The atom, the molecule, and the covalent organic frame

Science 355, DOI: 10.1126/science.aal1585

Citation Report

#	Article	IF	CITATIONS
1	Flexible monomer-based covalent organic frameworks: design, structure and functions. CrystEngComm, 2017, 19, 4868-4871.	1.3	18
2	An Elastic Hydrogen-Bonded Cross-Linked Organic Framework for Effective lodine Capture in Water. Journal of the American Chemical Society, 2017, 139, 7172-7175.	6.6	218
3	The â€~folklore' and reality of reticular chemistry. Materials Chemistry Frontiers, 2017, 1, 1304-1309.	3.2	47
4	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	5.3	194
5	Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Central Science, 2017, 3, 533-543.	5.3	251
6	3D Porphyrin-Based Covalent Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8705-8709.	6.6	369
7	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie, 2017, 129, 5064-5068.	1.6	33
8	Isoreticular covalent organic frameworks for hydrocarbon uptake and separation: the important role of monomer planarity. CrystEngComm, 2017, 19, 4899-4904.	1.3	72
9	Salen-Based Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 6042-6045.	6.6	240
10	A Dynamic Three-Dimensional Covalent Organic Framework. Journal of the American Chemical Society, 2017, 139, 4995-4998.	6.6	213
11	Highly porous photoluminescent diazaborole-linked polymers: synthesis, characterization, and application to selective gas adsorption. Polymer Chemistry, 2017, 8, 2509-2515.	1.9	11
12	Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions. Angewandte Chemie - International Edition, 2017, 56, 4982-4986.	7.2	217
13	Control of Fullerene Crystallization from 2D to 3D through Combined Solvent and Template Effects. Journal of the American Chemical Society, 2017, 139, 16732-16740.	6.6	35
14	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	6.6	290
15	Self-Supported BINOL-Derived Phosphoric Acid Based on a Chiral Carbazolic Porous Framework. Organic Letters, 2017, 19, 6072-6075.	2.4	24
16	Review for chiral-at-metal complexes and metal-organic framework enantiomorphs. Science Bulletin, 2017, 62, 1344-1354.	4.3	28
17	Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chemical Society Reviews, 2017, 46, 6927-6945.	18.7	347
18	Single-Site Photocatalytic H ₂ Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts. Journal of the American Chemical Society, 2017, 139, 16228-16234.	6.6	292

#	Article	IF	CITATIONS
19	Facile synthesis of –Cî€N– linked covalent organic frameworks under ambient conditions. Chemical Communications, 2017, 53, 11956-11959.	2.2	61
20	Mechanochemical Synthesis of Carbon Nanothread Single Crystals. Journal of the American Chemical Society, 2017, 139, 16343-16349.	6.6	88
21	Atomic mechanism for the growth of wafer-scale single-crystal graphene: theoretical perspective and scanning tunneling microscopy investigations. 2D Materials, 2017, 4, 042002.	2.0	11
22	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
23	Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions. Journal of the American Chemical Society, 2017, 139, 12911-12914.	6.6	204
24	Construction of a hydrazone-linked chiral covalent organic framework–silica composite as the stationary phase for high performance liquid chromatography. Journal of Chromatography A, 2017, 1519, 100-109.	1.8	110
25	Catalysis and CO ₂ Capture by Palladiumâ€Incorporated Covalent Organic Frameworks. ChemPlusChem, 2017, 82, 1253-1265.	1.3	46
26	Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles. ACS Macro Letters, 2017, 6, 1056-1059.	2.3	42
27	Recent advances in metalâ€organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis, 2017, 38, 3059-3078.	1.3	98
28	Encapsulating Organic Crystals (EnOCs). Synlett, 2017, 28, 1763-1766.	1.0	10
29	Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers. ACS Nano, 2017, 11, 8207-8214.	7.3	21
30	Recent advances in AlEgen-based luminescent metal–organic frameworks and covalent organic frameworks. Materials Chemistry Frontiers, 2017, 1, 2474-2486.	3.2	136
31	General Route to High Surface Area Covalent Organic Frameworks and Their Metal Oxide Composites as Magnetically Recoverable Adsorbents and for Energy Storage. ACS Macro Letters, 2017, 6, 1444-1450.	2.3	81
32	Thermal Conductivity of Covalent Organic Frameworks as a Function of Their Pore Size. Journal of Physical Chemistry C, 2017, 121, 27247-27252.	1.5	42
33	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16313-16317.	7.2	290
34	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie, 2017, 129, 16531-16535	1.6	54
35	Creation and bioapplications of porous organic polymer materials, Journal of Materials Chemistry B		
	2017, 5, 9278-9290.	2.9	82

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	8.3	202
38	A three-dimensional porphyrin-based porous organic polymer with excellent biomimetic catalytic performance. Polymer Chemistry, 2017, 8, 4327-4331.	1.9	32
39	Mechanochemical synthesis of porous organic materials. Journal of Materials Chemistry A, 2017, 16118-16127.	5, 5.2	79
40	Pd NPs-Loaded Homochiral Covalent Organic Framework for Heterogeneous Asymmetric Catalysi Chemistry of Materials, 2017, 29, 6518-6524.	s. 3.2	141
41	Synthesis of a Square [5]Catenane by Simple Amineâ€Aldehyde Condensation. ChemistrySelect, 11977-11980.	2017, 2, 0.7	2
42	Covalent Organic Frameworks—Organic Chemistry Beyond the Molecule. Molecules, 2017, 22,	1575. 1.7	31
43	Specialty Grand Challenges in Supramolecular Chemistry. Frontiers in Chemistry, 2017, 5, 83.	1.8	14
44	Crystallization of Covalent Organic Frameworks for Gas Storage Applications. Molecules, 2017, 2 1149.	2, 1.7	128
45	The role of reticular chemistry in the design of CO2 reduction catalysts. Nature Materials, 2018, 1 301-307.	13.3	552
46	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selecti Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, 6150-6156.	ve 1.6	67
47	Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 2018, 9, 1430-1438.	1.9	43
48	Synthesis of Porous Sulfonamide Polymers by Capturing Atmospheric Sulfur Dioxide. ChemSusCł 2018, 11, 1751-1755.	iem, 3.6	11
49	Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chemical Communications, 2018, 54, 5058-5061.	2.2	19
50	Porphyrin Organic Framework Hollow Spheres and Their Applications in Lithium–Sulfur Batteri€ Advanced Materials, 2018, 30, e1707483.	'S. 11.1	145
51	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemi 2018, 130, 5443-5447.	2, 1.6	41
52	3D Anionic Silicate Covalent Organic Framework with srs Topology. Journal of the American Chen Society, 2018, 140, 5330-5333.	nical 6.6	174
53	Design and synthesis of a multifunctional porous N-rich polymer containing <i>s</i> -triazine and Tröger's base for CO ₂ adsorption, catalysis and sensing. Polymer Chemistry, 2018, 2643-2649.	9, 1.9	57
54	Molecular Recognition with Resorcin [4]arene Cavitands: Switching, Halogen-Bonded Capsules, a Enantioselective Complexation. Journal of the American Chemical Society, 2018, 140, 2705-2717	nd 6.6	113

#	Article	IF	CITATIONS
55	Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications, 2018, 9, 576.	5.8	497
56	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	7.2	255
57	The construction of fluorescent heteropore covalent organic frameworks and their applications in spectroscopic and visual detection of trinitrophenol with high selectivity and sensitivity. Chemical Communications, 2018, 54, 2308-2311.	2.2	79
58	Covalent Organic Framework with Frustrated Bonding Network for Enhanced Carbon Dioxide Storage. Chemistry of Materials, 2018, 30, 1762-1768.	3.2	169
59	Ru Nanoparticles-Loaded Covalent Organic Framework for Solvent-Free One-Pot Tandem Reactions in Air. Inorganic Chemistry, 2018, 57, 2678-2685.	1.9	77
60	Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chemical Communications, 2018, 54, 2349-2352.	2.2	205
61	Nanopore-induced host–guest charge transfer phenomena in a metal–organic framework. Chemical Science, 2018, 9, 3282-3289.	3.7	28
62	Lithium doping on 2D squaraine-bridged covalent organic polymers for enhancing adsorption properties: a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 6487-6499.	1.3	15
63	Equilibration of Imineâ€Linked Polymers to Hexagonal Macrocycles Driven by Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 3989-3993.	1.7	33
65	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	5.8	364
66	A Molecular Pillar Approach To Grow Vertical Covalent Organic Framework Nanosheets on Graphene: Hybrid Materials for Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 1034-1038.	7.2	198
67	Structural Engineering of 2D Nanomaterials for Energy Storage and Catalysis. Advanced Materials, 2018, 30, e1706347.	11.1	297
68	Dehydration of <i>ortho</i> â€; <i>meta</i> ―and <i>para</i> â€Alkoxy Phenylboronic Acids to their Corresponding Boroxines. European Journal of Inorganic Chemistry, 2018, 2018, 1492-1498.	1.0	16
69	Isodesmic Reactions in Catalysis – Only the Beginning?. Israel Journal of Chemistry, 2018, 58, 94-103.	1.0	22
70	Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Materials Research Bulletin, 2018, 100, 357-366.	2.7	174
71	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	6.6	646
72	Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2018, 140, 1116-1122.	6.6	457
73	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano, 2018, 12, 385-391.	7.3	68

#	Article	IF	CITATIONS
74	Imineâ€Based Architectures at Surfaces and Interfaces: From Selfâ€Assembly to Dynamic Covalent Chemistry in 2D. Chemistry - an Asian Journal, 2018, 13, 465-481.	1.7	36
75	Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique. NPG Asia Materials, 2018, 10, e456-e456.	3.8	38
76	Recent advances of hexaazatriphenylene (HAT) derivatives: Their applications in self-assembly and porous organic materials. Tetrahedron Letters, 2018, 59, 592-604.	0.7	28
77	H ₂ Evolution with Covalent Organic Framework Photocatalysts. ACS Energy Letters, 2018, 3, 400-409.	8.8	318
78	Prediction of two-dimensional nodal-line semimetals in a carbon nitride covalent network. Journal of Materials Chemistry A, 2018, 6, 11252-11259.	5.2	101
79	The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chemical Society Reviews, 2018, 47, 4642-4664.	18.7	126
80	A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H ₂ /CO ₂ separation selectivity. Dalton Transactions, 2018, 47, 7206-7212.	1.6	52
81	Supramolecular Reassembly of Selfâ€Exfoliated Ionic Covalent Organic Nanosheets for Labelâ€Free Detection of Doubleâ€Stranded DNA. Angewandte Chemie - International Edition, 2018, 57, 8443-8447.	7.2	140
82	n-Diamondynes: Expanding the family of carbon allotropes. Carbon, 2018, 136, 337-344.	5.4	15
83	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	6.6	555
84	Triptycene-Based Porous Metal-Assisted Salphen Organic Frameworks: Influence of the Metal Ions on Formation and Gas Sorption. Chemistry of Materials, 2018, 30, 2781-2790.	3.2	27
85	Nitrogen-Enriched Nanoporous Polytriazine for High-Performance Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2018, 6, 5895-5902.	3.2	49
86	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
87	Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 4494-4498.	6.6	283
88	Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angewandte Chemie - International Edition, 2018, 57, 5345-5349.	7.2	162
89	Polymorphism of a porous hydrogen bond-assisted ionic organic framework. CrystEngComm, 2018, 20, 1779-1782.	1.3	4
90	Structural design, preparation and characterization of light, isotropic and robust statically determined organic frameworks as reusable adsorbents. Chemical Engineering Journal, 2018, 335, 887-895.	6.6	16
91	2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.	11.1	266

		CITATION REPORT	
#	Article	IF	CITATIONS
92	Synthetic strategies for chiral metal-organic frameworks. Chinese Chemical Letters, 2018, 29, 819-822.	4.8	73
93	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
94	Bottom-Up Design and Generation of Complex Structures: A New Twist in Reticular Chemistry. Crystal Growth and Design, 2018, 18, 449-455.	1.4	14
95	Nanoporous Conducting Covalent Organic Polymer (COP) Nanostructures as Metal-Free High Performance Visible-Light Photocatalyst for Water Treatment and Enhanced CO ₂ Capture. Journal of Physical Chemistry C, 2018, 122, 274-284.	1.5	37
96	Energy–Structure–Function Maps: Cartography for Materials Discovery. Advanced Materials, 2018, 30, e1704944.	11.1	44
97	A design strategy for the construction of 2D heteropore covalent organic frameworks based on the combination of <i>C</i> _{2v} and <i>D</i> _{3h} symmetric building blocks. Polymer Chemistry, 2018, 9, 279-283.	1.9	19
98	Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds. Angewandte Chemie - International Edition, 2018, 57, 4850-4878.	7.2	405
99	Kovalente organische Netzwerke und Kägverbindungen: Design und Anwendungen von polymeren und diskreten organischen Gerüsten. Angewandte Chemie, 2018, 130, 4942-4972.	1.6	97
100	A Molecular Pillar Approach To Grow Vertical Covalent Organic Framework Nanosheets on Graphene: Hybrid Materials for Energy Storage. Angewandte Chemie, 2018, 130, 1046-1050.	1.6	40
101	Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. Journal of Supercritical Fluids, 2018, 134, 197-203.	1.6	33
102	Advances in Solid Phase Microextraction and Perspective on Future Directions. Analytical Chemistry, 2018, 90, 302-360.	3.2	534
103	Covalent post-assembly modification in metallosupramolecular chemistry. Chemical Society Reviews, 2018, 47, 626-644.	18.7	192
104	Hybridization of MOFs and COFs: A New Strategy for Construction of MOF@COF Core–Shell Hybrid Materials. Advanced Materials, 2018, 30, 1705454.	11.1	318
105	Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis, 2018, 39, 34-52.	1.3	60
106	Fluctuation Theory in Chemical Kinetics. Condensed Matter, 2018, 3, 49.	0.8	2
107	Covalent Organic Frameworks: Structures, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1705553.	7.8	892
108	Structural Elucidation of Covalent Organic Polymers (COP) and Their Linker Effect on Gas Adsorption Performance via Density Functional Theory Approach. ChemistrySelect, 2018, 3, 8294-8305.	0.7	6
109	Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. Advanced Materials Technologies, 2019, 4, 1800488.	3.0	227

#	Article	IF	CITATIONS
110	Facile dual doping strategy <i>via</i> carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chemical Communications, 2018, 54, 14009-14012.	2.2	74
111	Crystal-controlled polymerization: recent advances in morphology design and control of organic polymer materials. Journal of Materials Chemistry A, 2018, 6, 23197-23219.	5.2	35
112	A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chemical Communications, 2018, 54, 12706-12709.	2.2	28
113	Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton. Accounts of Chemical Research, 2018, 51, 3191-3202.	7.6	108
114	Understanding Water Adsorption and the Impact on CO ₂ Capture in Chemically Stable Covalent Organic Frameworks. Journal of Physical Chemistry C, 2018, 122, 27495-27506.	1.5	36
115	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
116	Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. Nanomaterials, 2018, 8, 916.	1.9	69
117	Shear-Assisted Formation of Cation-Disordered Rocksalt NaMO ₂ (M = Fe or Mn). Chemistry of Materials, 2018, 30, 8811-8821.	3.2	17
118	Urea-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 16438-16441.	6.6	140
119	Template-Driven Dense Packing of Pentagonal Molecules in Monolayer Films. Nano Letters, 2018, 18, 7570-7575.	4.5	11
120	Preferential Photoreaction in a Porous Crystal, Metal–Macrocycle Framework: Pd ^{II} -Mediated Olefin Migration over [2+2] Cycloaddition. Journal of the American Chemical Society, 2018, 140, 16610-16614.	6.6	29
121	Copper immobilized at a covalent organic framework: an efficient and recyclable heterogeneous catalyst for the Chan–Lam coupling reaction of aryl boronic acids and amines. Green Chemistry, 2018, 20, 4891-4900.	4.6	142
122	Dynamic Diels–Alder reactions of maleimide–furan amphiphiles and their fluorescence ON/OFF behaviours. Organic and Biomolecular Chemistry, 2018, 16, 7871-7877.	1.5	19
123	Confinement Effects in Catalysis Using Well-Defined Materials and Cages. Frontiers in Chemistry, 2018, 6, 623.	1.8	132
124	Eigencages: Learning a Latent Space of Porous Cage Molecules. ACS Central Science, 2018, 4, 1663-1676.	5.3	23
125	Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Advanced Functional Materials, 2019, 29, 1805893.	7.8	69
126	Wellâ€Defined Metal Nanoparticles@Covalent Organic Framework Yolk–Shell Nanocages by ZIFâ€8 Template as Catalytic Nanoreactors. Small, 2019, 15, e1804419.	5.2	87
127	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	4.6	168

#	Article	IF	CITATIONS
128	A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities. Molecules, 2018, 23, 2870.	1.7	14
129	An AlEgen-based 3D covalent organic framework for white light-emitting diodes. Nature Communications, 2018, 9, 5234.	5.8	293
130	Pyrolyzed Triazine-Based Nanoporous Frameworks Enable Electrochemical CO ₂ Reduction in Water. ACS Applied Materials & Interfaces, 2018, 10, 43588-43594.	4.0	29
131	A Highly Ordered Nanoporous, Two-Dimensional Covalent Organic Framework with Modifiable Pores, and Its Application in Water Purification and Ion Sieving. Journal of the American Chemical Society, 2018, 140, 18200-18207.	6.6	149
132	Room Temperature Synthesis and Characterizations of ZIF-8 Formation at Water-Fatty Alcohols Interface. Journal of Physics: Conference Series, 2018, 1082, 012046.	0.3	8
133	Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nature Communications, 2018, 9, 5274.	5.8	182
134	Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. Journal of the American Chemical Society, 2018, 140, 12715-12719.	6.6	289
135	Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nature Chemistry, 2018, 10, 1180-1189.	6.6	883
136	Covalent Organic Frameworks: Promising Materials as Heterogeneous Catalysts for C-C Bond Formations. Catalysts, 2018, 8, 404.	1.6	38
137	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2018, 140, 14342-14349.	6.6	313
138	Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale, 2018, 10, 19509-19516.	2.8	108
139	<i>stk</i> : A python toolkit for supramolecular assembly. Journal of Computational Chemistry, 2018, 39, 1931-1942.	1.5	49
140	Anthracene-Resorcinol Derived Covalent Organic Framework as Flexible White Light Emitter. Journal of the American Chemical Society, 2018, 140, 13367-13374.	6.6	179
141	Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nature Communications, 2018, 9, 4143.	5.8	319
142	A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene. Journal of the American Chemical Society, 2018, 140, 15724-15730.	6.6	207
143	Some Efforts Toward Understanding Structural Features of MOF/COF. Israel Journal of Chemistry, 2018, 58, 1157-1163.	1.0	13
144	2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 14614-14618.	6.6	461
145	Rational Design of Noncovalent Diamondoid Microporous Materials for Low-Energy Separation of C ₆ -Hydrocarbons. Journal of the American Chemical Society, 2018, 140, 15031-15037.	6.6	34

#	Article	IF	CITATIONS
146	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie - International Edition, 2018, 57, 16501-16505.	7.2	128
147	Flexible Films of Covalent Organic Frameworks with Ultralow Dielectric Constants under High Humidity. Angewandte Chemie, 2018, 130, 16739-16743.	1.6	25
148	Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science, 2018, 5, 1801116.	5.6	162
149	Ultrafine Ag Nanoparticles Encapsulated by Covalent Triazine Framework Nanosheets for CO ₂ Conversion. ACS Applied Materials & Interfaces, 2018, 10, 38953-38962.	4.0	73
150	Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Organic Chemistry Frontiers, 2018, 5, 3341-3356.	2.3	62
151	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	7.8	53
152	Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment. TrAC - Trends in Analytical Chemistry, 2018, 108, 154-166.	5.8	151
153	Light-Emitting Covalent Organic Frameworks: Fluorescence Improving via Pinpoint Surgery and Selective Switch-On Sensing of Anions. Journal of the American Chemical Society, 2018, 140, 12374-12377.	6.6	191
154	Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chemical Science, 2018, 9, 8402-8408.	3.7	134
155	Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. Journal of the American Chemical Society, 2018, 140, 12152-12158.	6.6	231
156	Benzotrithiophene-Based Covalent Organic Frameworks: Construction and Structure Transformation under Ionothermal Condition. Journal of the American Chemical Society, 2018, 140, 11618-11622.	6.6	76
157	Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. Npj 2D Materials and Applications, 2018, 2, .	3.9	47
158	Interfacial polymerization of covalent organic frameworks (COFs) on polymeric substrates for molecular separations. Journal of Membrane Science, 2018, 566, 197-204.	4.1	236
159	Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 17977-17981.	5.2	122
160	Selfâ€Assembled, Fluorineâ€Rich Porous Organic Polymers: A Class of Mechanically Stiff and Hydrophobic Materials. Chemistry - A European Journal, 2018, 24, 11771-11778.	1.7	8
161	Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7429-7432.	6.6	227
162	Porous Silsesquioxane–Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture. ACS Applied Materials & Interfaces, 2018, 10, 19964-19973.	4.0	78
163	Exploring Applications of Covalent Organic Frameworks: Homogeneous Reticulation of Radicals for Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2018, 140, 6969-6977.	6.6	62

#	Article	IF	CITATIONS
164	Observation of Interpenetration Isomerism in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 6763-6766.	6.6	144
165	Large π-Conjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries. Journal of Physical Chemistry Letters, 2018, 9, 3205-3211.	2.1	69
166	Pd NP-Loaded and Covalently Cross-Linked COF Membrane Microreactor for Aqueous CBs Dechlorination at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 20448-20457.	4.0	70
167	Porous organic materials with ultra-small pores and sulfonic functionality for xenon capture with exceptional selectivity. Journal of Materials Chemistry A, 2018, 6, 11163-11168.	5.2	47
168	Single-crystal x-ray diffraction structures of covalent organic frameworks. Science, 2018, 361, 48-52.	6.0	868
169	The dynamic art of growing COF crystals. Science, 2018, 361, 35-35.	6.0	22
170	Assembly of a Wheelâ€Like Eu ₂₄ Ti ₈ Cluster under the Guidance of Highâ€Resolution Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2018, 57, 10976-10979.	7.2	85
171	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835
172	Hydrogen-bonded organic frameworks: design, structures and potential applications. CrystEngComm, 2018, 20, 5884-5898.	1.3	211
173	Integrating Superwettability within Covalent Organic Frameworks for Functional Coating. CheM, 2018, 4, 1726-1739.	5.8	157
174	Assembly of a Wheelâ€Like Eu ₂₄ Ti ₈ Cluster under the Guidance of Highâ€Resolution Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2018, 130, 11142-11145.	1.6	12
175	Hard-template synthesis of micro-mesoporous organic frameworks with controlled hierarchicity. Chemical Communications, 2018, 54, 8335-8338.	2.2	15
176	Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nature Communications, 2018, 9, 2998.	5.8	334
177	Molecular Engineering of Bandgaps in Covalent Organic Frameworks. Chemistry of Materials, 2018, 30, 5743-5749.	3.2	108
178	Polymeric coatings for applications in electrocatalytic and photoelectrosynthetic fuel production. Journal of Materials Chemistry A, 2018, 6, 21654-21665.	5.2	28
180	Probing functional self-assembled molecular architectures with solution/solid scanning tunnelling microscopy. Chemical Communications, 2018, 54, 10527-10539.	2.2	27
181	Convergent Covalent Organic Framework Thin Sheets as Flexible Supercapacitor Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 28139-28146.	4.0	134
182	Construction of Single-Crystalline Prussian Blue Analog Hollow Nanostructures with Tailorable Topologies. CheM, 2018, 4, 1967-1982.	5.8	145

#	Article	IF	CITATIONS
183	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie, 2018, 130, 12144-12148.	1.6	50
184	Crystalline Covalent Triazine Frameworks by Inâ€Situ Oxidation of Alcohols to Aldehyde Monomers. Angewandte Chemie - International Edition, 2018, 57, 11968-11972.	7.2	266
185	Postsynthetic Covalent Modification in Covalent Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 971-984.	1.0	55
186	Synthesis of novel 2D in-plane anisotropic covalent organic frameworks through a solvent modulated orthogonal strategy. Polymer Chemistry, 2018, 9, 4288-4293.	1.9	10
187	Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 15905-15926.	5.2	258
188	99TcO4â^' remediation by a cationic polymeric network. Nature Communications, 2018, 9, 3007.	5.8	234
189	Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Applied Catalysis B: Environmental, 2018, 239, 46-51.	10.8	203
190	Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials, 2018, 8, 15.	1.9	134
191	Theoretical search for heterogeneously architected 2D structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7245-E7254.	3.3	34
192	Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018, 140, 10094-10098.	6.6	500
193	Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361, 52-57.	6.0	474
194	Properties of Metal-Doped Covalent Organic Frameworks and Their Interactions with Sulfur Dioxide. Journal of Chemistry, 2018, 2018, 1-8.	0.9	5
195	Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 9099-9103.	6.6	243
196	Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. Journal of the American Chemical Society, 2018, 140, 10016-10024.	6.6	195
197	Facilitating Laboratory Research Experience Using Reticular Chemistry. Journal of Chemical Education, 2018, 95, 1512-1519.	1.1	38
198	A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy and Environmental Science, 2018, 11, 1723-1729.	15.6	298
199	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	2.7	43
200	Supramolecular Reassembly of Selfâ€Exfoliated Ionic Covalent Organic Nanosheets for Labelâ€Free Detection of Doubleâ€Stranded DNA. Angewandte Chemie, 2018, 130, 8579-8583.	1.6	29

#	Article	IF	Citations
201	Covalent Organic Frameworks Constructed from Flexible Building Blocks with High Adsorption Capacity for Pollutants. ACS Applied Nano Materials, 2018, 1, 4756-4761.	2.4	95
202	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
203	Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nature Chemistry, 2018, 10, 1001-1007.	6.6	94
204	Highlights from the 53rd EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2018. Chemical Communications, 2018, 54, 10014-10020.	2.2	0
205	Hierarchically Ordered Two-Dimensional Coordination Polymers Assembled from Redox-Active Dimolybdenum Clusters. Journal of the American Chemical Society, 2018, 140, 10673-10676.	6.6	18
206	Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17186-17191.	5.2	122
207	Crystal Engineering of Covalent Organic Frameworks Based on Hydrazine and Hydroxy-1,3,5-Triformylbenzenes. Crystal Growth and Design, 2018, 18, 5682-5689.	1.4	37
208	An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2018, 6, 16849-16853.	5.2	107
209	Two-Dimensional Band Structure in Honeycomb Metal–Organic Frameworks. Nano Letters, 2018, 18, 5596-5602.	4.5	66
210	Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chemistry of Materials, 2018, 30, 4102-4111.	3.2	78
211	β yclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chemistry - A European Journal, 2018, 24, 10979-10983.	1.7	91
212	Surface Pore Engineering of Covalent Organic Frameworks for Ammonia Capture through Synergistic Multivariate and Open Metal Site Approaches. ACS Central Science, 2018, 4, 748-754.	5.3	163
213	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie, 2018, 130, 11398-11402.	1.6	14
214	Covalent organic frameworks as heterogeneous catalysts. Chinese Journal of Catalysis, 2018, 39, 1167-1179.	6.9	87
215	Core–Shell Crystals of Porous Organic Cages. Angewandte Chemie - International Edition, 2018, 57, 11228-11232.	7.2	45
216	Rational Design of Catalytic Centers in Crystalline Frameworks. Advanced Materials, 2018, 30, e1707582.	11.1	103
217	Adsorption of Pharmaceutical Pollutants from Water Using Covalent Organic Frameworks. Chemistry - A European Journal, 2018, 24, 10601-10605.	1.7	106
218	A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. Journal of Materials Chemistry A, 2018, 6, 13331-13339.	5.2	241

#	Article	IF	CITATIONS
219	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230
220	In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Applications. Chemistry of Materials, 2018, 30, 5069-5086.	3.2	101
221	Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2018, 6, 1800561.	3.6	268
222	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
223	Synthesis, structural characterization and biological studies of new Schiff bases containing trimethylsilyl groups. Journal of Molecular Structure, 2019, 1175, 624-631.	1.8	8
224	Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355, 602-623.	6.6	197
225	Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite. Chemical Science, 2019, 10, 8533-8540.	3.7	52
226	Reticular Chemistry in All Dimensions. ACS Central Science, 2019, 5, 1295-1300.	5.3	166
227	The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 2019, 45, 1082-1121.	0.9	74
228	Three-Dimensional Tetrathiafulvalene-Based Covalent Organic Frameworks for Tunable Electrical Conductivity. Journal of the American Chemical Society, 2019, 141, 13324-13329.	6.6	146
229	BrÃ,nsted acid mediated covalent organic framework membranes for efficient molecular separation. Journal of Materials Chemistry A, 2019, 7, 20317-20324.	5.2	58
230	De Novo Design and Facile Synthesis of 2D Covalent Organic Frameworks: A Two-in-One Strategy. Journal of the American Chemical Society, 2019, 141, 13822-13828.	6.6	167
231	Synthesis of [3 + 3] β-ketoenamine-tethered covalent organic frameworks (COFs) for high-performance supercapacitance and CO2 storage. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 199-208.	2.7	57
232	Semiconducting 2D Triazine-Cored Covalent Organic Frameworks with Unsubstituted Olefin Linkages. Journal of the American Chemical Society, 2019, 141, 14272-14279.	6.6	362
233	2D Crystal–Based Fibers: Status and Challenges. Small, 2019, 15, e1902691.	5.2	35
234	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie, 2019, 131, 13891-13895.	1.6	24
235	Ultralow-Content Palladium Dispersed in Covalent Organic Framework for Highly Efficient and Selective Semihydrogenation of Alkynes. Inorganic Chemistry, 2019, 58, 10829-10836.	1.9	28
236	Confinement of BrÃ,nsted acidic ionic liquids into covalent organic frameworks as a catalyst for dehydrative formation of isosorbide from sorbitol. Green Chemistry, 2019, 21, 4792-4799.	4.6	36

	CITATION R	EPORT	
#	Article	IF	Citations
237	Recent Progress in Covalent Organic Frameworks as Solid-State Ion Conductors. , 2019, 1, 327-335.		68
238	Solution Phase Mass Synthesis of 2D Atomic Layer with Hexagonal Boron Network. Journal of the American Chemical Society, 2019, 141, 12984-12988.	6.6	14
239	Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization. Chemical Science, 2019, 10, 8316-8322.	3.7	124
240	Porous organic frameworks with mesopores and [Ru(bpy) ₃] ²⁺ ligand built-in as a highly efficient visible-light heterogeneous photocatalyst. Materials Chemistry Frontiers, 2019, 3, 1909-1917.	3.2	21
241	Trends in Solid Adsorbent Materials Development for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 34533-34559.	4.0	215
242	Processing of covalent organic frameworks: an ingredient for a material to succeed. Chemical Society Reviews, 2019, 48, 4375-4386.	18.7	139
243	A Facile Strategy to Improve the Electrochemical Performance of Porous Organic Polymerâ€Based Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900583.	1.8	17
244	Real-time optical and electronic sensing with a \hat{l}^2 -amino enone linked, triazine-containing 2D covalent organic framework. Nature Communications, 2019, 10, 3228.	5.8	117
245	In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365.	5.7	80
246	Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO ₂ transformation. Chemical Communications, 2019, 55, 9180-9183.	2.2	24
247	Catalyst-free and efficient fabrication of highly crystalline fluorinated covalent organic frameworks for selective guest adsorption. Journal of Materials Chemistry A, 2019, 7, 18959-18970.	5.2	55
248	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie - International Edition, 2019, 58, 14865-14870.	7.2	205
249	Crystalline Anionic Germanate Covalent Organic Framework for High CO ₂ Selectivity and Fast Li Ion Conduction. Chemistry - A European Journal, 2019, 25, 13479-13483.	1.7	29
250	Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angewandte Chemie - International Edition, 2019, 58, 14213-14218.	7.2	180
251	Computational insights into the mechanism of formaldehyde detection by luminescent covalent organic framework. Journal of Molecular Modeling, 2019, 25, 248.	0.8	4
252	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie, 2019, 131, 15007-15012.	1.6	39
253	Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angewandte Chemie, 2019, 131, 14351-14356.	1.6	37
254	2D Poly(arylene vinylene) Covalent Organic Frameworks via Aldol Condensation of Trimethyltriazine. Angewandte Chemie - International Edition, 2019, 58, 13753-13757.	7.2	137

#	Article	IF	CITATIONS
255	Shape-persistent porous organic cage supported palladium nanoparticles as heterogeneous catalytic materials. Nanoscale, 2019, 11, 14929-14936.	2.8	29
256	Synergistic Effect of Covalent Bonding and Physical Encapsulation of Sulfur in the Pores of a Microporous COF to Improve Cycling Performance in Liâ€6 Batteries. Chemistry - A European Journal, 2019, 25, 12394-12404.	1.7	37
257	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
258	Hexane-1,2,5,6-tetrol as a Versatile and Biobased Building Block for the Synthesis of Sustainable (Chiral) Crystalline Mesoporous Polyboronates. ACS Sustainable Chemistry and Engineering, 2019, 7, 13430-13436.	3.2	7
259	Reticular Synthesis of Multinary Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11420-11424.	6.6	126
260	Triggering White-Light Emission in a 2D Imine Covalent Organic Framework Through Lanthanide Augmentation. ACS Applied Materials & Interfaces, 2019, 11, 27343-27352.	4.0	90
261	Dynamic self-assembly of ions with variable size and charge in solution. RSC Advances, 2019, 9, 18627-18640.	1.7	5
262	Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy. Nanomedicine, 2019, 14, 1343-1365.	1.7	80
263	Synthesis of Twoâ€Dimensional Covalent Organic Frameworks in Ionic Liquids. Chemistry - A European Journal, 2019, 25, 15488-15492.	1.7	29
264	Formation of a Large Confined Spherical Space with a Small Aperture Using Flexible Hexasubstituted Sumanene. Journal of the American Chemical Society, 2019, 141, 18099-18103.	6.6	24
265	Ultrastable Covalent Organic Frameworks via Self-Polycondensation of an A ₂ B ₂ Monomer for Heterogeneous Photocatalysis. Macromolecules, 2019, 52, 7977-7983.	2.2	84
266	A Scalable General Synthetic Approach toward Ultrathin Imine-Linked Two-Dimensional Covalent Organic Framework Nanosheets for Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 17431-17440.	6.6	418
267	Iridium complex immobilization on covalent organic framework for effective C—H borylation. APL Materials, 2019, 7, .	2.2	24
268	Ag Nanoparticles Supported on a Resorcinolâ€Phenylenediamineâ€Based Covalent Organic Framework for Chemical Fixation of CO ₂ . Chemistry - an Asian Journal, 2019, 14, 4767-4773.	1.7	43
269	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Interfaces, 2019, 11, 39503-39512.	4.0	93
270	Synthesis of nanoporous poly-melamine-formaldehyde (PMF) based on Schiff base chemistry as a highly efficient adsorbent. Analyst, The, 2019, 144, 342-348.	1.7	14
271	Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2019, 141, 18004-18008.	6.6	183
272	Porphyrin-Based Hydrogen-Bonded Organic Frameworks for the Photocatalytic Degradation of 9,10-Diphenylanthracene. ACS Applied Nano Materials, 2019, 2, 7719-7727.	2.4	42

#	Article	IF	Citations
273	Thioether-Functionalized 2D Covalent Organic Framework Featuring Specific Affinity to Au for Photocatalytic Hydrogen Production from Seawater. ACS Sustainable Chemistry and Engineering, 2019, 7, 18574-18581.	3.2	91
274	Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale, 2019, 11, 21679-21708.	2.8	82
275	Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry A, 2019, 7, 24205-24210.	5.2	101
276	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e1905	879.1	129
277	Enzymeâ€Decorated Covalent Organic Frameworks as Nanoporous Platforms for Heterogeneous Biocatalysis. Chemistry - A European Journal, 2019, 25, 15863-15870.	1.7	37
278	Size-Controllable Synthesis of Uniform Spherical Covalent Organic Frameworks at Room Temperature for Highly Efficient and Selective Enrichment of Hydrophobic Peptides. Journal of the American Chemical Society, 2019, 141, 18271-18277.	6.6	305
279	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection. , 2019, 1, 440-446.		55
280	Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nature Communications, 2019, 10, 3898.	5.8	191
281	Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Analytica Chimica Acta, 2019, 1090, 1-22.	2.6	52
282	Aminal-Linked Covalent Organic Frameworks through Condensation of Secondary Amine with Aldehyde. Journal of the American Chemical Society, 2019, 141, 14981-14986.	6.6	114
283	Computational screening of transition-metal single atom doped C ₉ N ₄ monolayers as efficient electrocatalysts for water splitting. Nanoscale, 2019, 11, 18169-18175.	2.8	56
284	Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials, 2019, 223, 119462.	5.7	101
285	A Wavy Two-Dimensional Covalent Organic Framework from Core-Twisted Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2019, 141, 14403-14410.	6.6	63
286	Synthesis of two-dimensional porous aromatic frameworks via triple condensation reaction. Materials Today Advances, 2019, 2, 100013.	2.5	3
287	Pyridine-Rich Covalent Organic Frameworks as High-Performance Solid-State Supercapacitors. , 2019, 1, 490-497.		77
288	A novel crystalline azine-linked three-dimensional covalent organic framework for CO ₂ capture and conversion. Chemical Communications, 2019, 55, 12459-12462.	2.2	64
289	Microporous Cyclen-Based Octacarboxylate Hydrogen-Bonded Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2019, 19, 6377-6380.	1.4	18
290	Identification Schemes for Metal–Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis. Crystal Growth and Design, 2019, 19, 6682-6697.	1.4	123

#	Article	IF	CITATIONS
291	Measuring the Accessible Surface Area within the Nanoparticle Corona Using Molecular Probe Adsorption. Nano Letters, 2019, 19, 7712-7724.	4.5	20
292	Covalent Organic Framework with Triazine and Hydroxyl Bifunctional Groups for Efficient Removal of Lead(II) Ions. Industrial & Engineering Chemistry Research, 2019, 58, 19642-19648.	1.8	44
293	Making Engineered 3D DNA Crystals Robust. Journal of the American Chemical Society, 2019, 141, 15850-15855.	6.6	43
294	Building a Consistent and Reproducible Database for Adsorption Evaluation in Covalent–Organic Frameworks. ACS Central Science, 2019, 5, 1663-1675.	5.3	89
295	Salt-assisted pyrolysis of covalent organic frameworks to porous heteroatom-doped carbons for supercapacitive energy storage. Journal of Materials Chemistry A, 2019, 7, 26829-26837.	5.2	33
296	Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films. Matter, 2019, 1, 1592-1605.	5.0	84
297	Covalent Organic Framework Films through Electrophoretic Deposition—Creating Efficient Morphologies for Catalysis. Chemistry of Materials, 2019, 31, 10008-10016.	3.2	63
298	Covalent Organic Frameworks for the Capture, Fixation, or Reduction of CO2. Frontiers in Energy Research, 2019, 7, .	1.2	91
299	Soluble Covalent Organic Polymer for the Flexible Electrode of Supercapacitors. Frontiers in Materials, 2019, 6, .	1.2	5
300	A highly soluble, crystalline covalent organic framework compatible with device implementation. Chemical Science, 2019, 10, 1023-1028.	3.7	173
301	Interfacial Synthesis of Conjugated Crystalline 2D Fluorescent Polymer Film Containing Aggregationâ€Induced Emission Unit. Small, 2019, 15, e1804519.	5.2	19
302	Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enamine-linked covalent organic frameworks. Materials Chemistry and Physics, 2019, 226, 244-249.	2.0	44
303	Recycling and self-healing of dynamic covalent polymer networks with a precisely tuneable crosslinking degree. Polymer Chemistry, 2019, 10, 672-678.	1.9	40
304	Ionic liquid-decorated COF and its covalent composite aerogel for selective CO ₂ adsorption and catalytic conversion. Journal of Materials Chemistry A, 2019, 7, 4689-4698.	5.2	152
305	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2019, 58, 4221-4226.	7.2	109
306	Covalent triazine frameworks: synthesis and applications. Journal of Materials Chemistry A, 2019, 7, 5153-5172.	5.2	433
307	Electron Highways into Nanochannels of Covalent Organic Frameworks for High Electrical Conductivity and Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 7661-7665.	4.0	113
308	Multifunctional porous hydrogen-bonded organic framework materials. Chemical Society Reviews, 2019, 48, 1362-1389.	18.7	751

#	Article	IF	CITATIONS
309	Ferroceneâ€Linkageâ€Facilitated Charge Separation in Conjugated Microporous Polymers. Angewandte Chemie, 2019, 131, 4265-4270.	1.6	11
310	Three-dimensional Salphen-based Covalent–Organic Frameworks as Catalytic Antioxidants. Journal of the American Chemical Society, 2019, 141, 2920-2924.	6.6	193
311	Bulk fabrication of porous organic framework polymers on flexible nanofibers and their application for water purification. Reactive and Functional Polymers, 2019, 135, 58-64.	2.0	10
312	Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. RSC Advances, 2019, 9, 1586-1590.	1.7	21
313	Solvent- and catalyst-free synthesis of an azine-linked covalent organic framework and the induced tautomerization in the adsorption of U(<scp>vi</scp>) and Hg(<scp>ii</scp>). Green Chemistry, 2019, 21, 649-657.	4.6	128
314	Impact of the position of the imine linker on the optoelectronic performance of π-conjugated organic frameworks. Molecular Systems Design and Engineering, 2019, 4, 325-331.	1.7	18
315	Rational design of two-dimensional covalent tilings using a C6-symmetric building block via on-surface Schiff base reaction. Chemical Communications, 2019, 55, 1326-1329.	2.2	21
316	Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment. Journal of Chemical Education, 2019, 96, 1745-1751.	1.1	13
317	Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers. Nature Communications, 2019, 10, 2689.	5.8	83
318	Multistep Solid-State Organic Synthesis of Carbamate-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11253-11258.	6.6	92
319	Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions. RSC Advances, 2019, 9, 18008-18012.	1.7	21
320	Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media. Materials, 2019, 12, 1974.	1.3	20
321	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	5.3	126
322	Ammoniating Covalent Organic Framework (COF) for Highâ€Performance and Selective Extraction of Toxic and Radioactive Uranium Ions. Advanced Science, 2019, 6, 1900547.	5.6	200
323	Porosity Modulation in Two-Dimensional Covalent Organic Frameworks Leads to Enhanced Iodine Adsorption Performance. Industrial & Engineering Chemistry Research, 2019, 58, 10495-10502.	1.8	66
324	Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.	9.5	74
325	Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. Journal of Membrane Science, 2019, 586, 274-280.	4.1	120
326	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie - International Edition, 2019, 58, 10626-10630.	7.2	55

#	Article	IF	CITATIONS
327	Construction of a Nanoporous Highly Crystalline Hexagonal Boron Nitride from an Amorphous Precursor for Catalytic Dehydrogenation. Angewandte Chemie, 2019, 131, 10736-10740.	1.6	7
328	Post-synthetic modification of covalent organic frameworks. Chemical Society Reviews, 2019, 48, 3903-3945.	18.7	444
329	Engineering Covalent Organic Frameworks for Light-Driven Hydrogen Production from Water. , 2019, 1, 203-208.		69
330	The art of two-dimensional soft nanomaterials. Science China Chemistry, 2019, 62, 1145-1193.	4.2	52
331	Isostructural Threeâ€Dimensional Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9872-9877.	1.6	31
332	Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts. Organometallics, 2019, 38, 3436-3443.	1.1	9
333	A Benzimidazole-Containing Covalent Organic Framework-Based QCM Sensor for Exceptional Detection of CEES. Crystal Growth and Design, 2019, 19, 3543-3550.	1.4	26
334	Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10, 2101.	5.8	271
335	Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 254, 624-633.	10.8	212
336	Isostructural Threeâ€Dimensional Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9770-9775.	7.2	126
337	Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production. Nanoscale Advances, 2019, 1, 2674-2680.	2.2	41
338	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie, 2019, 131, 9543-9547.	1.6	20
339	Energy-storage covalent organic frameworks: improving performance <i>via</i> engineering polysulfide chains on walls. Chemical Science, 2019, 10, 6001-6006.	3.7	121
340	An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chemical Communications, 2019, 55, 6377-6380.	2.2	107
341	Divergent Synthesis of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 9443-9447.	7.2	81
342	Excited state intermolecular hydrogen bond's effect on the luminescent behaviour of the 2D covalent organic framework (PPy-COF): A TDDFT insight. Molecular Simulation, 2019, 45, 942-950.	0.9	0
343	COFâ€Derived N,P Coâ€Doped Carbon as a Metalâ€Free Catalyst for Highly Efficient Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 957-963.	1.5	26
344	Construction of a Stable Crystalline Polyimide Porous Organic Framework for C ₂ H ₂ H ₂ H ₄ and CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2019, 25, 9045-9051.	1.7	36

#	Article	IF	CITATIONS
345	Porous Crystalline Olefin-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 6848-6852.	6.6	333
346	Construction of three-dimensional anionic molecular frameworks based on hydrogen-bonded metal dithiolene complexes and the crystal solvent effect. CrystEngComm, 2019, 21, 2940-2948.	1.3	12
347	Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption. Polymers, 2019, 11, 486.	2.0	7
348	2D sp2 Carbon-Conjugated Covalent Organic Frameworks for Photocatalytic Hydrogen Production from Water. CheM, 2019, 5, 1632-1647.	5.8	408
349	Organic Radical-Linked Covalent Triazine Framework with Paramagnetic Behavior. ACS Nano, 2019, 13, 5251-5258.	7.3	43
350	Reticular Chemistry: Molecular Precision in Infinite 2D and 3D. Molecular Frontiers Journal, 2019, 03, 66-83.	0.9	46
351	<i>110th Anniversary:</i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Engineering Chemistry Research, 2019, 58, 7706-7724.	1.8	54
352	Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. Journal of Materials Chemistry A, 2019, 7, 10004-10009.	5.2	38
353	Designing molecular building blocks for the self-assembly of complex porous networks. Molecular Systems Design and Engineering, 2019, 4, 644-653.	1.7	10
354	Fully sp ² â€Carbonâ€Linked Crystalline Twoâ€Dimensional Conjugated Polymers: Insight into 2D Poly(phenylenecyanovinylene) Formation and its Optoelectronic Properties. Chemistry - A European Journal, 2019, 25, 6562-6568.	1.7	40
356	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbon onjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 6430-6434.	7.2	470
357	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	1.6	26
358	Postsynthetic Functionalization of Zr ⁴⁺ -Immobilized Core–Shell Structured Magnetic Covalent Organic Frameworks for Selective Enrichment of Phosphopeptides. ACS Applied Materials & Interfaces, 2019, 11, 13735-13741.	4.0	98
359	Imidazoliumâ€Saltâ€Functionalized Covalent Organic Frameworks for Highly Efficient Catalysis of CO ₂ Conversion. ChemSusChem, 2019, 12, 2421-2427.	3.6	74
360	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	18.7	103
361	Porous Aromatic Frameworks as a Platform for Multifunctional Applications. ACS Central Science, 2019, 5, 409-418.	5.3	175
362	Co ²⁺ -Linked [NaP ₅ W ₃₀ O ₁₁₀] ^{14â^'} : A Redox-Active Metal Oxide Framework with High Electron Density. Journal of the American Chemical Society, 2019, 141, 4553-4557.	6.6	35
363	Recyclable magnetic covalent organic framework for the extraction of marine biotoxins. Nanoscale, 2019, 11, 6072-6079.	2.8	57

#	Article	IF	CITATIONS
364	Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 6623-6630.	6.6	340
365	Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5154-5158.	6.6	110
366	Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks. Advanced Materials, 2019, 31, e1807865.	11.1	158
367	Tailor-made synthesis of an melamine-based aminal hydrophobic polymer for selective adsorption of toxic organic pollutants: an initiative towards wastewater purification. RSC Advances, 2019, 9, 7469-7478.	1.7	17
368	Developments on the Studies of Covalent Organic Frameworks (COF). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 185-186.	0.0	0
369	Electronic properties of heterogenized Ru(<scp>ii</scp>) polypyridyl photoredox complexes on covalent triazine frameworks. Journal of Materials Chemistry A, 2019, 7, 8433-8442.	5.2	6
370	Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O′-Chelating Sites for Fe(III) Detection in Water. ACS Applied Materials & Interfaces, 2019, 11, 12830-12837.	4.0	152
371	Well-Defined Materials for High-Performance Chromatographic Separation. Annual Review of Analytical Chemistry, 2019, 12, 451-473.	2.8	14
372	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	6.6	509
373	Oneâ€Pot Synthesis of Framework Porphyrin Materials and Their Applications in Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2019, 29, 1901301.	7.8	63
374	Cu/Cu ₂ O Nanoparticles Supported on a Phenol–Pyridyl COF as a Heterogeneous Catalyst for the Synthesis of Unsymmetrical Diynes via Glaser–Hay Coupling. ACS Applied Materials & Interfaces, 2019, 11, 15670-15679.	4.0	77
375	lodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 2019, 6, 1571-1595.	6.4	359
376	Energy transfer in covalent organic frameworks for visible-light-induced hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 11872-11876.	3.8	38
377	A (Macro)Molecular-Level Understanding of Polymer Network Topology. Trends in Chemistry, 2019, 1, 318-334.	4.4	127
383	Squaramide-decorated covalent organic framework as a new platform for biomimetic hydrogen-bonding organocatalysis. Chemical Communications, 2019, 55, 5423-5426.	2.2	33
384	A Highly Crystalline Fluoreneâ€Based Porous Organic Framework with High Photoluminescence Quantum Yield. Macromolecular Rapid Communications, 2019, 40, e1900060.	2.0	10
385	Designed Synthesis of a 2D Porphyrinâ€Based sp ² Carbonâ€Conjugated Covalent Organic Framework for Heterogeneous Photocatalysis. Angewandte Chemie, 2019, 131, 6496-6500.	1.6	67
386	Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions. Trends in Chemistry, 2019, 1, 172-184.	4.4	232

#	Article	IF	CITATIONS
387	Amino-modified covalent organic framework as solid phase extraction absorbent for determination of carboxylic acid pesticides in environmental water samples. Journal of Chromatography A, 2019, 1595, 11-18.	1.8	72
388	Synthesis of covalent organic frameworks <i>via in situ</i> salen skeleton formation for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 5482-5492.	5.2	89
389	Conjugated Macrocycle Polymer Nanoparticles with Alternating Pillarenes and Porphyrins as Struts and Cyclic Nodes. Small, 2019, 15, e1805509.	5.2	64
390	Oneâ€Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeutic Efficacy. Chemistry - A European Journal, 2019, 25, 4315-4319.	1.7	109
391	Vanadium Docked Covalent-Organic Frameworks: An Effective Heterogeneous Catalyst for Modified Mannich-Type Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4878-4888.	3.2	46
392	Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chemistry, 2019, 21, 2905-2910.	4.6	84
393	Cage Based Crystalline Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3843-3848.	6.6	84
394	Ball milling synthesis of covalent organic framework as a highly active photocatalyst for degradation of organic contaminants. Journal of Hazardous Materials, 2019, 369, 494-502.	6.5	121
395	Mapping out the Degree of Freedom of Hosted Enzymes in Confined Spatial Environments. CheM, 2019, 5, 3184-3195.	5.8	62
396	General Way To Construct Micro- and Mesoporous Metal–Organic Framework-Based Porous Liquids. Journal of the American Chemical Society, 2019, 141, 19708-19714.	6.6	111
397	Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination. Journal of Materials Chemistry A, 2019, 7, 25305-25313.	5.2	40
398	Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets. Journal of Materials Chemistry A, 2019, 7, 25458-25466.	5.2	28
399	An unprecedented 2D covalent organic framework with an htb net topology. Chemical Communications, 2019, 55, 13454-13457.	2.2	26
400	Process-tracing study on the post-assembly modification of poly-NHC-based metallosupramolecular cylinders with tunable aggregation-induced emission. Chemical Communications, 2019, 55, 13689-13692.	2.2	8
401	N-doped hierarchical porous metal-free catalysts derived from covalent triazine frameworks for the efficient oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 6606-6612.	2.1	23
402	Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New Journal of Chemistry, 2019, 43, 16907-16914.	1.4	28
403	Tunable Metal Oxide Frameworks via Coordination Assembly of Preyssler-Type Molecular Clusters. Journal of the American Chemical Society, 2019, 141, 20261-20268.	6.6	28
404	NMR relaxation and modelling study of the dynamics of SF6 and Xe in porous organic cages. Physical Chemistry Chemical Physics, 2019, 21, 24373-24382.	1.3	12

#	Article	IF	CITATIONS
405	Synthesis of flowerlike carbon nanosheets from hydrothermally carbonized glucose: an <i>in situ</i> self-generating template strategy. RSC Advances, 2019, 9, 37355-37364.	1.7	6
406	Strong dual emission in covalent organic frameworks induced by ESIPT. Chemical Science, 2019, 10, 11103-11109.	3.7	107
407	Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chemical Science, 2019, 10, 10815-10820.	3.7	65
408	Diffusion-induced <i>in situ</i> growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry A, 2019, 7, 25802-25807.	5.2	19
409	Advances in polyarylethers: opening new opportunities. Journal of Materials Chemistry C, 2019, 7, 14767-14770.	2.7	4
410	Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48, 488-516.	18.7	564
411	Covalent Organic Framework Decorated with Vanadium as a New Platform for Prins Reaction and Sulfide Oxidation. ACS Applied Materials & amp; Interfaces, 2019, 11, 3070-3079.	4.0	66
412	Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31, e1806090.	11.1	178
413	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
414	Local Electronic Structure of Molecular Heterojunctions in a Singleâ€Layer 2D Covalent Organic Framework. Advanced Materials, 2019, 31, e1805941.	11.1	74
415	Synthetic 2D Polymers: A Critical Perspective and a Look into the Future. Macromolecular Rapid Communications, 2019, 40, e1800719.	2.0	62
416	Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN). Journal of Membrane Science, 2019, 572, 520-531.	4.1	190
417	Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 2019, 6, 1801410.	5.6	368
418	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	4.1	48
419	Influence of Pore Size on the van der Waals Interaction in Two-Dimensional Molecules and Materials. Physical Review Letters, 2019, 122, 026001.	2.9	11
420	<i>In Situ</i> Charge Exfoliated Soluble Covalent Organic Framework Directly Used for Zn–Air Flow Battery. ACS Nano, 2019, 13, 878-884.	7.3	182
421	Tailoring Covalent Organic Frameworks To Capture Water Contaminants. Chemistry - A European Journal, 2019, 25, 6461-6473.	1.7	62
422	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	6.6	217

#	Article	IF	CITATIONS
423	Guest-Dependent Dynamics in a 3D Covalent Organic Framework. Journal of the American Chemical Society, 2019, 141, 3298-3303.	6.6	121
424	Designed synthesis of Co salenâ€based metalated crystalline polymers. Journal of Polymer Science Part A, 2019, 57, 641-647.	2.5	5
425	Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 3647-3670.	3.2	54
426	Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Materials Today Chemistry, 2019, 12, 34-60.	1.7	105
427	Porous Polymers as Multifunctional Material Platforms toward Taskâ€Specific Applications. Advanced Materials, 2019, 31, e1802922.	11.1	315
428	Guanidinium-Based Ionic Covalent Organic Framework for Rapid and Selective Removal of Toxic Cr(VI) Oxoanions from Water. Environmental Science & Technology, 2019, 53, 878-883.	4.6	101
429	Restriction of Molecular Rotors in Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets for Sensing Signal Amplification. Chemistry of Materials, 2019, 31, 146-160.	3.2	125
430	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 1664-1669.	7.2	93
431	Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst. Chemistry - A European Journal, 2019, 25, 3105-3111.	1.7	69
432	Ultrasensitive Determination of Tetrabromobisphenol A by Covalent Organic Framework Based Solid Phase Microextraction Coupled with Constant Flow Desorption Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 772-775.	3.2	60
433	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. Advanced Materials, 2019, 31, e1805062.	11.1	31
434	Interpenetration Isomerism in Triptyceneâ€Based Hydrogenâ€Bonded Organic Frameworks. Angewandte Chemie, 2019, 131, 1678-1683.	1.6	29
435	Catalytic Applications of Vanadium: A Mechanistic Perspective. Chemical Reviews, 2019, 119, 2128-2191.	23.0	323
436	Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination, 2019, 451, 18-34.	4.0	87
437	Metallosalen-based crystalline porous materials: Synthesis and property. Coordination Chemistry Reviews, 2019, 378, 483-499.	9.5	82
438	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
439	Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Builtâ€In Functions. Angewandte Chemie - International Edition, 2020, 59, 5050-5091.	7.2	394
440	Kovalente organische Gerüstverbindungen: chemische AnsÃæe für Designerstrukturen und integrierte Funktionen. Angewandte Chemie, 2020, 132, 5086-5129.	1.6	54

#	Article	IF	Citations
441	Simulations of volumetric hydrogen storage capacities of nanoporous carbons: Effect of dispersion interactions as a function of pressure, temperature and pore width. International Journal of Hydrogen Energy, 2020, 45, 5697-5709.	3.8	10
442	Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. Journal of Membrane Science, 2020, 593, 117398.	4.1	85
443	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	6.4	291
444	Design and construction of on-surface molecular nanoarchitectures: lessons and trends from trimesic acid and other small carboxlyated building blocks. Journal Physics D: Applied Physics, 2020, 53, 043002.	1.3	32
445	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie, 2020, 132, 1103-1108.	1.6	3
446	Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate. Chemical Engineering Journal, 2020, 384, 123240.	6.6	96
447	Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009.	11.1	134
448	Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angewandte Chemie, 2020, 132, 5054-5085.	1.6	16
449	Polymer Networks: From Plastics and Gels to Porous Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5022-5049.	7.2	194
450	A fluorescent platinum(<scp>ii</scp>) metallacycle-cored supramolecular network formed by dynamic covalent bonds and its application in halogen ions and picric acid detection. Polymer Chemistry, 2020, 11, 254-258.	1.9	26
451	TD-DFT insights into the sensing potential of the luminescent covalent organic framework for indoor pollutant formaldehyde. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117432.	2.0	7
452	Covalently integrated core-shell MOF@COF hybrids as efficient visible-light-driven photocatalysts for selective oxidation of alcohols. Journal of Energy Chemistry, 2020, 43, 8-15.	7.1	150
453	Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. Chemical Engineering Journal, 2020, 381, 122559.	6.6	62
454	Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution. Journal of Hazardous Materials, 2020, 383, 121126.	6.5	180
455	Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angewandte Chemie, 2020, 132, 8791-8797.	1.6	40
456	Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angewandte Chemie - International Edition, 2020, 59, 8713-8719.	7.2	59
457	Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Science Bulletin, 2020, 65, 113-122.	4.3	115
458	Covalent organic framework-inspired chromogenic system for visual colorimetric detection of carcinogenic 3, 3′-diaminobenzidine. Sensors and Actuators B: Chemical, 2020, 304, 127372.	4.0	36

#	Article	IF	CITATIONS
459	through Twoâ€Photon Induction. Angewandte Chemie, 2020, 132, 10173-10180.	1.6	16
460	Light Hydrocarbon Separations Using Porous Organic Framework Materials. Chemistry - A European Journal, 2020, 26, 3205-3221.	1.7	57
461	Covalent Organic Framework for Improving Nearâ€Infrared Light Induced Fluorescence Imaging through Twoâ€Photon Induction. Angewandte Chemie - International Edition, 2020, 59, 10087-10094.	7.2	84
462	Nanoparticle Sizeâ€Fractionation through Selfâ€Standing Porous Covalent Organic Framework Films. Angewandte Chemie - International Edition, 2020, 59, 1161-1165.	7.2	90
463	Covalent Organic Framework (COFâ€1) under High Pressure. Angewandte Chemie - International Edition, 2020, 59, 1087-1092.	7.2	34
464	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie - International Edition, 2020, 59, 4354-4359.	7.2	84
465	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie - International Edition, 2020, 59, 6068-6073.	7.2	50
466	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
467	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 6007-6014.	7.2	254
468	Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nature Communications, 2020, 11, 178.	5.8	279
469	Postsynthetic functionalization of covalent organic frameworks. National Science Review, 2020, 7, 170-190.	4.6	142
470	Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode. Chemical Engineering Journal, 2020, 387, 124071.	6.6	42
471	Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: an efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale, 2020, 12, 825-831.	2.8	37
472	Supramolecular assembly of bent dinuclear amphiphilic alkynylplatinum(<scp>ii</scp>) terpyridine complexes: diverse nanostructures through subtle tuning of the mode of molecular stacking. Chemical Science, 2020, 11, 499-507.	3.7	10
473	Encapsulation of a Porous Organic Cage into the Pores of a Metal–Organic Framework for Enhanced CO ₂ Separation. Angewandte Chemie, 2020, 132, 6124-6129.	1.6	15
474	Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 3459-3467.	5.2	75
475	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie, 2020, 132, 5203-5209.	1.6	31
476	Co-crystals of 9,9′-bianthracene-10,10′-dicarboxylic acid with linear bidentate basic ligand molecules: synthesis, crystal structure, and properties based on the layer structure exfoliated by water. CrystEngComm, 2020, 22, 497-505.	1.3	2

#	ARTICLE	IF	CITATIONS
477	Scalable fabrication of heteroatom-doped versatile hierarchical porous carbons with an all-in-one phthalonitrile precursor and their applications. Carbon, 2020, 159, 495-503.	5.4	23
478	Rigid supramolecular structures based on flexible covalent bonds: A fabrication mechanism of porous organic polymers and their CO2 capture properties. Chemical Engineering Journal, 2020, 385, 123978.	6.6	45
479	Interfacial Approach toward Benzeneâ€Bridged Polypyrrole Film–Based Microâ€6upercapacitors with Ultrahigh Volumetric Power Density. Advanced Functional Materials, 2020, 30, 1908243.	7.8	60
480	Precise Sizeâ€Selective Sieving of Nanoparticles Using a Highly Oriented Twoâ€Dimensional Supramolecular Polymer. Angewandte Chemie, 2020, 132, 4870-4875.	1.6	0
481	Precise Sizeâ€Selective Sieving of Nanoparticles Using a Highly Oriented Twoâ€Dimensional Supramolecular Polymer. Angewandte Chemie - International Edition, 2020, 59, 4840-4845.	7.2	14
482	Acid Exfoliation of Imineâ€linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie - International Edition, 2020, 59, 5165-5171.	7.2	128
483	Nanoparticle Sizeâ€Fractionation through Selfâ€Standing Porous Covalent Organic Framework Films. Angewandte Chemie, 2020, 132, 1177-1181.	1.6	27
484	Supramolecular synthesis with <i>N</i> -hetero-tolanes: liquid crystals and hydrogen-bonded and halogen-bonded co-crystals. CrystEngComm, 2020, 22, 416-419.	1.3	1
485	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
486	Multiple Electrophilic C–H Borylation of Arenes Using Boron Triiodide. Organic Letters, 2020, 22, 700-704.	2.4	24
487	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie - International Edition, 2020, 59, 3678-3684.	7.2	196
488	Molecular engineering in 2D surface covalent organic frameworks: Towards next generation of molecular tectons - A mini review. Synthetic Metals, 2020, 260, 116265.	2.1	7
489	Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution. Science China Chemistry, 2020, 63, 192-197.	4.2	45
490	Building Block Design for Minimizing Defects in the Construction of Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 179-183.	2.1	13
491	Porous Macroligands: Materials for Heterogeneous Molecular Catalysis. ChemCatChem, 2020, 12, 1270-1275.	1.8	27
492	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie, 2020, 132, 3707-3713.	1.6	39
493	Fabricating Organic Nanotubes through Selective Disassembly of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 70-74.	6.6	81
494	Recent Advances in Covalent Organic Frameworks for Catalysis. Chemistry - an Asian Journal, 2020, 15, 338-351.	1.7	103

#	Article	IF	CITATIONS
495	A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chemical Science, 2020, 11, 543-550.	3.7	265
496	Atomic Spatial and Temporal Imaging of Local Structures and Light Elements inside Zeolite Frameworks. Advanced Materials, 2020, 32, e1906103.	11.1	81
497	Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Composites Part B: Engineering, 2020, 182, 107616.	5.9	97
498	Recent Advances in Photocatalysis over Metal–Organic Frameworksâ€Based Materials. Solar Rrl, 2020, 4, 1900438.	3.1	22
499	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie - International Edition, 2020, 59, 3624-3629.	7.2	227
500	2D and 3D Porphyrinic Covalent Organic Frameworks: The Influence of Dimensionality on Functionality. Angewandte Chemie, 2020, 132, 3653-3658.	1.6	45
501	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie, 2020, 132, 1948-1956.	1.6	40
502	Developing Luminescent Ratiometric Thermometers Based on a Covalent Organic Framework (COF). Angewandte Chemie - International Edition, 2020, 59, 1932-1940.	7.2	120
503	Oneâ€Pot Fabrication of Pd Nanoparticles@Covalentâ€Organicâ€Frameworkâ€Derived Hollow Polyamine Spheres as a Synergistic Catalyst for Tandem Catalysis. Chemistry - A European Journal, 2020, 26, 1864-1870.	1.7	18
504	Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Science Advances, 2020, 6, .	4.7	168
505	Fe ₃ O ₄ /Porphyrin Covalent Organic Framework Core–Shell Nanospheres as Interfacial Catalysts for Enzymatic Esterification. ACS Applied Nano Materials, 2020, 3, 10360-10368.	2.4	25
506	Radiation Controllable Synthesis of Robust Covalent Organic Framework Conjugates for Efficient Dynamic Column Extraction of 99TcO4â''. CheM, 2020, 6, 2796-2809.	5.8	103
507	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	5.8	96
508	The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 2020, 33, 360-381.	9.5	47
509	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 2020, 5, 3498-3506.	8.8	114
510	Salicylideneaniline-Based Covalent Organic Frameworks: A New Family of Multistate Second-Order Nonlinear Optical Switches. Journal of Physical Chemistry C, 2020, 124, 24451-24459.	1.5	13
511	Design of higher valency in covalent organic frameworks. Science, 2020, 370, .	6.0	189
512	Small-angle X-ray scattering as a multifaceted tool for structural characterization of covalent organic frameworks. Journal of Applied Crystallography, 2020, 53, 1376-1386.	1.9	9

#	Article	IF	CITATIONS
513	Linkage Engineering by Harnessing Supramolecular Interactions to Fabricate 2D Hydrazone-Linked Covalent Organic Framework Platforms toward Advanced Catalysis. Journal of the American Chemical Society, 2020, 142, 18138-18149.	6.6	99
514	Anchoring Pd(OAc)2 on amide-bonded covalent organic frameworks: An efficient heterogeneous Pd@OC-MA catalyst for Suzuki-Miyaura coupling reactions in water. Tetrahedron, 2020, 76, 131664.	1.0	6
515	Design and Synthesis of Polyimide Covalent Organic Frameworks. Macromolecular Rapid Communications, 2020, 41, e2000402.	2.0	44
516	Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Accounts of Materials Research, 2020, 1, 77-87.	5.9	206
517	Development of an interfacial osmosis diffusion method to prepare imine-based covalent organic polymer electrocatalysts for the oxygen evolution reaction. Electrochimica Acta, 2020, 362, 137212.	2.6	7
518	Nitrogen-doped nanostructured carbons: A new material horizon for water desalination by capacitive deionization. EnergyChem, 2020, 2, 100043.	10.1	73
519	Syntheses of two- and three-dimensional covalent organic frameworks in deep eutectic solvents. Green Chemistry, 2020, 22, 7537-7542.	4.6	44
520	A controlling parameter of topological defects in two-dimensional covalent organic frameworks. Nanoscale, 2020, 12, 22107-22115.	2.8	8
521	Electronic Devices Using Open Framework Materials. Chemical Reviews, 2020, 120, 8581-8640.	23.0	185
522	Reversible Color and Shape Changes of Nanostructured Fibers of a Macrocyclic π-Extended Thiophene Hexamer Promoted by Adsorption and Desorption of Organic Vapor. Journal of the American Chemical Society, 2020, 142, 13662-13666.	6.6	9
523	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. Journal of the American Chemical Society, 2020, 142, 14957-14965.	6.6	68
524	Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2020, 2, 3656-3733.	2.2	100
525	Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COFs for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2020, 8, 14609-14623.	5.2	69
526	Proton conductive covalent organic frameworks. Coordination Chemistry Reviews, 2020, 422, 213465.	9.5	129
527	Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society, 2020, 142, 14033-14038.	6.6	68
528	Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS Applied Materials & amp; Interfaces, 2020, 12, 13248-13255.	4.0	69
529	Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Science China Chemistry, 2020, 63, 1306-1314.	4.2	32
530	Covalent organic frameworks-based paper solid phase microextraction combined with paper spray mass spectrometry for highly enhanced analysis of tetrabromobisphenol A. Analyst, The, 2020, 145, 6357-6362.	1.7	19

#	Article	IF	Citations
531	2D Material Based Advanced Membranes for Separations in Organic Solvents. Small, 2020, 16, e2003400.	5.2	31
532	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. , 2020, 2, 1691-1697.		42
533	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	6.6	321
534	Transformation between 2D covalent organic frameworks with distinct pore hierarchy <i>via</i> exchange of building blocks with different symmetries. Chemical Communications, 2020, 56, 15418-15421.	2.2	14
535	Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128.	5.8	55
536	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H ₂ O ₂ Generation. Journal of the American Chemical Society, 2020, 142, 20107-20116.	6.6	239
537	Pyrimidazole-Based Covalent Organic Frameworks: Integrating Functionality and Ultrastability via Isocyanide Chemistry. Journal of the American Chemical Society, 2020, 142, 20956-20961.	6.6	62
538	Mechanisms of Defect Correction by Reversible Chemistries in Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 9952-9956.	2.1	17
539	Two-Dimensional COF–Three-Dimensional MOF Dual-Layer Membranes with Unprecedentedly High H ₂ /CO ₂ Selectivity and Ultrahigh Gas Permeabilities. ACS Applied Materials & Interfaces, 2020, 12, 52899-52907.	4.0	59
540	3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. Journal of the American Chemical Society, 2020, 142, 20335-20339.	6.6	97
541	The Immobilization of Pd(II) on Porous Organic Polymers for Semihydrogenation of Terminal Alkynes. ACS Applied Materials & Interfaces, 2020, 12, 51428-51436.	4.0	12
542	Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. Chemistry of Materials, 2020, 32, 7694-7702.	3.2	41
543	Versatile Platform of Ion Conducting 2D Anionic Germanate Covalent Organic Frameworks with Potential for Capturing Toxic Acidic Gases. ACS Applied Materials & Interfaces, 2020, 12, 40372-40380.	4.0	22
544	Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C–C cross-coupling reactions. RSC Advances, 2020, 10, 29402-29407.	1.7	24
545	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	1.6	5
546	Self-assembly of trigonal building blocks into nanostructures: molecular design and biomedical applications. Journal of Materials Chemistry B, 2020, 8, 6739-6752.	2.9	21
547	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
548	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	7.2	110

#	Article	IF	CITATIONS
549	Synthetic Tailoring of Graphene Nanostructures with Zigzagâ€Edged Topologies: Progress and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 23386-23401.	7.2	133
550	Chiral covalent organic frameworks: design, synthesis and property. Chemical Society Reviews, 2020, 49, 6248-6272.	18.7	211
551	Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzackâ€Rädern. Angewandte Chemie, 2020, 132, 23591-23607.	1.6	50
552	Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework. Microporous and Mesoporous Materials, 2020, 307, 110523.	2.2	51
553	De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Advanced Materials, 2020, 32, e2001284.	11.1	130
554	Selective Reductive Removal of Silver Ions from Acidic Solutions by Redox-Active Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 37619-37627.	4.0	17
555	Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications. Journal of Chemical Physics, 2020, 153, 044702.	1.2	21
556	Reversible Photoluminescence of an H-Bonded Organic Framework Based on Macrocyclic Triazine in Solvation and Desolvation. Crystal Growth and Design, 2020, 20, 6421-6429.	1.4	9
557	Semiconductive Covalent Organic Frameworks: Structural Design, Synthesis, and Application. Small Structures, 2020, 1, 2000021.	6.9	43
558	Nanoporous Covalent Organic Framework Embedded with Fe/Fe ₃ O ₄ Nanoparticles as Air-Stable Low-Density Nanomagnets. ACS Applied Nano Materials, 2020, 3, 9088-9096.	2.4	13
559	Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry, 2020, 12, 1115-1122.	6.6	88
560	Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening. Molecules, 2020, 25, 4875.	1.7	11
561	Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm, 2020, 22, 7736-7781.	1.3	97
562	Nanocompositeâ€Based Matrices in Laser Desorption/Ionization Mass Spectrometry for Smallâ€Molecule Analysis. ChemPlusChem, 2020, 85, 2419-2427.	1.3	12
563	Fe ₃ O ₄ Nanoparticles Decorated with UIO-66 Metal–Organic Framework Particles and Encapsulated in a Triazine-Based Covalent Organic Framework Matrix for Photodegradation of Anionic Dyes. ACS Applied Nano Materials, 2020, 3, 11307-11314.	2.4	27
564	Highly conducting Wurster-type twisted covalent organic frameworks. Chemical Science, 2020, 11, 12843-12853.	3.7	48
565	Atoms and the void: modular construction of ordered porous solids. Nature Communications, 2020, 11, 4652.	5.8	17
566	Highly Phosphatized Magnetic Catalyst with Electron Transfer Induced by Quaternary Synergy for Efficient Dehydrogenation of Ammonia Borane. ACS Applied Materials & Interfaces, 2020, 12, 43854-43863.	4.0	26

ARTICLE IF CITATIONS Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction 7.2 23 567 Data. Angewandte Chemie - International Edition, 2020, 59, 22638-22644. Structural features of proton-conducting metal organic and covalent organic frameworks. 568 1.3 23 CrystEngComm, 2020, 22, 6425-6443. Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 569 4.2 95 1367-1390. Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic Activity. Angewandte Chemie, 2020, 132, 24053-24061. Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid 571 1.6 26 I₂ Adsorption. Angewandte Chemie, 2020, 132, 22886-22894. Vinyleneâ€Linked Covalent Organic Frameworks (COFs) with Symmetryâ€Tuned Polarity and Photocatalytic Activity. Angewandte Chemie - International Edition, 2020, 59, 23845-23853. Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid 573 3.2 27 Nanoporous Materials. Chemistry of Materials, 2020, 32, 7822-7831. Reticular Synthesis of tbo Topology Covalent Organic Frameworks. Journal of the American Chemical 574 6.6 120 Society, 2020, 142, 16346-16356 Ultrathin heterostructured covalent organic framework membranes with interfacial molecular 575 sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 5.2 43 19328-19336. Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasiâ€3D Topologies for Rapid 7.2 163 I₂ Adsorption. Angewandte Chemie - International Edition, 2020, 59, 22697-22705. Nanotrap Grafted Anion Exchangeable Hybrid Materials for Efficient Removal of Toxic Oxoanions 577 5.354 from Water. ACS Central Science, 2020, 6, 1534-1541. Structural Approaches to Control Interlayer Interactions in 2D Covalent Organic Frameworks. 11.1 Advanced Materials, 2020, 32, e2002366. Rational design and synthesis of magnetic covalent organic frameworks for controlling the 579 selectivity and enhancing the extraction efficiency of polycyclic aromatic hydrocarbons. 2.5 20 Mikrochimica Acta, 2020, 187, 531. Crystalline Porous Organic Salts: From Micropore to Hierarchical Pores. Advanced Materials, 2020, 580 11.1 32, e2003270. The Application of Covalent Organic Frameworks for Chiral Chemistry. Macromolecular Rapid 581 2.0 14 Communications, 2020, 41, e2000404. Bioinspired Suprahelical Frameworks as Scaffolds for Artificial Photosynthesis. ACS Applied Materials & amp; Interfaces, 2020, 12, 45192-45201. Catalytic Asymmetric Synthesis of Chiral Covalent Organic Frameworks from Prochiral Monomers 583 for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 2020, 142, 6.6 109 16915-16920. Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Advanced 584 Functional Materials, 2020, 30, 2004680.

#	Article	IF	CITATIONS
585	Direct‧pace Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data. Angewandte Chemie, 2020, 132, 22827-22833.	1.6	2
586	Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers, 2020, 12, 1861.	2.0	84
587	Homogeneous Polymerization of Self-standing Covalent Organic Framework Films with High Performance in Molecular Separation. ACS Applied Materials & Interfaces, 2020, 12, 41942-41949.	4.0	33
588	Facile synthesis of a covalent organic framework (COF) based on the reaction of melamine and trimesic acid incorporated electrospun nanofiber and its application as an electrochemical tyrosinamide aptasensor. New Journal of Chemistry, 2020, 44, 14922-14927.	1.4	28
589	Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. ChemPlusChem, 2020, 85, 2051-2066.	1.3	37
590	Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays. ACS Sensors, 2020, 5, 4035-4047.	4.0	7
591	Engineering Magnetic Guanidyl-Functionalized Supramolecular Organic Framework for Efficient Enrichment of Global Phosphopeptides. ACS Applied Materials & Interfaces, 2020, 12, 57468-57476.	4.0	16
592	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
593	Elaborately manufacturing an electrochemical aptasensor based on gold nanoparticle/COF composites for amplified detection performance. Journal of Materials Chemistry C, 2020, 8, 16984-16991.	2.7	48
594	Construction of the 1D Covalent Organic Framework/2D g-C ₃ N ₄ Heterojunction with High Apparent Quantum Efficiency at 500 nm. ACS Applied Materials & Interfaces, 2020, 12, 51555-51562.	4.0	50
595	Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 8469-8500.	18.7	315
596	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	5.0	94
597	Divergent Chemistry Paths for 3D and 1D Metallo ovalent Organic Frameworks (COFs). Angewandte Chemie, 2020, 132, 11624-11629.	1.6	10
598	Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. ACS Sensors, 2020, 5, 1474-1481.	4.0	56
599	Metalation of Catecholâ€Functionalized Defective Covalent Organic Frameworks for Lewis Acid Catalysis. Small, 2020, 16, e2001998.	5.2	43
600	Recent Progress in Metalâ€Free Covalent Organic Frameworks as Heterogeneous Catalysts. Small, 2020, 16, e2001070.	5.2	229
601	Visible-Light-Responsive Anthraquinone Functionalized Covalent Organic Frameworks for Metal-Free Selective Oxidation of Sulfides: Effects of Morphology and Structure. ACS Catalysis, 2020, 10, 6664-6675.	5.5	120
602	Two-dimensional covalent organic frameworks with hierarchical porosity. Chemical Society Reviews, 2020, 49, 3920-3951.	18.7	302

#	Article	IF	CITATIONS
603	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie, 2020, 132, 16730-16736.	1.6	59
604	A Stable and Conductive Metallophthalocyanine Framework for Electrocatalytic Carbon Dioxide Reduction in Water. Angewandte Chemie - International Edition, 2020, 59, 16587-16593.	7.2	214
605	Green synthesis of imine-based covalent organic frameworks in water. Chemical Communications, 2020, 56, 6704-6707.	2.2	68
606	<scp>Noncovalent</scp> modification of <scp>selfâ€assembled</scp> functionalized <scp>COF</scp> by <scp>PNIPAM</scp> and its properties of Pickering emulsion. Journal of the Chinese Chemical Society, 2020, 67, 2004-2011.	0.8	1
607	Holey Heterographenes Made to Order: "Green―Synthesis of Porous Graphitic Frameworks. CheM, 2020, 6, 812-814.	5.8	1
608	Porphyrin Nanowire Bundles for Efficient Photoconductivity, Photoemission, and Generation of Singlet Oxygens toward Photodynamic Therapy. ACS Applied Nano Materials, 2020, 3, 6043-6053.	2.4	10
609	Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks – from 3D solids to 2D sheets. Chemical Society Reviews, 2020, 49, 4835-4866.	18.7	129
610	Adsorption characteristics and cooling/heating performance of COF-5. Applied Thermal Engineering, 2020, 176, 115442.	3.0	15
611	Heteroatom-Doped Carbon Electrocatalysts Derived from Nanoporous Two-Dimensional Covalent Organic Frameworks for Oxygen Reduction and Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 5481-5488.	2.4	46
612	A covalent organic framework exhibiting amphiphilic selective adsorption toward ionic organic dyes tuned by pH value. European Polymer Journal, 2020, 133, 109764.	2.6	38
613	Synthesis of Stable Thiazole-Linked Covalent Organic Frameworks via a Multicomponent Reaction. Journal of the American Chemical Society, 2020, 142, 11131-11138.	6.6	158
614	Porous nitrogen-rich covalent organic framework for capture and conversion of CO2 at atmospheric pressure conditions. Microporous and Mesoporous Materials, 2020, 308, 110314.	2.2	41
615	Vinylene-Bridged Two-Dimensional Covalent Organic Frameworks via Knoevenagel Condensation of Tricyanomesitylene. Journal of the American Chemical Society, 2020, 142, 11893-11900.	6.6	180
616	Semiconductive Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Applied Materials & Interfaces, 2020, 12, 37427-37434.	4.0	67
617	Insights into the Anchoring of Polysulfides and Catalytic Performance by Metal Phthalocyanine Covalent Organic Frameworks as the Cathode in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 10185-10192.	3.2	37
618	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
619	A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chemical Science, 2020, 11, 6882-6888.	3.7	87
620	Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Materials Chemistry Frontiers, 2020, 4, 2346-2356.	3.2	34

#	Article	IF	CITATIONS
621	Irreversible Amide‣inked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie, 2020, 132, 17760-17766.	1.6	18
622	Irreversible Amideâ€Linked Covalent Organic Framework for Selective and Ultrafast Gold Recovery. Angewandte Chemie - International Edition, 2020, 59, 17607-17613.	7.2	174
623	Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS Central Science, 2020, 6, 1082-1094.	5.3	46
624	Molecular Engineering of Multifunctional Metallophthalocyanine-Containing Framework Materials. Chemistry of Materials, 2020, 32, 5372-5409.	3.2	24
625	Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives. ACS Applied Materials & Interfaces, 2020, 12, 31875-31886.	4.0	37
626	Halogen modified two-dimensional covalent triazine frameworks as visible-light driven photocatalysts for overall water splitting. Science China Chemistry, 2020, 63, 1134-1141.	4.2	31
627	Ni/Fe Clusters and Nanoparticles Confined by Covalent Organic Framework Derived Carbon as Highly Active Catalysts toward Oxygen Reduction Reaction and Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000115.	2.7	34
628	Phenanthroline Covalent Organic Framework Electrodes for High-Performance Zinc-Ion Supercapattery. ACS Energy Letters, 2020, 5, 2256-2264.	8.8	175
629	Pd Nanoclusters Supported by Amine-Functionalized Covalent Organic Frameworks for Benzyl Alcohol Oxidation. ACS Applied Nano Materials, 2020, 3, 6416-6422.	2.4	32
630	Two-dimensional conjugated polymer films <i>via</i> liquid-interface-assisted synthesis toward organic electronic devices. Journal of Materials Chemistry C, 2020, 8, 10696-10718.	2.7	32
631	Anion Substitution in Porous Aromatic Frameworks: Boosting Molecular Permeability and Selectivity for Membrane Acetylene Separation. Advanced Materials, 2020, 32, e1907449.	11.1	34
632	All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. Journal of the American Chemical Society, 2020, 142, 6548-6553.	6.6	31
633	Single crystal of a one-dimensional metallo-covalent organic framework. Nature Communications, 2020, 11, 1434.	5.8	77
634	Emerging applications of porous organic polymers in visible-light photocatalysis. Journal of Materials Chemistry A, 2020, 8, 7003-7034.	5.2	215
635	Covalent organic framework nanosheets: preparation, properties and applications. Chemical Society Reviews, 2020, 49, 2291-2302.	18.7	245
636	Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C–C coupling reactions. Green Chemistry, 2020, 22, 2605-2612.	4.6	47
637	Porous Frameworks Based on Supramolecular Ball Joints: Bringing Flexibility to Ordered 3D Lattices. Chemistry - A European Journal, 2020, 26, 5994-6005.	1.7	8
638	Construction of Covalent Organic Frameworks via Three-Component One-Pot Strecker and Povarov Reactions. Journal of the American Chemical Society, 2020, 142, 6521-6526.	6.6	146
#	Article	IF	CITATIONS
-----	--	-------------------	-----------------
639	A Versatile Approach to Dynamic Amide Bond Formation with Imine Nucleophiles. Chemistry - A European Journal, 2020, 26, 5709-5716.	1.7	4
640	Carboxyl-functionalized magnetic porous organic polymers as efficient adsorbent for wastewater remediation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 109, 97-102.	2.7	17
641	Enantioselective inclusion of pyrene-1-sulfonate salts of α-amino acids with crystals of α-cyclodextrin. Tetrahedron, 2020, 76, 131100.	1.0	5
642	Discrete boronate ester ladders from the dynamic covalent self-assembly of oligo(phenylene) Tj ETQq1 1 0.78431 1082-1094.	4 rgBT /Ov 2.3	verlock 10 6
643	Real-Time Molecular-Scale Imaging of Dynamic Network Switching between Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 5964-5968.	6.6	44
644	Amidoxime-based materials for uranium recovery and removal. Journal of Materials Chemistry A, 2020, 8, 7588-7625.	5.2	234
645	Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework. Journal of Materials Chemistry A, 2020, 8, 7158-7170.	5.2	45
646	Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polymer Chemistry, 2020, 11, 2914-2922.	1.9	10
647	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
648	Transformation Strategy for Highly Crystalline Covalent Triazine Frameworks: From Staggered AB to Eclipsed AA Stacking. Journal of the American Chemical Society, 2020, 142, 6856-6860.	6.6	136
649	Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination. Journal of Membrane Science, 2020, 604, 118090.	4.1	79
650	One-pot synthesis of nitrogen-rich aminal- and triazine-based hierarchical porous organic polymers with highly efficient iodine adsorption. Polymer, 2020, 194, 122401.	1.8	24
651	High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. Journal of the American Chemical Society, 2020, 142, 6872-6877.	6.6	217
652	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	3.2	117
653	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425
654	Divergent Chemistry Paths for 3D and 1D Metallo ovalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2020, 59, 11527-11532.	7.2	35
655	Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. Science Advances, 2020, 6, eaaz2310.	4.7	58
656	Covalent Organic Framework for Efficient Two-Photon Absorption. Matter, 2020, 2, 1049-1063.	5.0	69

#	Article	IF	CITATIONS
657	Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units. Microporous and Mesoporous Materials, 2020, 300, 110151.	2.2	35
658	Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chemical Society Reviews, 2020, 49, 2020-2038.	18.7	73
659	pH and Redox Dual-Sensitive Covalent Organic Framework Nanocarriers to Resolve the Dilemma Between Extracellular Drug Loading and Intracellular Drug Release. Frontiers in Chemistry, 2020, 8, 488.	1.8	18
660	Polymers of Intrinsic Microporosity (PIMs). Polymer, 2020, 202, 122736.	1.8	94
661	How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chemical Society Reviews, 2020, 49, 5140-5158.	18.7	27
662	Triazine- and Keto-Functionalized Porous Covalent Organic Framework as a Promising Anode Material for Na-Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 15870-15878.	1.5	22
663	Thiophene-embedded conjugated microporous polymers for photocatalysis. Catalysis Science and Technology, 2020, 10, 5171-5180.	2.1	37
664	Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6239-6269.	2.4	96
665	Control by one drop of solvent: selective preparation of guest release/trap-triggered interconvertible molecular crystals. Chemical Communications, 2020, 56, 9687-9690.	2.2	8
666	Nonâ€Interpenetrated Singleâ€Crystal Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 17991-17995.	7.2	60
667	Standard Practices of Reticular Chemistry. ACS Central Science, 2020, 6, 1255-1273.	5.3	142
668	Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework. Chemical Science, 2020, 11, 12647-12654.	3.7	80
669	Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.	5.2	97
670	Nonâ€Interpenetrated Singleâ€Crystal Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 18147-18151.	1.6	5
671	Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horizons, 2020, 5, 1264-1273.	4.1	53
672	Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nature Chemistry, 2020, 12, 595-602.	6.6	65
673	Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catalysis, 2020, 10, 8717-8726.	5.5	200
674	Multibranched Octupolar Module Embedded Covalent Organic Frameworks Enable Efficient Twoâ€Photon Fluorescence. Advanced Functional Materials, 2020, 30, 2000516.	7.8	56

ARTICLE IF CITATIONS Nitrogen-rich isoindoline-based porous polymer: Promoting knoevenagel reaction at room 675 4.7 10 temperature. Green Energy and Environment, 2020, 5, 484-491. Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic 676 6.6 Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for 677 2.8 78 remarkable formaldehyde sensing. Nanoscale, 2020, 12, 15611-15619. Templated synthesis of cobalt subnanoclusters dispersed N/C nanocages from COFs for highly-efficient oxygen reduction reaction. Chemical Engineering Journal, 2020, 401, 126149. Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks. Journal of the American 679 6.6 99 Chemical Society, 2020, 142, 12995-13002. Pyrazine-Linked 2D Covalent Organic Frameworks as Coating Material for High-Nickel Layered Oxide Cathodes in Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 10597-10606. 680 4.0 Supramolecular Alternating Donorâ€"Acceptor Assembly toward Intercalated Covalent Organic 681 6.6 38 Frameworks. Journal of the American Chemical Society, 2020, 142, 3712-3717. Twoâ€Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. Angewandte Chemie - International Edition, 7.2 116 2020, 59, 8218-8224. 683 Metal-free photocatalysts for hydrogen evolution. Chemical Society Reviews, 2020, 49, 1887-1931. 374 18.7 Dynamic covalent polymer networks <i>via</i> combined nitroxide exchange reaction and nitroxide 684 mediated polymerization. Polymer Chemistry, 2020, 11, 2502-2510. The Chemistry of Porous Organic Molecular Materials. Advanced Functional Materials, 2020, 30, 685 7.8 224 1909842. Design and applications of three dimensional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 1357-1384. 686 18.7 509 Bromineâ€Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. 687 1.7 40 Chemistry - A European Journal, 2020, 26, 5784-5788. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Microporous and Mesoporous Materials, 2020, 299, 110105. 2.2 Integrating Suitable Linkage of Covalent Organic Frameworks into Covalently Bridged Inorganic/Organic Hybrids toward Efficient Photocatalysis. Journal of the American Chemical Society, 689 304 6.6 2020, 142, 4862-4871. Triazine functionalized fully conjugated covalent organic framework for efficient photocatalysis. Applied Catalysis B: Environmental, 2020, 269, 118799. 691 Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944. 5.8 123 Thiol-functionalized magnetic covalent organic frameworks by a cutting strategy for efficient 6.5

removal of Hg2+ from water. Journal of Hazardous Materials, 2020, 392, 122320.

#	Article	IF	CITATIONS
693	Rapid, Scalable Construction of Highly Crystalline Acylhydrazone Two-Dimensional Covalent Organic Frameworks via Dipole-Induced Antiparallel Stacking. Journal of the American Chemical Society, 2020, 142, 4932-4943.	6.6	99
694	Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 456-475.	1.5	147
695	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
696	GrenzflÄ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
697	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
698	Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks. CheM, 2020, 6, 1125-1133.	5.8	29
699	Modular Construction of Porous Hydrogenâ€Bonded Molecular Materials from Melams. Chemistry - A European Journal, 2020, 26, 7026-7040.	1.7	14
700	Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions. ACS Applied Materials & Interfaces, 2020, 12, 10461-10470.	4.0	50
701	Twoâ€Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Device. Angewandte Chemie, 2020, 132, 8295-8301.	1.6	36
702	Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO ₂ to CO at low overpotential. Green Chemistry, 2020, 22, 3095-3103.	4.6	16
703	Three-Dimensional Mesoporous Covalent Organic Frameworks through Steric Hindrance Engineering. Journal of the American Chemical Society, 2020, 142, 3736-3741.	6.6	113
704	Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 3718-3723.	6.6	83
705	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	11.1	136
706	Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broad cope Ultrafine Nanoparticles. Small, 2020, 16, e1906005.	5.2	82
707	Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads. Journal of the American Chemical Society, 2020, 142, 17944-17955.	6.6	32
708	Metalloporphyrinic metal-organic frameworks: Controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 2020, 277, 102108.	7.0	34
709	Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification. Journal of Colloid and Interface Science, 2020, 565, 337-344.	5.0	53
710	Small amount COFs enhancing storage of large anions. Energy Storage Materials, 2020, 27, 35-42.	9.5	62

#	Article	IF	CITATIONS
711	Strongâ€Baseâ€Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angewandte Chemie, 2020, 132, 6063-6070.	1.6	65
712	A Corroleâ€Based Covalent Organic Framework Featuring Desymmetrized Topology. Angewandte Chemie, 2020, 132, 4384-4389.	1.6	6
713	Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading. Journal of Membrane Science, 2020, 600, 117841.	4.1	53
714	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
715	Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene. Advanced Materials, 2020, 32, e1907242.	11.1	114
716	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	8.2	143
717	Reticulating 1D Ribbons into 2D Covalent Organic Frameworks by Imine and Imide Linkages. Journal of the American Chemical Society, 2020, 142, 2771-2776.	6.6	118
718	Covalent on-surface polymerization. Nature Chemistry, 2020, 12, 115-130.	6.6	217
719	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	18.7	804
720	A pre-synthetic strategy to construct single ion conductive covalent organic frameworks. Chemical Communications, 2020, 56, 2747-2750.	2.2	29
721	Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11, 599.	5.8	205
722	Robust porous organosilica monoliths via a surfactant-free high internal phase emulsion process for efficient oil-water separation. Journal of Colloid and Interface Science, 2020, 566, 338-346.	5.0	27
723	The luminescent and photophysical properties of covalent organic frameworks. Chemical Society Reviews, 2020, 49, 839-864.	18.7	234
724	HiGee Strategy toward Rapid Mass Production of Porous Covalent Organic Polymers with Superior Methane Deliverable Capacity. Advanced Functional Materials, 2020, 30, 1908079.	7.8	14
725	Proximity Effect in Crystalline Framework Materials: Stackingâ€Induced Functionality in MOFs and COFs. Advanced Functional Materials, 2020, 30, 1908004.	7.8	64
726	Two-dimensional covalent–organic frameworks for ultrahigh iodine capture. Journal of Materials Chemistry A, 2020, 8, 9523-9527.	5.2	92
727	2D Covalent Organic Frameworks for Biomedical Applications. Advanced Functional Materials, 2020, 30, 2002046.	7.8	172
728		1.7	8

#	ARTICLE	IF	CITATIONS
729	Enhanced Proton Conductivity of Imidazole-Doped Thiophene-Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation. ACS Applied Materials & Interfaces, 2020, 12, 22910-22916.	4.0	62
730	Identification of Prime Factors to Maximize the Photocatalytic Hydrogen Evolution of Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 9752-9762.	6.6	94
731	Construction and Scanning Probe Microscopy Imaging of Two-dimensional Nanomaterials. Chemistry Letters, 2020, 49, 565-573.	0.7	10
732	Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chemical Engineering Journal, 2020, 396, 125154.	6.6	223
733	Unravelling Crystal Structures of Covalent Organic Frameworks by Electron Diffraction Tomography. Chinese Journal of Chemistry, 2020, 38, 1153-1166.	2.6	31
734	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 13826-13837.	1.6	48
735	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 13722-13733.	7.2	231
736	COFs-based Porous Materials for Photocatalytic Applications. Chinese Journal of Polymer Science (English Edition), 2020, 38, 673-684.	2.0	31
737	Donor-acceptor type [4+3] covalent organic frameworks: sub-stoichiometric synthesis and photocatalytic application. Science China Chemistry, 2020, 63, 707-714.	4.2	49
738	Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. Journal of the American Chemical Society, 2020, 142, 8252-8261.	6.6	115
739	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 12162-12169.	7.2	66
740	Revisiting the Limiting Factors for Overall Waterâ€6plitting on Organic Photocatalysts. Angewandte Chemie, 2020, 132, 16418-16433.	1.6	9
741	Revisiting the Limiting Factors for Overall Waterâ€ s plitting on Organic Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 16278-16293.	7.2	72
742	pHâ€Dependent Slipping and Exfoliation of Layered Covalent Organic Framework. Chemistry - A European Journal, 2020, 26, 12996-13001.	1.7	35
743	2D Porous Polymers with sp ² arbon Connections and Sole sp ² arbon Skeletons. Advanced Functional Materials, 2020, 30, 2000857.	7.8	42
744	Mass Transfer Modulation and Gas Mapping Based on Covalent Organic Frameworks-Covered Theta Micropipette. Analytical Chemistry, 2020, 92, 7343-7348.	3.2	11
745	Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. Journal of Materials Chemistry A, 2020, 8, 9713-9725.	5.2	46
746	Topologyâ€Templated Synthesis of Crystalline Porous Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 12260-12267.	1.6	20

#	Article	IF	CITATIONS
747	Porous Organic Frameworks Featured by Distinct Confining Fields for the Selective Hydrogenation of Biomassâ€Derived Ketones. Advanced Materials, 2020, 32, e1908243.	11.1	22
748	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
749	Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 8862-8870.	6.6	101
750	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 8104-8108.	6.6	226
751	Covalent Organic Frameworks in Separation. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 131-153.	3.3	50
752	Metal-Organic Framework-Based Engineered Materials—Fundamentals and Applications. Molecules, 2020, 25, 1598.	1.7	75
753	Incorporating self-anchored phosphotungstic acid@triazole-functionalized covalent organic framework into sulfonated poly(ether ether ketone) for enhanced proton conductivity. Solid State Ionics, 2020, 349, 115316.	1.3	23
754	Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction. Chemistry - A European Journal, 2021, 27, 3817-3822.	1.7	30
755	Green synthesis of covalent organic frameworks based on reaction media. Materials Chemistry Frontiers, 2021, 5, 1253-1267.	3.2	36
756	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	23.3	361
757	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3727-3736.	7.2	39
758	Covalent organic framework-graphene oxide composite: A superior adsorption material for solid phase microextraction of bisphenol A. Talanta, 2021, 222, 121501.	2.9	60
759	A Carboxylâ€Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption. Chemistry - A European Journal, 2021, 27, 2692-2698.	1.7	45
760	A highly fluorine-functionalized 2D covalent organic framework for promoting photocatalytic hydrogen evolution. Applied Surface Science, 2021, 537, 148082.	3.1	46
761	Facile synthesis of anionic porous organic polymer for ethylene purification. Journal of Colloid and Interface Science, 2021, 582, 631-637.	5.0	10
762	Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. Journal of Membrane Science, 2021, 618, 118754.	4.1	50
763	Facile synthesis of tubular magnetic fluorinated covalent organic frameworks for efficient enrichment of ultratrace polybrominated diphenyl ethers from environmental samples. Talanta, 2021, 221, 121651.	2.9	34
764	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	4.1	88

#	Article	IF	CITATIONS
765	Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chemical Engineering Journal, 2021, 405, 126979.	6.6	50
766	Triazine-cored covalent organic framework for ultrasensitive detection of polybrominated diphenyl ethers from real samples: Experimental and DFT study. Journal of Hazardous Materials, 2021, 403, 123917.	6.5	34
767	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie - International Edition, 2021, 60, 2534-2540.	7.2	63
768	Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coordination Chemistry Reviews, 2021, 429, 213616.	9.5	67
769	Plasmonic Materials: Opportunities and Challenges on Reticular Chemistry for Photocatalytic Applications. ChemCatChem, 2021, 13, 1059-1073.	1.8	13
770	Effective Enantioselective Recognition by Chiral Aminoâ€Phosphonium Salts**. Angewandte Chemie - International Edition, 2021, 60, 4023-4027.	7.2	13
771	Fabrication of NanoCOF/Polyoxometallate Composites for Photocatalytic NADH Regeneration via Cascade Electron Relay. Solar Rrl, 2021, 5, .	3.1	17
772	Effective Enantioselective Recognition by Chiral Aminoâ€Phosphonium Salts**. Angewandte Chemie, 2021, 133, 4069-4073.	1.6	1
773	Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC - Trends in Analytical Chemistry, 2021, 134, 116126.	5.8	121
774	Metal–Organic Frameworkâ€Based Hybrid Frameworks. Small Structures, 2021, 2, 2000078.	6.9	65
775	Photoresponsive porous materials. Nanoscale Advances, 2021, 3, 24-40.	2.2	62
776	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Materials Chemistry Frontiers, 2021, 5, 944-949.	3.2	26
777	Luminescent Ratiometric Thermometers Based on a 4f–3d Grafted Covalent Organic Framework to Locally Measure Temperature Gradients During Catalytic Reactions. Angewandte Chemie, 2021, 133, 3771-3780.	1.6	12
778	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 1869-1874.	7.2	186
779	Threeâ€Dimensional Covalentâ€Organic Frameworks Loaded with Highly Dispersed Ultrafine Palladium Nanoparticles as Efficient Heterogeneous Catalyst. ChemNanoMat, 2021, 7, 95-99.	1.5	21
780	Precisely regulating the BrÃ,nsted acidity and catalytic reactivity of novel allylic C–H acidic catalysts. Fuel, 2021, 289, 119845.	3.4	1
781	Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society, 2021, 143, 92-96.	6.6	84
782	Passing the framework skeleton and properties of coordination materials onto organic framework materials. Chemical Communications, 2021, 57, 1348-1351.	2.2	2

# 783	ARTICLE Predicting the bulk modulus of single-layer covalent organic frameworks with square-lattice topology from molecular building-block properties. Nanoscale, 2021, 13, 1077-1085.	IF 2.8	Citations 8
784	Thiazolo[5,4â€ <i>d</i>]thiazoleâ€Based Donor–Acceptor Covalent Organic Framework for Sunlightâ€Đriven Hydrogen Evolution. Angewandte Chemie, 2021, 133, 1897-1902.	1.6	27
785	Three-dimensional organic cage with aggregation-induced delayed fluorescence. Chinese Chemical Letters, 2021, 32, 1017-1019.	4.8	9
786	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie, 2021, 133, 2564-2570.	1.6	8
787	Microwaveâ€Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem, 2021, 14, 208-233.	3.6	80
788	Furan- and Thiophene-Modified Hyper-Crosslinked Polymers and Their Adsorption of Phenol from Aqueous Solution. Industrial & Engineering Chemistry Research, 2021, 60, 931-938.	1.8	15
789	Imaging and analysis of covalent organic framework crystallites on a carbon surface: a nanocrystalline scaly COF/nanotube hybrid. Nanoscale, 2021, 13, 6834-6845.	2.8	5
790	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	6.4	51
791	Adsorbed xenon propellant storage: are nanoporous materials worth the weight?. Materials Advances, 2021, 2, 4081-4092.	2.6	2
792	Recent advances in separator engineering for effective dendrite suppression of Liâ€metal anodes. Nano Select, 2021, 2, 993-1010.	1.9	22
793	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	5.2	32
794	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.2	Ο
795	Facile synthesis of 3D covalent organic frameworks <i>via</i> a two-in-one strategy. Chemical Communications, 2021, 57, 2136-2139.	2.2	11
796	Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 2021, 50, 1070-1110.	18.7	106
797	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
798	sp ² carbon-conjugated covalent organic frameworks: synthesis, properties, and applications. Materials Chemistry Frontiers, 2021, 5, 2931-2949.	3.2	58
799	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	23.0	372
800	Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13625-13630.	5.2	33

#	Article	IF	CITATIONS
801	A self-assembling, biporous, metal-binding covalent organic framework and its application for gas separation. Materials Advances, 0, , .	2.6	3
802	Robust covalent organic frameworks with tailor-made chelating sites for synergistic capture of U(<scp>vi</scp>) ions from highly acidic radioactive waste. Dalton Transactions, 2021, 50, 3792-3796.	1.6	19
803	Smart covalent organic frameworks: dual channel sensors for acids and bases. Chemical Communications, 2021, 57, 9418-9421.	2.2	20
804	Printing of covalent organic frameworks using multi-material in-air coalescence inkjet printing technique. Journal of Materials Chemistry C, 2021, 9, 12051-12056.	2.7	5
805	A lanthanide-functionalized covalent triazine framework as a physiological molecular thermometer. Journal of Materials Chemistry C, 2021, 9, 6436-6444.	2.7	12
806	Self-Assembly-Driven Nanomechanics in Porous Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2021, 143, 955-963.	6.6	78
807	Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. Chemical Science, 2021, 12, 5275-5285.	3.7	14
808	Room-temperature phosphorescence of a water-soluble supramolecular organic framework. Chemical Communications, 2021, 57, 10178-10181.	2.2	19
809	2D oriented covalent organic frameworks for alcohol-sensory synapses. Materials Horizons, 2021, 8, 2041-2049.	6.4	27
810	Polymorphism and Optoelectronic Properties in Crystalline Supramolecular Polymers. Chemistry of Materials, 2021, 33, 706-718.	3.2	16
811	Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Organic Chemistry Frontiers, 2021, 8, 4237-4287.	2.3	158
812	Pyrolysis-free covalent organic framework-based materials for efficient oxygen electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 20985-21004.	5.2	33
813	Conjugation- and Aggregation-Directed Design of Covalent Organic Frameworks as White-Light-Emitting Diodes. Journal of the American Chemical Society, 2021, 143, 1061-1068.	6.6	75
814	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
815	Reticular design and crystal structure determination of covalent organic frameworks. Chemical Science, 2021, 12, 8632-8647.	3.7	41
816	Sulfonic Acid and Ionic Liquid Functionalized Covalent Organic Framework for Efficient Catalysis of the Biginelli Reaction. Journal of Organic Chemistry, 2021, 86, 3024-3032.	1.7	85
817	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. Journal of the American Chemical Society, 2021, 143, 2123-2129.	6.6	105
818	Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. Nanoscale, 2021, 13, 7447-7470.	2.8	28

#	Article	IF	CITATIONS
819	2D Redoxâ€Active Covalent Organic Frameworks for Supercapacitors: Design, Synthesis, and Challenges. Small, 2021, 17, e2005073.	5.2	64
820	Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts – structure–electrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204.	2.1	8
821	Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production. Chemistry - an Asian Journal, 2021, 16, 498-502.	1.7	7
822	Applications of metal-organic frameworks in analytical chemistry. , 2021, , 167-230.		2
823	Emergent electrochemical functions and future opportunities of hierarchically constructed metal–organic frameworks and covalent organic frameworks. Nanoscale, 2021, 13, 6341-6356.	2.8	28
824	Construction of a novel 2D–2D heterojunction by coupling a covalent organic framework and In ₂ S ₃ for photocatalytic removal of organic pollutants with high efficiency. New Journal of Chemistry, 2021, 45, 15789-15800.	1.4	10
825	A new type of zinc ion hybrid supercapacitor based on 2D materials. Nanoscale, 2021, 13, 11004-11016.	2.8	33
826	Design and application of covalent organic frameworks for ionic conduction. Polymer Chemistry, 2021, 12, 4874-4894.	1.9	27
827	Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. Journal of the American Chemical Society, 2021, 143, 1466-1473.	6.6	88
828	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
829	General Remarks of Soft-Matter Nanotubes. Nanostructure Science and Technology, 2021, , 1-58.	0.1	1
830	Pt(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Applied Materials & amp; Interfaces, 2021, 13, 6349-6358.	4.0	27
831	<i>C</i> _{3h} â€symmetric and <i>C</i> _s â€symmetric Triformyl Triindoloâ€Truxenes: Synthesis and Properties. Asian Journal of Organic Chemistry, 2021, 10, 660-667.	1.3	1
832	Editorial: Materials for Electroanalysis Based on Advanced Frameworks. Frontiers in Chemistry, 2021, 9, 638338.	1.8	2
833	Recent development of magnetic nanomaterial-supported M(Salen) composites as recyclable heterogeneous catalysts. Chemical Papers, 2021, 75, 2965-2980.	1.0	9
834	Advances in Postâ€Combustion CO ₂ Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem, 2021, 14, 1428-1471.	3.6	75
835	Mechanochemical Synthesis of Catalytic Materials. Chemistry - A European Journal, 2021, 27, 6819-6847.	1.7	130
836	A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules, 2021, 26, 838.	1.7	6

#	Article	IF	CITATIONS
837	3D Thioetherâ€Based Covalent Organic Frameworks for Selective and Efficient Mercury Removal. Small, 2021, 17, e2006112.	5.2	34
838	Skeleton Engineering of Isostructural 2D Covalent Organic Frameworks: Orthoquinone Redox-Active Sites Enhanced Energy Storage. CCS Chemistry, 2021, 3, 696-706.	4.6	62
839	Multipoint Hydrogen Bondingâ€Based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metalâ€Macrocycle Framework: Residueâ€Specificity, Diastereoselectivity, and Conformational Control. Small, 2021, 17, e2005803.	5.2	14
840	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 14236-14250.	7.2	105
841	Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15083-15091.	4.0	67
842	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 10029-10034.	1.6	9
843	Application of Electronâ€Rich Covalent Organic Frameworks COFâ€JLU25 for Photocatalytic Aerobic Oxidative Hydroxylation of Arylboronic Acids to Phenols. European Journal of Organic Chemistry, 2021, 2021, 3986-3991.	1.2	10
844	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	23.3	166
845	Donor-acceptor 2D covalent organic frameworks for efficient heterogeneous photocatalytic α-oxyamination. Science China Chemistry, 2021, 64, 827-833.	4.2	46
846	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules, 2021, 54, 2992-2999.	2.2	13
847	Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy Against Tumors. Small, 2021, 17, e2008125.	5.2	19
848	Organic transistor-based chemical sensors with self-assembled monolayers. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 1-18.	0.9	8
849	Computational Identification of Connected MOF@COF Materials. Journal of Physical Chemistry C, 2021, 125, 5897-5903.	1.5	12
850	Breaking two-dimensional polymeric crystals. Matter, 2021, 4, 763-765.	5.0	2
851	Freeâ€Standing Covalent Organic Framework Membrane for Highâ€Efficiency Salinity Gradient Energy Conversion. Angewandte Chemie, 2021, 133, 10013-10018.	1.6	28
852	Light-Activated Hypoxia-Sensitive Covalent Organic Framework for Tandem-Responsive Drug Delivery. Nano Letters, 2021, 21, 3218-3224.	4.5	148
853	Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends in Analytical Chemistry, 2021, 136, 116182.	5.8	47
854	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	2.8	29

#	Article	IF	CITATIONS
855	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 9941-9946.	7.2	65
856	Flexible and Semi-flexible Amide-Hydrazide Decorated Fluorescent Covalent Organic Frameworks as On-Off pH Responsive Proton Scavengers. ACS Applied Materials & Interfaces, 2021, 13, 14160-14168.	4.0	31
857	Synthetic Tunability of Colloidal Covalent Organic Framework/Nanocrystal Hybrids. Chemistry of Materials, 2021, 33, 2646-2654.	3.2	15
858	3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochemical Energy Reviews, 2021, 4, 269-335.	13.1	108
859	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder Xâ€Ray Diffraction Protocol. Angewandte Chemie, 2021, 133, 8995-9004.	1.6	0
860	Covalent Organic Frameworks Enabling Site Isolation of Viologenâ€Derived Electronâ€Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 9728-9735.	1.6	16
861	Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS Applied Materials & Interfaces, 2021, 13, 15053-15063.	4.0	22
862	Prediction of methane storage in covalent organic frameworks using big-data-mining approach. Chinese Journal of Chemical Engineering, 2021, 39, 286-296.	1.7	4
863	Quantifying the Likelihood of Structural Models through a Dynamically Enhanced Powder Xâ€Ray Diffraction Protocol. Angewandte Chemie - International Edition, 2021, 60, 8913-8922.	7.2	11
864	Thiazoleâ€Linked Covalent Organic Framework Promoting Fast Twoâ€Electron Transfer for Lithiumâ€Organic Batteries. Advanced Energy Materials, 2021, 11, 2003735.	10.2	78
865	Pioneering Iodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjugate Chemistry, 2021, 32, 755-762.	1.8	18
866	A fluorescent covalent triazine framework consisting of donor–acceptor structure for selective and sensitive sensing of Fe3+. European Polymer Journal, 2021, 147, 110297.	2.6	21
867	Judicious design functionalized <scp>3D OF</scp> to enhance <scp>CO₂</scp> adsorption and separation. Journal of Computational Chemistry, 2021, 42, 888-896.	1.5	14
868	Freeâ€Standing Covalent Organic Framework Membrane for Highâ€Efficiency Salinity Gradient Energy Conversion. Angewandte Chemie - International Edition, 2021, 60, 9925-9930.	7.2	94
869	Covalent Organic Frameworks Enabling Site Isolation of Viologenâ€Derived Electronâ€Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 9642-9649.	7.2	161
870	Band Gap Engineering in Solvochromic 2D Covalent Organic Framework Photocatalysts for Visible Light-Driven Enhanced Solar Fuel Production from Carbon Dioxide. ACS Applied Materials & Interfaces, 2021, 13, 14122-14131.	4.0	66
871	Features that make macromolecules 2D polymers. Reactive and Functional Polymers, 2021, 161, 104856.	2.0	10
872	βâ€Amyloid Targeting with Twoâ€Dimensional Covalent Organic Frameworks: Multiâ€5cale Inâ€5ilico Dissection of Nanoâ€Biointerface. ChemBioChem, 2021, 22, 2306-2318.	1.3	21

			_
#	ARTICLE	IF	CITATIONS
873	Covalent organic framework supported Pd(II)â€catalyzed conjugate additions of arylboronic acids to α,βâ€unsaturated carboxylic acids. Applied Organometallic Chemistry, 2021, 35, e6263.	1.7	7
874	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 13969-13977.	7.2	73
875	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	10.2	78
876	Emergent behavior in nanoconfined molecular containers. CheM, 2021, 7, 919-947.	5.8	93
877	Construction of hydrophilic N, O-rich carboxylated triazine-covalent organic frameworks for the application in selective simultaneous electrochemical detection. Applied Surface Science, 2021, 545, 149047.	3.1	25
878	A Covalent Organic Framework Film for Threeâ€State Nearâ€Infrared Electrochromism and a Molecular Logic Gate. Angewandte Chemie, 2021, 133, 12606-12611.	1.6	9
879	A Covalent Organic Framework Film for Three‣tate Nearâ€Infrared Electrochromism and a Molecular Logic Gate. Angewandte Chemie - International Edition, 2021, 60, 12498-12503.	7.2	60
880	Cross-Linked Covalent Organic Framework-Based Membranes with Trimesoyl Chloride for Enhanced Desalination. ACS Applied Materials & Interfaces, 2021, 13, 21379-21389.	4.0	33
881	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	1.7	22
882	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	7.8	76
883	Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231.	13.7	83
884	Open Framework Material Based Thin Films: Electrochemical Catalysis and Stateâ€ofâ€theâ€art Technologies. Advanced Energy Materials, 2022, 12, 2003499.	10.2	25
885	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14088-14096.	1.6	5
886	Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. Energies, 2021, 14, 2267.	1.6	24
887	Edge confined covalent organic framework with efficient biocompatibility and photothermic conversion. Nano Today, 2021, 37, 101101.	6.2	32
888	Aptamer-Regulated Gold Nanosol Plasmonic SERS/RRS Dimode Assay of Trace Organic Pollutants Based on TpPa-Loaded PdNC Catalytic Amplification. ACS Applied Bio Materials, 2021, 4, 4582-4590.	2.3	12
889	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	6.6	198
890	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	6.6	58

#	Article	IF	CITATIONS
891	Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coordination Chemistry Reviews, 2021, 434, 213709.	9.5	141
892	Self-assembly of anthraquinone covalent organic frameworks as 1D superstructures for highly efficient CO2 electroreduction to CH4. Science Bulletin, 2021, 66, 1659-1659.	4.3	43
893	Dual Electroactivity in a Covalent Organic Network with Mechanically Interlocked Pillar[5]arenes. Chemistry - A European Journal, 2021, 27, 9589-9596.	1.7	7
894	Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 26431-26440.	4.0	43
895	An Ultrastable Crystalline Acylhydrazoneâ€Linked Covalent Organic Framework for Efficient Removal of Organic Micropollutants from Water. Chemistry - A European Journal, 2021, 27, 9391-9397.	1.7	13
896	Three Pb _{<i>x</i>} (COO) _{<i>y</i>} Cluster Frameworks Based on a Flexible Triazinetricarboxylic Acid Ligand: Syntheses, Structures, and Fluorescent Sensing Application for Nitrophenols. Inorganic Chemistry, 2021, 60, 7887-7899.	1.9	14
897	Synthesis of Ionic Vinyleneâ€Linked Covalent Organic Frameworks through Quaternizationâ€Activated Knoevenagel Condensation. Angewandte Chemie, 2021, 133, 13726-13732.	1.6	14
898	Rational design of a cationic polymer network towards record high uptake of 99TcO4â^ in nuclear waste. Science China Chemistry, 2021, 64, 1251-1260.	4.2	67
899	Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO ₂ Uptake Capacity. ACS Applied Materials & Interfaces, 2021, 13, 26102-26108.	4.0	19
900	Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target. Chinese Journal of Chemical Engineering, 2021, 33, 118-124.	1.7	0
901	Heterogeneous C–H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation. Journal of the American Chemical Society, 2021, 143, 8426-8436.	6.6	65
902	Quasiparticle electronic structure of two-dimensional heterotriangulene-based covalent organic frameworks adsorbed on Au(111). Journal of Physics Condensed Matter, 2021, 33, 254004.	0.7	3
903	Synthesis of Ionic Vinyleneâ€Linked Covalent Organic Frameworks through Quaternizationâ€Activated Knoevenagel Condensation. Angewandte Chemie - International Edition, 2021, 60, 13614-13620.	7.2	87
904	Recent progress in covalent organic frameworks as light-emitting materials. Materials Today Energy, 2021, 20, 100635.	2.5	77
905	Recent advances in porous nanostructures for cancer theranostics. Nano Today, 2021, 38, 101146.	6.2	24
906	Synthesis and functionalization of 2D nanomaterials for application in lithium-based energy storage systems. Energy Storage Materials, 2021, 38, 200-230.	9.5	29
907	Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Progress in Polymer Science, 2021, 117, 101394.	11.8	23
908	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ^'ï€â€"Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	5.5	75

#	ARTICLE	IF	CITATIONS
909	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	2.2	34
910	Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie, 2021, 133, 17328-17334.	1.6	4
911	An In Situ Film-to-Film Transformation Approach toward Highly Crystalline Covalent Organic Framework Films. CCS Chemistry, 2022, 4, 1519-1525.	4.6	25
912	Hierarchical Assembly of Two-Dimensional Polymers into Colloidosomes and Microcapsules. ACS Macro Letters, 2021, 10, 933-939.	2.3	9
913	Efficient dinitrogen fixation on porous covalent organic framework/carbon nanotubes hybrid at low overpotential. Functional Materials Letters, 2021, 14, 2151027.	0.7	2
914	Modulating the Stacking Model of Covalent Organic Framework Isomers with Different Generation Efficiencies of Reactive Oxygen Species. ACS Applied Materials & Interfaces, 2021, 13, 29471-29481.	4.0	43
915	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	2.5	142
916	Catalyst†and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17191-17197.	7.2	16
917	Chiral Carboxyl-Functionalized Covalent Organic Framework for Enantioselective Adsorption of Amino Acids. ACS Applied Materials & amp; Interfaces, 2021, 13, 31059-31065.	4.0	46
918	Interfacial Interactions between Coâ€Based Cocatalysts and Semiconducting Light Absorbers for Solarâ€Lightâ€Driven Redox Reactions. Solar Rrl, 2021, 5, 2100234.	3.1	2
919	Manifestation of an Enhanced Photoreduction of CO ₂ to CO over the <i>In Situ</i> Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation. ACS Applied Energy Materials, 2021, 4, 6005-6014.	2.5	30
920	Synthesis of the COFs: From Design Principle to Synthetic Reactions. Key Engineering Materials, 0, 894, 21-30.	0.4	1
921	A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti IV Complex for Photocatalytic Reactions. Angewandte Chemie, 2021, 133, 18025-18030.	1.6	8
922	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie - International Edition, 2021, 60, 18051-18058.	7.2	81
923	25 Jahre retikulÃ🄁 Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
924	Protonated Imine‣inked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	7.2	171
925	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5.2	10
926	Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter, 2021, 4, 2230-2265.	5.0	158

#	ARTICLE	IF	CITATIONS
927	functionalized ionic liquid as the nonâ€precious heterogeneous catalytic system toward nitro compounds reduction reaction, a first principle calculation. Journal of Chemical Technology and Biotechnology, 2021, 96, 2802-2812.	1.6	8
928	High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with Nanochannels for Reverse Electrodialysis. ACS Applied Materials & Interfaces, 2021, 13, 33437-33448.	4.0	8
929	Covalent Organic Frameworks as Emerging Platforms for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 9809-9824.	5.5	89
930	A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti ^{IV} Complex for Photocatalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 17881-17886.	7.2	61
931	Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-Assembly. Macromolecules, 2021, 54, 6662-6669.	2.2	38
932	Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021, 20, 1551-1558.	13.3	195
933	<scp>Imineâ€based</scp> covalent organic framework as photocatalyst for <scp>visibleâ€lightâ€induced</scp> atom transfer radical polymerization. Journal of Polymer Science, 2021, 59, 2036-2044.	2.0	6
934	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie, 2021, 133, 18199-18206.	1.6	7
935	Protonated Imine‣inked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19950-19956.	1.6	22
936	Moderately Crystalline Azine-Linked Covalent Organic Framework Membrane for Ultrafast Molecular Sieving. ACS Applied Materials & Interfaces, 2021, 13, 37775-37784.	4.0	36
937	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
938	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	8.8	31
939	Covalent Organic Frameworks and Supramolecular Nano-Synthesis. ACS Nano, 2021, 15, 12723-12740.	7.3	81
940	Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Applied Materials & Interfaces, 2021, 13, 39291-39303.	4.0	55
941	Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. Chemical Engineering Journal, 2021, 417, 129133.	6.6	50
942	Progress and Perspectives on Covalentâ€Organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry - A European Journal, 2021, 27, 13669-13698.	1.7	16
943	Covalent Organic Framework-Based Spherical Nucleic Acid Probe with a Bonding Defect-Amplified Modification Strategy. Analytical Chemistry, 2021, 93, 12096-12102.	3.2	22
944	Synthesis of microporous hydrogen-bonded supramolecular organic frameworks through guanosine self-assembly. Cell Reports Physical Science, 2021, 2, 100519.	2.8	3

#	Article	IF	CITATIONS
945	Mechanochemical Construction 2D/2D Covalent Organic Nanosheets Heterojunctions Based on Substoichiometric Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 42035-42043.	4.0	28
946	Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Structures, 2021, 2, 2100061.	6.9	48
947	Recent Progress in Nanoscale Covalent Organic Frameworks for Cancer Diagnosis and Therapy. Nano-Micro Letters, 2021, 13, 176.	14.4	42
948	Hotpots and trends of covalent organic frameworks (COFs) in the environmental and energy field: Bibliometric analysis. Science of the Total Environment, 2021, 783, 146838.	3.9	42
949	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	9.5	91
950	Self-assembly of single metal sites embedded covalent organic frameworks into multi-dimensional nanostructures for efficient CO2 electroreduction. Chinese Chemical Letters, 2022, 33, 1439-1444.	4.8	31
951	Porous nanomaterials: Main vein of agricultural nanotechnology. Progress in Materials Science, 2021, 121, 100812.	16.0	52
952	Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology, 2021, 268, 118657.	3.9	41
953	2D Covalent Organic Frameworks with an Incorporated Manganese Complex for Light Driven Carbon Dioxide Reduction. ChemPhotoChem, 2021, 5, 1119-1123.	1.5	10
954	Design of a new drug delivery platform based on surface functionalization 2D covalent organic frameworks. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 15-22.	2.7	19
955	Exploring the corrosion resistance of epoxy coated steel by integrating mechanochemical synthesized 2D covalent organic framework. Progress in Organic Coatings, 2021, 157, 106299.	1.9	8
956	Prediction on the highâ€energy density covalent organic frameworks with diamond network. International Journal of Quantum Chemistry, 2021, 121, e26790.	1.0	0
957	A Highly Conductive All arbon Linked 3D Covalent Organic Framework Film. Small, 2021, 17, e2103152.	5.2	23
958	Inâ€5itu Encapsulation of Protein into Nanoscale Hydrogenâ€8onded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie, 2021, 133, 22489-22495.	1.6	13
959	Recommendation System to Predict Missing Adsorption Properties of Nanoporous Materials. Chemistry of Materials, 2021, 33, 7203-7216.	3.2	11
960	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
961	Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11, 2102300.	10.2	106
962	The tripartite role of 2D covalent organic frameworks in graphene-based organic solvent nanofiltration membranes. Matter, 2021, 4, 2953-2969.	5.0	24

#	Article	IF	CITATIONS
963	Flexible, Mechanically Stable, Porous Selfâ€6tanding Microfiber Network Membranes of Covalent Organic Frameworks: Preparation Method and Characterization. Advanced Functional Materials, 2021, 31, 2106507.	7.8	34
964	Pd-loaded "Two-in-one―Covalent Organic Framework Composite Material: Synthesis, Characterization and Detection of Bisphenol A. Chemistry Letters, 2021, 50, 1703-1706.	0.7	1
965	Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts, 2021, 11, 1133.	1.6	16
966	Upconverting Er ³⁺ –Yb ³⁺ Inorganic/Covalent Organic Framework Core–Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. ACS Applied Materials & Interfaces, 2021, 13, 47010-47018.	4.0	14
967	Inâ€Situ Encapsulation of Protein into Nanoscale Hydrogenâ€Bonded Organic Frameworks for Intracellular Biocatalysis. Angewandte Chemie - International Edition, 2021, 60, 22315-22321.	7.2	70
968	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	8.3	24
969	Covalent Organic Frameworks: New Materials Platform for Photocatalytic Degradation of Aqueous Pollutants. Materials, 2021, 14, 5600.	1.3	23
970	Recent progress and strategies for precise framework structure-enabled drug delivery systems. Materials Today Sustainability, 2021, 13, 100065.	1.9	5
971	Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 2989-3026.	5.8	19
972	Interlayer Interactions as Design Tool for Large-Pore COFs. Journal of the American Chemical Society, 2021, 143, 15711-15722.	6.6	60
973	From Molecules to Frameworks to Superframework Crystals. Advanced Materials, 2021, 33, e2103808.	11.1	26
974	Synthesis of Two-Dimensional C–C Bonded Truxene-Based Covalent Organic Frameworks by Irreversible BrÃ,nsted Acid-Catalyzed Aldol Cyclotrimerization. Research, 2021, 2021, 9790705.	2.8	4
975	Electrochemical Immunosensor for Cardiac Troponin I Detection Based on Covalent Organic Framework and Enzyme-Catalyzed Signal Amplification. Analytical Chemistry, 2021, 93, 13572-13579.	3.2	68
976	Conjugation-regulating synthesis of high photosensitizing activity porphyrin-based covalent organic frameworks for photodynamic inactivation of bacteria. Talanta, 2021, 233, 122536.	2.9	14
977	Fabricating novel high-performance thin-film composite forward osmosis membrane with designed sulfonated covalent organic frameworks as interlayer. Journal of Membrane Science, 2021, 635, 119476.	4.1	30
978	Ordered lithium ion channels of covalent organic frameworks with lithiophilic groups enable uniform and efficient Li plating/stripping. Journal of Energy Chemistry, 2021, 61, 135-140.	7.1	13
979	Covalent organic frameworks: Design, synthesis, and performance for photocatalytic applications. Nano Today, 2021, 40, 101247.	6.2	57
980	Fabricating compact covalent organic framework membranes with superior performance in dye separation. Journal of Membrane Science, 2021, 637, 119667.	4.1	26

#	Article	IF	CITATIONS
981	Reticular materials as chiral stationary phases in chromatography. Journal of Chromatography Open, 2021, 1, 100002.	0.8	4
982	The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coordination Chemistry Reviews, 2021, 446, 214117.	9.5	79
983	Adsorptive remediation of environmental pollutants using magnetic hybrid materials as platform adsorbents. Chemosphere, 2021, 284, 131279.	4.2	48
984	Rational design of edges of covalent organic networks for catalyzing hydrogen peroxide production. Applied Catalysis B: Environmental, 2021, 298, 120605.	10.8	29
985	Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework. Biosensors and Bioelectronics, 2021, 194, 113582.	5.3	24
986	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	4.1	18
987	Substituent engineering of covalent organic frameworks modulates the crystallinity and electrochemical reactivity. Journal of Energy Chemistry, 2022, 65, 490-496.	7.1	15
988	Facile preparation of ultrafine Pd nanoparticles anchored on covalent triazine frameworks catalysts for efficient N-alkylation. Journal of Colloid and Interface Science, 2022, 606, 1340-1351.	5.0	7
989	Conquering the crystallinity conundrum: efforts to increase quality of covalent organic frameworks. Materials Advances, 2021, 2, 2811-2845.	2.6	29
990	Four anionic Ln-MOFs for remarkable separation of C2H2–CH4/CO2–CH4 and highly sensitive sensing of nitrobenzene. CrystEngComm, 2021, 23, 2788-2792.	1.3	11
991	Covalent organic framework-based membranes for liquid separation. Organic Chemistry Frontiers, 2021, 8, 3943-3967.	2.3	32
992	Covalent organic frameworks for optical applications. Aggregate, 2021, 2, e24.	5.2	41
993	Control of guest binding behavior of metal-containing host molecules by ligand exchange. Dalton Transactions, 2021, 50, 4429-4444.	1.6	6
994	Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. New Journal of Chemistry, 2021, 45, 7014-7046.	1.4	16
995	lonic additive strategy to control nucleation and generate larger single crystals of 3D covalent organic frameworks. Chemical Communications, 2021, 57, 6656-6659.	2.2	9
996	A new strategy for constructing covalently connected MOF@COF core–shell heterostructures for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 16743-16750.	5.2	75
997	Fabrication of 2D/2D COF/SnNb2O6 nanosheets and their enhanced solar hydrogen production. Inorganic Chemistry Frontiers, 2021, 8, 1686-1694.	3.0	8
998	A 2D porphyrin-based covalent organic framework with TEMPO for cooperative photocatalysis in selective aerobic oxidation of sulfides. Materials Chemistry Frontiers, 2021, 5, 2255-2260.	3.2	45

#	Article	IF	CITATIONS
999	Stabilization of the hindered urea bond through de- <i>tert</i> -butylation. Chemical Communications, 2021, 57, 3812-3815.	2.2	6
1000	Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. Journal of Materials Chemistry B, 2021, 9, 6377-6386.	2.9	11
1001	<i>></i> -Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles. Green Chemistry, 2021, 23, 1292-1299.	4.6	33
1002	Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale, 2021, 13, 1443-1484.	2.8	28
1003	Stable hydrazone-linked chiral covalent organic frameworks: Synthesis, modiffation, and chiral signal inversion from monomers. Chinese Chemical Letters, 2021, 32, 107-112.	4.8	15
1004	Dynamic porous organic polymers with tuneable crosslinking degree and porosity. RSC Advances, 2021, 11, 27714-27719.	1.7	12
1005	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	2.2	23
1006	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	5.2	37
1007	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
1008	Macroscopic covalent organic framework architectures for water remediation. Environmental Science: Water Research and Technology, 2021, 7, 1895-1927.	1.2	18
1009	MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nature Communications, 2021, 12, 38.	5.8	212
1010	Mehr als nur ein Netzwerk: Strukturierung retikulär Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
1011	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14356-14370.	1.6	22
1012	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
1013	Mesoporous covalent organic polymer nanospheres for the preconcentration of polycyclic aromatic hydrocarbons and their derivatives. Journal of Chromatography A, 2020, 1624, 461217.	1.8	22
1014	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	10.1	129
1015	Metal-free electrocatalysts for nitrogen reduction reaction. EnergyChem, 2020, 2, 100040.	10.1	34
1016	Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews, 2020, 120–2347-2407	23.0	147

#	Article	IF	CITATIONS
1017	Pore Size Control <i>via</i> Multiple-Site Alkylation to Homogenize Sub-Nanoporous Covalent Organic Frameworks for Efficient Sieving of Xenon/Krypton. ACS Applied Materials & Interfaces, 2021, 13, 1127-1134.	4.0	22
1018	A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chemical Communications, 2020, 56, 66-69.	2.2	76
1019	Accelerated lithium-ion conduction in covalent organic frameworks. Chemical Communications, 2020, 56, 10465-10468.	2.2	40
1020	Tuning the pore structures and photocatalytic properties of a 2D covalent organic framework with multi-branched photoactive moieties. Nanoscale, 2020, 12, 16136-16142.	2.8	25
1021	Self-supporting covalent organic framework membranes synthesized through two different processes: solvothermal annealing and solvent vapor annealing. Nanotechnology, 2021, 32, 075604.	1.3	3
1022	Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable Lithium–Sulfur Batteries. CCS Chemistry, 0, , 128-137.	4.6	131
1023	The Influence of Disorder in the Synthesis, Characterization and Applications of a Modifiable Two-Dimensional Covalent Organic Framework. Materials, 2021, 14, 71.	1.3	6
1024	Covalent Organic Frameworks: A Promising Materials Platform for Photocatalytic CO2 Reductions. Molecules, 2020, 25, 2425.	1.7	37
1025	Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019, 2019, 4608940.	2.8	29
1026	Bayesian optimization of nanoporous materials. Molecular Systems Design and Engineering, 2021, 6, 1066-1086.	1.7	47
1027	A metal-free covalent organic framework as a photocatalyst for CO ₂ reduction at low CO ₂ concentration in a gas–solid system. Journal of Materials Chemistry A, 2021, 9, 24895-24902.	5.2	33
1028	Recent progress on the smart membranes based on two-dimensional materials. Chinese Chemical Letters, 2022, 33, 2832-2844.	4.8	16
1029	Building a Porous Molecular Machine That Replicates Natural Enzymes. ACS Central Science, 2021, 7, 1605-1607.	5.3	1
1030	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	6.6	42
1031	Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1032	Stacked Reticular Frame Boosted Circularly Polarized Luminescence of Chiral Covalent Organic Frameworks. Angewandte Chemie, 0, , .	1.6	10
1033	Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Proton onducting Electrolyte. Macromolecular Rapid Communications, 2022, 43, e2100590.	2.0	17
1034	Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chemical Engineering Journal, 2022, 430, 133001.	6.6	54

#	Article	IF	CITATIONS
1035	Nanoscale Covalent Organic Frameworks with Donor–Acceptor Structures as Highly Efficient Light-Responsive Oxidase-like Mimics for Colorimetric Detection of Glutathione. ACS Applied Materials & Interfaces, 2021, 13, 49482-49489.	4.0	57
1036	Reticular frameworks and their derived materials for CO2 conversion by thermoâ^'catalysis. EnergyChem, 2021, 3, 100064.	10.1	52
1037	Benzobisthiazole-bridged white fluorescent emitting covalent organic framework for simultaneous mercury detection and removal. Reactive and Functional Polymers, 2021, 169, 105083.	2.0	9
1038	Electronically Conjugated Multifunctional Covalent Triazine Framework for Unprecedented CO ₂ Selectivity and Highâ€Power Flexible Supercapacitor. Advanced Functional Materials, 2022, 32, 2107442.	7.8	24
1039	Organic cage inclusion crystals exhibiting guest-enhanced multiphoton harvesting. CheM, 2021, 7, 3157-3170.	5.8	6
1040	Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2021, 11, 13266-13279.	5.5	149
1041	High-Crystallinity Covalent Organic Framework Synthesized in Deep Eutectic Solvent: Potentially Effective Adsorbents Alternative to Macroporous Resin for Flavonoids. Chemistry of Materials, 2021, 33, 8036-8051.	3.2	30
1042	Recent advances of dynamic molecular crystals with light-triggered macro-movements. Applied Physics Reviews, 2021, 8, .	5.5	33
1043	Introduction to Nanocatalysts. RSC Catalysis Series, 2019, , 1-36.	0.1	5
1045	Machine Learning-Guided Equations for Super-Fast Prediction of Methane Storage Capacities of COFs. SSRN Electronic Journal, 0, , .	0.4	0
1046	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
1047	Fabrication of nitrogen-doped porous carbon nanofibers for heavy metal ions removal. Carbon Letters, 2021, 31, 1339-1347.	3.3	17
1048	Covalent Organic Frameworks as Tunable Supports for HER, OER, and ORR Catalysts: A New Addition to Heterogeneous Electrocatalysts. Nanostructure Science and Technology, 2022, , 389-444.	0.1	0
1049	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	1.6	30
1050	Highly Thermostable Dynamic Structures of Polyaramid Two-Dimensional Polymers. Macromolecules, 2021, 54, 1291-1303.	2.2	3
1051	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	9.5	63
1052	Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction. Journal of Colloid and Interface Science, 2022, 608, 809-819.	5.0	32
1053	Light-emitting materials generated at the liquid–liquid interface. , 2020, , 131-159.		0

#	Article	IF	CITATIONS
1054	Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chemical Communications, 2021, 57, 12417-12435.	2.2	18
1055	Porous covalent organic frameworks-improved solid phase microextraction ambient mass spectrometry for ultrasensitive analysis of tetrabromobisphenol-A analogs. Chinese Chemical Letters, 2022, 33, 3849-3852.	4.8	14
1056	A novel multiemissive Ln/covalent-organic frameworks for ratiometric detection of 2,6-dipicolinic acid. Journal of Industrial and Engineering Chemistry, 2022, 106, 160-167.	2.9	8
1057	Review of Hybrid 1D/2D Photocatalysts for Light-Harvesting Applications. ACS Applied Nano Materials, 2021, 4, 11323-11352.	2.4	36
1058	Tunable molecular transport and sieving enabled by covalent organic framework with programmable surface charge. Materials Today, 2021, 51, 56-64.	8.3	19
1059	Chemically Stable Carbazole-Based Imine Covalent Organic Frameworks with Acidochromic Response for Humidity Control Applications. Journal of the American Chemical Society, 2021, 143, 18368-18373.	6.6	40
1060	A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels. , 2021, 1, 100014.		19
1061	The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2021, 58, 92-95.	2.2	19
1062	Spiro-based diamond-type nanogrids (DGs) <i>via</i> two ways: â€~A ₁ B ₁ 8€™/â€~A ₂ + B ₂ ' type gridization of vertical spir fluorenol synthons. Organic and Biomolecular Chemistry, 2021, 19, 10408-10416.	·o-b a sed	5
1063	Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment. , 2022, , 127-159.		0
1064	Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022, 23, 100632.	1.7	24
1065	Polyamide-Supported Covalent Organic Framework Nanomembranes for Molecular Size-Dependent Selective Separation. ACS Applied Nano Materials, 2021, 4, 13967-13975.	2.4	12
1066	30 Li ⁺ â€Accommodating Covalent Organic Frameworks as Ultralong Cyclable High apacity Liâ€lon Battery Electrodes. Advanced Functional Materials, 2022, 32, 2108798.	7.8	59
1067	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Post‣ynthetic Click Chemistry. Angewandte Chemie, 2022, 134, .	1.6	11
1068	Proton-Conducting Hydrogen-Bonded Organic Frameworks. ACS Energy Letters, 2021, 6, 4431-4453.	8.8	92
1069	Heteroatomâ€Embedded Approach to Vinyleneâ€Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angewandte Chemie, 2022, 134, e202111627.	1.6	10
1070	One-dimensional covalent organic framework—Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	1.5	9
1071	Zwitterionic Covalent Organic Frameworks: Attractive Porous Host for Gas Separation and Anhydrous Proton Conduction. ACS Nano, 2021, 15, 19743-19755.	7.3	78

#	Article	IF	CITATIONS
1072	Three-Dimensional Covalent Organic Frameworks with hea Topology. Chemistry of Materials, 2021, 33, 9618-9623.	3.2	45
1073	Novel solidâ€phase microextraction fiber coatings: A review. Journal of Separation Science, 2022, 45, 282-304.	1.3	40
1074	Facile and Site-Selective Synthesis of an Amine-Functionalized Covalent Organic Framework. ACS Macro Letters, 2021, 10, 1590-1596.	2.3	32
1075	Covalent Organic Framework Membrane with Turing Structures for Deacidification of Highly Acidic Solutions. Advanced Functional Materials, 2022, 32, 2108178.	7.8	14
1076	Heteroatomâ€Embedded Approach to Vinyleneâ€Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
1077	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Postâ€6ynthetic Click Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
1078	Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. Journal of Hazardous Materials, 2022, 425, 127987.	6.5	32
1079	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	23.0	128
1080	Removal of organic phosphonate HEDP by Eu-MOF/GO composite membrane. Journal of Environmental Chemical Engineering, 2021, 9, 106895.	3.3	14
1081	Synthesizing Highly Crystalline Self-Standing Covalent Organic Framework Films through a Homogeneous–Floating–Concentrating Strategy for Molecular Separation. Chemistry of Materials, 2021, 33, 9413-9424.	3.2	19
1082	Facile fabrication of covalent organic framework composite membranes via interfacial polymerization for enhanced separation and anti-fouling performance. Journal of Environmental Chemical Engineering, 2021, 9, 106807.	3.3	10
1083	Multidimensional Tungsten Oxides for Efficient Solar Energy Conversion. Small Structures, 2022, 3, 2100130.	6.9	21
1084	Topology modulation of 2D covalent organic frameworks <i>via</i> a "two-in-one―strategy. Nanoscale, 2021, 13, 19385-19390.	2.8	19
1085	Synthesis of metalloporphyrin-based porous organic polymers and their functionalization for conversion of CO ₂ into cyclic carbonates: recent advances, opportunities and challenges. Journal of Materials Chemistry A, 2021, 9, 25731-25749.	5.2	38
1086	Graphene Hybrids Intercalated with 2D Redox-Active Covalent Organic Framework as High-Performance Capacitive Materials. SSRN Electronic Journal, 0, , .	0.4	0
1087	N-Heterocyclic carbenes and their precursors in functionalised porous materials. Chemical Society Reviews, 2021, 50, 13559-13586.	18.7	42
1088	Emerging Covalent Organic Framework and Linear Polymer (COF–LP) Composites: Synthetic Approaches and Applications. RSC Smart Materials, 2021, , 344-374.	0.1	1
1089	Crystalline Inorganic Materials From Supertetrahedral Chalcogenide Clusters. , 2021, , .		1

# 1090	ARTICLE Covalent Organic Frameworks. RSC Smart Materials, 2021, , 226-343.	IF 0.1	CITATIONS 0
1092	Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coordination Chemistry Reviews, 2022, 456, 214375.	9.5	17
1093	Covalent organic frameworks: Design and applications in electrochemical energy storage devices. InformaÄnÃ-Materiály, 2022, 4, .	8.5	31
1094	Chemistry of magnetic covalent organic frameworks (MagCOFs): from synthesis to separation applications. Materials Advances, 2022, 3, 1432-1458.	2.6	9
1095	Are Highly Stable Covalent Organic Frameworks the Key to Universal Chiral Stationary Phases for Liquid and Gas Chromatographic Separations?. Journal of the American Chemical Society, 2022, 144, 891-900.	6.6	72
1096	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
1097	Charge Separation by Imidazole and Sulfonic Acid-Functionalized Covalent Organic Frameworks for Enhanced Proton Conductivity. ACS Applied Energy Materials, 2022, 5, 1298-1304.	2.5	15
1098	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	4.1	10
1099	Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. Journal of Colloid and Interface Science, 2022, 610, 446-454.	5.0	19
1100	Highly crystalline covalent organic frameworks for ratiometric fluorescent sensing of trace water in honey and N2 gas. Sensors and Actuators B: Chemical, 2022, 355, 131323.	4.0	15
1101	First-principles calculations of molecular adsorption on the surface of two-dimensional BCOH. Chemical Physics, 2022, 555, 111442.	0.9	1
1102	Preparation of functional material layers of TT-COFs with built-in formyl groups for efficient dyes removal. Journal of Colloid and Interface Science, 2022, 612, 608-616.	5.0	9
1103	Selective and efficient removal of radioactive ions from water with well-dispersed metal oxide nanoparticles@N-doped carbon. Separation and Purification Technology, 2022, 285, 120366.	3.9	8
1104	Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere, 2022, 293, 133464.	4.2	146
1105	Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us?. Chemical Research in Chinese Universities, 2022, 38, 296-309.	1.3	4
1106	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie, 0, , .	1.6	13
1107	An ultra-dynamic anion-cluster-based organic framework. CheM, 2022, 8, 253-267.	5.8	17
1108	Atomic Co–N ₄ and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. Journal of Materials Chemistry A, 2021, 10, 228-233.	5.2	61

#	Article	IF	CITATIONS
1109	Stable Thiophene-sulfur Covalent Organic Frameworks for Oxygen Reduction Reaction(ORR). Chemical Research in Chinese Universities, 2022, 38, 396-401.	1.3	14
1110	Fully π-conjugated, diyne-linked covalent organic frameworks formed <i>via</i> alkyne–alkyne cross-coupling reaction. Materials Chemistry Frontiers, 2022, 6, 466-472.	3.2	4
1111	Construction of Azobenzene Covalent Organic Frameworks as High-Performance Heterogeneous Photocatalyst. Catalysis Letters, 2022, 152, 3233-3242.	1.4	6
1112	Solvent Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie, 0, , .	1.6	0
1113	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	11.1	96
1114	Recent Advances of Covalent Organic Frameworks for Chiral Separation. Chemical Research in Chinese Universities, 2022, 38, 350-355.	1.3	2
1115	Polyoxometalate–covalent organic framework hybrid materials for pH-responsive photothermal tumor therapy. Journal of Materials Chemistry B, 2022, 10, 1128-1135.	2.9	18
1116	Covalent Organic Framework with Highly Accessible Carbonyls and π ation Effect for Advanced Potassiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	112
1117	Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 1218-1231.	6.6	63
1118	AIE-active macromolecules: designs, performances, and applications. Polymer Chemistry, 2021, 13, 8-43.	1.9	20
1119	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
1120	Efficient ethylene/ethane separation through ionic liquid-confined covalent organic framework membranes. Journal of Materials Chemistry A, 2022, 10, 5420-5429.	5.2	29
1121	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	29
1122	Covalent Organic Framework with Highly Accessible Carbonyls and Ï€â€Cation Effect for Advanced Potassiumâ€lon Batteries. Angewandte Chemie, 2022, 134, e202117661.	1.6	11
1123	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	5.8	107
1124	<tt>PoreMatMod.jl</tt> : Julia Package for <i>in Silico</i> Postsynthetic Modification of Crystal Structure Models. Journal of Chemical Information and Modeling, 2022, 62, 423-432.	2.5	3
1125	Impact of Nickel Content on the Structure and Electrochemical CO ₂ Reduction Performance of Nickel–Nitrogen–Carbon Catalysts Derived from Zeolitic Imidazolate Frameworks. ACS Applied Energy Materials, 2022, 5, 430-439.	2.5	11
1126	A robust redox-active hydrogen-bonded organic framework for rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 1808-1814.	5.2	25

#	Article	IF	CITATIONS
1127	Threeâ€Ðimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie, 2022, 134, .	1.6	2
1128	Threeâ€Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1129	Expanding dynamic framework materials into COFs through HOF approach. CheM, 2022, 8, 7-9.	5.8	2
1130	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
1131	Solventâ€Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1132	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
1133	1,2-Disubstituted 1,2-Dihydro-1,2,4,5-tetrazine-3,6-dione as a Dynamic Covalent Bonding Unit at Room Temperature. Journal of the American Chemical Society, 2022, 144, 1370-1379.	6.6	10
1134	Entanglement of Square Nets in Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1539-1544.	6.6	26
1135	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
1136	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² arbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
1137	Micro-/Mesoporous Fluorescent Polymers and Devices for Visual Pesticide Detection with Portability, High Sensitivity, and Ultrafast Response. ACS Applied Materials & Interfaces, 2022, 14, 5815-5824.	4.0	22
1138	Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 1398-1405.	2.1	16
1139	Electrically conductive 2D covalent organic frameworks. Trends in Chemistry, 2022, 4, 128-141.	4.4	25
1140	Microenvironment engineering of covalent organic frameworks for the efficient removal of sulfamerazine from aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 107300.	3.3	9
1141	Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chinese Journal of Catalysis, 2022, 43, 350-358.	6.9	66
1142	Free-Standing Nanometer-Thick Covalent Organic Framework Films for Separating CO ₂ and N ₂ . ACS Applied Nano Materials, 2022, 5, 2367-2374.	2.4	6
1143	Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature, 2022, 602, 91-95.	13.7	42
1144	2D Covalent Organic Framework Direct Osteogenic Differentiation of Stem Cells. Advanced Healthcare Materials, 2022, 11, e2101737.	3.9	8

#	Article	IF	CITATIONS
1145	Mechanistic insights into the luminescent sensing of nitrophenol compounds by a cationic Zn-based metal-organic framework. Dyes and Pigments, 2022, 199, 110099.	2.0	15
1146	A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas. Chemical Engineering Science, 2022, 250, 117399.	1.9	23
1147	A new strategy for the fabrication of covalent organic framework-metal-organic framework hybrids via in-situ functionalization of ligands for improved hydrogen evolution reaction activity. Chinese Journal of Catalysis, 2022, 43, 811-819.	6.9	13
1148	Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials. Carbon, 2022, 190, 412-421.	5.4	24
1149	A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Applied Catalysis B: Environmental, 2022, 307, 121147.	10.8	42
1150	Synthesis of Covalent Boroxine Frameworks by Polycondensation of Tetrahydroxydiboron. Heterocycles, 2022, 104, 979.	0.4	1
1151	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	6.6	106
1152	Interface synthesis of flexible benzimidazole-linked polymer molecular-sieving membranes with superior antimicrobial activity. Journal of Membrane Science, 2022, 648, 120344.	4.1	5
1153	Construction of Anthraquinone-Containing Covalent Organic Frameworks/Graphene Hybrid Films for a Flexible High-Performance Microsupercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7480-7488.	1.8	17
1154	Structural design and determination of 3D covalent organic frameworks. Trends in Chemistry, 2022, 4, 437-450.	4.4	51
1155	Highly Negative Poisson's Ratio in Thermally Conductive Covalent Organic Frameworks. ACS Nano, 2022, 16, 2843-2851.	7.3	17
1156	Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Chemical Research in Chinese Universities, 2022, 38, 461-467.	1.3	2
1157	Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H ₂ Production. ACS Omega, 2022, 7, 6104-6112.	1.6	8
1158	Highly Crystalline, Free-Standing Covalent Organic Framework Films Produced Directly from Monomer Solutions. ACS Applied Polymer Materials, 2022, 4, 2017-2021.	2.0	6
1159	Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric or Asymmetric "Twoâ€inâ€One―Type Monomers. Advanced Science, 2022, 9, e2105517.	5.6	12
1160	Dual Rate-Modulation Approach for the Preparation of Crystalline Covalent Triazine Frameworks Displaying Efficient Sodium Storage. ACS Macro Letters, 2022, 11, 60-65.	2.3	12
1161	Polyaryletherâ€Based 2D Covalentâ€Organic Frameworks with Inâ€Plane D–A Structures and Tunable Energy Levels for Energy Storage. Advanced Science, 2022, 9, e2104898.	5.6	31
1162	Ï€-Conjugated redox-active two-dimensional polymers as organic cathode materials. Chemical Science, 2022, 13, 3533-3538.	3.7	9

#	Article	IF	CITATIONS
1163	Revealing the structure–activity relationship in woven covalent organic frameworks for the electrocatalytic oxygen reduction reaction. Nanoscale, 2022, 14, 6126-6132.	2.8	10
1164	Functional crystalline porous materials. , 2023, , 336-354.		1
1167	Low-temperature and gram-scale synthesis of chemically stable covalent organic frameworks in an aqueous medium. New Journal of Chemistry, 2022, 46, 4558-4561.	1.4	8
1168	Practical considerations in the design and use of porous liquids. Materials Horizons, 2022, 9, 1577-1601.	6.4	23
1169	The mechanochemical synthesis of polymers. Chemical Society Reviews, 2022, 51, 2873-2905.	18.7	108
1170	Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 7497-7516.	5.2	28
1171	Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chemical Society Reviews, 2022, 51, 2917-2938.	18.7	65
1172	A Highly Photosensitive Covalent Organic Framework with Pyrene Skeleton as Metal-Free Catalyst for Arylboronic Acid Hydroxylation. SSRN Electronic Journal, 0, , .	0.4	0
1173	High-density sulfonic acid-grafted covalent organic frameworks with efficient anhydrous proton conduction. Journal of Materials Chemistry A, 2022, 10, 6499-6507.	5.2	27
1175	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	4.8	27
1176	Recent Advances of Covalent Organic Frameworks in Chemical Sensing. Chemical Research in Chinese Universities, 2022, 38, 339-349.	1.3	19
1177	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	6.6	54
1178	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	11.1	91
1179	Data-Driven Matching of Experimental Crystal Structures and Gas Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical & Engineering Data, 2022, 67, 1743-1756.	1.0	6
1180	Structure–performance correlation guided applications of covalent organic frameworks. Materials Today, 2022, 53, 106-133.	8.3	76
1181	Flexible Metal–Organic Frameworks as CO ₂ Adsorbents en Route to Energyâ€Efficient Carbon Capture. Small Structures, 2022, 3, .	6.9	15
1182	Aggregated Structures of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 3192-3199.	6.6	31
1183	Synthesis of Vinylene-Linked Covalent Organic Frameworks by Monomer Self-Catalyzed Activation of Knoevenagel Condensation. Journal of the American Chemical Society, 2022, 144, 3653-3659.	6.6	81

~		<u> </u>	
		NEDO	DT
<u> </u>	IIAI	IL PU	Y K T

#	Article	IF	CITATIONS
1184	Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. EScience, 2022, 2, 311-318.	25.0	41
1185	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	7
1186	Immobilization of palladium on benzimidazole functionalized mesoporous silica nanoparticles: catalytic efficacy in Suzuki–Miyaura reaction and nitroarenes reduction. Journal of Porous Materials, 0, , 1.	1.3	4
1187	Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. Journal of the American Chemical Society, 2022, 144, 5643-5652.	6.6	131
1188	Low-cost and stable SFX-based semiconductor materials in organic optoelectronics. , 2023, 2, 100-109.		2
1189	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	54
1190	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
1191	Acrylonitrileâ€Linked Covalent Organic Frameworks Enable Fast Stimulusâ€Responsive Fluorescence with High Quantum Yield via Fluorine Chemistry. Advanced Photonics Research, 0, , 2200008.	1.7	2
1192	Metal-Free Chemoselective Reduction of Nitroarenes Catalyzed by Covalent Triazine Frameworks: The Role of Embedded Heteroatoms. ACS Applied Materials & Interfaces, 2022, 14, 15287-15297.	4.0	6
1193	Boosting Reactive Oxygen Species Generation by Regulating Excitonic Effects in Porphyrinic Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 2814-2823.	2.1	9
1194	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie - International Edition, 2022, 61, e202115044.	7.2	24
1195	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
1196	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	6.6	85
1197	Electrochemical Thinâ€Film Transistors using Covalent Organic Framework Channel. Advanced Functional Materials, 2022, 32, .	7.8	16
1198	One-Dimensional Helical Aggregates Organized from Achiral Imine-Based Polymers. , 2022, 4, 715-723.		6
1199	Grand Canonical Monte Carlo simulations of the hydrogen storage capacities of slit-shaped pores, nanotubes and torusenes. International Journal of Hydrogen Energy, 2022, 47, 11916-11928.	3.8	7
1200	Topology-guided roadmap for reticular chemistry of metal-organic polyhedra. CheM, 2022, 8, 617-631.	5.8	10
1201	Theoretical design of two-dimensional visible light-driven photocatalysts for overall water splitting. Chemical Physics Reviews, 2022, 3,	2.6	7

#	Article	IF	CITATIONS
1202	Rational design of imineâ€linked threeâ€dimensional mesoporous covalent organic frameworks with bor topology. SusMat, 2022, 2, 197-205.	7.8	12
1203	COFâ€5/CoAlâ€LDH Nanocomposite Heterojunction for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	10
1204	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Crossâ€Coupling. Angewandte Chemie, 2022, 134, .	1.6	6
1205	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie, 2022, 134, .	1.6	5
1206	Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angewandte Chemie, 0, , .	1.6	4
1207	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Crossâ€Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
1209	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2022, 134, .	1.6	9
1210	Isoreticular Series of Two-Dimensional Covalent Organic Frameworks with the kgd Topology and Controllable Micropores. Journal of the American Chemical Society, 2022, 144, 6475-6482.	6.6	41
1211	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie, 2022, 134, .	1.6	2
1212	The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nature Communications, 2022, 13, 1770.	5.8	45
1213	Thermodynamic-Dominated Stereoselective Gridization of Molecular Nanolinkage Based on Fluorenes. Synlett, 2022, 33, 988-992.	1.0	2
1214	Reconstructed covalent organic frameworks. Nature, 2022, 604, 72-79.	13.7	190
1215	Amorphous-to-Crystalline Transformation: General Synthesis of Hollow Structured Covalent Organic Frameworks with High Crystallinity. Journal of the American Chemical Society, 2022, 144, 6583-6593.	6.6	77
1216	Vanishing Electronic Band Gap in Two-Dimensional Hydrogen-Bonded Organic Frameworks. Chemistry of Materials, 2022, 34, 3461-3467.	3.2	6
1217	Synthesis of Metal-Free Chiral Covalent Organic Framework for Visible-Light-Mediated Enantioselective Photooxidation in Water. Journal of the American Chemical Society, 2022, 144, 6681-6686.	6.6	46
1218	Syntheses of Covalent Organic Frameworks via a Oneâ€Pot Suzuki Coupling and Schiff's Base Reaction for C ₂ H ₄ /C ₃ H ₆ Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1219	Ultra-Fast Synthesis of Single-Crystalline Three-Dimensional Covalent Organic Frameworks and Their Applications in Polarized Optics. Chemistry of Materials, 2022, 34, 2886-2895.	3.2	12
1220	Covalent organic framework with Cu-containing compounds for enhancing flame retardancy and smoke suppression effects on epoxy resin. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106900.	3.8	8

#	Article	IF	CITATIONS
1221	A highly photosensitive covalent organic framework with pyrene skeleton as metal-free catalyst for arylboronic acid hydroxylation. Journal of Solid State Chemistry, 2022, 310, 123047.	1.4	5
1222	Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review. , 2022, 2, 100012.		12
1223	Covalent-organic polymer-derived carbons: An effective adsorbent to remove sulfonamide antibiotics from water. Chemical Engineering Journal, 2022, 437, 135386.	6.6	21
1224	2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination. Desalination, 2022, 532, 115753.	4.0	26
1225	A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Materials, 2022, 48, 439-446.	9.5	42
1226	Stimuli-Responsive Porous Molecular Crystal with Reversible Modulation of Porosity. ACS Applied Materials & Interfaces, 2022, 14, 1519-1525.	4.0	9
1227	Quasi-Phthalocyanine Conjugated Covalent Organic Frameworks with Nitrogen-Coordinated Transition Metal Centers for High-Efficiency Electrocatalytic Ammonia Synthesis. Nano Letters, 2022, 22, 372-379.	4.5	43
1228	Size and Shape Manipulation of Channel Structures Assembled <i>Via</i> Saddle stacking of Tetrapodal Adamantanes Containing Aryl Butadiynyl Moieties. ChemistrySelect, 2021, 6, 13336-13341.	0.7	0
1229	Electron Microscopy of Nanoporous Crystals. Accounts of Materials Research, 2022, 3, 110-121.	5.9	6
1230	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	5.8	46
1231	Schiffâ \in bases for sustainable battery and supercapacitor electrodes. Exploration, 2021, 1, .	5.4	21
1232	Dual Nanomechanics in Anisotropic Porous Covalent Organic Framework Janus-Type Thin Films. Journal of the American Chemical Society, 2022, 144, 400-409.	6.6	32
1234	Optical absorptions of benzotrithiophene-based covalent organic frameworks evolving with amine-building blocks. , 2021, , .		0
1235	Interaction Types in C ₆ H ₅ (CH ₂) <i>_n</i> OH–CO ₂ (<i>n</i> =) Tj 149-155	ЕТ <u>О</u> Д11().784314 rg8 10
1236	Rechargeable Batteries: Regulating Electronic and Ionic Transports for High Electrochemical Performance. Advanced Materials Technologies, 2022, 7, .	3.0	8
1237	An investigation on PANI/NENP-1 composite as a novel photocatalyst for photocatalytic dye wastewater degradation and photocatalytic hydrogen evolution. Reaction Chemistry and Engineering, 2022, 7, 1626-1639.	1.9	8
1238	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	2.2	2
1240	An olefinâ€based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chemistry - an Asian Journal, 2022, , .	1.7	3

		CITATION REPORT	
# 1241	ARTICLE Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. Journal of the American Chemical Society, 2022, 144, 7822-7833.	IF 6.6	Citations
1242	Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. RSC Advances, 2022, 12, 12283-12291.	1.7	6
1243	Momentary click nitrile synthesis enabled by an aminoazanium reagent. Organic Chemistry Frontier 2022, 9, 3420-3427.	[°] S, 2.3	5
1244	A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chemical Letters, 2023, 34, 107454.	ו 4.8	6
1245	Enantioselective Fluorescent Recognition of βâ€Amino Alcohols by a Stereoselective Cyclization. European Journal of Organic Chemistry, 0, , .	1.2	2
1246	Metal–Organic Nanosheets (MONs): Exfoliation by Mechanical Grinding and Iodine Capture. Adva Materials Interfaces, 2022, 9, .	anced 1.9	5
1247	Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS Ome 2022, 7, 15275-15295.	²ga, 1.6	14
1248	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
1249	Efficient cycloaddition of CO2 and epoxides to cyclic carbonates using salen-based covalent organi framework as a heterogeneous catalyst. Journal of Porous Materials, 2022, 29, 1253-1263.	c 1.3	7
1250	Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	37
1251	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	2.0	17
1252	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 1 9101-9112.	44, 6.6	71
1253	Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Research, 2022, 15, 7432-7452.	5.8	24
1254	Solvent-Dependent Self-Assembly of Hydrogen-Bonded Organic Porphyrinic Frameworks. Crystal Growth and Design, 2022, 22, 3808-3814.	1.4	5
1255	Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie, 2022, 2	.34, . 1.6	3
1256	Modulated Synthesis of Selfâ€&tanding Covalent Organic Framework Films. Chemistry - A Europear Journal, 2022, , .	1.7	2
1257	In Situ Prepared NRCPFs as Highly Active Photo Platforms for in Situ Bond Formation Between Aryldiazonium Salts and Heteroarenes. Photochemistry and Photobiology, 2022, 98, 748-753.	1.3	11
1258	Embedding [Mo3S13]2â^' clusters into the micropores of a covalent organic framework for enhanc stability and photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 446, 136883.	ed 6.6	14

ARTICLE IF CITATIONS # A Redox-Active 2-D Covalent Organic Framework as a Cathode in an Aqueous Mixed-Ion Electrolyte Zn-Ion Battery: Experimental and Theoretical Investigations. ACS Sustainable Chemistry and 1259 3.2 19 Engineering, 2022, 10, 6205-6216. Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie -7.2 International Edition, 2022, 61, e202202597. Linkages take charge., 2022, 1, 341-343. 1261 5 Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner 1262 5.8 reaction for nanofiltration. Nature Communications, 2022, 13, 2615. Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination 1263 9.5 74 Chemistry Reviews, 2022, 465, 214576. Tailoring delicate pore environment of 2D Covalent organic frameworks for selective palladium recovery. Chemical Engineering Journal, 2022, 446, 136823. 1264 6.6 Covalent organic frameworks as crystalline sponges for enzyme extraction and production from 1265 6.6 5 natural biosystems. Chemical Engineering Journal, 2022, 444, 136624. Lanthanide based inorganic phosphates and biological nucleotides sensor. Coordination Chemistry 1266 Reviews, 2022, 466, 214583. Research progress in AIE-based crystalline porous materials for biomedical applications. Biomaterials, 1267 9 5.7 2022, 286, 121583. Effective Photocatalytic Initiation of Reactive Oxygen Species by a Photoactive Covalent Organic 38 Framework for Oxidation Reactions., 2022, 4, 1160-1167. Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn†Air Batteries. ACS Applied Materials 1269 12 4.0& Interfaces, 2022, 14, 24404-24414. Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification 1270 5.2 of a sulfur mustard simulant. Journal of Materials Chemistry A, 2022, 10, 13325-13332. Robust and emissive covalent organic frameworks formed <i>via</i> intramolecular hydrogen bond 1271 1.3 1 interaction. CrystEngComm, 2022, 24, 4496-4499. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks. Chemical 1.3 Research in Chinese Universities, 2022, 38, 468-471. Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. 1273 1.3 8 Chemical Research in Chinese Universities, 2022, 38, 382-395. Functionalized COFs with Quaternary Phosphonium Salt for Versatilely Catalyzing Chemical 1274 Transformations of CO2. Chemical Résearch in Chinese Universities, 2022, 38, 446-455. How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34, 1275 11.1 82 Covalent organic frameworks for applications in lithium batteries. Journal of Polymer Science, 2022, 1276 60, 2225-2238.

ARTICLE IF CITATIONS Interface engineering for modulating catalytic selectivity of covalent organic frameworks for 1277 1.7 3 oxygen reduction. Materials Today Chemistry, 2022, 24, 100936. Covalent triazine framework: Water treatment application. Journal of Water Process Engineering, 1278 2.6 19 2022, 48, 102874. An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative 1279 2 1.7 coupling of amines. Materials Today Chemistry, 2022, 25, 100953. A novel cobalt-anchored covalent organic framework for photocatalytic conversion of CO₂ into widely adjustable syngas. Journal of Materials Chemistry A, 2022, 10, 13418-13427. Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. 1281 1.7 8 RSĆ Advances, 2022, 12, 16354-16357. Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for photocatalysis. Chem Catalysis, 2022, 2, 1734-1747. Ultrathin Covalent Organic Framework Anchored on Graphene For Enhanced Organic Pollutant 1283 1.6 2 Removal. Angewandte Chemie, 0, , . Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal 1284 6.6 39 of the American Chemical Society, 2022, 144, 9827-9835. High specific surface area triphenylamine-based covalent organic framework/polyaniline 1285 0.8 0 nanocomposites for supercapacitor application. High Performance Polymers, 0, , 095400832211012. Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant 7.2 Removal. Angewandte Chemie - International Edition, 2022, 61, . Mesoporous Polyimideâ€linked Covalent Organic Framework with Multiple Redoxâ€active Sites for 1287 3 1.6 Highâ€Performance Cathodic Li Storage. Angewandte Chemie, 0, , . Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society, 2022, 1288 6.6 144, 9893-9901 Covalent organic frameworks catalyzed by organic Lewis acid. Science China Chemistry, 2022, 65, 1289 4.2 23 1315-1320. Selective entrapment of thorium using a three-dimensional covalent organic framework and its 1290 interaction mechanism study. Separation and Purification Technology, 2022, 296, 121413. Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for 1291 Photoelectrochemical Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 33 6.6 10291-10300. Rational preparation of cocoon-like g-C3N4/COF hybrids: Accelerated intramolecular charge delivery 1292 44 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 315, 121568. Amine-functionalized porous organic polymers for carbon dioxide capture. Materials Advances, 2022, 1293 2.6 17 3,6668-6686. A study of contemporary progress relating to COF materials for CO₂capture and fixation 1294 reactions. Materials Advances, 2022, 3, 5575-5597.
#	Article	IF	CITATIONS
1295	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	1.6	3
1296	Pyrazine-cored covalent organic frameworks for efficient CO ₂ adsorption and removal of organic dyes. Polymer Chemistry, 2022, 13, 3827-3832.	1.9	11
1297	Band gap opening from displacive instabilities in layered covalent-organic frameworks. Journal of Materials Chemistry A, 2022, 10, 13500-13507.	5.2	7
1298	Amino-based covalent organic frameworks for a wide range of functional modification. New Journal of Chemistry, 0, , .	1.4	6
1299	Thermal Conductivity of Two-Dimensional Benzobisoxazole-Linked Covalent Organic Frameworks with Nanopores: Implications for Thermal Management Applications. ACS Applied Nano Materials, 2022, 5, 13787-13793.	2.4	6
1300	Rapid room temperature synthesis of a new 2D AIE-chromophore COFs at room temperature and highly selective naked eye sensing of Fe3+ ions. Journal of Porous Materials, 2022, 29, 1531-1538.	1.3	3
1301	Evolving Trends for Câ^'C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect, 2022, 7, .	0.7	6
1302	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazoneâ€Linked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
1303	Construction of Hydrazone-Linked Macrocycle-Enriched Covalent Organic Frameworks for Highly Efficient Photocatalysis. Chemistry of Materials, 2022, 34, 5726-5739.	3.2	33
1304	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazone‣inked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie, 2022, 134, .	1.6	1
1305	Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	19
1306	Research advances on photo-assisted CO2 conversion to methanol. Applied Catalysis A: General, 2022, 643, 118738.	2.2	8
1307	A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angewandte Chemie, 0, , .	1.6	9
1308	Functionalized Triazines and Tetrazines: Synthesis and Applications. Topics in Current Chemistry, 2022, 380, .	3.0	15
1309	Covalent Triazine Frameworks and Porous Carbons: Perspective from an Azuleneâ€Based Case. Macromolecular Rapid Communications, 0, , 2200392.	2.0	2
1310	Potential Difference-Modulated Synthesis of Self-Standing Covalent Organic Framework Membranes at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2022, 144, 11778-11787.	6.6	19
1311	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
1312	Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Science China Chemistry, 2022, 65, 1291-1298.	4.2	16

#	Article	IF	Citations
1313	A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
1314	Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). Sensors, 2022, 22, 4758.	2.1	21
1315	First-principle study of highly controllable boron-doped graphene (BC ₂₀) as a high-capacity anode for potassium-ion batteries. Materials Research Express, 2022, 9, 065604.	0.8	2
1316	Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 2022, 8, 926-932.	5.3	59
1317	Mesoporous Polyimideâ€Linked Covalent Organic Framework with Multiple Redoxâ€Active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	79
1318	Amino-functionalized hypercrosslinked polymer as sorbent for effective extraction of nitroimidazoles from water, drink and honey samples. Journal of Chromatography A, 2022, 1676, 463206.	1.8	13
1319	One-pot route to fine-tuned hypercrosslinked polymer solid acid catalysts. Materials Advances, 2022, 3, 6335-6342.	2.6	11
1320	Substituent Effects on the Photocatalytic Properties of A Symmetric Covalent Organic Framework. Chinese Journal of Chemical Physics, 0, , .	0.6	0
1321	Landscaping Covalent Organic Framework Nanomorphologies. Journal of the American Chemical Society, 2022, 144, 11482-11498.	6.6	108
1322	Maneuvering Applications of Covalent Organic Frameworks via Frameworkâ€Morphology Modulation. Advanced Materials, 2022, 34, .	11.1	39
1323	Cu ²⁺ Embedded Three-Dimensional Covalent Organic Framework for Multiple ROS-Based Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2022, 14, 30618-30625.	4.0	20
1324	Transformation of Porous Organic Cages and Covalent Organic Frameworks with Efficient lodine Vapor Capture Performance. Journal of the American Chemical Society, 2022, 144, 12390-12399.	6.6	77
1325	On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. Journal of Chemical Physics, 2022, 157, .	1.2	4
1326	High-Purity, High-Yield Synthesis of Covalent Organic Framework Nanosheets for Fast and Selective Molecular Separation. Chemistry of Materials, 2022, 34, 6345-6354.	3.2	5
1327	Phosphotungstic acid-supported melamine–terephthalaldehyde covalent organic framework as a novel and reusable nanostructured catalyst in three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Research on Chemical Intermediates, 2022, 48, 3851-3865.	1.3	1
1328	Covalent Organic Frameworks for Carbon Dioxide Capture from Air. Journal of the American Chemical Society, 2022, 144, 12989-12995.	6.6	118
1329	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
1330	Dynamic Au–C σ-Bonds Leading to an Efficient Synthesis of [<i>n</i>]Cycloparaphenylenes (<i>n</i> =) Tj ET(Qq] 1 0.78	34314 rgBT /

#	Article	IF	CITATIONS
1331	Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Research, 2022, 15, 9264-9273.	5.8	10
1332	Photo-tailored heterocrystalline covalent organic framework membranes for organics separation. Nature Communications, 2022, 13, .	5.8	35
1333	Fundamentals and Advances in Emerging Crystalline Porous Materials for Photocatalytic and Electrocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2022, 5, 9241-9265.	2.5	13
1334	Fluorescent Covalent Organic Frameworks: A Promising Material Platform for Explosive Sensing. Frontiers in Chemistry, 0, 10, .	1.8	13
1335	Triazine skeletal covalent organic frameworks: A versatile highly positive surface potential triboelectric layer for energy harvesting and self-powered applications. Nano Energy, 2022, 101, 107620.	8.2	25
1336	Application progress of covalent organic framework materials in extraction of toxic and harmful substances. Chinese Journal of Chromatography (Se Pu), 2022, 40, 600-609.	0.1	3
1337	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie, 2022, 134, .	1.6	9
1338	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
1339	Superhydrophobic Phosphonium Modified Robust 3D Covalent Organic Framework for Preferential Trapping of Charge Dispersed Oxoanionic Pollutants. Advanced Functional Materials, 2022, 32, .	7.8	27
1340	Large freestanding 2D covalent organic framework nanofilms exhibiting high strength and stiffness. Materials Today Chemistry, 2022, 26, 101007.	1.7	7
1341	Targeted construction of a three-dimensional metal covalent organic framework with spn topology for photocatalytic hydrogen peroxide production. Chemical Engineering Journal, 2022, 449, 137802.	6.6	33
1342	Dynamic covalent chemistry concept towardÂpreparing crystalline covalent organic frameworks for dual-mode acidochromic responses. Materials Today Chemistry, 2022, 26, 101027.	1.7	1
1343	Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. TrAC - Trends in Analytical Chemistry, 2022, 157, 116741.	5.8	54
1344	Recent advancements of photo- and electro-active hydrogen-bonded organic frameworks. Science China Chemistry, 2022, 65, 2077-2095.	4.2	33
1345	Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	12
1346	Direct Construction of Isomeric Benzobisoxazole–Vinylene-Linked Covalent Organic Frameworks with Distinct Photocatalytic Properties. Journal of the American Chemical Society, 2022, 144, 13953-13960.	6.6	76
1347	Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. International Journal of Molecular Sciences, 2022, 23, 7998.	1.8	4
1348	Hydrogen-bonded organic frameworks: Chemistry and functions. CheM, 2022, 8, 2114-2135.	5.8	113

#	Article	IF	CITATIONS
1349	Green bioanalysis: an innovative and eco-friendly approach for analyzing drugs in biological matrices. Bioanalysis, 2022, 14, 881-909.	0.6	3
1350	The Promise of Softâ€Matterâ€Enabled Quantum Materials. Advanced Materials, 2023, 35, .	11.1	4
1351	Controlling the Nucleation Process to Prepare a Family of Crystalline Tribenzimidazole-Based Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 6977-6984.	3.2	7
1352	Modulation of the Sorption Characteristics for an Hâ€bonded porous Architecture by Varying the Chemical Functionalization of the Channel Walls. Chemistry - A European Journal, 2022, 28, .	1.7	5
1353	Green and Scalable Fabrication of Highâ€Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
1354	Synergetic Pt Atoms and Nanoparticles Anchored in Standing Carbonâ€Derived from Covalent Organic Frameworks for Catalyzing ORR. Advanced Materials Interfaces, 0, , 2201263.	1.9	4
1355	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metalâ€Covalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	74
1356	On-Surface Synthesis toward Two-Dimensional Polymers. Journal of Physical Chemistry Letters, 2022, 13, 8062-8077.	2.1	9
1357	Efficient Adsorption of Acetylene over CO ₂ in Bioinspired Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 14992-14996.	6.6	65
1358	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal ovalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
1359	Electroactive Covalent Organic Framework Enabling Photostimulus-Responsive Devices. Journal of the American Chemical Society, 2022, 144, 16093-16100.	6.6	14
1360	Green and Scalable Fabrication of Highâ€Performance Biocatalysts Using Covalent Organic Frameworks as Enzyme Carriers. Angewandte Chemie, 2022, 134, .	1.6	9
1362	Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic Framework Nanochannels. Analytical Chemistry, 2022, 94, 11224-11229.	3.2	4
1363	A Crystalline 1D Dynamic Covalent Polymer. Journal of the American Chemical Society, 2022, 144, 15443-15450.	6.6	12
1364	Efficient and selective solid-phase microextraction of polychlorinated biphenyls by using a three-dimensional covalent organic framework as functional coating. Journal of Chromatography A, 2022, 1681, 463419.	1.8	5
1365	Exciton Diffusion and Annihilation in an sp ² Carbon-Conjugated Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 16423-16432.	6.6	25
1366	Sol-gel processing of a covalent organic framework for the generation of hierarchically porous monolithic adsorbents. CheM, 2022, 8, 2961-2977.	5.8	18
1367	Synthesis of Covalent Organic Frameworks (COFs)-Nanocellulose Composite and Its Thermal Degradation Studied by TGA/FTIR. Polymers, 2022, 14, 3158.	2.0	8

#	Article	IF	CITATIONS
1368	Preparation and Tribological Properties of Bismaleimide Matrix Composites Reinforced with Covalent Organic Framework Coated Graphene Nanosheets. Polymers, 2022, 14, 3289.	2.0	4
1369	Metalâ^'free catalysis of the reductive amination of aldehydes using a phosphoniumâ^'doped porous aromatic framework. Molecular Catalysis, 2022, 530, 112600.	1.0	3
1370	Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. Chinese Journal of Catalysis, 2022, 43, 2395-2404.	6.9	27
1371	Covalent organic frameworks (COFs)-derived nitrogen-doped carbon/reduced graphene oxide nanocomposite as electrodes materials for supercapacitors. Journal of Energy Storage, 2022, 55, 105375.	3.9	35
1372	Boosting the permeation of ultrafiltration membranes by covalent organic frameworks nanofillers: Nanofibers doing better than nanoparticles. Journal of Membrane Science, 2022, 661, 120944.	4.1	10
1373	Covalent organic framework-based membrane improved the performance of reverse electrodialysis under Na+/Mg2+ mixed solution. Desalination, 2022, 542, 115976.	4.0	8
1374	Pyrazine and crown ethers: functional covalent organic polymers for (solar-assisted) high capacity and rate performance lithium-organic battery. Materials Today Chemistry, 2022, 26, 101082.	1.7	3
1375	Metal-free oxidative desulfurization with molecular oxygen by using N-enriched porous carbons derived from ionic liquid-loaded covalent-organic polymer. Chemical Engineering Journal, 2022, 450, 138416.	6.6	14
1376	Covalent organic networks for in situ entrapment of enzymes with superior robustness and durability. Chemical Engineering Journal, 2022, 450, 138446.	6.6	11
1377	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24
1378	Facile, Direct, De Novo Synthesis of an Alkyl Phosphoric Acidâ€Decorated Covalent Organic Framework. Macromolecular Rapid Communications, 2023, 44, .	2.0	7
1379	MXenes and Other Two-Dimensional Materials for Membrane Gas Separation: Progress, Challenges, and Potential of MXene-Based Membranes. Industrial & Engineering Chemistry Research, 2023, 62, 2309-2328.	1.8	15
1380	Covalent organic framework composites TpPa@CeO2 with catalytic activities for sensitive colorimetric detection of ascorbic acid. Microchemical Journal, 2022, 182, 107924.	2.3	6
1381	Developing practical solid-state rechargeable Li-ion batteries: Concepts, challenges, and improvement strategies. Journal of Energy Storage, 2022, 55, 105688.	3.9	11
1382	Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosensors and Bioelectronics, 2022, 217, 114668.	5.3	41
1383	A one-dimensional covalent organic framework film for near-infrared electrochromism. Chemical Engineering Journal, 2023, 451, 139082.	6.6	16
1384	Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioactive Materials, 2023, 21, 358-380.	8.6	37
1385	Facile synthesis of Cu2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS. Talanta, 2023, 253, 123923.	2.9	5

			0
#		IF	CITATIONS
1386	The ordera€"disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-17121.	5.2	32
1387	Functions and fundamentals of porous molecular crystals sustained by labile bonds. Chemical Communications, 2022, 58, 11887-11897.	2.2	9
1388	Controlled growth of organic 2D layered material thin films <i>via</i> interfacial methods. Chemical Communications, 2022, 58, 12384-12398.	2.2	7
1389	Covalent organic framework supported palladium catalysts. Journal of Materials Chemistry A, 2022, 10, 20707-20729.	5.2	16
1390	Construction of symbiotic one-dimensional ionic channels in a cobalt-based covalent organic framework for high-performance oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 22781-22790.	5.2	2
1391	Synthesis of stack plate covalent organic framework nanotubes using a self-assembled acid as a soft template. Chemical Communications, 2022, 58, 9148-9151.	2.2	7
1392	A metal–covalent organic framework catalyst with pincer coordination units for boosting transfer hydrogenation of quinolines with ammonia borane. Journal of Materials Chemistry A, 2022, 10, 18602-18608.	5.2	3
1393	Facile synthesis of a triazine-based porous organic polymer containing thiophene units for effective loading and releasing of temozolomide. E-Polymers, 2022, 22, 664-675.	1.3	1
1394	Pore engineering in covalent organic framework membrane for gas separation. , 2022, 2, 100037.		5
1395	Recent trends in covalent organic frameworks (COFs) for carbon dioxide reduction. Materials Advances, 2022, 3, 8063-8080.	2.6	12
1396	Challenges and opportunities for chiral covalent organic frameworks. Chemical Science, 2022, 13, 9811-9832.	3.7	19
1397	Porous Metal-Macrocycle Frameworksï¼^MMFs)with Unique Molecular Recognition and Arrangement Ability. Nihon Kessho Gakkaishi, 2022, 64, 231-237.	0.0	0
1398	Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angewandte Chemie, 2022, 134, .	1.6	1
1399	Coreâ€ 5 hell Heteroâ€Framework derived Copper Azide Composites as Excellent Laserâ€ I gnitable Primary Explosives. Advanced Functional Materials, 2022, 32, .	7.8	13
1400	Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
1401	Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2022, 144, 17737-17742.	6.6	19
1402	Bimetal Covalent Organic Frameworks/Carbon Nanotubeâ€Derived Ironâ€; Cobalt―and Nitrogenâ€Codoped Catalysts for Efficient Oxygen Electrocatalysis and Zincâ°'Air Batteries. ChemNanoMat, 0, , .	1.5	3
1403	Sulfonylcalix[4]arene-based metal-organic polyhedra with hierarchical porous structures for efficient Xe/Kr separation. Nano Research, 2023, 16, 2536-2542.	5.8	3

#	Article	IF	CITATIONS
1404	Development of Crystalline Covalent Triazine Frameworks to Enable <i>In Situ</i> Preparation of Single-Atom Ni–N ₃ –C for Efficient Electrochemical CO ₂ Reduction. , 2022, 4, 2143-2150.		8
1405	Ultrathin Covalent Organic Framework Membranes Prepared by Rapid Electrophoretic Deposition. Advanced Materials, 2022, 34, .	11.1	20
1406	High-Performance Lithium-Ion Battery and Supercapacitors Using Covalent Organic Frameworks (COFs)/Graphitic Carbon Nitride (g-C ₃ N ₄)-Derived Hierarchical N-Doped Carbon. ACS Applied Energy Materials, 2022, 5, 12828-12836.	2.5	25
1407	A Porous Polyaromatic Solid for Vapor Adsorption of Xylene with High Efficiency, Selectivity, and Reusability. Chemistry - A European Journal, 2022, 28, .	1.7	4
1408	Hydrogenâ€Bonded Organic Framework Ultrathin Nanosheets for Efficient Visibleâ€Light Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
1409	Hydrogenâ€Bonded Organic Framework Ultrathin Nanosheets for Efficient Visibleâ€Light Photocatalytic CO ₂ Reduction. Angewandte Chemie, 0, , .	1.6	4
1410	Fast Hydroxide Conduction via Hydrogen-Bonding Network Confined in Benzimidazolium-Functionalized Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 43861-43867.	4.0	3
1411	Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2022, 144, 17209-17218.	6.6	60
1412	Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 0, , .	1.3	1
1413	Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Applied Polymer Materials, 2022, 4, 7528-7536.	2.0	9
1414	Photoredox Catalysis by Covalent Organic Frameworks. , 0, , .		1
1415	Temperature Extrapolation of Henry's Law Constants and the Isosteric Heat of Adsorption. Journal of Physical Chemistry B, 2022, 126, 7999-8009.	1.2	1
1416	Engineering single–atom active sites anchored covalent organic frameworks for efficient metallaphotoredox C N cross–coupling reactions. Science Bulletin, 2022, 67, 1971-1981.	4.3	25
1417	Three-Dimensional Covalent Organic Frameworks with she Topology. Journal of the American Chemical Society, 2022, 144, 18511-18517.	6.6	55
1418	Vertical Growth of 2D Covalent Organic Framework Nanoplatelets on a Macroporous Scaffold for Highâ€Performance Electrodes. Advanced Materials, 2022, 34, .	11.1	15
1419	Templated Assembly of pH-Labile Covalent Organic Framework Hierarchical Particles for Intracellular Drug Delivery. Nanomaterials, 2022, 12, 3055.	1.9	3
1420	Effective adsorption of chlorpyrifos pesticides by HKUST-1 metal-organic framework. Journal of Chemical Sciences, 2022, 134, .	0.7	2
1421	Soft 2D Covalent Organic Framework with Compacted Honeycomb Topology. Journal of the American Chemical Society, 2022, 144, 18784-18789.	6.6	4

ARTICLE IF CITATIONS Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular 1422 10.1 11 structure to advanced applications. EnergyChem, 2022, 4, 100094. Electrochemical Doubleâ€Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. 1423 7.2 Angewandte Chemie - International Edition, 2022, 61, . A Honeycombâ€Like Porous Crystalline Heteroâ€Electrocatalyst for Efficient Electrocatalytic 1424 11.1 40 CO₂ Reduction. Advanced Materials, 2022, 34, . Synthesis of Vinyleneâ€Linked Thiopyryliumâ€, Pyryliumâ€, and Pyridiniumâ€Based Covalent Organic 1425 Frameworks by Ácidâ€Catalyzed Aldol Condensation. Chemistry - A European Journal, 2023, 29, . AuNPs-COFs Coreâ€"Shell Reversible SERS Nanosensor for Monitoring Intracellular Redox Dynamics. 1426 3.2 12 Analytical Chemistry, 2022, 94, 14280-14289. Ionothermal Synthesis of Fully Conjugated Covalent Organic Frameworks for Highâ€Capacity and 11.1 Ultrastable Potassiumâ€Ion Batteries. Advanced Materials, 2022, 34, . Electrochemical Doubleâ€Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. 1428 1.6 5 Angewandte Chemie, 2022, 134, . Synergistic Effect of Functionalization and Crystallinity in Nanoporous Organic Frameworks for 1429 Effective Removal of Metal Ions from Aqueous Solution. ACS Applied Nano Materials, 2022, 5, 9 2.4 15228-15236. N-H group-rich dendrimer doped polybenzimidazole composite membrane with consecutive proton 1430 2.6 7 transportation channels for HT-PEMFCs. Electrochimica Acta, 2022, 434, 141252. Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen 1431 4.1 peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043. A covalent organic framework/graphene aerogel electrocatalyst for enhanced overall water 1432 2.8 12 splitting. Nanoscale, 2022, 14, 16944-16951. MOF/COF hybrids as next generation materials for energy and biomedical applications. CrystEngComm, 1.3 2022, 24, 7360-7371. Bandgap engineering of covalent organic frameworks for boosting photocatalytic hydrogen 1434 5.2 14 evolution from water. Journal of Materials Chemistry A, 2022, 10, 24620-24627. Organic Photocatalysts for Water Splitting., 2022, , 221-234. 1435 A Bird's-Eye View on Polymer-Based Hydrogen Carriers for Mobile Applications. Polymers, 2022, 14, 4512. 1436 2.0 1 Shape memory in self-adapting colloidal crystals. Nature, 2022, 610, 674-679. 1437 Hollow Spherical Covalent Organic Frameworks from Nonplanar or Planar Monomers for the 1438 Fluorescence Detection of Telomere DNA: Role of the 2-(2-Azidoethoxy)ethoxy Group. ACS Applied 2.0 10 Polymer Materials, 2022, 4, 9132-9143. Covalent organic framework–based porous ionomers for high-performance fuel cells. Science, 2022, 1439 143 378, 181-186.

#	Article	IF	CITATIONS
1440	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ^'H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie, 2022, 134, .	1.6	2
1441	Synthesis of a Highly Crystalline Amideâ€Linked Covalent Organic Framework. Chinese Journal of Chemistry, 2023, 41, 405-410.	2.6	2
1442	Betaâ€cyclodextrin covalent organic framework coated silica composite as chiral stationary phase for highâ€performance liquid chromatographic separation. Separation Science Plus, 2022, 5, 671-681.	0.3	1
1443	Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Science China Chemistry, 2022, 65, 2177-2181.	4.2	9
1444	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ^'H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
1445	Photoactive Covalent Organic Frameworks for Catalyzing Organic Reactions. ChemPlusChem, 2022, 87, .	1.3	8
1446	Enhanced Crystallinity of Covalent Organic Frameworks Formed Under Physical Confinement by Exfoliated Graphene. Small, 2022, 18, .	5.2	1
1447	Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 48045-48051.	4.0	27
1448	A Highly Stable <i>Ortho</i> â€Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. ChemSusChem, 2022, 15, .	3.6	18
1449	Synthesis of melamine-based crystalline porous polymers and its silver-doped composites with one-pot approach for catalytic reduction of 4-nitrophenol. Microporous and Mesoporous Materials, 2022, 346, 112297.	2.2	4
1450	One-Step Synthesis of Cationic Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 10030-10034.	2.1	2
1451	Advanced Covalent Organic Frameworks for Multiâ€Valent Metal Ion Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	6
1452	One-Pot Synthesis of Deep Eutectic Solvents Containing Three-Dimensional Polymeric Materials with Excellent Catalytic Activity in the Knoevenagel Condensation Reaction. ACS Applied Polymer Materials, 2022, 4, 8092-8097.	2.0	1
1453	Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications. ChemNanoMat, 2023, 9, .	1.5	4
1454	Programmable Photocatalytic Activity of Multicomponent Covalent Organic Frameworks Used as Metallaphotocatalysts. Chemistry - A European Journal, 2023, 29, .	1.7	5
1455	Natural Sunlight Photocatalytic Synthesis of Benzoxazole-Bridged Covalent Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2022, 144, 18750-18755.	6.6	63
1456	Îâ€Electronâ€Extended Porphyrinâ€Linked Covalent Organic Framework for a Qâ€&witched Allâ€&olidâ€&tate Las Advanced Photonics Research, 2023, 4, .	er. 1.7	2
1457	Industry-compatible covalent organic frameworks for green chemical engineering. Science China Chemistry, 2022, 65, 2144-2162.	4.2	10

#	Article	IF	CITATIONS
1458	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	6.6	33
1459	Toward Coarse-Grained Elasticity of Single-Layer Covalent Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 18943-18951.	1.5	6
1460	The synthesis of size-controlled hollow spherical covalent organic frameworks and its application in photocatalysis and Suzuki coupling reactions. Journal of Catalysis, 2022, 416, 29-38.	3.1	8
1461	Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. Journal of Controlled Release, 2022, 352, 288-312.	4.8	22
1462	Arylation of indole at C2 catalyzed by palygorskite grafted covalent organic frameworks supported palladium catalyst. Applied Clay Science, 2023, 231, 106754.	2.6	4
1463	Efficient exfoliation of covalent organic frameworks by a facile thiol-ene reaction. Chemical Engineering Journal, 2023, 454, 140283.	6.6	6
1464	Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor–Acceptor Interaction. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
1465	Electron donor–acceptor (D-A) tuning to achieve soluble covalent organic polymers for optoelectronic devices. EScience, 2023, 3, 100084.	25.0	9
1466	A crystalline and stable microporous framework based on the dative Bâ†₦ bonds. CheM, 2023, 9, 242-252.	5.8	13
1467	Confinementâ€Driven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
1468	A Mixed Cd/Cu-Based Metal–Organic Framework Achieved by Postsynthetic Metal Exchange for Electrocatalytic Oxidation of Uric Acid. , 2022, 4, 2522-2527.		7
1469	Sustainable Carbon Dioxide Reduction of the P3HT Polymer-Sensitized TiO ₂ /Re(I) Photocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 50718-50730.	4.0	4
1470	Piperazine-Linked Metalphthalocyanine Frameworks for Highly Efficient Visible-Light-Driven H ₂ O ₂ Photosynthesis. Journal of the American Chemical Society, 2022, 144, 21328-21336.	6.6	109
1471	lmine and imine-derived linkages in two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2022, 6, 881-898.	13.8	79
1472	Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Interfaces, 2022, 14, 51867-51880.	4.0	1
1473	Mechanochemistry-guided reticular assembly for stabilizing enzymes with covalent organic frameworks. Cell Reports Physical Science, 2022, 3, 101153.	2.8	14
1474	Confinementâ€Ðriven Photophysics in Hydrazoneâ€Based Hierarchical Materials. Angewandte Chemie, 2023, 135, .	1.6	1
1475	A chiral covalent-organic framework for asymmetric photooxidation in water. Chem Catalysis, 2022, 2 2820-2822	2.9	1

#	Article	IF	CITATIONS
1476	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
1477	Ion-selective covalent organic frameworks boosting electrochemical energy storage and conversion: A review. Energy Storage Materials, 2023, 55, 498-516.	9.5	19
1478	Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Advances, 2022, 12, 34245-34267.	1.7	2
1479	Preparation of a triazine porous organic polymer thin film by nanoparticle-polymer reticulation for high-efficient molecule/ion separation. Journal of Materials Chemistry A, 2023, 11, 1829-1840.	5.2	6
1480	Molecular insights into multi-channel detection of nitrophenol explosives and acids in covalent organic frameworks with diverse hydrazone moieties. Microporous and Mesoporous Materials, 2023, 348, 112408.	2.2	6
1481	Crown ether-based covalent organic frameworks for CO ₂ fixation. New Journal of Chemistry, 2023, 47, 2040-2044.	1.4	7
1482	Metallic active-site engineering: a bridge between covalent triazine frameworks and high-performance catalysts. Journal of Materials Chemistry A, 2023, 11, 2070-2091.	5.2	9
1483	Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope. Micron, 2023, 165, 103395.	1.1	1
1484	Flexible three-dimensional covalent organic frameworks for ultra-fast and selective extraction of uranium via hydrophilic engineering. Journal of Hazardous Materials, 2023, 445, 130442.	6.5	12
1485	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
1486	Understanding solar fuel photocatalysis using covalent organic frameworks. Photochemistry, 2022, , 403-427.	0.2	0
1487	In Situ Deformation Topology of COFs with Shortened Channels and High Redox Properties for Li–S Batteries. Advanced Functional Materials, 2023, 33, .	7.8	4
1488	Surfactantâ€Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinityâ€Gradient Energy Harvesting. Advanced Materials, 2023, 35, .	11.1	7
1489	A Thermally Promoted Homogenousâ€Floatingâ€Concentrating Strategy Synthesizing Highly Crystalline Triazine/hydroxylâ€Rich COFs for 4â€Nitrophenol Adsorption. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
1490	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€Ion Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
1491	Distributed Liâ€lon Flux Enabled by Sulfonated Covalent Organic Frameworks for Highâ€Performance Lithium Metal Anodes. Macromolecular Rapid Communications, 2023, 44,	2.0	1
1492	Amide Linkages in Pyrene-Based Covalent Organic Frameworks toward Efficient Photocatalytic Reduction of Uranyl. ACS Applied Materials & Interfaces, 2022, 14, 57225-57234.	4.0	7
1493	Cage-Based Covalent Organic Framework for the Effective and Efficient Removal of Malachite Green from Wastewater. ACS Applied Materials & amp; Interfaces, 2022, 14, 57180-57188.	4.0	7

#	Article	IF	Citations
1494	Rationally Fabricating Three-Dimensional Covalent Organic Frameworks for Propyne/Propylene Separation. Journal of the American Chemical Society, 2022, 144, 23081-23088.	6.6	22
1495	Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angewandte Chemie, 0, , .	1.6	0
1496	Functional Covalent Organic Framework Films Based on Surface and Interfacial Chemistry for Molecular Separations. Langmuir, 2023, 39, 20-27.	1.6	8
1497	Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nature Communications, 2022, 13, .	5.8	19
1498	Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1499	Boosting Electroreduction of CO ₂ over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	42
1500	Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry - A European Journal, 2023, 29, .	1.7	11
1501	Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect, 2022, 7, .	0.7	8
1502	Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework. ACS Nano, 2022, 16, 21565-21575.	7.3	24
1503	Photocatalysis of Covalent Organic Frameworks. , 0, , .		1
1504	Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. Materials, 2023, 16, 177.	1.3	11
1505	Boosting Electroreduction of CO ₂ over Cationic Covalent Organic Frameworks: Hydrogen Bonding Effects of Halogen Ions. Angewandte Chemie, 2023, 135, .	1.6	1
1506	Ultrathin organic membranes: Can they sustain the quest for mechanically robust device applications?. IScience, 2023, 26, 105924.	1.9	3
1507	Covalent organic frameworks. Nature Reviews Methods Primers, 2023, 3, .	11.8	99
1508	Cobalt-Doped MoS ₂ -Integrated Hollow Structured Covalent Organic Framework Nanospheres for the Effective Photoreduction of CO ₂ under Visible Light. Energy & Fuels, 2023, 37, 2329-2339.	2.5	6
1509	COF-based artificial probiotic for modulation of gut microbiota and immune microenvironment in inflammatory bowel disease. Chemical Science, 2023, 14, 1598-1605.	3.7	3
1510	Covalent Organic Framework Nanobowls as Activatable Nanosensitizers for Tumor‧pecific and Ferroptosisâ€Augmented Sonodynamic Therapy. Advanced Science, 2023, 10, .	5.6	29
1511	Two-Dimensional Benzobisthiazole-Vinylene-Linked Covalent Organic Frameworks Outperform One-Dimensional Counterparts in Photocatalysis. ACS Catalysis, 2023, 13, 1089-1096.	5.5	26

#	Article	IF	CITATIONS
1512	Construction of Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2023, 145, 1475-1496.	6.6	42
1513	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
1514	Endowing Covalent Organic Frameworks with Photoresponsive Active Sites for Controllable Propylene Adsorption. Small, 2023, 19, .	5.2	6
1515	A biodegradable covalent organic framework for synergistic tumor therapy. Chemical Science, 2023, 14, 1453-1460.	3.7	25
1516	Effective Iodine Adsorption by Nitrogen-Rich Nanoporous Covalent Organic Frameworks. ACS Applied Nano Materials, 2023, 6, 1295-1302.	2.4	23
1517	Perspectives and Current Trends on Hybrid Nanocomposite Materials for Photocatalytic Applications. Solar Rrl, 2023, 7, .	3.1	3
1518	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
1519	Self-Assembled Sphere Covalent Organic Framework with Enhanced Herbicidal Activity by Loading Cyhalofop-butyl. Journal of Agricultural and Food Chemistry, 2023, 71, 1417-1425.	2.4	5
1520	Supramolecular Engineering of Cathode Materials for Aqueous Zincâ€ion Energy Storage Devices: Novel Benzothiadiazole Functionalized Twoâ€Dimensional Olefinâ€Linked COFs. Angewandte Chemie, 2023, 135, .	1.6	3
1521	Hydrogen Bonding Regulated Flexibility and Disorder in Hydrazone-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 1359-1366.	6.6	35
1522	Metal-Free Amine-Anchored Triazine-Based Covalent Organic Polymers for Selective CO ₂ Adsorption and Conversion to Cyclic Carbonates Under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2023, 11, 1190-1199.	3.2	16
1523	Macrocycleâ€Based Covalent Organic Frameworks. Advanced Materials, 2023, 35, .	11.1	22
1524	Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H2 production. Chinese Chemical Letters, 2023, 34, 108148.	4.8	9
1525	Rapid charge transfer in covalent organic framework via through-bond for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2023, 458, 141360.	6.6	11
1526	Encapsulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake. Separation and Purification Technology, 2023, 309, 123108.	3.9	13
1527	Determination of opiates in urine samples using a composite of covalent organic framework and polypyrrole as a sorbent for microextraction in a packed syringe combined with HPLC/UV. Talanta Open, 2023, 7, 100183.	1.7	8
1528	A Cu ^I Clusterâ€Based Covalent Metalâ€Organic Framework as a Photocatalyst for Efficient Visibleâ€Lightâ€Driven Reduction of CO ₂ . ChemSusChem, 2023, 16, .	3.6	4
1529	Theoretical Study on Electroreduction of CO2 to C3+ Catalyzed by Polymetallic Phthalocyanine Covalent Organic Frameworks (COFs) in Tandem. Catalysis Letters, 2023, 153, 3270-3283.	1.4	3

#	Article	IF	CITATIONS
1530	Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Journal of the American Chemical Society, 2023, 145, 1022-1030.	6.6	42
1531	Peptide-based porous materials and their applications. Science China Materials, 2023, 66, 470-484.	3.5	2
1532	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie, 2023, 135, .	1.6	4
1533	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
1534	Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H ₂ O ₂ Production. Journal of the American Chemical Society, 2023, 145, 2975-2984.	6.6	71
1535	Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. Journal of the American Chemical Society, 2023, 145, 2840-2851.	6.6	17
1536	2D Organic Materials: Status and Challenges. Advanced Science, 2023, 10, .	5.6	13
1537	Room temperature synthesis of flower-like hollow covalent organic framework for efficient enrichment of microcystins. RSC Advances, 2023, 13, 4255-4262.	1.7	3
1538	Porous Framework Materials for Bioimaging and Cancer Therapy. Molecules, 2023, 28, 1360.	1.7	3
1539	Self-Templated Synthesis of Triphenylene-Based Uniform Hollow Spherical Two-Dimensional Covalent Organic Frameworks for Drug Delivery. Chemistry of Materials, 2023, 35, 1395-1403.	3.2	16
1540	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	13
1541	Possibilities and Limitations in Monomer Combinations for Ternary Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 3008-3015.	6.6	6
1542	Role of Intralayer Hydrogen Bonding in the Fast Crystallization of the Hydrazone-Linked Nanoporous Covalent Organic Framework for Catalytic Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2023, 6, 1714-1723.	2.4	5
1543	Building <i>N</i> -hydroxyphthalimide organocatalytic sites into a covalent organic framework for metal-free and selective oxidation of silanes. Chemical Communications, 2023, 59, 2019-2022.	2.2	2
1544	Fully onjugated Covalent Organic Frameworks with Two Metal Sites for Oxygen Electrocatalysis and Zn–Air Battery. Advanced Science, 2023, 10, .	5.6	13
1545	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	5.2	11
1546	Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions. Scientific Reports, 2023, 13, .	1.6	4
1547	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32

#	Article	IF	CITATIONS
1548	A Solar Responsive Battery Based on Charge Separation and Redox Coupled Covalent Organic Framework. Advanced Functional Materials, 2023, 33, .	7.8	8
1549	Construction of Covalent Organic Framework Nanofiber Membranes for Efficient Adsorption of Antibiotics. Small, 2023, 19, .	5.2	9
1550	Structural Regulation of Thiophene-Based Two-Dimensional Covalent Organic Frameworks toward Highly Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2023, 15, 16794-16800.	4.0	20
1551	Engineering building blocks of covalent organic frameworks for boosting capacitive charge storage. Journal of Power Sources, 2023, 564, 232873.	4.0	4
1552	Experimental Confirmation of a Predicted Porous Hydrogenâ€Bonded Organic Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1553	Transformation of an Imine Cage to a Covalent Organic Framework Film at the Liquid–Liquid Interface. Angewandte Chemie, 2023, 135, .	1.6	1
1554	The flexible EDAN-based covalent organic frameworks constructed by flexible knots and 4,4â€2-ethylenedianiline as a linker for adsorping and fluorescence sensing iodine. Microporous and Mesoporous Materials, 2023, 353, 112517.	2.2	5
1555	Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordination Chemistry Reviews, 2023, 483, 215097.	9.5	61
1556	Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy. EScience, 2023, 3, 100116.	25.0	8
1557	A fluorescence biosensor based on DNA aptamers-COF for highly selective detection of ATP and thrombin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 295, 122615.	2.0	8
1558	Facile fabrication of hydrophilic covalent organic framework composites for highly selective enrichment of N-glycopeptides. Talanta, 2023, 259, 124524.	2.9	3
1559	Record Ultralargeâ€Pores, Low Density Threeâ€Dimensional Covalent Organic Framework for Controlled Drug Delivery**. Angewandte Chemie, 2023, 135, .	1.6	3
1560	Record Ultralargeâ€Pores, Low Density Threeâ€Dimensional Covalent Organic Framework for Controlled Drug Delivery**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
1561	Three-Dimensional Covalent Organic Frameworks with Ultra-Large Pores for Highly Efficient Photocatalysis. Journal of the American Chemical Society, 2023, 145, 3248-3254.	6.6	56
1562	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. , 2023, 2, e9120052.		30
1563	Simultaneous Sensing of Multiplex Volatile Organic Compounds by Adsorption and Plasmon Dual-Induced Raman Enhancement Technique. ACS Sensors, 2023, 8, 867-874.	4.0	4
1564	Covalent Organic Frameworks as Emerging Nonlinear Optical Materials. Angewandte Chemie, 2023, 135,	1.6	2
1565	Covalent Organic Frameworks as Emerging Nonlinear Optical Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4

#	Article	IF	CITATIONS
1566	Engineering Î ² -ketoamine covalent organic frameworks for photocatalytic overall water splitting. Nature Communications, 2023, 14, .	5.8	54
1567	Separation of chiral compounds using high performance liquid chromatography stationary phase based on covalent organic framework material TpPa-NH ₂ -Glu. Chinese Journal of Chromatography (Se Pu), 2023, 41, 187-194.	0.1	0
1568	Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Science China Chemistry, 0, , .	4.2	2
1569	Chiral covalent organic framework incorporated organic polymer monolithic capillary column for enantioseparations. Journal of Separation Science, 2023, 46, .	1.3	3
1570	Reticular polarization engineering of covalent organic frameworks for accelerated generation of superoxide anion radicals. Chemical Engineering Journal, 2023, 461, 141817.	6.6	5
1571	Enhancement of Visibleâ€Lightâ€Driven Hydrogen Evolution Activity of 2D Ï€â€Conjugated Bipyridineâ€Based Covalent Organic Frameworks via Postâ€Protonation. Angewandte Chemie, 2023, 135, .	1.6	7
1572	Environmental impact analysis of surface printing and 3D inkjet printing applications using an imine based covalent organic framework: A life cycle assessment study. Journal of Cleaner Production, 2023, 395, 136381.	4.6	4
1573	Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers, 2023, 15, 887.	2.0	5
1574	Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp ² Carbon-Conjugated Covalent Organic Framework Thin Films. Journal of the American Chemical Society, 2023, 145, 5203-5210.	6.6	22
1575	Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen. Advanced Energy Materials, 2023, 13, .	10.2	22
1576	Advances in harvesting water and energy from ubiquitous atmospheric moisture. Journal of Materials Chemistry A, 2023, 11, 12456-12481.	5.2	13
1577	Multivariate Porous Aromatic Frameworks with High Porosity and Hierarchical Structures for Enzyme Immobilization. ACS Central Science, 2023, 9, 488-493.	5.3	6
1578	Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, .	2.6	3
1579	å∮啶功èf¹⁄zåŒ−的亚èfºç±»å±ä»∙有机框架ææ−™åœ¨å‰å•æˆH2O2ä¸çš"æ¹⁄2œåœ¨æ´»æ€§. Scie	ലങ്കChina	a Ma terials, 2
1580	Metal ion-catalyzed interfacial polymerization of functionalized covalent organic framework films for efficient separation. European Polymer Journal, 2023, 188, 111939.	2.6	2
1581	Enhanced Proton Transfer in Protonâ€Exchange Membranes with Interconnected and Zwitterionâ€Functionalized Covalent Porous Material Structures. ChemSusChem, 2023, 16, .	3.6	5
1582	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
1583	Bioorthogonal-Activated In Situ Vaccine Mediated by a COF-Based Catalytic Platform for Potent Cancer Immunotherapy. Journal of the American Chemical Society, 2023, 145, 5330-5341.	6.6	32

#	Article	IF	CITATIONS
1584	二维sp2碳å±ä»·æœ‰æœºæ¡†æž¶åŠé«~æ•^å‰å,¬åŒ–å^¶æº¢. Science China Materials, 2023, 66, 2283-2	2289.	13
1585	Construction of Covalent Organic Frameworks via a Visible-Light-Activated Photocatalytic Multicomponent Reaction. Journal of the American Chemical Society, 2023, 145, 4951-4956.	6.6	37
1586	Flame-Retardant 3D Covalent Organic Framework for High-Performance Symmetric Supercapacitors. Energy & Fuels, 2023, 37, 4671-4681.	2.5	3
1587	Porous Covalent Organic Framework Based Hydrogenâ€Bond Nanotrap for the Precise Recognition and Separation of Gold. Angewandte Chemie, 2023, 135, .	1.6	2
1588	Porous Covalent Organic Framework Based Hydrogenâ€Bond Nanotrap for the Precise Recognition and Separation of Gold. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1589	In Situ Synthesis of AlEgenâ€based Porous Organic Polymer Films by Interfacial Aminoâ€yne Click Polymerization for Efficient Lightâ€Harvesting. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
1590	In Situ Synthesis of AlEgenâ€based Porous Organic Polymer Films by Interfacial Aminoâ€yne Click Polymerization for Efficient Lightâ€Harvesting. Angewandte Chemie, 2023, 135, .	1.6	0
1591	Synthesis and Fabrication of Advanced Carbon Nanostructures. Materials Horizons, 2023, , 3-19.	0.3	0
1592	An iodide-containing covalent organic framework for enhanced radiotherapy. Chemical Science, 2023, 14, 3642-3651.	3.7	8
1593	Designed sulfonate-based covalent organic frameworks with dual functions of recognition and encapsulation. Journal of Materials Chemistry A, 2023, 11, 7539-7544.	5.2	5
1594	Construction of Multiform Hollow‣tructured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	1.6	2
1595	Construction of Multiform Hollowâ€Structured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1596	Porphyrin-Based Covalent Organic Frameworks Anchoring Au Single Atoms for Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2023, 145, 6057-6066.	6.6	63
1597	Covalent Organic Frameworks for Atmospheric Water Harvesting. Advanced Materials, 2023, 35, .	11.1	18
1598	Molecular switching on surfaces. Surface Science Reports, 2023, 78, 100596.	3.8	6
1599	Post-cyclization of a bisimine-linked covalent organic framework to enhance the performance of visible-light photocatalytic hydrogen evolution. Polymer Chemistry, 2023, 14, 1323-1329.	1.9	1
1600	General Strategy for Incorporation of Functional Group Handles into Covalent Organic Frameworks via the Ugi Reaction. Journal of the American Chemical Society, 2023, 145, 6230-6239.	6.6	18
1601	Reticular Chemistryâ€Enabled Sonodynamic Activity of Covalent Organic Frameworks for Nanodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62,	7.2	16

#	Article	IF	CITATIONS
1603	Reticular Chemistryâ€Enabled Sonodynamic Activity of Covalent Organic Frameworks for Nanodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	1.6	4
1604	Covalent organic frameworks (COFs): a promising CO ₂ capture candidate material. Polymer Chemistry, 2023, 14, 1293-1317.	1.9	6
1605	Bottom-Up Synthesis of Covalent Organic Frameworks with Quasi-Three-Dimensional Integrated Architecture via Interlayer Cross-Linking. Journal of the American Chemical Society, 2023, 145, 6507-6515.	6.6	14
1606	Transformation of an Imine Cage to a Covalent Organic Framework Film at the Liquid–Liquid Interface. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
1607	Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Advances, 2023, 13, 8136-8152.	1.7	11
1608	Van der Waals force modulation towards liquid processable covalent organic frameworks. , 2023, 1, 100008.		2
1609	Coordination directed metal covalent organic frameworks. Materials Chemistry Frontiers, 2023, 7, 2995-3010.	3.2	11
1610	A stepâ€growth strategy to grow vertical porous aromatic framework nanosheets on graphene oxide: Hybrid materialâ€confined Co for ammonia borane methanolysis. , 2023, 5, .		5
1611	Three-Component Donorâ~ï€â€"Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 0, , .	6.6	12
1612	Facile Microwave-Assisted Synthesis of 2D Imine-Linked Covalent Organic Frameworks for Exceptional Iodine Capture. , 2023, 1, 233-240.		11
1613	ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A, 2023, 11, 7468-7487.	5.2	7
1614	Smart Solvent-Responsive Covalent Organic Framework Membranes with Self-regulating Pore Size. ACS Applied Polymer Materials, 2023, 5, 3043-3054.	2.0	6
1615	Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Research, 2023, 16, 8809-8816.	5.8	5
1616	Covalent Organic Frameworks as Porous Pigments for Photocatalytic Metal-Free C–H Borylation. Journal of the American Chemical Society, 2023, 145, 7592-7599.	6.6	38
1617	The introduction of a base component to porous organic salts and their CO ₂ storage capability. CrystEngComm, 2023, 25, 2321-2325.	1.3	2
1618	Monomer Symmetry-Regulated Defect Engineering: In Situ Preparation of Functionalized Covalent Organic Frameworks for Highly Efficient Capture and Separation of Carbon Dioxide. ACS Applied Materials & amp; Interfaces, 2023, 15, 16975-16983.	4.0	7
1619	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	8.3	3
1620	Porous aromatic frameworks with engineered properties for gas separation membranes. Trends in Chemistry, 2023, 5, 446-459.	4.4	5

#	Article	IF	CITATIONS
1621	One-Pot synthesis of flavones catalyzed by an Au-mediated covalent organic framework. Journal of Colloid and Interface Science, 2023, 642, 283-291.	5.0	2
1622	Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. Journal of the American Chemical Society, 2023, 145, 8141-8149.	6.6	40
1623	Covalent Organic Framework with Multi ationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in Allâ€Solidâ€State Batteries. Angewandte Chemie - International Edition, 2023, 62,	7.2	8
1624	Covalent Organic Framework with Multi ationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All‧olid‧tate Batteries. Angewandte Chemie, 2023, 135, .	1.6	3
1625	Dual-Response Photofunctional Covalent Organic Framework for Acid Detection in Various Solutions. Chemosensors, 2023, 11, 214.	1.8	0
1626	Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules, 2023, 28, 3112.	1.7	6
1627	Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth and Design, 2023, 23, 3057-3078.	1.4	9
1628	2D Covalent Organic Framework Membranes for Liquidâ€Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. Advanced Materials, 2024, 36, .	11.1	17
1629	TiO ₂ @COF Nanowire Arrays: A "Filter Amplifier―Heterojunction Strategy to Reverse the Redox Nature. Nano Letters, 2023, 23, 3614-3622.	4.5	8
1630	SO3H-group anchored Covalent Organic Framework for the synthesis of hydroxyl-carbamate in a single step utilizing CO2. New Journal of Chemistry, 0, , .	1.4	0
1631	Experimental Confirmation of a Predicted Porous Hydrogenâ€bonded Organic Framework. Angewandte Chemie, 0, , .	1.6	0
1632	Directional Ionic Bonds. Journal of the American Chemical Society, 0, , .	6.6	2
1633	Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS Nano, 2023, 17, 7584-7594.	7.3	17
1634	A Bipyridyl Covalent Organic Framework with Coordinated Cu(l) for Membrane C ₃ H ₆ /C ₃ H ₈ Separation. Small, 2023, 19, .	5.2	12
1635	Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water. Nature Chemistry, 2023, 15, 841-847.	6.6	37
1636	Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environment International, 2023, 175, 107928.	4.8	25
1637	Unveiling the complexity of spatiotemporal soliton molecules in real time. Nature Communications, 2023, 14, .	5.8	7
1638	On-Surface Synthesis and Applications of 2D Covalent Organic Framework Nanosheets. Electronic Materials, 2023, 4, 49-61.	0.9	1

#	Article	IF	CITATIONS
1639	The synthesis of highly crystalline covalent organic frameworks via the monomer crystal induction for the photocatalytic asymmetric αâ€alkylation of aldehydes. Journal of Polymer Science, 2024, 62, 1621-1628.	2.0	0
1640	Preserving Macroporosity in Type III Porous Liquids. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1641	Investigation of stepwise porosity and perforated fins in finned tube adsorption bed for adsorption refrigeration. Applied Thermal Engineering, 2023, 229, 120587.	3.0	4
1642	PreservingÂMacroporosityÂin Type IIIÂPorous Liquids. Angewandte Chemie, 0, , .	1.6	1
1643	The Role of Superadsorbent Polymers on Covalent Organic Frameworksâ€Based Solid Electrolytes: Investigation of the Ionic Conductivity and Relaxation. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1644	Covalent organic frameworks in heterogeneous catalysis: recent advances and future perspective. Materials Chemistry Frontiers, 2023, 7, 3298-3331.	3.2	16
1645	Aggregation-Induced Emission of a Two-Dimensional Covalent Organic Framework for Molecular Recognition in Quantitative Metrics. ACS Applied Polymer Materials, 2023, 5, 3762-3767.	2.0	3
1646	CRAFTED: An exploratory database of simulated adsorption isotherms of metal-organic frameworks. Scientific Data, 2023, 10, .	2.4	10
1651	Linking Nitrogen-Rich Organic Cages into Isoreticular Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability. , 2023, 5, 1546-1555.		17
1690	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.	6.6	22
1690 1718	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513. Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719.	6.6 1.4	22
1690 1718 1732	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513. Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213.	6.6 1.4 15.6	22 7 17
1690 1718 1732 1762	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719.Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213.Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572.	6.61.415.63.0	22 7 17 1
1690 1718 1732 1762 1773	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719.Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213.Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572.Structural tailoring of covalent organic frameworks with steric effects. Science China Chemistry, 2023, 66, 2977-2985.	 6.6 1.4 15.6 3.0 4.2 	22 7 17 1 0
 1690 1718 1732 1762 1773 1785 	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513. Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213. Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572. Structural tailoring of covalent organic frameworks with steric effects. Science China Chemistry, 2023, 66, 2977-2985. Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. Journal of Applied Electrochemistry, 2024, 54, 215-243.	 6.6 1.4 15.6 3.0 4.2 1.5 	 22 7 17 1 0 2
 1690 1718 1732 1762 1773 1785 1788 	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513. Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213. Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572. Structural tailoring of covalent organic frameworks with steric effects. Science China Chemistry, 2023, 66, 2977-2985. Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. Journal of Applied Electrochemistry, 2024, 54, 215-243. Two-step fabrication of COF membranes for efficient carbon capture. Materials Horizons, 2023, 10, 5016-5021.	 6.6 1.4 15.6 3.0 4.2 1.5 6.4 	22 7 17 1 2 2
 1690 1718 1732 1762 1763 1773 1785 1788 1789 	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513. Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213. Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 5555-5572. Structural tailoring of covalent organic frameworks with steric effects. Science China Chemistry, 2023, 66, 2977-2985. Industrial-scale synthesis and application of covalent organic frameworks in lithium battery technology. Journal of Applied Electrochemistry, 2024, 54, 215-243. Two-step fabrication of COF membranes for efficient carbon capture. Materials Horizons, 2023, 10, 5016-5021. Composite formation of covalent organic framework crystals and sugar alcohols for exploring a new class of heat-storage materials. Materials Horizons, 0, , .	 6.6 1.4 15.6 3.0 4.2 1.5 6.4 6.4 	22 7 17 1 2 2 6

#	Article	IF	CITATIONS
1793	Reticular chemistry within three-dimensional covalent organic frameworks for multiple applications. Journal of Materials Chemistry A, 2023, 11, 20368-20382.	5.2	2
1795	Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomaterials Science, 2023, 11, 6942-6976.	2.6	2
1799	Synthesis of covalent organic framework materials and their application in the field of sensing. Nano Research, 2024, 17, 162-195.	5.8	1
1817	Carbon Nanomaterials for Capacitive Deionization: Heteroatom Doping and Its Functionalities. , 2023, , 23-59.		0
1852	Substituted benzophenone imines for COF synthesis <i>via</i> formal transimination. Chemical Communications, 2023, 59, 13639-13642.	2.2	1
1861	Single-crystal polymers (SCPs): from 1D to 3D architectures. Chemical Society Reviews, 2023, 52, 8165-8193.	18.7	2
1863	Emerging trends in membrane-based wastewater treatment: electrospun nanofibers and reticular porous adsorbents as key components. Environmental Science: Water Research and Technology, 0, , .	1.2	0
1871	Development and Challenges of Electrode Ionomers Used in the Catalyst Layer of Proton-Exchange Membrane Fuel Cells: A Review. Transactions of Tianjin University, 0, , .	3.3	0
1876	Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chemical Science, 2023, 14, 13601-13628.	3.7	3
1884	Expanding the horizons of covalent organic frameworks: sub-stoichiometric synthesis as an emerging toolkit for functional COFs. Journal of Materials Chemistry A, 2023, 11, 26340-26370.	5.2	0
1906	Revolutionizing the structural design and determination of covalent–organic frameworks: principles, methods, and techniques. Chemical Society Reviews, 0, , .	18.7	0
1909	Influence of donor point modifications on the assembly of chalcogen-bonded organic frameworks. Chemical Communications, 0, , .	2.2	0
1911	MOF (UiO-66-NH ₂)@COF (TFP–TABQ) hybrids <i>via</i> on-surface condensation reactions for sustainable energy storage. Chemical Communications, 0, , .	2.2	0
1928	Crystalline porous organic salts. Chemical Society Reviews, 2024, 53, 1495-1513.	18.7	0
1930	Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 2297-2309.	2.4	1
1935	Cyclotriphosphazene-based organic frameworks as third-order nonlinear optical materials. Materials Advances, 2024, 5, 1017-1021.	2.6	0
1949	Stepwise construction of coordinative linkages and dynamic covalent linkages for a porous metal–organic framework. Chemical Communications, 2024, 60, 1488-1491.	2.2	0
1970	Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577.	18.7	0

#	Article	IF	CITATIONS
1992	Crystalline porous materials in perovskite solar cells: a mutually beneficial marriage. Sustainable Energy and Fuels, 2024, 8, 1185-1207.	2.5	0