Ubiquitylation activates a peptidase that promotes clea activating E3 ligases and diverse growth regulatory pro-<i>Arabidopsis</i>

Genes and Development 31, 197-208

DOI: 10.1101/gad.292235.116

Citation Report

#	Article	IF	CITATIONS
1	<i><scp>WIDE AND THICK GRAIN</scp> 1</i> , which encodes an otubainâ€ike protease with deubiquitination activity, influences grain size and shape in rice. Plant Journal, 2017, 91, 849-860.	2.8	146
2	Exiting Already? Molecular Control of Cell-Proliferation Arrest in Leaves: Cutting Edge. Molecular Plant, 2017, 10, 909-911.	3.9	0
4	In Vivo Reporters for Protein Half-Life. Methods in Molecular Biology, 2017, 1669, 387-406.	0.4	10
5	Conditional Modulation of Biological Processes by Low-Temperature Degrons. Methods in Molecular Biology, 2017, 1669, 407-416.	0.4	12
6	BIG BROTHER Uncouples Cell Proliferation from Elongation in the Arabidopsis Primary Root. Plant and Cell Physiology, 2017, 58, 1519-1527.	1.5	11
7	Identification of miRNAs that regulate silique development in Brassica napus. Plant Science, 2018, 269, 106-117.	1.7	27
8	A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 493-504.e6.	4.5	161
9	Ubiquitylation in plants: signaling hub for the integration of environmental signals. Journal of Experimental Botany, 2018, 69, 4511-4527.	2.4	64
10	Control of grain size in rice. Plant Reproduction, 2018, 31, 237-251.	1.3	188
11	Realâ€time detection of Nâ€end ruleâ€mediated ubiquitination via fluorescently labeled substrate probes. New Phytologist, 2018, 217, 613-624.	3.5	32
12	Overâ€expression of mutated <i>Zm<scp>DA</scp>1</i> or <i>Zm<scp>DAR</scp>1</i> gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnology Journal, 2018, 16, 234-244.	4.1	57
13	Repertoire of plant RING E3 ubiquitin ligases revisited: New groups counting gene families and single genes. PLoS ONE, 2018, 13, e0203442.	1.1	26
14	Control of Grain Size and Weight by the OsMKKK10-OsMKK4-OsMAPK6 Signaling Pathway in Rice. Molecular Plant, 2018, 11, 860-873.	3.9	168
15	N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses. Journal of Experimental Botany, 2018, 69, 4555-4568.	2.4	73
16	OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 580.	1.7	30
17	Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biology, 2018, 18, 22.	1.6	29
18	Origins of peptidases. Biochimie, 2019, 166, 4-18.	1.3	30
19	Variation in Expression of the HECT E3 Ligase <i>UPL3</i> Modulates LEC2 Levels, Seed Size, and Crop Yields in <i>Brassica napus</i> Plant Cell, 2019, 31, 2370-2385.	3.1	38

#	ARTICLE	IF	Citations
20	Protein partners of plant ubiquitin-specific proteases (UBPs). Plant Physiology and Biochemistry, 2019, 145, 227-236.	2.8	13
21	Modulating Protein Stability to Switch Toxic Protein Function On and Off in Living Cells. Plant Physiology, 2019, 179, 929-942.	2.3	16
22	Transcriptional Repression of the APC/C Activator Genes <i>CCS52A1/A2</i> by the Mediator Complex Subunit MED16 Controls Endoreduplication and Cell Growth in Arabidopsis. Plant Cell, 2019, 31, 1899-1912.	3.1	32
23	Conditional Protein Function via N-Degron Pathway–Mediated Proteostasis in Stress Physiology. Annual Review of Plant Biology, 2019, 70, 83-117.	8.6	53
24	New beginnings and new ends: methods for large-scale characterization of protein termini and their use in plant biology. Journal of Experimental Botany, 2019, 70, 2021-2038.	2.4	37
25	Molecular Networks of Seed Size Control in Plants. Annual Review of Plant Biology, 2019, 70, 435-463.	8.6	336
26	Caught green-handed: methods for in vivo detection and visualization of protease activity. Journal of Experimental Botany, 2019, 70, 2125-2141.	2.4	7
27	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	8.6	158
28	The Arabidopsis thaliana Nâ€recognin E3 ligase PROTEOLYSIS1 influences the immune response. Plant Direct, 2019, 3, e00194.	0.8	12
29	Differential N-end Rule Degradation of RIN4/NOI Fragments Generated by the AvrRpt2 Effector Protease. Plant Physiology, 2019, 180, 2272-2289.	2.3	16
30	A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358.	4.1	122
31	The plant Nâ€degron pathways of ubiquitinâ€mediated proteolysis. Journal of Integrative Plant Biology, 2020, 62, 70-89.	4.1	51
32	<i>TaDA1</i> , a conserved negative regulator of kernel size, has an additive effect with <i>TaGW2</i> in common wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2020, 18, 1330-1342.	4.1	90
33	Molecular networks regulating cell division during Arabidopsis leaf growth. Journal of Experimental Botany, 2020, 71, 2365-2378.	2.4	83
34	A simple and efficient <i>Agrobacterium</i> â€mediated transient expression system to dissect molecular processes in <i>Brassica rapa</i> and <i>Brassica napus</i> . Plant Direct, 2020, 4, e00237.	0.8	6
35	The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 2020, 295, 13940-13955.	1.6	32
36	Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Scientific Reports, 2020, 10, 19637.	1.6	12
37	RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany, 2020, 71, 5377-5388.	2.4	43

#	Article	IF	CITATIONS
38	Quantitative Trait Loci for Seed Size Variation in Cucurbits $\hat{a} \in \text{``A Review. Frontiers in Plant Science,}$ 2020, 11, 304.	1.7	30
39	Control of Plant Branching by the CUC2/CUC3-DA1-UBP15 Regulatory Module. Plant Cell, 2020, 32, 1919-1932.	3.1	27
40	Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (Oryza sativa L.). Plant Molecular Biology, 2021, 105, 405-417.	2.0	10
41	The F-box protein MIO1/SLB1 regulates organ size and leaf movement in <i>Medicago truncatula </i> Journal of Experimental Botany, 2021, 72, 2995-3011.	2.4	20
42	Post-translational modifications regulate the activity of the growth-restricting protease DA1. Journal of Experimental Botany, 2021, 72, 3352-3366.	2.4	24
43	From genes to networks: The genetic control of leaf development. Journal of Integrative Plant Biology, 2021, 63, 1181-1196.	4.1	36
44	Lectin receptor-like kinase LecRK-VIII.2 is a missing link in MAPK signaling-mediated yield control. Plant Physiology, 2021, 187, 303-320.	2.3	19
45	Genetic regulators of leaf size in Brassica crops. Horticulture Research, 2021, 8, 91.	2.9	23
46	AINTEGUMENTA and AINTEGUMENTA-LIKE6 directly regulate floral homeotic, growth, and vascular development genes in young Arabidopsis flowers. Journal of Experimental Botany, 2021, 72, 5478-5493.	2.4	21
47	The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell, 2021, 33, 3331-3347.	3.1	38
48	Dissection of Allelic Variation Underlying Floral and Fruit Traits in Flare Tree Peony (Paeonia rockii) Using Association Mapping. Frontiers in Genetics, 2021, 12, 664814.	1.1	0
49	The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14, 1266-1280.	3.9	70
50	Life and death of proteins after protease cleavage: protein degradation by the Nâ€end rule pathway. New Phytologist, 2018, 218, 929-935.	3.5	77
51	UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. ELife, 2020, 9, .	2.8	30
52	TRAF proteins as key regulators of plant development and stress responses. Journal of Integrative Plant Biology, 2022, 64, 431-448.	4.1	12
58	Plant E3 Ligases as Versatile Tools for Novel Drug Development and Plant Bioengineering. RSC Drug Discovery Series, 2020, , 212-233.	0.2	2
60	The phosphoproteomic and interactomic landscape of qGL3/OsPPKL1â€mediated brassinosteroid signaling in rice. Plant Journal, 2022, 109, 1048-1063.	2.8	8
61	Plant Proteolysis in Development: Insights and Functions. Progress in Botany Fortschritte Der Botanik, 2021, , .	0.1	0

#	ARTICLE	IF	CITATIONS
62	The cell cycle arrested results in the premature advent of apical leaflets development cessation in Zygophyllum xanthoxylon. Trees - Structure and Function, 2023, 37, 223-237.	0.9	1
63	Ectopic expression ofÂGmRNF1aÂencoding a soybean E3 ubiquitin ligase affects Arabidopsis silique development and dehiscence. Planta, 2022, 255, 55.	1.6	2
64	A sweet cherry AGAMOUS-LIKE transcription factor PavAGL15 affects fruit size by directly repressing the PavCYP78A9 expression. Scientia Horticulturae, 2022, 297, 110947.	1.7	5
65	CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. International Journal of Molecular Sciences, 2022, 23, 2347.	1.8	6
67	Genome-Wide Analysis of the GW2-Like Genes in Gossypium and Functional Characterization of the Seed Size Effect of GhGW2-2D. Frontiers in Plant Science, 2022, 13, 860922.	1.7	4
69	Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. Plant Science, 2022, 319, 111275.	1.7	5
70	Modulation of the DA1 pathway in maize shows that translatability of information from Arabidopsis to crops is complex. Plant Science, 2022, 321, 111295.	1.7	7
88	My favourite flowering image: â€̃giant' Arabidopsis flowers. Journal of Experimental Botany, 2022, 73, 3836-3839.	2.4	2
89	Deubiquitination of BES1 by UBP12/UBP13 promotes brassinosteroid signaling and plant growth. Plant Communications, 2022, 3, 100348.	3.6	16
90	The emerging roles of deubiquitinases in plant proteostasis. Essays in Biochemistry, 2022, 66, 147-154.	2.1	7
91	Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in <i>Populus</i> . Plant Cell, 2022, 34, 3364-3382.	3.1	16
93	Emerging roles of the ubiquitin–proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. Plant Cell Reports, 2022, 41, 1805-1826.	2.8	9
94	ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. Plant Cell, 2022, 34, 3773-3789.	3.1	12
95	The Integrated LIM-Peptidase Domain of the CSA1/CHS3 Paired Immune Receptor Detects Changes in DA1 Family Peptidase Inhibitors in Arabidopsis. SSRN Electronic Journal, 0, , .	0.4	0
96	Comprehensive In Silico Characterization and Expression Pro-Filing of DA1/DAR Family Genes in Brassica rapa. Genes, 2022, 13, 1577.	1.0	3
97	Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
98	Detection of new candidate genes controlling seed weight by integrating gene coexpression analysis and QTL mapping in Brassica napus L Crop Journal, 2023, 11, 842-851.	2.3	2
99	gw2.1, a new allele of GW2, improves grain weight and grain yield in rice. Plant Science, 2022, 325, 111495.	1.7	4

#	Article	IF	CITATIONS
100	The soybean ubiquitinâ€proteasome system: Current knowledge and future perspective. Plant Genome, 0,	1.6	2
101	Using CRL3 ^{BPM} E3 ligase substrate recognition sites as tools to impact plant development and stress tolerance in <scp><i>Arabidopsis thaliana</i></scp> . Plant Direct, 2022, 6, .	0.8	2
102	Mechanisms controlling plant proteases and their substrates. Cell Death and Differentiation, 2023, 30, 1047-1058.	5.0	1
104	Genetic Localization and Homologous Genes Mining for Barley Grain Size. International Journal of Molecular Sciences, 2023, 24, 4932.	1.8	3
105	Physiological Roles and Mechanisms of Action of Class I TCP Transcription Factors. International Journal of Molecular Sciences, 2023, 24, 5437.	1.8	10