vortices. Advanced Functional Materials, 2019, 29, 1905745.	7.8	54
156	Bioâ€Orthogonal Bacterial Reactor for Remission of Heavy Metal Poisoning and ROS Elimination. Advanced Science, 2019, 6, 1902500.	5.6	34
157	Tele–Robotic Platform for Dexterous Optical Single-Cell Manipulation. Micromachines, 2019, 10, 677.	1.4	17
158	3D steerable, acoustically powered microswimmers for single-particle manipulation. Science Advances, 2019, 5, eaax3084.	4.7	199
159	Magnetic Janus Particles for Static and Dynamic (Bio)Sensing. Magnetochemistry, 2019, 5, 47.	1.0	26
160	Positioning Uncertainty Reduction of Magnetically Guided Actuation on Planar Surfaces. , 2019, , .		5
161	A robot made of robots: Emergent transport and control of a smarticle ensemble. Science Robotics, 2019, 4, .	9.9	53
162	Nanomotor tracking experiments at the edge of reproducibility. Scientific Reports, 2019, 9, 13222.	1.6	28

#	Article	IF	CITATIONS
163	A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano, 2019, 13, 11996-12005.	7.3	81
164	Acoustic Nanomotors for Detection of Human Papillomavirus–Associated Head and Neck Cancer. Otolaryngology - Head and Neck Surgery, 2019, 161, 814-822.	1.1	36
165	Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS Nano, 2019, 13, 12171-12183.	7.3	121
166	Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opinion on Drug Delivery, 2019, 16, 1259-1275.	2.4	71
167	Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron–Zinc Microrocket in the Stomach. ACS Nano, 2019, 13, 1324-1332.	7.3	57
168	Micromotors from Microfluidics. Chemistry - an Asian Journal, 2019, 14, 2417-2430.	1.7	14
169	Electrophoresis of active Janus particles. Journal of Chemical Physics, 2019, 150, 234902.	1.2	16
170	Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale, 2019, 11, 14099-14112.	2.8	67
171	Red Blood Cell-Mimicking Micromotor for Active Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 23392-23400.	4.0	126
172	Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Materials Today, 2019, 28, 10-16.	8.3	73
173	A Macrophage–Magnesium Hybrid Biomotor: Fabrication and Characterization. Advanced Materials, 2019, 31, e1901828.	11.1	76
174	Full Spectrum Tunable Visible‣ightâ€Driven Alloy Nanomotor. Advanced Functional Materials, 2019, 29, 1901768.	7.8	29
175	Study of robotized electromagnetic actuation system for magnetic microrobots devoted to minimally invasive ophthalmic surgery. , 2019, , .		1
176	Engineering Micromotors with Droplet Microfluidics. ACS Nano, 2019, 13, 6319-6329.	7.3	68
177	Biocompatible propulsion for biomedical micro/nano robotics. Biosensors and Bioelectronics, 2019, 139, 111334.	5.3	67
178	One Modification, Two Functions: Single Niâ€modified Lightâ€Driven ZnO Microrockets with Both Efficient Propulsion and Steerable Motion. Chemistry - an Asian Journal, 2019, 14, 2485-2490.	1.7	18
179	Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Nanoscale, 2019, 11, 8825-8834.	2.8	28
180	Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 2019, 4, .	9.9	443

#	Article	IF	CITATIONS
181	Local Enhanced Microstreaming for Controllable High-Speed Acoustic Rotary Microsystems. Physical Review Applied, 2019, 11, .	1.5	21
182	Design and Fabrication of Tubular Micro/Nanomotors via 3D Laser Lithography. Chemistry - an Asian Journal, 2019, 14, 2472-2478.	1.7	20
183	MOFBOTS: Metal–Organicâ€Frameworkâ€Based Biomedical Microrobots. Advanced Materials, 2019, 31, e1901592.	11.1	139
184	Catalytic antimicrobial robots for biofilm eradication. Science Robotics, 2019, 4, .	9.9	154
185	Microâ€∤Nanomachines Driven by Ultrasonic Power Sources. Chemistry - an Asian Journal, 2019, 14, 2406-2416.	1.7	30
186	Colloidal Motors 101: A Beginner's Guide to Colloidal Motor Research. Chemistry - an Asian Journal, 2019, 14, 2388-2405.	1.7	55
187	Coexisting Cooperative Cognitive Micro…Nanorobots. Chemistry - an Asian Journal, 2019, 14, 2357-2368.	1.7	8
188	Turnâ€Numberâ€Dependent Motion Behavior of Catalytic Helical Carbon Micro/Nanomotors. Chemistry - an Asian Journal, 2019, 14, 2497-2502.	1.7	7
189	Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm. IEEE/ASME Transactions on Mechatronics, 2019, 24, 902-912.	3.7	45
190	Autonomy for Surgical Robots: Concepts and Paradigms. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 65-76.	2.1	153
191	Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Materials Horizons, 2019, 6, 1512-1516.	6.4	88
192	Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Science Robotics, 2019, 4, .	9.9	459
193	Smart Microdevices Laying "Breadcrumbs―to Find the Way Home: Chemotactic Homing TiO 2 /Pt Janus Microrobots. Chemistry - an Asian Journal, 2019, 14, 2456-2459.	1.7	9
194	Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation. Annual Review of Biomedical Engineering, 2019, 21, 193-218.	5.7	99
195	Photochemically Excited, Pulsating Janus Colloidal Motors of Tunable Dynamics. ACS Nano, 2019, 13, 4064-4072.	7.3	49
196	Bioinspired Pt-free molecularly imprinted hydrogel-based magnetic Janus micromotors for temperature-responsive recognition and adsorption of erythromycin in water. Chemical Engineering Journal, 2019, 369, 611-620.	6.6	62
197	Discrete-Time Optimal Control of Electromagnetic Coil Systems for Generation of Dynamic Magnetic Fields With High Accuracy. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1208-1219.	3.7	27
198	Molecular and Cellular Level—Applications in Biotechnology and Medicine Addressing Molecular and Cellular Level. , 2019, , 201-233.		О

ARTICLE IF CITATIONS # Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied 199 4.0 19 Materials & amp; Interfaces, 2019, 11, 15927-15935. Biomedical Applications of DNAâ€Based Molecular Devices. Advanced Healthcare Materials, 2019, 8, e1801658. Structureâ€Dependent Optical Modulation of Propulsion and Collective Behavior of 201 7.8 79 Acoustic/Lightâ€Driven Hybrid Microbowls. Advanced Functional Materials, 2019, 29, 1809003. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines, 2019, 10, 230. Shaping the Assembly of Superparamagnetic Nanoparticles. ACS Nano, 2019, 13, 3015-3022. 203 7.3 64 Enzymatic Micromotors as a Mobile Photosensitizer Platform for Highly Efficient Onâ€Chip Targeted 204 7.8 Antibacteria Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1807727 Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Letters, 2019, 205 4.5 152 19, 1914-1921. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release. ACS Nano, 2019, 206 7.3 334 13, 3353-3362. Molecular cargo delivery using multicellular magnetic microswimmers. Applied Materials Today, 2019, 207 2.3 52 15, 242-251. 208 E-drug delivery: a futuristic approach. Drug Discovery Today, 2019, 24, 1023-1030. 3.2 209 Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews, 2019, 147, 2-21. 77 6.6 Channel Capacity Analysis of Diffusive DNA based Molecular Communication., 2019, , . Instantaneous Velocity Estimation of Magnetic Microrobots with Visual Tracking *., 2019,,. 211 1 Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnology, 2019, 13, 651-664 Comparing swimming performances of flexible and helical magnetic swimmers., 2019,,. 213 1 Analysis of Magnetoelectric Robot for Biological Cell Poration., 2019,,. 214 Investigation of Current Control for a New Bi-directional Linear Capsule Robot., 2019, 2019, 3707-3711. 2150 Controllable Fabrication of Functional Microhelices with Droplet Microfluidics. ACS Applied Materials & amp; Interfaces, 2019, 11, 46241-46250.

#	Article	IF	CITATIONS
217	Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale, 2019, 11, 18382-18392.	2.8	86
218	Rapid Flipping of Parametric Phase States. Physical Review Letters, 2019, 123, 254102.	2.9	10
219	Stimulus-responsive nanomotors based on gated enzyme-powered Janus Au–mesoporous silica nanoparticles for enhanced cargo delivery. Chemical Communications, 2019, 55, 13164-13167.	2.2	46
220	Tumbling Magnetic Microrobots for Biomedical Applications. , 2019, , .		6
221	Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nature Communications, 2019, 10, 5275.	5.8	33
222	Using the fringe field of a clinical MRI scanner enables robotic navigation of tethered instruments in deeper vascular regions. Science Robotics, 2019, 4, .	9.9	65
223	Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field. Nanomaterials, 2019, 9, 1672.	1.9	29
224	Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nature Communications, 2019, 10, 5631.	5.8	204
225	Hundred body length velocity self-actuating platinum micromotor in H2O2. , 2019, , .		0
226	Self-propelled Swimmer Propulsion System using SAW and BAW. , 2019, , .		1
227	A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk. ACS Applied Materials & Interfaces, 2019, 11, 6667-6684.	4.0	56
228	Targeting 3D Bladder Cancer Spheroids with Urease-Powered Nanomotors. ACS Nano, 2019, 13, 429-439.	7.3	182
229	Imaging Technologies for Biomedical Micro―and Nanoswimmers. Advanced Materials Technologies, 2019, 4, 1800575.	3.0	83
230	Self-Assembly Magnetic Chain Unit for Bulk Biomaterial Actuation. IEEE Robotics and Automation Letters, 2019, 4, 262-268.	3.3	11
231	Continuously Variable Regulation of the Speed of Bubbleâ€Propelled Janus Microcapsule Motors Based on Saltâ€Responsive Polyelectrolyte Brushes. Chemistry - an Asian Journal, 2019, 14, 2450-2455.	1.7	16
232	A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials, 2019, 195, 75-85.	5.7	127
233	Hybrid Nanovehicles: One Machine, Two Engines. Advanced Functional Materials, 2019, 29, 1806290.	7.8	77
234	Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs. Soft Robotics, 2019, 6, 150-159.	4.6	25

	CHATON R	EPUKI	
# 235	ARTICLE Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	IF 11.1	CITATIONS
236	High-Bandwidth 3-D Multitrap Actuation Technique for 6-DoF Real-Time Control of Optical Robots. IEEE Robotics and Automation Letters, 2019, 4, 647-654.	3.3	15
237	Adaptive locomotion of artificial microswimmers. Science Advances, 2019, 5, eaau1532.	4.7	203
238	Robotic colloids: Engineered self-propulsion at the microscale (and smaller). , 2019, , 129-177.		4
239	Reversible Swelling and Shrinking of Paramagnetic Nanoparticle Swarms in Biofluids With High Ionic Strength. IEEE/ASME Transactions on Mechatronics, 2019, 24, 154-163.	3.7	31
240	Robotic Micromanipulation: Fundamentals and Applications. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2, 181-203.	7.5	101
241	Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Advanced Functional Materials, 2019, 29, 1806696.	7.8	78
242	Mobile Microrobots for Active Therapeutic Delivery. Advanced Therapeutics, 2019, 2, 1800064.	1.6	158
243	HIV Infection Mathematical Modeling and Future Trends of Treatment Using Nanotechnology and Nanorobots. IFMBE Proceedings, 2020, , 225-234.	0.2	0
244	Four-dimensional direct laser writing of reconfigurable compound micromachines. Materials Today, 2020, 32, 19-25.	8.3	131
245	Automated Control of Magnetic Spore-Based Microrobot Using Fluorescence Imaging for Targeted Delivery With Cellular Resolution. IEEE Transactions on Automation Science and Engineering, 2020, 17, 490-501.	3.4	50
246	Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning. Advanced Intelligent Systems, 2020, 2, 1900106.	3.3	40
247	Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry. Small, 2020, 16, e1903179.	5.2	77
248	An Automated Microrobotic Platform for Rapid Detection of <i>C. diff</i> Toxins. IEEE Transactions on Biomedical Engineering, 2020, 67, 1517-1527.	2.5	29
249	Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Materials Horizons, 2020, 7, 638-666.	6.4	101
250	Botanicalâ€Inspired 4D Printing of Hydrogel at the Microscale. Advanced Functional Materials, 2020, 30, 1907377.	7.8	122
251	Electro-mechanically controlled assembly of reconfigurable 3D mesostructures and electronic devices based on dielectric elastomer platforms. National Science Review, 2020, 7, 342-354.	4.6	68
252	Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chemistry - A European Journal, 2020, 26, 2309-2326.	1.7	45

#	Article	IF	CITATIONS
253	Statistics-Based Automated Control for a Swarm of Paramagnetic Nanoparticles in 2-D Space. IEEE Transactions on Robotics, 2020, 36, 254-270.	7.3	61
254	Selfâ€Propelled Micro/Nanomotors for Onâ€Demand Biomedical Cargo Transportation. Small, 2020, 16, e1902464.	5.2	81
255	3D Selfâ€Assembled Microelectronic Devices: Concepts, Materials, Applications. Advanced Materials, 2020, 32, e1902994.	11.1	67
256	Robotics in the Gut. Advanced Therapeutics, 2020, 3, 1900125.	1.6	50
257	Carbonâ€Dotâ€Induced Acceleration of Lightâ€Driven Micromotors with Inherent Fluorescence. Advanced Intelligent Systems, 2020, 2, 1900159.	3.3	14
258	Autonomous Motion of Bubble-Powered Carbonaceous Nanoflask Motors. Langmuir, 2020, 36, 7039-7045.	1.6	33
259	A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1853-1859.	3.3	255
260	Highly efficient visible-light-driven oxygen-vacancy-based Cu ₂₊₁ O micromotors with biocompatible fuels. Nanoscale Horizons, 2020, 5, 325-330.	4.1	27
261	A Review on Artificial Micro/Nanomotors for Cancer-Targeted Delivery, Diagnosis, and Therapy. Nano-Micro Letters, 2020, 12, 11.	14.4	98
262	Onionâ€like Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie, 2020, 132, 3508-3513.	1.6	10
263	Onionâ€ i ike Multifunctional Microtrap Vehicles for Attraction–Trapping–Destruction of Biological Threats. Angewandte Chemie - International Edition, 2020, 59, 3480-3485.	7.2	31
264	Navigation control of flagellated magnetic microswimmer by parametric excitation. Journal Physics D: Applied Physics, 2020, 53, 095402.	1.3	1
265	Reconfiguration, Camouflage, and Colorâ€ S hifting for Bioinspired Adaptive Hydrogelâ€Based Millirobots. Advanced Functional Materials, 2020, 30, 1909202.	7.8	153
266	3D hierarchical ACFs-based micromotors as efficient photo-Fenton-like catalysts. Carbon, 2020, 158, 738-748.	5.4	23
267	Superâ€Soft and Superâ€Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angewandte Chemie - International Edition, 2020, 59, 2490-2495.	7.2	104
268	Stomatocyte structural color-barcode micromotors for multiplex assays. National Science Review, 2020, 7, 644-651.	4.6	56
269	Superâ€Soft and Superâ€Elastic DNA Robot with Magnetically Driven Navigational Locomotion for Cell Delivery in Confined Space. Angewandte Chemie, 2020, 132, 2511-2516.	1.6	15
270	Perspective: Computational Nanobiosensing. IEEE Transactions on Nanobioscience, 2020, 19, 267-269.	2.2	15

#	Article	IF	Citations
271	Engineered Nanoplatelets for Targeted Delivery of Plasminogen Activators to Reverse Thrombus in Multiple Mouse Thrombosis Models. Advanced Materials, 2020, 32, e1905145.	11.1	121
272	Propulsion and Rotation of Microrobot Based on a Force on a Magnetic Material in a Time-Varying Magnetic Field Using a Wireless Power Transfer System. IEEE Transactions on Magnetics, 2020, 56, 1-5.	1.2	13
273	Microrobots Based <i>In Vivo</i> Evolutionary Computation in Two-Dimensional Microchannel Network. IEEE Nanotechnology Magazine, 2020, 19, 71-75.	1.1	8
274	A Mobile Paramagnetic Nanoparticle Swarm with Automatic Shape Deformation Control. , 2020, , .		7
275	Crowding-Enhanced Diffusion: An Exact Theory for Highly Entangled Self-Propelled Stiff Filaments. Physical Review Letters, 2020, 125, 138002.	2.9	18
276	Active cloaking in Stokes flows via reinforcement learning. Journal of Fluid Mechanics, 2020, 903, .	1.4	13
277	Research Progress of Micro/Nanomotors for Cancer Treatment. ChemPlusChem, 2020, 85, 2586-2598.	1.3	14
278	Acceleration of Biomolecule Enrichment and Detection with Rotationally Motorized Opto-Plasmonic Microsensors and the Working Mechanism. ACS Nano, 2020, 14, 15204-15215.	7.3	10
279	Chemotaxisâ€Driven 2D Nanosheet for Directional Drug Delivery toward the Tumor Microenvironment. Small, 2020, 16, e2002732.	5.2	39
280	Metal–Organic Frameworks in Motion. Chemical Reviews, 2020, 120, 11175-11193.	23.0	75
281	Medical Micro/Nanorobots in Precision Medicine. Advanced Science, 2020, 7, 2002203.	5.6	197
282	Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Analytica Chimica Acta, 2020, 1129, 60-68.	2.6	32
283	Multiscale engineering of functional organic polymer interfaces for neuronal stimulation and recording. Materials Chemistry Frontiers, 2020, 4, 3444-3471.	3.2	6
284	From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Advanced Functional Materials, 2020, 30, 2003195.	7.8	33
285	Simple and Continuous Fabrication of Self-Propelled Micromotors with Photocatalytic Metal–Organic Frameworks for Enhanced Synergistic Environmental Remediation. ACS Applied Materials & Interfaces, 2020, 12, 35120-35131.	4.0	67
286	Collective motion of chiral Brownian particles controlled by a circularly-polarized laser beam. Soft Matter, 2020, 16, 7704-7714.	1.2	4
287	Acoustophoretic Motion of Erythrocyteâ€mimicking Hemoglobin Micromotors. Chinese Journal of Chemistry, 2020, 38, 1589-1594.	2.6	7
288	Spray-on magnetic skin for robotic actuation. Science Robotics, 2020, 5, .	9.9	4

#	Article	IF	CITATIONS
289	Reconfigurable Particle Swarm Robotics Powered by Acoustic Vibration Tweezer. Soft Robotics, 2021, 8, 735-743.	4.6	13
290	Acoustic levitation applied for reducing undesired lateral drift of magnetic helical microrobots. Journal of Applied Physics, 2020, 128, .	1.1	7
291	Supramolecular nanomotors with "pH taxis―for active drug delivery in the tumor microenvironment. Nanoscale, 2020, 12, 22495-22501.	2.8	26
292	Enzyme-Powered Porous Micromotors Built from a Hierarchical Micro- and Mesoporous UiO-Type Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 20962-20967.	6.6	67
293	On the shape-dependent propulsion of nano- and microparticles by traveling ultrasound waves. Nanoscale Advances, 2020, 2, 3890-3899.	2.2	23
294	Oral Insulin Delivery Platforms: Strategies To Address the Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 19787-19795.	7.2	88
295	Magnetically Guided Micromanipulation of Magnetic Microrobots for Accurate Creation of Artistic Patterns in Liquid Environment. Micromachines, 2020, 11, 697.	1.4	8
296	Rationally Designed DNA Assemblies for Biomedical Application. , 2020, , 287-310.		Ο
297	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, 15, 1-109.	0.1	0
298	Micro/Nanorobot: A Promising Targeted Drug Delivery System. Pharmaceutics, 2020, 12, 665.	2.0	78
299	Fantastic Voyage of Nanomotors into the Cell. ACS Nano, 2020, 14, 9423-9439.	7.3	144
300	Engineering Intelligent Nanosystems for Enhanced Medical Imaging. Advanced Intelligent Systems, 2020, 2, 2000087.	3.3	30
301	Boosted molecular mobility during common chemical reactions. Science, 2020, 369, 537-541.	6.0	62
302	Swimming with swirl in a viscoelastic fluid. Journal of Fluid Mechanics, 2020, 900, .	1.4	23
303	Selection for Function: From Chemically Synthesized Prototypes to 3Dâ€Printed Microdevices. Advanced Intelligent Systems, 2020, 2, 2000078.	3.3	2
304	LipoBots: Using Liposomal Vesicles as Protective Shell of Ureaseâ€Based Nanomotors. Advanced Functional Materials, 2020, 30, 2002767.	7.8	33
305	Engineering control circuits for molecular robots using synthetic biology. APL Materials, 2020, 8, 101104.	2.2	4
306	Systemic Delivery in Anti-aging Medicine: An Overview. Healthy Ageing and Longevity, 2020, , 3-37.	0.2	Ο

#	Article	IF	CITATIONS
307	Environmental and health risks of nanorobots: an early review. Environmental Science: Nano, 2020, 7, 2875-2886.	2.2	9
308	Development of Magnetâ€Driven and Imageâ€Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small, 2020, 16, e1906908.	5.2	84
309	4D printing soft robotics for biomedical applications. Additive Manufacturing, 2020, 36, 101567.	1.7	73
310	Eye-in-Hand 3D Visual Servoing of Helical Swimmers Using Parallel Mobile Coils. , 2020, , .		5
311	Closed-Loop Control of a Helmholtz Coils System for 3-axis Magnetic Field Generation with High Precision. , 2020, , .		3
312	Electronically integrated, mass-manufactured, microscopic robots. Nature, 2020, 584, 557-561.	13.7	192
313	Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. Nano Letters, 2020, 20, 7350-7358.	4.5	108
314	Zwitterionic 3Dâ€Printed Nonâ€Immunogenic Stealth Microrobots. Advanced Materials, 2020, 32, e2003013.	11.1	95
315	Density Asymmetry Driven Propulsion of Ultrasoundâ€Powered Janus Micromotors. Advanced Functional Materials, 2020, 30, 2004043.	7.8	60
316	Optically Controlled Living Micromotors for the Manipulation and Disruption of Biological Targets. Nano Letters, 2020, 20, 7177-7185.	4.5	49
317	Plattformen für die orale Insulinabgabe: Strategien zur Beseitigung der biologischen Barrieren. Angewandte Chemie, 2020, 132, 19955-19964.	1.6	5
318	Femtosecond laser programmed artificial musculoskeletal systems. Nature Communications, 2020, 11, 4536.	5.8	117
319	Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angewandte Chemie, 2020, 132, 23898-23904.	1.6	3
320	Nanomotors Sense Local Physicochemical Heterogeneities in Tumor Microenvironments**. Angewandte Chemie - International Edition, 2020, 59, 23690-23696.	7.2	37
321	Ultrafast Growth and Locomotion of Dandelion‣ike Microswarms with Tubular Micromotors. Small, 2020, 16, e2003678.	5.2	38
322	Data-Driven Microscopic Pose and Depth Estimation for Optical Microrobot Manipulation. ACS Photonics, 2020, 7, 3003-3014.	3.2	13
323	A Taxonomy for Mobile Robots: Types, Applications, Capabilities, Implementations, Requirements, and Challenges. Robotics, 2020, 9, 109.	2.1	11
324	<i>In Vivo</i> Computing Strategies for Tumor Sensitization and Targeting. IEEE Transactions on Cybernetics, 2022, 52, 4970-4980.	6.2	8

#	Article	IF	CITATIONS
325	Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances, 2020, 8, 100119.	2.5	32
326	Micro/nanoscale magnetic robots for biomedical applications. Materials Today Bio, 2020, 8, 100085.	2.6	79
327	Ferrofluid Droplets as Liquid Microrobots with Multiple Deformabilities. Advanced Functional Materials, 2020, 30, 2000138.	7.8	69
328	Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive and Rapid Biosensing. Analytical Chemistry, 2020, 92, 7816-7821.	3.2	54
329	Biohybrid robotics with living cell actuation. Chemical Society Reviews, 2020, 49, 4043-4069.	18.7	105
330	Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Advanced Materials, 2020, 32, e2000091.	11.1	80
331	Stability of Vibrating Functionally Graded Nanoplates with Axial Motion Based on the Nonlocal Strain Gradient Theory. International Journal of Structural Stability and Dynamics, 2020, 20, 2050088.	1.5	27
332	Autonomous Biohybrid Urchin‣ike Microperforator for Intracellular Payload Delivery. Small, 2020, 16, e1906701.	5.2	55
333	Biocompatible Magnetic Micro―and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Advanced Materials, 2020, 32, e2001114.	11.1	86
334	Micromotor-derived composites for biomedicine delivery and other related purposes. Bio-Design and Manufacturing, 2020, 3, 133-147.	3.9	12
335	Micro-rocket robot with all-optic actuating and tracking in blood. Light: Science and Applications, 2020, 9, 84.	7.7	100
336	MagnetoSuture: Tetherless Manipulation of Suture Needles. IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 206-215.	2.1	16
337	Flagellar nanorobot with kinetic behavior investigation and 3D motion. Nanoscale, 2020, 12, 12154-12164.	2.8	10
338	Harnessing random low Reynolds number flow for net migration. Physical Review E, 2020, 101, 063101.	0.8	2
339	Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water. Applied Materials Today, 2020, 20, 100682.	2.3	53
340	Microscale Polarization Color Pixels from Liquid Crystal Elastomers. Advanced Optical Materials, 2020, 8, 1902098.	3.6	29
341	STRATA: unified framework for task assignments in large teams of heterogeneous agents. Autonomous Agents and Multi-Agent Systems, 2020, 34, 1.	1.3	27
342	Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials, 2020, 260, 120163.	5.7	72

#	Article	IF	Citations
343	Synergistic Speed Enhancement of an Electric-Photochemical Hybrid Micromotor by Tilt Rectification. ACS Nano, 2020, 14, 8658-8667.	7.3	49
344	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	9.9	236
345	Transforming platelets into microrobots. Science Robotics, 2020, 5, .	9.9	3
346	A Novel Shared Guidance Scheme for Intelligent Haptic Interaction Based Swarm Control of Magnetic Nanoparticles in Blood Vessels. IEEE Access, 2020, 8, 106714-106725.	2.6	21
347	Nanotechnology and nanomedicine. , 2020, , 9-21.		1
348	Self-Propelling Targeted Magneto-Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Scientific Reports, 2020, 10, 4703.	1.6	57
349	Ultrasound Imaging and Tracking of Micro/Nanorobots: From Individual to Collectives. IEEE Open Journal of Nanotechnology, 2020, 1, 6-17.	0.9	46
350	A healable waterborne polyurethane synergistically cross-linked by hydrogen bonds and covalent bonds for composite conductors. Journal of Materials Chemistry C, 2020, 8, 5280-5292.	2.7	49
351	Homotopy analysis and Padé approximants applied to active Brownian motion. Physical Review E, 2020, 101, 032103.	0.8	3
352	A flexible microsystem capable of controlled motion and actuation by wireless power transfer. Nature Electronics, 2020, 3, 172-180.	13.1	73
353	Motile microelectronics with wireless power. Nature Electronics, 2020, 3, 139-140.	13.1	4
354	Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS Nano, 2020, 14, 3805-3821.	7.3	57
355	Untethered Octopusâ€Inspired Millirobot Actuated by Regular Tetrahedron Arranged Magnetic Field. Advanced Intelligent Systems, 2020, 2, 1900148.	3.3	25
356	Cargo capture and transport by colloidal swarms. Science Advances, 2020, 6, eaay7679.	4.7	28
357	Confined Bubbleâ€Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess. Small, 2020, 16, 2000413.	5.2	8
358	Medical micro/nanorobots in complex media. Chemical Society Reviews, 2020, 49, 8088-8112.	18.7	180
359	High‥ield Production of Biohybrid Microalgae for Onâ€Demand Cargo Delivery. Advanced Science, 2020, 7, 2001256.	5.6	75
360	Stealthy movements and concealed swarms of swimming micro-robots. Physics of Fluids, 2020, 32, 071901.	1.6	5

#	Article	IF	CITATIONS
361	Magnetic Actuation Systems for Miniature Robots: A Review. Advanced Intelligent Systems, 2020, 2, 2000082.	3.3	164
362	Analysis and Evaluation of Path Planning Algorithms for Autonomous Driving of Electromagnetically Actuated Microrobot. International Journal of Control, Automation and Systems, 2020, 18, 2943-2954.	1.6	9
363	Robotic DNA Nanostructures. ACS Synthetic Biology, 2020, 9, 1923-1940.	1.9	102
364	IRONSperm: Sperm-templated soft magnetic microrobots. Science Advances, 2020, 6, eaba5855.	4.7	137
365	Designing Ordered Structure with Piezoceramic Actuation Units (OSPAU) for Generating Continual Nanostep Motion. Advanced Science, 2020, 7, 2001155.	5.6	15
366	Controlled/localized release and nanotechnology. , 2020, , 27-36.		1
367	Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir, 2020, 36, .	1.6	47
368	Active matter therapeutics. Nano Today, 2020, 31, 100836.	6.2	54
369	Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency. Energies, 2020, 13, 1008.	1.6	18
370	Magnetically Driven Bionic Millirobots with a Low-Delay Automated Actuation System for Bioparticles Manipulation. Micromachines, 2020, 11, 231.	1.4	8
371	Temporal Light Modulation of Photochemically Active, Oscillating Micromotors: Dark Pulses, Mode Switching, and Controlled Clustering. ACS Applied Materials & Interfaces, 2020, 12, 11843-11851.	4.0	28
372	Near-Infrared Light-Powered Janus Nanomotor Significantly Facilitates Inhibition of Amyloid-Î ² Fibrillogenesis. ACS Applied Materials & Interfaces, 2020, 12, 12618-12628.	4.0	67
373	Data-driven statistical modeling of the emergent behavior of biohybrid microrobots. APL Bioengineering, 2020, 4, 016104.	3.3	5
374	Phase separation in a two-dimensional binary colloidal mixture by quorum sensing activity. Physical Review E, 2020, 101, 022606.	0.8	5
375	3Dâ€Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron‣ike Cells. Advanced Functional Materials, 2020, 30, 1910323.	7.8	157
376	Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano, 2020, 14, 2880-2893.	7.3	155
377	Design considerations for effective thermal management in mobile nanotweezers. Journal of Micro-Bio Robotics, 2020, 16, 33-42.	2.1	7
378	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 867-884.	5.8	56

#	Article	IF	CITATIONS
379	Layer-by-layer technique for enhancing physicochemical properties of actives. Journal of Drug Delivery Science and Technology, 2020, 56, 101519.	1.4	14
380	Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. International Journal of Robotics Research, 2020, 39, 617-638.	5.8	125
381	Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release. Applied Materials Today, 2020, 19, 100583.	2.3	39
382	Wireless Manipulation of Magnetic/Piezoelectric Micromotors for Precise Neural Stem‣ike Cell Stimulation. Advanced Functional Materials, 2020, 30, 1910108.	7.8	81
383	Microrobots in Brewery: Dual Magnetic/Lightâ€Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer. Chemistry - A European Journal, 2020, 26, 3039-3043.	1.7	24
384	Pressure and diffusion of active matter with inertia. Physical Review E, 2020, 101, 012606.	0.8	31
385	Acoustically powered surface-slipping mobile microrobots. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3469-3477.	3.3	188
386	Micro/Nano Motor Navigation and Localization via Deep Reinforcement Learning. Advanced Theory and Simulations, 2020, 3, 2000034.	1.3	26
387	Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. Small, 2020, 16, e2000146.	5.2	21
388	Bioinspired reorientation strategies for application in micro/nanorobotic control. Journal of Micro-Bio Robotics, 2020, 16, 173-197.	2.1	7
389	Integrating modification and detection in acoustic microchip for in-situ analysis. Biosensors and Bioelectronics, 2020, 158, 112185.	5.3	23
390	Targeted drug delivery therapies inspired by natural taxes. Journal of Controlled Release, 2020, 322, 439-456.	4.8	17
391	Next-generation robotics in gastrointestinal surgery. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 430-440.	8.2	42
392	RectMag3D: A Magnetic Actuation System for Steering Milli/Microrobots Based on Rectangular Electromagnetic Coils. Applied Sciences (Switzerland), 2020, 10, 2677.	1.3	13
393	Magnetically Powered Biodegradable Microswimmers. Micromachines, 2020, 11, 404.	1.4	32
394	Active Delivery of VLPs Promotes Antiâ€īumor Activity in a Mouse Ovarian Tumor Model. Small, 2020, 16, e1907150.	5.2	40
395	Improved Sliding Mode Control With Time Delay Estimation for Motion Tracking of Cell Puncture Mechanism. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3199-3210.	3.5	14
396	Reconfigurable structure and tunable transport in synchronized active spinner materials. Science Advances, 2020, 6, eaaz8535.	4.7	51

#	Article	IF	CITATIONS
397	Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews, 2020, 49, 3211-3230.	18.7	91
398	Lightâ€Gated Manipulation of Micro/Nanoparticles in Electric Fields. Advanced Intelligent Systems, 2020, 2, 1900127.	3.3	11
399	Graphdiyne Micromotors in Living Biomedia. Chemistry - A European Journal, 2020, 26, 8471-8477.	1.7	14
400	Coordinating an Ensemble of Chemical Micromotors <i>via</i> Spontaneous Synchronization. ACS Nano, 2020, 14, 5360-5370.	7.3	37
401	Motion Control of Magnetic Microrobot Using Uniform Magnetic Field. IEEE Access, 2020, 8, 71083-71092.	2.6	18
402	Progress in Nanorobotics for Advancing Biomedicine. IEEE Transactions on Biomedical Engineering, 2021, 68, 130-147.	2.5	32
403	Biomedical Microâ€∕Nanomotors: From Overcoming Biological Barriers to In Vivo Imaging. Advanced Materials, 2021, 33, e2000512.	11.1	195
404	A Quadruped Crawling Robot Operated by Elliptical Vibrations of Cantilever Legs. IEEE Transactions on Industrial Electronics, 2021, 68, 1466-1474.	5.2	16
405	Nanodevices for Pharmaceutical and Biomedical Applications. Analytical Letters, 2021, 54, 98-123.	1.0	2
406	Mathematical approach for the design configuration of magnetic system with multiple electromagnets. Robotics and Autonomous Systems, 2021, 135, 103674.	3.0	18
407	A Bioactive Living Hydrogel: Photosynthetic Bacteria Mediated Hypoxia Elimination and Bacteriaâ€Killing to Promote Infected Wound Healing. Advanced Therapeutics, 2021, 4, .	1.6	39
408	Current status of micro/nanomotors in drug delivery. Journal of Drug Targeting, 2021, 29, 29-45.	2.1	25
409	Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Progress in Retinal and Eye Research, 2021, 82, 100901.	7.3	51
410	Research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. Journal of Materials Chemistry B, 2021, 9, 283-294.	2.9	9
411	Trends in Microâ€∕Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
412	Sequential Magnetoâ€Actuated and Opticsâ€Triggered Biomicrorobots for Targeted Cancer Therapy. Advanced Functional Materials, 2021, 31, 2008262.	7.8	62
413	Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Advanced Healthcare Materials, 2021, 10, e2001596.	3.9	56
414	Nitric Oxideâ€Driven Nanomotor for Deep Tissue Penetration and Multidrug Resistance Reversal in Cancer Therapy. Advanced Science, 2021, 8, 2002525.	5.6	93

#	ARTICLE	IF	CITATIONS
415	Nanorobots-Assisted Natural Computation for Multifocal Tumor Sensitization and Targeting. IEEE Transactions on Nanobioscience, 2021, 20, 154-165.	2.2	11
416	Reversible Design of Dynamic Assemblies at Small Scales. Advanced Intelligent Systems, 2021, 3, 2000193.	3.3	10
417	A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the Stateâ€ofâ€theâ€Art. Advanced Healthcare Materials, 2021, 10, e2001236.	3.9	45
418	Trends in Nanotechnology Development in Medical Applications. , 2021, , .		0
419	Cooperative transport by flocking phototactic micromotors. Nanoscale Advances, 2021, 3, 6157-6163.	2.2	22
420	Designing bioactive micro-/nanomotors for engineered regeneration. Engineered Regeneration, 2021, 2, 109-115.	3.0	60
421	Novel nanoparticle-based treatment approaches. , 2021, , 281-343.		0
422	Interactions between Biomedical Micro″Nanoâ€Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Advanced Healthcare Materials, 2021, 10, e2001788.	3.9	32
423	Controlled locomotion of a droplet propelled by an encapsulated squirmer. European Physical Journal E, 2021, 44, 6.	0.7	5
424	Bio-propulsion Techniques for Bio-micro/nano-Robots. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 431-439.	0.5	0
425	4D Printing: Enabling Technology for Microrobotics Applications. Advanced Intelligent Systems, 2021, 3, 2000216.	3.3	43
426	Preformation Characterization of a Torque-Driven Magnetic Microswimmer With Multi-Segment Structure. IEEE Access, 2021, 9, 29279-29292.	2.6	7
427	Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. Journal of Materials Chemistry B, 2021, 9, 1441-1451.	2.9	22
428	Autonomous Navigation of Magnetic Microrobots in a Large Workspace Using Mobile-Coil System. IEEE/ASME Transactions on Mechatronics, 2021, 26, 3163-3174.	3.7	29
429	A Magnetically Guided Selfâ€Rolled Microrobot for Targeted Drug Delivery, Realâ€Time Xâ€Ray Imaging, and Microrobot Retrieval. Advanced Healthcare Materials, 2021, 10, e2001681.	3.9	54
430	"Ballistic―waves among chemically oscillating micromotors. Chemical Communications, 2021, 57, 8492-8495.	2.2	5
431	A Novel Ferrofluid Rolling Robot: Design, Manufacturing, and Experimental Analysis. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	6
432	The Encoding of Lightâ€Driven Micro/Nanorobots: from Single to Swarming Systems. Advanced Intelligent Systems, 2021, 3, 2000170.	3.3	31

#	Article	IF	CITATIONS
433	Information Requirements of Collision-Based Micromanipulation. Springer Proceedings in Advanced Robotics, 2021, , 210-226.	0.9	5
434	Tension-Relaxation <i>In Vivo</i> Computing Principle for Tumor Sensitization and Targeting. IEEE Transactions on Cybernetics, 2022, 52, 9145-9156.	6.2	2
435	Light Energy Driven Nanocommunications With FRET in Photosynthetic Systems. IEEE Access, 2021, 9, 44490-44501.	2.6	2
436	Magnetic Navigation of Collective Cell Microrobots in Blood Under Ultrasound Doppler Imaging. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3174-3185.	3.7	15
437	Current Status and Emerging Trend of Nanoshuttle in Biological Applications. Current Pharmaceutical Design, 2021, 27, 105-114.	0.9	1
438	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
439	Lightâ€Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers. Advanced Intelligent Systems, 2021, 3, 2000256.	3.3	64
440	Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Science Advances, 2021, 7, .	4.7	186
441	Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano, 2021, 15, 5056-5067.	7.3	94
442	Programmable Phototaxis of Metal–Phenolic Particle Microswimmers. Advanced Materials, 2021, 33, e2006177.	11.1	16
443	Controlling Cell Motion and Microscale Flow with Polarized Light Fields. Physical Review Letters, 2021, 126, 058001.	2.9	12
444	Synthesis of magneto-responsive microswimmers for biomedical applications. AlP Advances, 2021, 11, .	0.6	4
445	Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. Advanced Science, 2021, 8, 2003679.	5.6	87
446	Targeting Hypoxic Tumors with Hybrid Nanobullets for Oxygen-Independent Synergistic Photothermal andÂThermodynamic Therapy. Nano-Micro Letters, 2021, 13, 99.	14.4	64
447	Magnetically Driven Micro and Nanorobots. Chemical Reviews, 2021, 121, 4999-5041.	23.0	345
449	Deformable ferrofluid-based millirobot with high motion accuracy and high output force. Applied Physics Letters, 2021, 118, .	1.5	29
450	Self-adaptive enzyme-powered micromotors with switchable propulsion mechanism and motion directionality. Applied Physics Reviews, 2021, 8, .	5.5	37
451	Gold–Nickel Nanowires as Nanomotors for Cancer Marker Biodetection and Chemotherapeutic Drug Delivery. ACS Applied Nano Materials, 2021, 4, 3377-3388.	2.4	37

		CITATION R	EPORT	
#	Article		IF	CITATIONS
452	Dynamics of a droplet driven by an internal active device. Physical Review Fluids, 2021,	. 6, .	1.0	6
453	Spirulina-templated porous hollow carbon@magnetite core-shell microswimmers. Appl Today, 2021, 22, 100962.	ied Materials	2.3	17
454	Reconfigurable Flexible Electronics Driven by Origami Magnetic Membranes. Advanced Technologies, 2021, 6, 2001124.	Materials	3.0	27
455	Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endo delivery and imaging. Science Robotics, 2021, 6, .	bluminal	9.9	164
456	Robot-Touch Promotes Memory Sensitization. Applied Sciences (Switzerland), 2021, 1	1, 2271.	1.3	0
457	Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors. ACS Na 5118-5128.	ano, 2021, 15,	7.3	51
458	Graphene oxide induced enhancement of light-driven micromotor with biocompatible Materials Today, 2021, 22, 100943.	uels. Applied	2.3	12
459	Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics, 202	1, 6, .	9.9	227
460	Fabrication of Polymer/Metal Composite Micro/Nano Array Structures and the Applicat Biological Interfaces and Actuators. , 2021, , .	ions in		0
461	An active body in a Phan-Thien and Tanner fluid: The effect of the third polar squirming of Fluids, 2021, 33, 043110.	mode. Physics	1.6	9
462	The cube-shaped hematite microrobot for biomedical application. Mechatronics, 2021,	74, 102498.	2.0	12
463	Recent Advances in Heterosilica-Based Micro/Nanomotors: Designs, Biomedical Applica Future Perspectives. Chemistry of Materials, 2021, 33, 3022-3046.	ations, and	3.2	30
464	Opportunities and utilization of branching and step-out behavior in magnetic microsw nonlinear response. Applied Physics Letters, 2021, 118, .	mmers with a	1.5	5
465	Closed-Loop Control of a Helmholtz Coil System for Accurate Actuation of Magnetic M Swarms. IEEE Robotics and Automation Letters, 2021, 6, 827-834.	licrorobot	3.3	22
466	Bioinspired Soft Microactuators. Advanced Materials, 2021, 33, e2008558.		11.1	22
467	Magnetic tri-bead microrobot assisted near-infrared triggered combined photothermal chemotherapy of cancer cells. Scientific Reports, 2021, 11, 7907.	and	1.6	19
468	Acousticallyâ€Propelled Rodlike Liquid Metal Colloidal Motors. ChemNanoMat, 2021, 2	7, 1025-1029.	1.5	9
469	Voxelated three-dimensional miniature magnetic soft machines via multimaterial heter assembly. Science Robotics, 2021, 6, .	ogeneous	9.9	133

#	Article	IF	CITATIONS
470	Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nature Communications, 2021, 12, 2077.	5.8	97
471	Controllability and Stabilization for Herding a Robotic Swarm Using a Leader: A Mean-Field Approach. IEEE Transactions on Robotics, 2021, 37, 418-432.	7.3	12
472	Chemically-powered swimming and diffusion in the microscopic world. Nature Reviews Chemistry, 2021, 5, 500-510.	13.8	61
473	Programmable materials for efficient CTCs isolation: From micro/nanotechnology to biomimicry. View, 2021, 2, 20200023.	2.7	17
474	The Path to Surgical Robotics in Neurosurgery. Operative Neurosurgery, 2021, 20, 514-520.	0.4	24
475	Dental Robotics: A Disruptive Technology. Sensors, 2021, 21, 3308.	2.1	29
476	Micromotor-mediated sperm constrictions for improved swimming performance. European Physical Journal E, 2021, 44, 67.	0.7	4
477	Selfâ€Asymmetric Yolk–Shell Photocatalytic ZnO Micromotors. ChemPhotoChem, 2021, 5, 933-939.	1.5	11
478	Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Advanced Intelligent Systems, 2021, 3, 2000267.	3.3	41
479	Recent progress on motion control of swimming micro/nanorobots. View, 2021, 2, 20200113.	2.7	25
480	Purcell's Three-Link Swimmer: Assessment of Geometry and Gaits for Optimal Displacement and Efficiency. Mathematics, 2021, 9, 1088.	1.1	1
481	A Microstirring Pill Enhances Bioavailability of Orally Administered Drugs. Advanced Science, 2021, 8, 2100389.	5.6	23
482	Cell nucleus as endogenous biological micropump. Biosensors and Bioelectronics, 2021, 182, 113166.	5.3	10
483	Au/Ptâ€Eggâ€inâ€Nest Nanomotor for Glucoseâ€Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie - International Edition, 2021, 60, 17579-17586.	7.2	36
484	Programmable Dynamic Shapes with a Swarm of Lightâ€Powered Colloidal Motors. Angewandte Chemie, 2021, 133, 16810-16815.	1.6	7
485	Zwitterionâ€Based Hydrogen Sulfide Nanomotors Induce Multiple Acidosis in Tumor Cells by Destroying Tumor Metabolic Symbiosis. Angewandte Chemie - International Edition, 2021, 60, 16139-16148.	7.2	75
486	Au/Ptâ€Eggâ€inâ€Nest Nanomotor for Glucoseâ€Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angewandte Chemie, 2021, 133, 17720-17727.	1.6	4
487	Programmable Dynamic Shapes with a Swarm of Lightâ€Powered Colloidal Motors. Angewandte Chemie - International Edition, 2021, 60, 16674-16679.	7.2	34

#	Article	IF	CITATIONS
488	Design and fabrication of micro/nano-motors for environmental and sensing applications. Applied Materials Today, 2021, 23, 101007.	2.3	38
489	Advanced micro/nanomotors for enhanced bioadhesion and tissue penetration. Applied Materials Today, 2021, 23, 101034.	2.3	21
490	Moral Status for Malware! The Difficulty of Defining Advanced Artificial Intelligence. Cambridge Quarterly of Healthcare Ethics, 2021, 30, 517-528.	0.5	2
491	A Magnetically Powered Stem Cellâ€Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain. Advanced Healthcare Materials, 2021, 10, e2100801.	3.9	32
492	Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
493	Zwitterionâ€Based Hydrogen Sulfide Nanomotors Induce Multiple Acidosis in Tumor Cells by Destroying Tumor Metabolic Symbiosis. Angewandte Chemie, 2021, 133, 16275-16284.	1.6	3
494	Enzyme-Powered Liquid Metal Nanobots Endowed with Multiple Biomedical Functions. ACS Nano, 2021, 15, 11543-11554.	7.3	91
495	Regulation of in vivo delivery of nanomedicines by herbal medicines. Advanced Drug Delivery Reviews, 2021, 174, 210-228.	6.6	19
496	Development of a Cellâ€Loading Microrobot with Simultaneously Improved Degradability and Mechanical Strength for Performing In Vivo Delivery Tasks. Advanced Intelligent Systems, 2021, 3, 2100052.	3.3	14
497	Ultrasound-propelled nanomotors for improving antigens cross-presentation and cellular immunity. Chemical Engineering Journal, 2021, 416, 129091.	6.6	26
498	Composite Search of Active Particles in Threeâ€dimensional Space Based on Nonâ€directional Cues. ChemNanoMat, 2021, 7, 1057-1062.	1.5	1
499	Dynamic Magnetic Field Generation With High Accuracy Modeling Applied to Magnetic Robots. IEEE Transactions on Magnetics, 2021, 57, 1-10.	1.2	3
500	Healthcare Robotic Telepresence. , 2021, , .		4
501	Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors. Nano Letters, 2021, 21, 6071-6079.	4.5	24
502	On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids. Science Advances, 2021, 7, .	4.7	2
503	Magnetic Actuated Shape-memory Helical Microswimmers with Programmable Recovery Behaviors. Journal of Bionic Engineering, 2021, 18, 799-811.	2.7	17
504	Wireless on-demand drug delivery. Nature Electronics, 2021, 4, 464-477.	13.1	91
505	Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Frontiers in Robotics and Al, 2021, 8, 702566.	2.0	10

		CITATION REPORT		
#	Article		IF	CITATIONS
506	3D Propulsions of Rodâ€Shaped Micropropellers. Advanced Intelligent Systems, 0, , 2100083	3.	3.3	0
507	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intellige 2021, 3, 2000284.	ent Systems,	3.3	18
509	Modeling Electromagnetic Navigation Systems. IEEE Transactions on Robotics, 2021, 37, 10	09-1021.	7.3	23
510	3D Temporaryâ€Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Advar Materials, 2021, 33, e2102691.	iced	11.1	23
511	Generation of active motion from optically trapped upconverting nanoparticles. , 2021, , .			1
512	Exponential evolution mechanism for in vivo computation. Swarm and Evolutionary Computation 2021, 65, 100931.	ation,	4.5	8
513	Atomistic Assessment of Cystine Kidney Stone Behavior in a Mechanical Breakdown Process Nanobiorobots through Classical Molecular Dynamics Simulations. Journal of Physical Chemi 2021, 125, 10344-10354.	by stry B,	1.2	0
514	An Acoustoâ€Microrobotic Interface with Visionâ€Feedback Control. Advanced Materials Teo 2021, 6, 2100470.	chnologies,	3.0	13
515	Domino Reaction Encoded Heterogeneous Colloidal Microswarm with Onâ€Đemand Morpho Adaptability. Advanced Materials, 2021, 33, e2100070.	ological	11.1	64
516	Corrosion mechanisms of magnetic microrobotic platforms in protein media. Applied Materia 2021, 24, 101135.	als Today,	2.3	6
517	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.		1.3	10
518	Selfâ€Powered and Interfaceâ€Independent Tactile Sensors Based on Bilayer Singleâ€Electro Nanogenerators for Robotic Electronic Skin. Advanced Intelligent Systems, 2023, 5, 210012	de Triboelectric 0.	3.3	17
519	Controllable Positive/Negative Phototaxis of Millimeter-Sized Objects with Sensing Function. Langmuir, 2021, 37, 11093-11101.		1.6	3
520	Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies Cardiac Cell Modulation. Pharmaceutics, 2021, 13, 1520.	and	2.0	4
521	Biodegradable Small‣cale Swimmers for Biomedical Applications. Advanced Materials, 202 e2102049.	21, 33,	11.1	44
522	Precise Control of Customized Macrophage Cell Robot for Targeted Therapy of Solid Tumors Minimal Invasion. Small, 2021, 17, e2103986.	with	5.2	38
523	Robotic Surgery for the Thoracic and Vascular Surgeon. , 0, , .			0
524	Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized aspar Biotech, 2021, 11, 453.	aginases. 3	1.1	3

#	Article	IF	CITATIONS
525	A comprehensive review of template-synthesized multi-component nanowires: From interfacial design to sensing and actuation applications. Sensors and Actuators Reports, 2021, 3, 100029.	2.3	15
526	Biomaterials and devices for immunotherapy. , 2022, , 97-133.		0
527	Effect of solvation on the synthesis of MOF-based microrobots and their targeted-therapy applications. Materials Advances, 2021, 2, 3871-3880.	2.6	8
528	External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano, 2021, 15, 149-174.	7.3	138
529	Robust control framework for multiple degrees-of-freedom cell orientation control. , 2021, , 75-92.		0
530	Delivery of Nanoconstructs in Cancer Therapy: Challenges and Therapeutic Opportunities. Advanced Therapeutics, 2021, 4, 2000206.	1.6	18
531	Dynamic thermal trapping enables cross-species smart nanoparticle swarms. Science Advances, 2021, 7, .	4.7	1
532	Polymer Nanoparticles and Nanomotors Modified by DNA/RNA Aptamers and Antibodies in Targeted Therapy of Cancer. Polymers, 2021, 13, 341.	2.0	27
533	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	18.7	178
534	Chemotactic Guidance of Synthetic Organic/Inorganic Payloads Functionalized Sperm Micromotors. Advanced Biology, 2018, 2, 1700160.	3.0	98
535	Haemodynamics around confined microscopic cylinders. Journal of Non-Newtonian Fluid Mechanics, 2020, 286, 104406.	1.0	7
536	3D-Printed Multi-Stimuli-Responsive Mobile Micromachines. ACS Applied Materials & Interfaces, 2021, 13, 12759-12766.	4.0	64
537	Independent Pattern Formation of Nanorod and Nanoparticle Swarms under an Oscillating Field. ACS Nano, 2021, 15, 4429-4439.	7.3	37
538	Interaction of high-intensity focused ultrasound with polymers at the atomistic scale. Nanotechnology, 2021, 32, 045707.	1.3	6
540	Axisymmetric squirmers in Stokes fluid with nonuniform viscosity. Physical Review Fluids, 2020, 5, .	1.0	20
541	Saturation and coercivity limit the velocity of rotating active magnetic microparticles. Physical Review Fluids, 2020, 5, .	1.0	3
542	Propulsion Measurement of High Frequency Underwater SAW Actuators. , 2020, , .		8
543	Remote magnetic actuation using a clinical scale system. PLoS ONE, 2018, 13, e0193546.	1.1	68

#	ARTICLE	IF	CITATIONS
544	The Future of Healthcare Facilities: How Technology and Medical Advances May Shape Hospitals of the Future. Hospital Practices and Research, 2019, 4, 1-11.	0.1	18
545	Recognition and Localization Methods for Vision-Based Fruit Picking Robots: A Review. Frontiers in Plant Science, 2020, 11, 510.	1.7	294
546	Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research, 2020, 2020, 3676954.	2.8	73
547	Light-Triggered Catalytic Performance Enhancement Using Magnetic Nanomotor Ensembles. Research, 2020, 6380794.	2.8	24
548	Multigear Bubble Propulsion of Transient Micromotors. Research, 2020, 2020, 7823615.	2.8	32
549	Acoustically propelled nano- and microcones: fast forward and backward motion. Nanoscale Advances, 0, , .	2.2	6
550	Recent development in graphdiyne and its derivative materials for novel biomedical applications. Journal of Materials Chemistry B, 2021, 9, 9461-9484.	2.9	19
551	First Principal Simulation Study of Human Body Compatible Molecular Single Electron Transistor. IEEE Access, 2021, , 1-1.	2.6	0
552	Redundant Electromagnetic Control of an Endoscopic Magnetic Capsule Driven by Multiple Electromagnets Configuration. IEEE Transactions on Industrial Electronics, 2022, 69, 11370-11382.	5.2	12
553	A Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 2022, 38, 1531-1551.	7.3	45
554	Ultrasound Doppler Imaging and Navigation of Collective Magnetic Cell Microrobots in Blood. , 2021, ,		2
555	Physical Disruption of Solid Tumors by Immunostimulatory Microrobots Enhances Antitumor Immunity. Advanced Materials, 2021, 33, e2103505.	11.1	38
556	Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter, 2021, 4, 3269-3285.	5.0	36
557	Ultrasonically Propelled Micro―and Nanorobots. Advanced Functional Materials, 2022, 32, 2102265.	7.8	57
558	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	7.3	94
559	Coreâ€Shell Structured Microâ€Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives. Small, 2022, 18, e2102887.	5.2	16
560	Free manipulation system for nanorobot cluster based on complicated multi-coil electromagnetic actuator. Scientific Reports, 2021, 11, 19756.	1.6	5
561	Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers, 2021, 13, 5285.	1.7	26

#	Article	IF	Citations
562	A simple theory for molecular chemotaxis driven by specific binding interactions. Journal of Chemical Physics, 2021, 155, 164902.	1.2	4
563	Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials, 2022, 34, e2107177.	11.1	41
564	Helical trajectories of swimming cells with a flexible flagellar hook. Physical Review Fluids, 2021, 6, .	1.0	1
565	Powering and Fabrication of Small-Scale Robotics Systems. Current Robotics Reports, 2021, 2, 427-440.	5.1	7
566	An Overview of Micronanoswarms for Biomedical Applications. ACS Nano, 2021, 15, 15625-15644.	7.3	46
567	Engineering of stimuli-responsive self-assembled biomimetic nanoparticles. Advanced Drug Delivery Reviews, 2021, 179, 114006.	6.6	39
568	Chapter 6. Carbon Nanomaterials for Advanced Analytical Micro- and Nanotechnologies. RSC Detection Science, 2018, , 200-240.	0.0	0
569	Fabrication of shape memory alloy based microrobot by using focused ion beam milling process and actuation using ultraviolet laser. , 2018, , .		0
570	Being a Post-Learner With Virtual Worlds. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 185-204.	0.2	1
571	Engineering a Bacterial Flagella Forest for Sensing and Actuation $\hat{a} \in $ A Progress Report. , 2019, 4, .		0
572	An Automated Platform for Microrobot Manipulation. Advances in Intelligent Systems and Computing, 2021, , 255-265.	0.5	0
573	Micro and nanorobot-based drug delivery: an overview. Journal of Drug Targeting, 2022, 30, 349-358.	2.1	15
574	Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano, 2021, 15, 18270-18278.	7.3	17
575	The Future of Fetal Surgery. Obstetrics and Gynecology Clinics of North America, 2021, 48, 745-758.	0.7	4
576	Investigating the Dynamics of the Magnetic Micromotors in Human Blood. Langmuir, 2021, 37, 289-296.	1.6	13
577	A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Walled Structures, 2022, 170, 108562.	2.7	78
578	Large-Workspace Polyarticulated Micro-Structures Based-On Folded Silica for Tethered Nanorobotics. IEEE Robotics and Automation Letters, 2022, 7, 88-95.	3.3	2
579	Autonomous Surgical Robotics at Task and Subtask Levels. , 2022, , 319-338.		0

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
580	Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare. , 2021, , 1-24.		0
581	Recent Advances in Mechanical Micro- and Nanomanipulation. Advances in Intelligent Systems and Computing, 2020, , 248-256.	0.5	3
582	Autonomous Surgical Robotics at Task and Subtask Levels. Advances in Computational Intelligence and Robotics Book Series, 2020, , 296-319.	0.4	1
584	Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields. Scientific Reports, 2021, 11, 21728.	1.6	8
585	Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management?. Advanced NanoBiomed Research, 2022, 2, 2100074.	1.7	3
586	Recent Advances in Fieldâ€Controlled Micro–Nano Manipulations and Micro–Nano Robots. Advancec Intelligent Systems, 2022, 4, 2100116.	3.3	39
587	Magnetically propelled soft microrobot navigating through constricted microchannels. Applied Materials Today, 2021, 25, 101237.	2.3	18
588	Aerodynamics of intakes of high bypass ratio (hbpr) turbofan engines. International Robotics & Automation Journal, 2020, 6, 84-85.	0.3	0
589	Collective Planar Actuation of Miniature Magnetic Robots Towards Individual Robot Operation. , 2020, , .		4
590	A multiphysics model of magnetic hydrogel under a moving magnet for targeted drug delivery. International Journal of Mechanical Sciences, 2022, 215, 106963.	3.6	14
591	Motion characteristics and control of magnetic microbeads by magnetic gradient fields. , 2021, , .		0
592	Precise Control of Magnetic Nano Particle Formed Microrobot Cluster. , 2021, , .		3
593	WASP: A Wearable Super-Computing Platform for Distributed Intelligence in Multi-Agent Systems. , 2021, , .		0
594	Polyhedral Micromotors of Metal–Organic Frameworks: Symmetry Breaking and Propulsion. Journal of the American Chemical Society, 2021, 143, 19881-19892.	6.6	19
595	Magneto-Acoustic Hybrid Micro-/Nanorobot. , 2022, , 165-177.		0
596	Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids. Frontiers in Bioengineering and Biotechnology, 2021, 9, 779632.	2.0	7
597	Polymer-Based Swimming Nanorobots Driven by Chemical Fuels. , 2022, , 369-388.		3
598	In Vitro Biosensing Using Micro-/Nanomachines. , 2022, , 243-268.		3

#	Article	IF	CITATIONS
599	Colloidal Microrobotic Swarms. , 2022, , 179-209.		1
601	Multifunctional Metal–Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. ACS Applied Materials & Interfaces, 2021, 13, 58382-58392.	4.0	13
602	Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions. ACS Applied Materials & Interfaces, 2021, 13, 58898-58907.	4.0	3
603	Mobile Ultrasound Tracking and Magnetic Control for Longâ€Distance Endovascular Navigation of Untethered Miniature Robots against Pulsatile Flow. Advanced Intelligent Systems, 2022, 4, 2100144.	3.3	5
604	Untethered Microrobots for Active Drug Delivery: From Rational Design to Clinical Settings. Advanced Healthcare Materials, 2022, 11, e2102253.	3.9	30
605	Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Advances, 2021, 11, 36398-36438.	1.7	39
606	Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms. IEEE Transactions on Robotics, 2022, 38, 1552-1570.	7.3	27
607	Real-Time Ultrasound Doppler Tracking and Autonomous Navigation of a Miniature Helical Robot for Accelerating Thrombolysis in Dynamic Blood Flow. ACS Nano, 2022, 16, 604-616.	7.3	55
608	Magnetic helical micro-/nanomachines: Recent progress and perspective. Matter, 2022, 5, 77-109.	5.0	52
609	CuS nanodots-loaded biohybrid magnetic helical microrobots with enhanced photothermal performance. Materials Today Chemistry, 2022, 23, 100694.	1.7	10
610	Light driven micromotor swarm for tumor photothermal therapy. Applied Materials Today, 2022, 26, 101348.	2.3	14
611	An Immersed Boundary-Lattice Boltzmann Method for Hydrodynamic Propulsion of Helical Microrobots at Low Reynolds Numbers. IEEE Robotics and Automation Letters, 2022, 7, 1048-1054.	3.3	1
612	Review and Prospect of Medical Magnetic-Driven Micro-Nano Robots Based on Equipment Maintenance Concept. , 2020, , .		1
613	Magnetized Cell-robot Propelled by Magnetic Field for Cancer Killing. , 2020, , .		4
614	Instantaneous Magnetic Force Evaluation on a Magnetic Material for Wireless Power Transfer Based Microrobot Propulsion. , 2020, , .		2
615	Controlled Propulsion of Asymmetric Janus Microdimer Swimmers under Rotating Magnetic Fields. , 2020, , .		0
616	3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme. IEEE Transactions on Robotics, 2022, 38, 1583-1598.	7.3	13
617	A Note on Robotics and Artificial Intelligence in Pharmacy. Applied Drug Research, Clinical Trials and Regulatory Affairs, 2021, 8, 125-134.	0.1	0

#	Article	IF	CITATIONS
618	Precise Control of Magnetized Macrophage Cell Robot for Targeted Drug Delivery. , 2021, , .		1
619	Magnetic Miniature Actuators with Sixâ€Degreesâ€ofâ€Freedom Multimodal Softâ€Bodied Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	16
620	Application of magnetically actuated self-clearing catheter for rapid in situ blood clot clearance in hemorrhagic stroke treatment. Nature Communications, 2022, 13, 520.	5.8	4
621	Biomedical applications of some green synthesized metal nanomaterials. , 2022, , 71-91.		3
622	Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Science Robotics, 2022, 7, eabm1421.	9.9	52
623	3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5, 012001.	2.4	3
624	Nanomachines and nanorobotics: improving cancer diagnosis and therapy. , 2022, , 503-543.		3
625	Magnetic field interpolation for remote magnetic navigation in minimally invasive surgery. , 2022, , 397-424.		0
626	Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews, 2022, 122, 5411-5475.	23.0	49
627	Recent Progress of Micro/Nanorobots for Cell Delivery and Manipulation. Advanced Functional Materials, 2022, 32, .	7.8	31
628	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
629	Magnetic and Optical Characterization of Cobalt Ferrite–Barium Titanate Core–Shell for Biomedical Applications. IEEE Transactions on Magnetics, 2022, 58, 1-8.	1.2	5
630	Microfluidic mechanoporation for cellular delivery and analysis. Materials Today Bio, 2022, 13, 100193.	2.6	18
631	Analysis and Comparison of Electromagnetic Microrobotic Platforms for Biomedical Applications. Applied Sciences (Switzerland), 2022, 12, 456.	1.3	7
632	Magnetic Biohybrid Microrobot Multimers Based on <i>Chlorella</i> Cells for Enhanced Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 6320-6330.	4.0	69
633	Modeling and Estimation of Self-Phoretic Magnetic Janus Microrobot With Uncontrollable Inputs. IEEE Transactions on Control Systems Technology, 2022, 30, 2681-2688.	3.2	3
634	Microâ€Nano Motors with Taxis Behavior: Principles, Designs, and Biomedical Applications. Small, 2022, 18, e2106263.	5.2	20
635	A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS Applied Materials & Interfaces, 2022, 14, 3825-3837.	4.0	26

#	Article	IF	CITATIONS
636	Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Applied Materials Today, 2022, 26, 101371.	2.3	11
637	Ultrasound Acoustic Phase Analysis Enables Robotic Visual-Servoing of Magnetic Microrobots. IEEE Transactions on Robotics, 2022, 38, 1571-1582.	7.3	11
638	Recent Progress of Magnetically Actuated DNA Micro/Nanorobots. Cyborg and Bionic Systems, 2022, 2022, .	3.7	17
639	Wheel-like Magnetic-Driven Microswarm with a Band-Aid Imitation for Patching Up Microscale Intestinal Perforation. ACS Applied Materials & Interfaces, 2022, 14, 8743-8752.	4.0	22
640	Light-controlled microbots gathering as a sterilization platform for highly efficient capturing, concentrating and killing targeted bacteria. Chemical Engineering Journal, 2022, 435, 135067.	6.6	8
641	Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Applied Materials Today, 2022, 27, 101402.	2.3	23
642	A geometric criterion for the optimal spreading of active polymers in porous media. Nature Communications, 2021, 12, 7088.	5.8	35
643	Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots. Accounts of Chemical Research, 2022, 55, 98-109.	7.6	53
644	Quantitative prediction of rolling dynamics of leukocyte-inspired microroller in blood flow. Physics of Fluids, 2021, 33, .	1.6	14
647	Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare. , 2022, , 423-446.		6
648	Intuitionistic Fuzzy Representation ofÂUncertainty inÂBiomedical Operations. Lecture Notes in Networks and Systems, 2022, , 269-278.	0.5	4
649	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
650	Vision-Based Automated Control of Magnetic Microrobots. Micromachines, 2022, 13, 337.	1.4	9
651	Light hybrid micro/nano-robots: From propulsion to functional signals. Nano Research, 2022, 15, 5355-5375.	5.8	12
652	UnIC: Towards Unmanned Intelligent Cluster and Its Integration into Society. Engineering, 2022, 12, 24-38.	3.2	5
653	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
654	Boosting micromachine studies with Stokesian dynamics. Physics of Fluids, 2022, 34, 037102.	1.6	1
655	The \$N\$-Link Swimmer in Three Dimensions: Controllability and Optimality Results. Acta Applicandae Mathematicae, 2022, 178, 6.	0.5	3

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
656	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie, 2022, 134, .	1.6	5
657	Privacy as Vulnerability Protection: Optimizing Trade-Offs with Opportunities to Gain Knowledge. Research in Law and Economics, 2022, 30, 29-58.	0.1	0
658	Jet-driven viscous locomotion of confined thermoresponsive microgels. Applied Physics Letters, 2022, 120, 104101.	1.5	2
659	Micro/Nanorobots as Active Delivery Systems for Biomedicine: From Selfâ€Propulsion to Controllable Navigation. Advanced Therapeutics, 2022, 5, .	1.6	8
660	Acoustic power management by swarms of microscopic robots. Journal of Micro-Bio Robotics, 0, , 1.	2.1	0
661	Functionalized Spiralâ€Rolling Millirobot for Upstream Swimming in Blood Vessel. Advanced Science, 2022, 9, e2200342.	5.6	8
662	An Engineered Bacteria-Hybrid Microrobot with the Magnetothermal Bioswitch for Remotely Collective Perception and Imaging-Guided Cancer Treatment. ACS Nano, 2022, 16, 6118-6133.	7.3	46
663	The effect of particle geometry on squirming through a shear-thinning fluid. Journal of Fluid Mechanics, 2022, 938, .	1.4	12
664	Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Applied Materials & Interfaces, 2022, 14, 15517-15528.	4.0	14
665	Propulsion of a Magnetic Material-Applied Microrobot in a Tube Based on a Wireless Power Transfer System. Journal of Electromagnetic Engineering and Science, 2022, 22, 171-177.	0.7	2
666	Orientation-Dependent Propulsion of Triangular Nano- and Microparticles by a Traveling Ultrasound Wave. ACS Nano, 2022, 16, 3604-3612.	7.3	12
667	Reconfigurable Magnetic Slime Robot: Deformation, Adaptability, and Multifunction. Advanced Functional Materials, 2022, 32, .	7.8	71
668	Shape memory micro-anchors with magnetic guidance for precision micro-vascular deployment. Biomaterials, 2022, 283, 121426.	5.7	6
669	Artificial nanomotors: Fabrication, locomotion characterization, motion manipulation, and biomedical applications. , 2022, 1, 256-280.		41
670	Miniaturized double-legged robot utilizing perpendicular-axes electromagnetic actuator. Microsystem Technologies, 0, , 1.	1.2	1
671	Control and Autonomy of Microrobots: Recent Progress and Perspective. Advanced Intelligent Systems, 2022, 4, .	3.3	53
672	Streamlined plug-in aerosol prototype for reconfigurable manufacture of nano-drug delivery systems. Biomaterials, 2022, 284, 121511.	5.7	5
673	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	2.3	31

#	Article	IF	CITATIONS
674	Self-propelled Janus micromotors for pH-responsive release of small molecule drug. Applied Materials Today, 2022, 27, 101418.	2.3	9
675	Will future microbots be task-specific customized machines or multi-purpose "all in one―vehicles?. Nature Communications, 2021, 12, 7125.	5.8	13
676	3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality. ACS Applied Materials & Interfaces, 2021, 13, 61723-61732.	4.0	2
677	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Small cale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
678	Liquid Metal Swimming Nanorobots. Accounts of Materials Research, 2022, 3, 122-132.	5.9	18
679	Memristor Circuits for Colloidal Robotics: Temporal Access to Memory, Sensing, and Actuation. Advanced Intelligent Systems, 2022, 4, .	3.3	8
681	Optimal transport of surface-actuated microswimmers. Physics of Fluids, 2022, 34, 043604.	1.6	1
682	Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nature Communications, 2022, 13, 2016.	5.8	30
683	Propulsion of bullet- and cup-shaped nano- and microparticles by traveling ultrasound waves. Physics of Fluids, 0, , .	1.6	5
685	Quantification and 3D Localization of Magnetically Navigated Superparamagnetic Particles Using MRI in Phantom and Swine Chemoembolization Models. IEEE Transactions on Biomedical Engineering, 2022, 69, 2616-2627.	2.5	10
686	Microrobotics for Precision Biofilm Diagnostics and Treatment. Journal of Dental Research, 2022, 101, 1009-1014.	2.5	9
687	Magnetic Microswarm and Fluoroscopyâ€Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials, 2022, 34, e2201888.	11.1	60
688	Autonomous Treatment of Bacterial Infections <i>in Vivo</i> Using Antimicrobial Micro- and Nanomotors. ACS Nano, 2022, 16, 7547-7558.	7.3	48
689	Magnetically Actuated Reactive Oxygen Species Scavenging Nanoâ€Robots for Targeted Treatment. Advanced Intelligent Systems, 2022, 4, .	3.3	11
690	Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. European Journal of Pharmacology, 2022, 926, 175011.	1.7	20
691	Carbon Helical Nanorobots Capable of Cell Membrane Penetration for Single Cell Targeted SERS Bio‣ensing and Photothermal Cancer Therapy. Advanced Functional Materials, 2022, 32, .	7.8	28
692	Photoactivated Organic Nanomachines for Programmable Enhancement of Antitumor Efficacy. Small, 2022, 18, e2201525.	5.2	11
693	Bienzymatic Spiky Janus Nanomotors Powered by Histamine. ChemNanoMat, 0, , .	1.5	3

~			~		
C1	ΤΑΤΙ	ON	NE	DO	DT
\sim				. F O	

#	Article	IF	CITATIONS
694	Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. ACS Applied Materials & amp; Interfaces, 2022, 14, 23896-23908.	4.0	11
695	Biofilm-inspired Amyloid-Polysaccharide Composite Materials. Applied Materials Today, 2022, 27, 101497.	2.3	4
696	Collective guiding of acoustically propelled nano- and microparticles. Nanoscale Advances, 0, , .	2.2	7
697	Soft gallstone-crushing robots. Materials Today, 2022, 56, 42-52.	8.3	6
698	Enabling Precision Medicine via Contemporary and Future Communication Technologies: A Survey. IEEE Access, 2023, 11, 21210-21240.	2.6	2
699	Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nature Machine Intelligence, 2022, 4, 480-493.	8.3	61
700	Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS Nano, 2022, 16, 9317-9328.	7.3	7
701	From radial to unidirectional water pumping in zeta-potential modulated Nafion nanostructures. Nature Communications, 2022, 13, 2812.	5.8	12
702	A Critical Review on Nanowireâ€Motors: Design, Mechanism and Applications. Chemical Record, 2022, 22,	2.9	31
703	Modeling and Control of IPMC-Based Artificial Eukaryotic Flagellum Swimming Robot: Distributed Actuation. Algorithms, 2022, 15, 181.	1.2	5
705	Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics, 2022, 14, 1132.	2.0	15
706	A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. Small, 2022, 18, .	5.2	29
707	Actuation and biomedical development of micro-/nanorobots – A review. Materials Today Nano, 2022, 18, 100223.	2.3	12
708	Opto-Thermocapillary Nanomotors on Solid Substrates. ACS Nano, 2022, 16, 8820-8826.	7.3	19
709	Biosafety evaluation of dual-responsive neutrobots. Journal of Materials Chemistry B, 2022, 10, 7556-7562.	2.9	3
711	Single Coil Mechanoâ€Electromagnetic System for the Automatic 1â€Axis Position Feedback 3D Locomotion Control of Magnetic Robots and Their Selective Manipulation. Advanced Science, 2022, 9, .	5.6	6
713	Twin-Engine Janus Supramolecular Nanomotors with Counterbalanced Motion. Journal of the American Chemical Society, 2022, 144, 11246-11252.	6.6	25
714	Switching from Chemical to Electrical Micromotor Propulsion across a Gradient of Gastric Fluid via Magnetic Rolling. ACS Applied Materials & Interfaces, 2022, 14, 30290-30298.	4.0	17

#	Article	IF	Citations
717	Cell navigation and delivery inÂvivo. , 2022, , 433-465.		0
718	Fully Automatic and Real-Time Microrobot Detection and Tracking based on Ultrasound Imaging using Deep Learning. , 2022, , .		4
719	Acoustic and magnetic hybrid actuated immune cell robot for target and kill cancer cells. , 2022, , .		1
720	Optically Manipulated Neutrophils as Native Microcrafts <i>In Vivo</i> . ACS Central Science, 2022, 8, 1017-1027.	5.3	9
721	Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously. Nature Communications, 2022, 13, .	5.8	12
722	Reinforcement learning of optimal active particle navigation. New Journal of Physics, 2022, 24, 073042.	1.2	16
723	Potential of the Coordinated Actions of Multiple Protein-Based Micromachines for Medical Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 32927-32936.	4.0	1
724	Shape Memory Alloy Helical Microrobots with Transformable Capability towards Vascular Occlusion Treatment. Research, 2022, 2022, .	2.8	4
725	How Microalgae is Effective in Oxygen Deficiency Aggravated Diseases? A Comprehensive Review of Literature. International Journal of Nanomedicine, 0, Volume 17, 3101-3122.	3.3	9
726	Size-Dependent Vibration of Porous Bishop Nanorod with Arbitrary Boundary Conditions and Nonlocal Elasticity Effects. Journal of Vibration Engineering and Technologies, 2023, 11, 809-826.	1.3	10
727	Selfâ€Propelled Catalytically Powered Dualâ€Engine Magnetic Nanobots for Rapid and Highly Efficient Capture of Circulating Fetal Trophoblasts. Advanced Materials Interfaces, 0, , 2200522.	1.9	1
728	In vivo computation with sensor fusion and search acceleration for smart tumor homing. Computers in Biology and Medicine, 2022, 148, 105887.	3.9	0
729	Physical Intelligence in the Metaverse: Mixed Reality Scale Models for Twistronics and Atomic Force Microscopy. , 2022, , .		2
730	Macrophage-compatible magnetic achiral nanorobots fabricated by electron beam lithography. Scientific Reports, 2022, 12, .	1.6	3
731	Artificial microtubules for rapid and collective transport of magnetic microcargoes. Nature Machine Intelligence, 2022, 4, 678-684.	8.3	22
732	Wireless Power Transfer-Based Microrobot with Magnetic Force Propulsion Considering Power Transfer Efficiency. Journal of Electromagnetic Engineering and Science, 2022, 22, 488-495.	0.7	1
733	A New Drive System for Microagent Control in Targeted Therapy Based on Rotating Gradient Magnetic Fields. Advanced Intelligent Systems, 2022, 4, .	3.3	2
734	Magnetâ€Driven Microwalker in Surface Motion Based on Frictional Anisotropy. Advanced Intelligent Systems, 2022, 4, .	3.3	7

#	Article	IF	CITATIONS
735	Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles. Science Advances, 2022, 8, .	4.7	29
736	Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation. National Science Review, 2022, 9, .	4.6	8
737	Geometric and Scaling Effects in the Speed of Catalytic Enzyme Micropumps. ACS Applied Materials & Interfaces, 2022, 14, 39515-39523.	4.0	3
738	Soft microswimmers: Material capabilities and biomedical applications. Current Opinion in Colloid and Interface Science, 2022, 61, 101609.	3.4	6
739	Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. Langmuir, 0, , .	1.6	3
740	Electromagnetic Actuation Microrobotic Systems. Current Robotics Reports, 2022, 3, 119-126.	5.1	1
741	Synthetic Micro/Nanomotors for Drug Delivery. Technologies, 2022, 10, 96.	3.0	3
742	Contemporary Tools for the Cure against Pernicious Microorganisms: Micro-/Nanorobots. Prosthesis, 2022, 4, 424-443.	1.1	5
743	Pollen Typhae-Based Magnetic-Powered Microrobots toward Acute Gastric Bleeding Treatment. ACS Applied Bio Materials, 2022, 5, 4425-4434.	2.3	4
744	Nematic Colloidal Microâ€Robots as Physically Intelligent Systems. Advanced Functional Materials, 2022, 32, .	7.8	6
745	Anisotropic swimming and reorientation of an undulatory microswimmer in liquid-crystalline polymers. Journal of Fluid Mechanics, 2022, 946, .	1.4	0
746	Intrinsic Properties Enabled Metal Organic Framework Micromotors for Highly Efficient Self-Propulsion and Enhanced Antibacterial Therapy. ACS Nano, 2022, 16, 14666-14678.	7.3	16
747	In situ integrated microrobots driven by artificial muscles built from biomolecular motors. Science Robotics, 2022, 7, .	9.9	17
748	Engineering shapes of active colloids for tunable dynamics. Current Opinion in Colloid and Interface Science, 2022, 61, 101608.	3.4	10
749	Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging. Biomedical Materials (Bristol), 2022, 17, 065001.	1.7	7
750	Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. Advanced Materials, 2023, 35, .	11.1	23
751	Self-Fueled Janus Nanomotors as Active Drug Carriers for Propulsion Behavior-Reinforced Permeability and Accumulation at the Tumor Site. Chemistry of Materials, 2022, 34, 7543-7552.	3.2	17
752	Collective Behaviors of Magnetic Microparticle Swarms: From Dexterous Tentacles to Reconfigurable Carpets. ACS Nano, 2022, 16, 13728-13739.	7.3	19

#	Article	IF	Citations
753	Rapid and Multimaterial 4D Printing of Shapeâ€Morphing Micromachines for Narrow Micronetworks Traversing. Small, 2022, 18, .	5.2	9
754	Magnetic Microrobotic Swarms in Fluid Suspensions. Current Robotics Reports, 2022, 3, 127-137.	5.1	2
755	Path planning of nanorobot: a review. Microsystem Technologies, 2022, 28, 2393-2401.	1.2	3
757	Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzymeâ€Mimicking Activity of Nanomaterials. Small, 2022, 18, .	5.2	29
758	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
759	Nanotechnology for Bioengineers. Synthesis Lectures on Biomedical Engineering, 2020, , .	0.1	1
760	On the Workspace of Electromagnetic Navigation Systems. IEEE Transactions on Robotics, 2023, 39, 791-807.	7.3	7
761	Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices. Soft Matter, 2022, 18, 8063-8070.	1.2	4
762	Multicomponent and multifunctional integrated miniature soft robots. Soft Matter, 2022, 18, 7464-7485.	1.2	7
763	The role of disorder in the motion of chiral active particles in the presence of obstacles. Soft Matter, 2022, 18, 6899-6906.	1.2	6
764	Dynamic Path Planning and Motion Control of Microrobotic Swarms for Mobile Target Tracking. IEEE Transactions on Automation Science and Engineering, 2023, 20, 2454-2468.	3.4	9
765	Helical micro-swimmer: hierarchical tail design and propulsive motility. Soft Matter, 2022, 18, 6148-6156.	1.2	5
766	Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. Journal of Materials Chemistry B, 2022, 10, 8235-8243.	2.9	8
767	Automated Manipulation of Microswarms Without Real-Time Image Feedback Using Magnetic Tweezers. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5712-5723.	3.7	3
768	Bionic morphological design and interface-free fabrication of halfmoon microrobots with enhanced motion performance. Chemical Engineering Journal, 2023, 452, 139464.	6.6	6
769	LEAF: A Cloud-end Coevolutionary Framework for Multi-objective Swarm Robots Formation Optimization in Dynamic Environment. , 2022, , .		2
770	Multimodal Bubble Microrobot Near an Air–Water Interface. Small, 2022, 18, .	5.2	10
771	Scale-reconfigurable miniature ferrofluidic robots for negotiating sharply variable spaces. Science Advances, 2022, 8, .	4.7	36

#	Article	IF	CITATIONS
772	Aligned Magnetic Nanocomposites for Modularized and Recyclable Soft Microrobots. ACS Applied Materials & Materials	4.0	5
773	An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess and Biosystems Engineering, 2022, 45, 1781-1797.	1.7	16
775	Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Science Robotics, 2022, 7, .	9.9	41
776	Mucosa-interfacing electronics. Nature Reviews Materials, 2022, 7, 908-925.	23.3	35
777	A Biomolecular Toolbox for Precision Nanomotors. Advanced Materials, 0, , 2205746.	11.1	11
778	Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nature Materials, 2022, 21, 1324-1332.	13.3	91
779	Acoustic Levitation for Large Particle Based on Concave Spherical Transducer Arrays. IEEE Sensors Journal, 2022, 22, 18104-18113.	2.4	2
780	Hierarchical Planning with Deep Reinforcement Learning for 3D Navigation of Microrobots in Blood Vessels. Advanced Intelligent Systems, 2022, 4, .	3.3	8
781	Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. Science Advances, 2022, 8, .	4.7	27
782	Curvilinear Magnetic Architectures for Biomedical Engineering. Topics in Applied Physics, 2022, , 305-341.	0.4	0
783	Hydrogel-Based Stimuli-Responsive Micromotors for Biomedicine. Cyborg and Bionic Systems, 2022, 2022, .	3.7	25
784	Advances in Chemically Powered Micro/Nanorobots for Biological Applications: A Review. Advanced Functional Materials, 2023, 33, .	7.8	14
785	Medical micro- and nanomotors in the body. Acta Pharmaceutica Sinica B, 2023, 13, 517-541.	5.7	28
786	Light-Controlled Microbots in Biomedical Application: A Review. Applied Sciences (Switzerland), 2022, 12, 11013.	1.3	6
787	Magneto-Mechanically Triggered Thick Films for Drug Delivery Micropumps. Nanomaterials, 2022, 12, 3598.	1.9	6
788	Tunneling or Hopping? A Direct Electrochemical Observation of Electron Transfer in DNA. Analytical Chemistry, 2022, 94, 15324-15331.	3.2	5
789	Actuators for Implantable Devices: A Broad View. Micromachines, 2022, 13, 1756.	1.4	2
790	Ray Optics for Gliders. ACS Nano, 2022, 16, 16191-16200.	7.3	3

#	Article	IF	CITATIONS
791	TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	6
792	Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids. Proceedings of the United States of America, 2022, 119, .	3.3	1
793	Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS Nano, 2023, 17, 251-262.	7.3	22
794	Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nature Communications, 2022, 13, .	5.8	8
795	Nanosensor Location Estimation in the Human Circulatory System Using Machine Learning. IEEE Nanotechnology Magazine, 2022, 21, 663-673.	1.1	3
796	Photoacoustic Dual-mode Microsensor Based on PMUT Technology. , 2022, , .		3
797	Janus Micro/Nanorobots in Biomedical Applications. Advanced Healthcare Materials, 2023, 12, .	3.9	10
798	Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. Materials, 2022, 15, 7781.	1.3	4
799	Creating stable trapping force and switchable optical torque with tunable phase of light. Science Advances, 2022, 8, .	4.7	21
800	Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. Micromachines, 2022, 13, 1987.	1.4	2
801	Magnetic Untethered Peanutlike Millirobot Motion Mode Switching Control. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1638-1648.	3.7	3
802	Antimicrobial micro/nanorobotic materials design: From passive combat to active therapy. Materials Science and Engineering Reports, 2023, 152, 100712.	14.8	12
803	Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosensors and Bioelectronics, 2023, 222, 114960.	5.3	3
804	Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113054.	2.5	9
805	Smart helical swimmer: Nested and uncoiled designs. International Journal of Mechanical Sciences, 2023, 242, 107996.	3.6	2
806	Magnetic and photoactive colloidal shuttles for active cargo transportation. Jcis Open, 2023, 9, 100071.	1.5	2
807	Smart dental materials for antimicrobial applications. Bioactive Materials, 2023, 24, 1-19.	8.6	17
808	Microdevices:. IngenierÃa Solidaria, 2022, 18, 1-24.	0.1	Ο

ARTICLE IF CITATIONS # Being a Post-Learner With Virtual Worlds., 2022, , 36-55. 809 0 Dynamical motion of an oblate shaped particle exposed to an acoustic standing wave in a 1.0 microchannel. Physical Review Fluids, 2022, 7, . Ferromagnetic Flexible Electronics for Brainâ€Wide Selective Neural Recording. Advanced Materials, 811 11.1 2 2023, 35, . Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS Applied Bio Materials, 0, , . Imaging-Guided Biomimetic M1 Macrophage Membrane-Camouflaged Magnetic Nanorobots for Photothermal Immunotargeting Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2022, 14, 813 4.0 14 56548-56559. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Frontiers in 814 1.3 Oncology, 0, 12, . 815 Exploiting ferrofluidic wetting for miniature soft machines. Nature Communications, 2022, 13, . 5.8 25 Microrobots for Targeted Delivery and Therapy in Digestive System. ACS Nano, 2023, 17, 27-50. 7.3 816 Parameter identification of Duhem model based on antlion-fish swarm hybrid algorithm and robust backstepping sliding mode control for rate-dependent hysteresis of piezoelectric actuators. 817 0 1.1 Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622211388. 818 Nanorobots for Drug Delivery, Surgery, and Biosensing., 2023, 15-34. Analysing the motion of scallop-like swimmers in a noisy environment. European Physical Journal: 819 1.2 1 Special Topics, 0, , . Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing. Advanced 11.1 Materials, 2023, 35, . Chemical Approaches for the Preparation of Bacteria – Nano/Microparticle Hybrid Systems. 821 2.1 0 Macromolecular Bioscience, 2023, 23, . Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers. Small, 2023, 19, . 5.2 44 Advanced medical micro-robotics for early diagnosis and therapeutic interventions. Frontiers in 823 2.0 6 Robotics and AI, 0, 9, . Programmable living nanorobots. Hacettepe Journal of Biology and Chemistry, 2023, 51, 183-190. 824 825 Introduction to Nanomedicine. Micro/Nano Technologies, 2023, , 3-16. 0.1 0 A review on microrobots driven by optical and magnetic fields. Lab on A Chip, 2023, 23, 848-868. 3.1

#	Article	IF	CITATIONS
827	Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Letters, 2023, 15, .	14.4	19
828	Recent Advances in One-Dimensional Micro/Nanomotors: Fabrication, Propulsion and Application. Nano-Micro Letters, 2023, 15, .	14.4	16
829	Collision-free Navigation of Magnetic Mobile Microrobot in Multiple Scenarios. , 2022, , .		0
830	Population aging and medical robotics. Economic Analysis Theory and Practice, 2022, 21, 2356-2374.	0.1	0
831	Dataâ€Driven Navigation of Ferromagnetic Soft Continuum Robots Based on Machine Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	1
832	Biomedical Microâ€∤Nanomotors: Design, Imaging, and Disease Treatment. Advanced Functional Materials, 2023, 33, .	7.8	11
833	Selfâ€Propelled, Highâ€Crystalline Hydrogenâ€Bonded Enzymatic Framework Assembled by Bottomâ€Up Strategy. Small Structures, 2023, 4, .	6.9	7
834	Piezo robotic hand for motion manipulation from micro to macro. Nature Communications, 2023, 14, .	5.8	36
835	Closed‣oop Control Characterization of Untethered Small‣cale Helical Device in Physiological Fluid with Dynamic Flow Rates. Advanced Intelligent Systems, 2023, 5, .	3.3	4
836	A Theoretical Investigation of the Ability of Magnetic Miniature Robots to Exert Forces and Torques for Biomedical Functionalities. IEEE Robotics and Automation Letters, 2023, 8, 1771-1777.	3.3	1
838	Nanorobots for improved theranostic applications. , 2023, , 587-611.		1
839	Self-learning swimming of a three-disk microrobot in a viscous and stochastic environment using reinforcement learning. Engineering Applications of Artificial Intelligence, 2023, 123, 106188.	4.3	1
840	Magnetic actuation of miniature robots on planar surfaces: Mathematical modeling and estimation of parameters. Journal of Computational and Applied Mathematics, 2023, 429, 115223.	1.1	1
841	Multiple cilia-like swarms enable efficient microrobot deployment and execution. Cell Reports Physical Science, 2023, 4, 101329.	2.8	4
842	Updated Minimum Weighted Norm Based Electromagnetic Field Control for a Magnetically Actuated Microrobot. International Journal of Control, Automation and Systems, 2023, 21, 935-947.	1.6	0
843	Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today, 2023, 49, 101764.	6.2	28
844	A numerical method for the locomotion of bi-flagellated bacteria in viscous fluid. Flow, 2023, 3, .	1.0	1
845	Water-Immiscible Coacervate as a Liquid Magnetic Robot for Intravascular Navigation. Journal of the American Chemical Society, 2023, 145, 3312-3317.	6.6	6

#	Article	IF	CITATIONS
846	Micro/Nanofabrication, Assembly, and Actuation Based on Microorganisms: Recent Advances and Perspectives. Small Structures, 2023, 4, .	6.9	35
847	Micro- and nanorobots for biomedical applications in the brain. , 2023, 1, 308-310.		13
848	Twin-bioengine self-adaptive micro/nanorobots using enzyme actuation and macrophage relay for gastrointestinal inflammation therapy. Science Advances, 2023, 9, .	4.7	15
849	Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions. Sensors, 2023, 23, 2478.	2.1	1
850	Introduction to nanoengineering and nanotechnology for biomedical applications. , 2023, , 1-34.		0
851	Drastic mass transport enhancement from miniscule precession. Matter, 2023, 6, 658-660.	5.0	0
852	Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics, 2023, 8, 109.	1.5	3
853	Ultrasmall Enzyme-Powered Janus Nanomotor Working in Blood Circulation System. ACS Nano, 2023, 17, 6023-6035.	7.3	18
854	Accelerating the Design of Self-Guided Microrobots in Time-Varying Magnetic Fields. Jacs Au, 2023, 3, 611-627.	3.6	5
855	A Survey for Possible Technologies of Micro/Nanomachines Used for Molecular Communication Within 6G Application Scenarios. IEEE Internet of Things Journal, 2023, 10, 11240-11263.	5.5	6
856	Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions. Soft Matter, 2023, 19, 2466-2485.	1.2	2
857	Autonomous Microlasers for Profiling Extracellular Vesicles from Cancer Spheroids. Nano Letters, 2023, 23, 2502-2510.	4.5	7
858	Zn Microbatteries Explore Ways for Integrations in Intelligent Systems. Small, 2023, 19, .	5.2	7
859	èf¶ä¼2"马达. Scientia Sinica Chimica, 2023, , .	0.2	0
860	An Overview of Recent Progress in Micro/Nanorobots for Biomedical Applications. Advanced Materials Technologies, 2023, 8, .	3.0	3
862	Single-atom-anchored microsweepers for <i>H. pylori</i> inhibition through dynamically navigated reciprocating locomotion. Chemical Communications, 0, , .	2.2	0
863	USMicroMagSet: Using Deep Learning Analysis to Benchmark the Performance of Microrobots in Ultrasound Images. IEEE Robotics and Automation Letters, 2023, 8, 3254-3261.	3.3	5
864	Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews, 2024, 20, 18-25.	0.2	0

#	ARTICLE	IF	CITATIONS
865	Medical nanorobots in the focus of law. , 2023, 1, 89-122.		7
866	Automatic Navigation of Microswarms for Dynamic Obstacle Avoidance. IEEE Transactions on Robotics, 2023, 39, 2770-2785.	7.3	4
867	3D force-feedback optical tweezers for experimental biology. , 2023, , 145-172.		0
872	Vision-based method for precise manipulation of magnetic spiral microrobots. , 2023, , .		0
883	Biomedical Applications of Ferrites. Materials Horizons, 2023, , 241-256.	0.3	0
886	Minimalist milliscale robot construction by M-spray. , 2023, , 77-101.		0
887	Actuation and biomedical development of micro/nanorobots $\hat{a} \in \hat{a}$ a review. , 2023, , 1-35.		0
889	<i>In vivo</i> applications of micro/nanorobots. Nanoscale, 2023, 15, 8491-8507.	2.8	11
900	Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano, 2023, 17, 12971-12999.	7.3	13
902	Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano, 2023, 17, 13081-13109.	7.3	11
910	Assistive robotic technologies: An overview of recent advances in medical applications. , 2023, , 1-23.		0
913	Intelligent sensing based on active micro/nanomotors. Journal of Materials Chemistry B, 2023, 11, 8897-8915.	2.9	2
922	Towards multifunctional robotic pills. Nature Biomedical Engineering, 0, , .	11.6	1
925	Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunologic Research, 0, , .	1.3	1
928	A Magnetically Actuated Diatom-Biohybrid Microrobot as a Drug Delivery Capsule. Lecture Notes in Computer Science, 2023, , 471-481.	1.0	0
929	Nanomotor technologies developed for cell-based nanoscale transport phenomena and mechanism. , 2024, , 73-91.		0
936	Propulsion and Control of Microrobot using a Multiple Wireless Power Transfer Coil. , 2023, , .		0
937	Functionalized Strategies of Superparamagnetic Materials. Nanomedicine and Nanotoxicology, 2023, , 23-56.	0.1	0

#	Article	IF	CITATIONS
940	Nanorobots: The future of healthcare. AIP Conference Proceedings, 2023, , .	0.3	0
947	Dexterity of Concentric Magnetic Continuum Robot with Multiple Stiffness. Lecture Notes in Computer Science, 2023, , 329-338.	1.0	0
952	Correlating the Dynamics of Magnetic Nanobots with the Intracellular Topography. , 2023, , .		0
954	Light-driven micro/nanomotors in biomedical applications. Nanoscale, 2023, 15, 18550-18570.	2.8	1
958	Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. Nano-Micro Letters, 2024, 16, .	14.4	1
967	Introduction to Micro/Nanorobot Swarms. , 2023, , 1-30.		0
968	Biohybrid Microswarm for the Removal of Toxic Heavy Metals. , 2023, , 307-319.		0
969	Heterogeneous Colloidal Microswarm with Multifunction. , 2023, , 107-126.		0
971	Formation and Navigation of Microswarms in Dynamic Environments. , 2023, , 239-260.		0
973	Nanorobitcs. Advances in Computational Intelligence and Robotics Book Series, 2023, , 136-174.	0.4	0
976	Modeling of Nanorobots and Its Application Toward Medical Technology. , 2023, , 65-72.		0
978	Manipulation of Optical Force-Induced Micro-Assemblies at the Air-Liquid Interface. , 2023, , .		0
979	SonicPlex: Simultaneous Arrangement of Massive Particles through a Simple Acoustic Micromanipulation Platform. , 2023, , .		0
987	Al-enhanced biomedical micro/nanorobots in microfluidics. Lab on A Chip, 2024, 24, 1419-1440.	3.1	0
998	Batteries for small-scale robotics. MRS Bulletin, 2024, 49, 115-124.	1.7	2
1002	Materials consideration for the design, fabrication and operation of microscale robots. Nature Reviews Materials, 2024, 9, 159-172.	23.3	0
1006	Smart Microlasers for Self-detecting Exosomes from Cancer Spheroids. , 2023, , .		0
1009	Surgical Robotics. , 2023, , 35-58.		0

ARTICLE

IF CITATIONS