Discrimination of whisky brands and counterfeit identi and multivariate data analysis

Food Chemistry 229, 142-151 DOI: 10.1016/j.foodchem.2017.02.024

Citation Report

#	Article	IF	CITATIONS
1	Forensic discrimination between authentic and counterfeit perfumes using paper spray mass spectrometry and multivariate supervised classification. Analytical Methods, 2017, 9, 4979-4987.	1.3	16
2	Paper spray mass spectrometry and chemometric tools for a fast and reliable identification of counterfeit blended Scottish whiskies. Food Chemistry, 2017, 237, 1058-1064.	4.2	43
3	Determination of the country of origin of true mahogany (<i>Swietenia macrophylla</i> King) wood in five Latin American countries using handheld NIR devices and multivariate data analysis. Holzforschung, 2018, 72, 521-530.	0.9	26
4	Paper spray ionization mass spectrometry allied to chemometric tools for quantification of whisky adulteration with additions of sugarcane spirit. Analytical Methods, 2018, 10, 1952-1960.	1.3	28
5	Monitoring the Oxidative Stability of Monovarietal Extra Virgin Olive Oils by UV–Vis Spectroscopy and MCR–ALS. Food Analytical Methods, 2018, 11, 1936-1943.	1.3	26
6	Unfrazzled by Fizziness: Identification of Beers Using Attenuated Total Reflectance Mid-infrared Spectroscopy and Multivariate Analysis. Food Analytical Methods, 2018, 11, 2360-2367.	1.3	13
7	A Hand-Held Optoelectronic Nose for the Identification of Liquors. ACS Sensors, 2018, 3, 121-127.	4.0	67
8	A novel approach to assess the quality and authenticity of Scotch Whisky based on gas chromatography coupled to high resolution mass spectrometry. Analytica Chimica Acta, 2018, 1042, 60-70.	2.6	59
9	Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. Royal Society Open Science, 2018, 5, 172146.	1.1	22
10	Detection of Analgesics and Sedation Drugs in Whiskey Using Electrochemical Paperâ€based Analytical Devices. Electroanalysis, 2018, 30, 2250-2257.	1.5	54
11	Potential field-deployable NIRS identification of seven Dalbergia species listed by CITES. Wood Science and Technology, 2018, 52, 1411-1427.	1.4	38
12	The application of FT-IR spectroscopy in discrimination of differently originated and aged whisky. European Food Research and Technology, 2018, 244, 2019-2025.	1.6	14
13	Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst, The, 2018, 143, 3526-3539.	1.7	434
14	Detection of adulterants in grape nectars by attenuated total reflectance Fourier-transform mid-infrared spectroscopy and multivariate classification strategies. Food Chemistry, 2018, 266, 254-261.	4.2	37
15	A prediction method for intervals of trace ions concentration in zinc sulfate solution based on UV-vis spectroscopy. Optik, 2019, 194, 163065.	1.4	5
16	Classification of Grain Maize (Zea mays L.) from Different Geographical Origins with FTIR Spectroscopy—a Suitable Analytical Tool for Feed Authentication?. Food Analytical Methods, 2019, 12, 2172-2184.	1.3	26
17	Influence of the Scanning Temperature on the Classification of Whisky Samples Analysed by UV-VIS Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 3254.	1.3	7
18	A pretreatment method based on wavelet transform for quantitative analysis of UV–vis spectroscopy. Optik, 2019, 182, 786-792.	1.4	15

#	Article	IF	CITATIONS
19	Determination of trace ions of cobalt and copper by UV–vis spectrometry in purification process of zinc hydrometallurgy. Optik, 2019, 184, 227-233.	1.4	12
20	Raman spectroscopy and discriminant analysis applied to the detection of frauds in bovine meat by the addition of salts and carrageenan. Microchemical Journal, 2019, 147, 582-589.	2.3	26
21	Comparison of different fluorescence techniques in brandy classification by region of production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 216, 125-135.	2.0	14
22	A new approach in voltammetric profiling of wines and whiskies based on a useful faradaic signal component. Analytical Methods, 2019, 11, 5984-5996.	1.3	4
23	A novel method for simultaneous determination of zinc, nickel, cobalt and copper based on UV–vis spectrometry. Optik, 2019, 182, 58-64.	1.4	32
24	Discrimination of whiskies using an "add-a-fluorophore―fluorescent fingerprinting strategy. Microchemical Journal, 2019, 145, 397-405.	2.3	10
25	Redox titration on foldable paper-based analytical devices for the visual determination of alcohol content in whiskey samples. Talanta, 2019, 194, 363-369.	2.9	36
26	Assessment of Japanese Awamori Spirits Using UV–VIS Spectroscopy. Food Analytical Methods, 2020, 13, 726-734.	1.3	9
27	Chemometrics in Forensics. , 2020, , 113-148.		1
28	Colorimetric Ethanol Indicator Based on Instantaneous, Localized Wetting of a Photonic Crystal. ACS Applied Materials & Interfaces, 2020, 12, 1924-1929.	4.0	26
29	The influence of TiO ₂ film thickness in Dye-Sensitized Solar Cells (DSSC) performance based on TiO ₂ /Ag@TiO ₂ -ZnO. Journal of Physics: Conference Series, 2020, 1572, 012079.	0.3	3
30	Quantification of whisky congeners by ¹ H NMR spectroscopy. Analytical Science Advances, 2020, 1, 132-140.	1.2	5
31	Multi-Objective Optimized Overlapping Peak Separation Algorithm for Simultaneous Detection of Copper and Cobalt by Ultraviolet-Visible Spectroscopy. IEEE Access, 2020, 8, 130896-130905.	2.6	1
32	Development of a Miniature Spectrometer Based on Ultraviolet-Visible Spectroscopy for Quantitative Analysis of Copper and Cobalt. IEEE Access, 2020, 8, 131239-131247.	2.6	1
33	A Brief History of Whiskey Adulteration and the Role of Spectroscopy Combined with Chemometrics in the Detection of Modern Whiskey Fraud. Beverages, 2020, 6, 49.	1.3	15
34	A soft discriminant model based on mid-infrared spectra of bovine meat purges to detect economic motivated adulteration by the addition of non-meat ingredients. Food Analytical Methods, 2020, 13, 1699-1709.	1.3	15
35	Determination of the alcoholic content in whiskeys using micellar electrokinetic chromatography on microchips. Food Chemistry, 2020, 329, 127175.	4.2	7
36	Analysis of Vegetable Oil from Different Suppliers by Chemometric Techniques to Ensure Correct Classification of Oil Sources to Deal with Counterfeiting. Food Analytical Methods, <u>2020, 13, 1138-1147.</u>	1.3	10

CITATION REPORT

#	Article	IF	CITATIONS
37	Signal Enhancement Algorithm for On-Line Detection of Multi-Metal Ions Based on Ultraviolet-visible Spectroscopy. IEEE Access, 2020, 8, 16000-16008.	2.6	8
38	Insights into the role of yeasts inÂalcoholic beverages. , 2021, , 21-52.		1
39	Recent trends in quality control, discrimination and authentication of alcoholic beverages using nondestructive instrumental techniques. Trends in Food Science and Technology, 2021, 107, 80-113.	7.8	39
40	Circularly polarized lanthanide luminescence for advanced security inks. Nature Reviews Chemistry, 2021, 5, 109-124.	13.8	234
41	Characterisation of single malt Scotch Whisky using low powered ultrasound and UVâ€Visible spectroscopy. Journal of the Institute of Brewing, 2021, 127, 49-58.	0.8	4
42	Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors and Actuators B: Chemical, 2021, 329, 129135.	4.0	70
43	Identification of Counterfeit Vodka by Synchronous Fluorescence Spectroscopy and Chemometric Analysis. Analytical Letters, 2021, 54, 1522-1532.	1.0	3
44	UV-visible and fluorescence spectroscopy for forensic samples. , 2021, , 37-54.		0
45	Introduction to food fraud. , 2021, , 1-30.		1
46	Authenticity Identification of Copaiba Oil Using a Handheld NIR Spectrometer and DD-SIMCA. Food Analytical Methods, 2021, 14, 865-872.	1.3	13
47	Identification of mahogany sliced veneer using handheld near-infrared spectroscopy device andÂmultivariate data analysis. IAWA Journal, 2021, 42, 336-347.	0.5	8
48	Fraud Detection of Herbal Medicines Based on Modern Analytical Technologies Combine with Chemometrics Approach: A Review. Critical Reviews in Analytical Chemistry, 2022, 52, 1606-1623.	1.8	19
49	Absorbance Spectroscopy of Heads, Hearts and Tails Fractions in Fruit Spirits. Beverages, 2021, 7, 21.	1.3	1
50	Dielectric spectroscopy of Baijiu over 2–20ÂGHz using an openâ€ended coaxial probe. Journal of Food Science, 2021, 86, 2513-2524.	1.5	18
51	Quantitative Analysis of Polymetallic Ions in Industrial Wastewater Based on Ultraviolet-Visible Spectroscopy. Sustainability, 2021, 13, 7907.	1.6	3
52	Photoluminescent Recognition of Strong Alcoholic Beverages with Carbon Nanoparticles. ACS Omega, 2021, 6, 18802-18810.	1.6	8
53	Simultaneous determination of polymetallic ions by ratio second derivative ultraviolet spectrophotometry. Optik, 2021, 242, 167315.	1.4	1
54	Correction of the moisture variation in wood NIR spectra for species identification using EPO and soft PLS2-DA. Microchemical Journal, 2021, 171, 106839.	2.3	8

#	Article	IF	Citations
55	PLS-DA and data fusion of visible Reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120384.	2.0	18
56	Sources of variation in bourbon whiskey barrels: a review. Journal of the Institute of Brewing, 2021, 127, 210-223.	0.8	11
57	Chemometrics in analytical chemistry – an overview of applications from 2014 to 2018. Ecletica Quimica, 2019, 44, 11.	0.2	18
58	An overview of alcoholic beverages discrimination and a study on identification of bland Chinese liquors by ¹³ C-NMR and ¹ H-NMR spectra. Applied Spectroscopy Reviews, 2023, 58, 252-270.	3.4	2
60	Chemometrics in Bioanalytical Chemistry. , 2022, , 497-541.		1
61	Raman spectroscopy of fingerprints and chemometric analysis for forensic sex determination in humans. Forensic Chemistry, 2022, 27, 100395.	1.7	8
62	Discrimination of white automotive paint samples using ATR-FTIR and PLS-DA for forensic purposes. Talanta, 2022, 240, 123154.	2.9	12
63	Authentication of wine and other alcohol-based beverages—Future global scenario. , 2022, , 669-695.		2
65	Heterogeneity classification based on hyperspectral transmission imaging and multivariate data analysis. Infrared Physics and Technology, 2022, , 104180.	1.3	2
66	AlEgen applications in rapid and portable sensing of foodstuff hazards. , 2022, , 617-637.		1
67	Portable Analytical Platforms Associated with Chemometrics for Rapid Screening of Whisky Adulteration. Food Analytical Methods, 2022, 15, 2451-2461.	1.3	3
68	Stamping method based on 3D printing and disposable napkin: Cheap production of paper analytical devices for alcohol determination in beverages aiming forensics and food control. Microchemical Journal, 2022, 180, 107604.	2.3	4
69	Identification of liquors from the same brand based on ultraviolet, near-infrared and fluorescence spectroscopy combined with chemometrics. Food Chemistry, 2023, 400, 134064.	4.2	8
70	Spectral analysis of food materials. , 2022, , 119-147.		1
71	Carbon dots in food analysis. , 2023, , 293-303.		0
73	Profiling Selected Volatiles in Whiskey by Fizzy Extraction Time-of-Flight Mass Spectrometry: Correlation with Perceived Quality and Age. ACS Food Science & Technology, 2022, 2, 1622-1630.	1.3	0
74	Portable and low-cost hologram verification module using a snapshot-based hyperspectral imaging algorithm. Scientific Reports, 2022, 12, .	1.6	12
75	Surface-enhanced Raman spectroscopy for food quality and safety monitoring. , 2023, , 31-54.		0

CITATION REPORT

#	Article	IF	CITATIONS
76	Portable colorimetric photonic indicator for ethanol concentration sensing. Chemical Engineering Journal, 2023, 457, 141184.	6.6	14
77	Î′13C-Ethanol as a Potential Exclusionary Criterium for the Authentication of Scotch Whiskies in Taiwan: Normal vs. 3-Parameter Lognormal Distributions of Î′13C-Ethanol Found in Single Malt and Blended Scotch Whiskies. Beverages, 2023, 9, 13.	1.3	1
78	Neural network assisted electrochemical fingerprint method for tea recognition. Journal of Food Measurement and Characterization, 2023, 17, 3809-3814.	1.6	4