Ultralight scalars as cosmological dark matter

Physical Review D 95, DOI: 10.1103/physrevd.95.043541

Citation Report

#	Article	IF	CITATIONS
1	Light dark matter through assisted annihilation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 045-045.	1.9	36
2	Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 770, 186-192.	1.5	23
3	Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. European Physical Journal Plus, 2017, 132, 1.	1.2	41
4	Comparison between the Logotropic and $\hat{\nu}CDM$ models at the cosmological scale. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 018-018.	1.9	22
5	Fuzzy Dark Matter from Infrared Confining Dynamics. Physical Review Letters, 2017, 118, 141801.	2.9	25
6	Cosmological signatures of ultralight dark matter with an axionlike potential. Physical Review D, 2017, 96, .	1.6	36
7	Search for bottom squarks in the baryon-number violating MSSM. Physical Review D, 2017, 96, .	1.6	7
8	Scalar field dark matter in hybrid approach. Physical Review D, 2017, 96, .	1.6	11
9	Cosmological perturbations of extreme axion in the radiation era. Physical Review D, 2017, 96, .	1.6	30
10	Wilsonian dark matter in string derived Zâ \in 2 model. Physical Review D, 2017, 96, .	1.6	8
11	Gravitational wave searches for ultralight bosons with LIGO and LISA. Physical Review D, 2017, 96, .	1.6	190
12	Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. Physical Review Letters, 2017, 119, 131101.	2.9	151
13	Primordial black holes from single field models of inflation. Physics of the Dark Universe, 2017, 18, 47-54.	1.8	345
14	Supergravity models with 50–100ÂTeV scalars, supersymmetry discovery at the LHC, and gravitino decay constraints. Physical Review D, 2017, 96, .	1.6	10
15	Damping of gravitational waves by matter. Physical Review D, 2017, 96, .	1.6	31
16	Towards an analytic construction of the wavefunction of boson stars. Physical Review D, 2017, 96, .	1.6	18
17	Scalar absorption by charged rotating black holes. Physical Review D, 2017, 96, .	1.6	15
18	Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order. Astrophysical Journal, 2017, 846, 1.	1.6	14

#	Article	IF	CITATIONS
19	Bose-Einstein-condensed scalar field dark matter and the gravitational wave background from inflation: New cosmological constraints and its detectability by LIGO. Physical Review D, 2017, 96, .	1.6	43
20	Tests for the existence of black holes through gravitational wave echoes. Nature Astronomy, 2017, 1, 586-591.	4.2	274
21	Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model. Physical Review D, 2017, 96, .	1.6	24
22	Collapse threshold for a cosmological Klein-Gordon field. Physical Review D, 2017, 96, .	1.6	24
23	Dark stars: Gravitational and electromagnetic observables. Physical Review D, 2017, 96, .	1.6	49
24	New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>α</mml:mi></mml:math> forest data. Physical Review D, 2017, 96, .	1.6	360
25	First Constraints on Fuzzy Dark Matter from Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi> Forest Data and Hydrodynamical Simulations. Physical Review Letters, 2017, 119, 031302.</mml:math 	2.9	310
26	Light axion-like dark matter must be present during inflation. Physical Review D, 2017, 96, .	1.6	45
27	Self-gravitating black hole scalar wigs. Physical Review D, 2017, 96, .	1.6	15
28	Lyman- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>α</mml:mi></mml:math> constraints on ultralight scalar dark matter: Implications for the early and late universe. Physical Review D, 2017, 96, .	1.6	145
29	Spectrum of the axion dark sector. Physical Review D, 2017, 96, .	1.6	36
30	Warm dark matter and the ionization history of the Universe. Physical Review D, 2017, 96, .	1.6	29
31	"Non-cold―dark matter at small scales: a general approach. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 046-046.	1.9	100
32	Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing. Physical Review Letters, 2017, 119, 221103.	2.9	54
33	Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters. Astrophysical Journal, 2017, 850, 49.	1.6	44
34	Orbital fingerprints of ultralight scalar fields around black holes. Physical Review D, 2017, 96, .	1.6	46
35	Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields. Physical Review X, 2017, 7, .	2.8	129
36	Sourcing dark matter and dark energy from α-attractors. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 045-045.	1.9	21

		CITATION RE	PORT	
#	Article		IF	CITATIONS
37	Ultralight Dark Matter Resonates with Binary Pulsars. Physical Review Letters, 2017, 11	8, 261102.	2.9	80
38	The effects of the small-scale behaviour of dark matter power spectrum on CMB spectra Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	al distortion.	1.9	11
39	Universe without dark energy: Cosmic acceleration from dark matter-baryon interactior Review D, 2017, 95, .	ıs. Physical	1.6	21
40	Derivation of a generalized Schrödinger equation from the theory of scale relativity. Eu Physical Journal Plus, 2017, 132, 1.	ıropean	1.2	21
41	Constraining black holes with light boson hair and boson stars using epicyclic frequenc quasiperiodic oscillations. Physical Review D, 2017, 95, .	es and	1.6	20
42	Hints against the cold and collisionless nature of dark matter from the galaxy velocity for Monthly Notices of the Royal Astronomical Society, 2017, 470, 1542-1558.	unction.	1.6	42
43	Cosmology and time dependent parameters induced by a misaligned light scalar. Physic 2017, 95, .	al Review D,	1.6	19
44	Solving the Vlasov equation in two spatial dimensions with the Schrödinger method. F D, 2017, 96, .	hysical Review	1.6	35
45	Caustic free completion of pressureless perfect fluid and k-essence. Journal of High Ene 2017, 2017, 1.	rgy Physics,	1.6	32
46	Modified Schrodinger-Poisson equation: Quantum polytropes. Physical Review D, 2017	96, .	1.6	2
47	Evolution of linear wave dark matter perturbations in the radiation-dominated era. Phys 2017, 96, .	ical Review D,	1.6	25
48	Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. Monthly the Royal Astronomical Society, 2017, 472, 1346-1360.	Notices of	1.6	77
49	The globular cluster–dark matter halo connection. Monthly Notices of the Royal Astro Society, 2017, 472, 3120-3130.	onomical	1.6	57
50	Stau coannihilation, compressed spectrum, and SUSY discovery potential at the LHC. P D, 2017, 95, .	nysical Review	1.6	16
51	The Schrödinger–Poisson equations as the large-N limit of the Newtonian N-body sy to the large scale dark matter dynamics. European Physical Journal C, 2017, 77, 1.	stem: applications	1.4	4
52	Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and And Astrophysical Journal, 2017, 844, 64.	romeda XXV.	1.6	31
53	Constraints on dark matter scenarios from measurements of the galaxy luminosity func redshifts. Physical Review D, 2017, 95, .	tion at high	1.6	83
54	A stronger case for superunification post Higgs boson discovery. Physica Scripta, 2017,	92, 124005.	1.2	3

#	Article	IF	CITATIONS
55	Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores. Physical Review D, 2017, 95, .	1.6	5
56	Ultralight axion in supersymmetry and strings and cosmology at small scales. Physical Review D, 2017, 96, .	1.6	28
57	Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4606-4614.	1.6	183
58	Galaxy formation with BECDM – I. Turbulence and relaxation of idealized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4559-4570.	1.6	208
59	Dark Energy, QCD Axion, and Trans-Planckian-Inflaton Decay Constant. Universe, 2017, 3, 68.	0.9	1
60	Coleman–Weinberg symmetry breaking in <i>SU</i> (8) induced by a third rank antisymmetric tensor scalar field II: the fermion spectrum. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 295401.	0.7	2
61	Galaxy clusters in the context of superfluid dark matter. Astronomy and Astrophysics, 2017, 607, A108.	2.1	35
62	On the possibility that ultra-light boson haloes host and form supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3257-3272.	1.6	16
63	Gravitational self-interactions of a degenerate quantum scalar field. Physical Review D, 2018, 97, .	1.6	14
00			
64	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, .	1.6	66
		1.6 1.6	66 45
64	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest.		
64 65	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest. Astrophysical Journal, 2018, 852, 22.	1.6	45
64 65 66	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest. Astrophysical Journal, 2018, 852, 22. Tidal disruption of fuzzy dark matter subhalo cores. Physical Review D, 2018, 97, . Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature,	1.6 1.6	45 50
64 65 66	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest. Astrophysical Journal, 2018, 852, 22. Tidal disruption of fuzzy dark matter subhalo cores. Physical Review D, 2018, 97, . Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 2018, 555, 71-74. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs. Monthly Notices	1.6 1.6 13.7	45 50 418
 64 65 66 67 68 	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest. Astrophysical Journal, 2018, 852, 22. Tidal disruption of fuzzy dark matter subhalo cores. Physical Review D, 2018, 97, . Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 2018, 555, 71-74. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2-11. Spinning boson stars and hairy black holes with nonminimal coupling. International Journal of	1.6 1.6 13.7 1.6	45 50 418 18
 64 65 66 67 68 69 	Spin precession experiments for light axionic dark matter. Physical Review D, 2018, 97, . A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyl± Forest. Astrophysical Journal, 2018, 852, 22. Tidal disruption of fuzzy dark matter subhalo cores. Physical Review D, 2018, 97, . Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature, 2018, 555, 71-74. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2-11. Spinning boson stars and hairy black holes with nonminimal coupling. International Journal of Modern Physics D, 2018, 27, 1843009. Cold light dark matter in extended seesaw models. Journal of Cosmology and Astroparticle Physics,	1.6 1.6 13.7 1.6 0.9	45 50 418 18 13

ARTICLE IF CITATIONS # Covariant conserved currents for scalar-tensor Horndeski theory. Journal of Mathematical Physics, 73 0.5 7 2018, 59, 042501. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate. Physical Review D, 2018, 74 1.6 75 Fuzzy dark matter and nonstandard neutrino interactions. Physical Review D, 2018, 97, . 1.6 55 Impact of ultralight axion self-interactions on the large scale structure of the Universe. Physical Review D, 2018, 97, . Halo abundance and assembly history with extreme-axion wave dark matter at <i>z</i> a‰¥ 4. Monthly 77 1.2 16 Notices of the Royal Astronomical Society: Letters, 2018, 473, L36-L40. Condensate of massive graviton and dark matter. Physical Review D, 2018, 97, . 1.6 Understanding caustic crossings in giant arcs: Characteristic scales, event rates, and constraints on 79 1.6 121 compact dark matter. Physical Review D, 2018, 97, . Oscillating spin-2 dark matter. Physical Review D, 2018, 97, . 1.6 46 81 Primordial gravitational waves amplification from causal fluids. Physical Review D, 2018, 97, . 9 1.6 Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations. 1.6 Astrophysical Journal, 2018, 853, 51. Gravitational collapse in the SchrĶdinger-Poisson system. Journal of Cosmology and Astroparticle 83 1.9 16 Physics, 2018, 2018, 009-009. Power spectrum of dark matter substructure in strong gravitational lenses. Physical Review D, 2018, 1.6 34 Light scalar dark matter at neutrino oscillation experiments. Journal of High Energy Physics, 2018, 85 1.6 19 2018, 1. Detection of low tension cosmic superstrings. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 002-002. SchrĶdinger-Poisson–Vlasov-Poisson correspondence. Physical Review D, 2018, 97, . 87 101 1.6 Quantum gravity fluctuations flatten the Planck-scale Higgs potential. Physical Review D, 2018, 97, . 59 Constraining the mass of dark photons and axion-like particles through black-hole superradiance. 89 1.9 156 Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043. Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 038-038.

#	Article	IF	CITATIONS
91	Hubble Space Telescope Wide Field Camera 3 Identifies an r _p Â=Â1 Kpc Dual Active Galactic Nucleus in the Minor Galaxy Merger SDSS J0924+0510 at zÂ=Â0.1495 ^{â^—} . Astrophysical Journal, 2018, 862, 29.	1.6	22
92	Probing Dark Matter Subhalos in Galaxy Clusters Using Highly Magnified Stars. Astrophysical Journal, 2018, 867, 24.	1.6	23
93	How do stars affect Ï^DM haloes?. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2686-2699.	1.6	27
94	On the Equilibrium State of a Gravitating Bose–Einstein Condensate. Journal of Experimental and Theoretical Physics, 2018, 127, 889-902.	0.2	6
95	Minimum star-forming halo mass in axion cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L69-L73.	1.2	9
96	A general approach for testing non-cold dark matter at small cosmological scales. Journal of Physics: Conference Series, 2018, 956, 012005.	0.3	6
97	Instability of the Proca field on Kerr spacetime. Physical Review D, 2018, 98, .	1.6	53
98	Finding closure: approximating Vlasov-Poisson using finitely generated cumulants. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 030-030.	1.9	12
99	Detecting lensing-induced diffraction in astrophysical gravitational waves. Physical Review D, 2018, 98, .	1.6	72
100	Constraining noncold dark matter models with the global 21-cm signal. Physical Review D, 2018, 98, .	1.6	66
101	Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Physical Review D, 2018, 98, .	1.6	44
102	Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the MilkyAWay are Consistent with Cold Dark Matter Predictions. Physical Review Letters, 2018, 121, 211302.	2.9	141
103	Prethermalization production of dark matter. Physical Review D, 2018, 98, .	1.6	66
104	The Importance of Quantum Pressure of Fuzzy Dark Matter on Lyα Forest. Astrophysical Journal, 2018, 863, 73.	1.6	52
105	Simulating the Cosmic Dawn With Enzo. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	4
106	Axion star collisions with black holes and neutron stars in full 3D numerical relativity. Physical Review D, 2018, 98, .	1.6	38
107	Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Physical Review D, 2018, 98, .	1.6	72
108	New orbitals probes of ultra-light dark matter. International Journal of Modern Physics A, 2018, 33, 1845018.	0.5	0

#	Article	IF	Citations
109	Naturalness, the hyperbolic branch, and prospects for the observation of charged Higgs bosons at high luminosity LHC and 27ÂTeV LHC. Physical Review D, 2018, 98, .	1.6	15
110	Cosmological imprints of string axions in plateau. European Physical Journal C, 2018, 78, 1.	1.4	24
111	Decaying warm dark matter and structure formation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 026-026.	1.9	11
112	Probing the nature of dark matter through the metal enrichment of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2154-2163.	1.6	6
113	Dark glueballs and their ultralight axions. Physical Review D, 2018, 98, .	1.6	13
114	Effects of ultra-light dark matter on the gravitational quantum well. International Journal of Modern Physics D, 2018, 27, 1850098.	0.9	0
115	Implications of a prereionization 21-cm absorption signal for fuzzy dark matter. Physical Review D, 2018, 98, .	1.6	42
116	First star formation in ultralight particle dark matter cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L6-L10.	1.2	21
117	Phase transitions between dilute and dense axion stars. Physical Review D, 2018, 98, .	1.6	73
118	Electromagnetic waves propagating in the string axiverse. Progress of Theoretical and Experimental Physics, 2018, 2018, .	1.8	13
119	Exploring the string axiverse and parity violation in gravity with gravitational waves. International Journal of Modern Physics D, 2018, 27, 1850096.	0.9	34
120	Expansion in higher harmonics of boson stars using a generalized Ruffini-Bonazzola approach. Part 1. Bound states. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 038-038.	1.9	27
121	Derivation of a generalized SchrĶdinger equation for dark matter halos from the theory of scale relativity. Physics of the Dark Universe, 2018, 22, 80-95.	1.8	20
122	A new era in the search for dark matter. Nature, 2018, 562, 51-56.	13.7	259
123	Formation of relativistic axion stars. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 005-005.	1.9	38
124	Quantum measurement and fuzzy dark matter. Physical Review D, 2018, 98, .	1.6	1
125	Spatial fluctuations of the intergalactic temperature–density relation after hydrogen reionization. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5501-5516.	1.6	46
126	Violation of the equivalence principle from light scalar dark matter. Physical Review D, 2018, 98, .	1.6	81

# 127	ARTICLE Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	IF 1.9	Citations
128	Early galaxy formation and its large-scale effects. Physics Reports, 2018, 780-782, 1-64.	10.3	273
129	Euclidean Wormholes, Baby Universes, and Their Impact on Particle Physics and Cosmology. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	65
130	Dark matter and baryon asymmetry from the very dawn of the Universe. Physical Review D, 2018, 97, .	1.6	6
131	Novel constraints on noncold, nonthermal dark matter from Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>α </mml:mi> forest data. Physical Review D, 2018, 98, .</mml:math 	1.6	64
132	Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation. Physical Review D, 2018, 98, .	1.6	119
133	Gravitationally bound Bose condensates with rotation. Physical Review D, 2018, 97, .	1.6	19
134	PyUltraLight: a pseudo-spectral solver for ultralight dark matter dynamics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 027-027.	1.9	45
135	Jeans-type instability of a complex self-interacting scalar field in general relativity. Physical Review D, 2018, 98, .	1.6	29
136	Black hole spin constraints on the mass spectrum and number of axionlike fields. Physical Review D, 2018, 98, .	1.6	66
137	Stability of condensed fuzzy dark matter halos. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 058-058.	1.9	11
138	On Nonlinear SchrĶdinger Equation as a Model for Dark Matter. Understanding Complex Systems, 2018, , 145-174.	0.3	0
139	Multiple-axion framework. Physical Review D, 2018, 98, .	1.6	13
140	Can light dark matter solve the core-cusp problem?. Physical Review D, 2018, 98, .	1.6	52
141	Formation of LISA Black Hole Binaries in Merging Dwarf Galaxies: The Imprint of Dark Matter. Astrophysical Journal Letters, 2018, 864, L19.	3.0	33
142	Using the full power of the cosmic microwave background to probe axion dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3063-3085.	1.6	106
143	AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3935-3951.	1.6	58
144	Massive graviton geons. Physical Review D, 2018, 97, .	1.6	11

	CITATION	CITATION REPORT	
#	Article	IF	Citations
145	Stellar Wakes from Dark Matter Subhalos. Physical Review Letters, 2018, 120, 211101.	2.9	27
146	Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight) Tj ETQq1 1 0. 1447-1468.	784314 rgB ⁻ 1.6	T /Overlock] 59
147	Large-scale structure in mimetic Horndeski gravity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 050-050.	1.9	14
148	Self-consistent construction of virialized wave dark matter halos. Physical Review D, 2018, 97, .	1.6	41
149	Dark matter as ultralight axion-like particle in E6 × U(1) GUT with QCD axion. Physics Letters, Section B Nuclear, Elementary Particle and High-Energy Physics, 2018, 782, 380-386.	: 1.5	3
150	Head-on collision of multistate ultralight BEC dark matter configurations. Physical Review D, 2018, 97,	1.6	16
151	Emergent dark energy from dark matter. Physical Review D, 2018, 97, .	1.6	5
152	New experimental approaches in the search for axion-like particles. Progress in Particle and Nuclear Physics, 2018, 102, 89-159.	5.6	505
153	Kinetic theory and classical limit for real scalar quantum field in curved spacetime. Physical Review D, 2018, 98, .	1.6	8
154	Backreaction of axion coherent oscillations. Physical Review D, 2018, 98, .	1.6	4
155	Gravitational probes of dark matter physics. Physics Reports, 2018, 761, 1-60.	10.3	87
156	Novel constraints on fermionic dark matter from galactic observables I: The Milky Way. Physics of the Dark Universe, 2018, 21, 82-89.	1.8	35
157	Motion in time-periodic backgrounds with applications to ultralight dark matter halos at galactic centers. Physical Review D, 2018, 98, .	1.6	32
158	High energy physics and cosmology at the unification frontier: Opportunities and challenges in the coming years. International Journal of Modern Physics A, 2018, 33, 1830017.	0.5	4
159	Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays. Galaxies, 2018, 6, 10.	1.1	18
160	Kerr–Newman-AdS black hole surrounded by perfect fluid matter in Rastall gravity. European Physical Journal C, 2018, 78, 1.	1.4	61
161	Slowly rotating Bose Einstein condensate galactic dark matter halos, and their rotation curves. European Physical Journal C, 2018, 78, 1.	1.4	28
162	Bose–Einstein condensate haloes embedded in dark energy. Astronomy and Astrophysics, 2018, 611, A81.	2.1	3

#	Article	IF	CITATIONS
163	Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax. Monthly Notices of the Royal Astronomical Society, 2018, 480, 927-946.	1.6	32
164	<pre>\$ ewcommand{e}{{m e}} oldsymbol {ell}\$ -boson stars. Classical and Quantum Gravity, 2018, 35, 19LT01.</pre>	1.5	52
165	Formation and structure of ultralight bosonic dark matter halos. Physical Review D, 2018, 98, .	1.6	143
166	Stochastic axion scenario. Physical Review D, 2018, 98, .	1.6	115
167	Constraining cosmology with the velocity function of low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4809-4824.	1.6	5
168	Testing the Universality of Free Fall towards Dark Matter with Radio Pulsars. Physical Review Letters, 2018, 120, 241104.	2.9	16
169	An axion-like scalar field environment effect on binary black hole merger. Research in Astronomy and Astrophysics, 2018, 18, 065.	0.7	7
170	Über-gravity and the cosmological constant problem. Physics of the Dark Universe, 2018, 21, 21-26.	1.8	10
171	Reheating and dark radiation after fibre inflation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 048-048.	1.9	21
172	Fuzzy dark matter at cosmic dawn: new 21-cm constraints. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 051-051.	1.9	30
173	Dark Matter from Scalar Field Fluctuations. Physical Review Letters, 2019, 123, 061302.	2.9	36
174	Wormholes and masses for Goldstone bosons. Journal of High Energy Physics, 2019, 2019, 1.	1.6	43
175	Axion dark matter detection with CMB polarization. Physical Review D, 2019, 100, .	1.6	90
176	Brief Review on Scalar Field Dark Matter Models. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	57
177	Mixed hidden sector-visible sector dark matter and observation of a CP odd Higgs boson at HL-LHC and HE-LHC. Physical Review D, 2019, 100, .	1.6	7
178	Oscillation modes of ultralight BEC dark matter cores. Physical Review D, 2019, 99, .	1.6	12
179	Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. Physical Review Letters, 2019, 123, 051103.	2.9	116
180	Mononeutrino at DUNE: New signals from neutrinophilic thermal dark matter. Physical Review D, 2019, 99, .	1.6	39

#	Article	lF	CITATIONS
181	Cosmological window onto the string axiverse and the supersymmetry breaking scale. Physical Review D, 2019, 99, .	1.6	77
182	Ruling out 3ÂkeV warm dark matter using 21Âcm EDGES data. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3560-3567.	1.6	33
183	Radial acceleration relation from ultra-light scalar dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 206-210.	1.5	4
184	Testing the weak equivalence principle by differential measurements of fundamental constants in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5175-5187.	1.6	9
185	Exploring the ultra-light to sub-MeV dark matter window with atomic clocks and co-magnetometers. Journal of High Energy Physics, 2019, 2019, 1.	1.6	17
186	Ultralight Boson Dark Matter and Event Horizon Telescope Observations of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">M<mml:msup><mml:mrow><mml:mn>87</mml:mn></mml:mrow><mml:mrov Physical Review Letters, 2019, 123, 021102.</mml:mrov </mml:msup></mml:mi </mml:mrow></mml:math 	v> ² ;9mml:m	10^{148} /mmla
187	Constraining light fermionic dark matter with binary pulsars. Physics of the Dark Universe, 2019, 26, 100343.	1.8	3
188	On-axis scattering of scalar fields by charged rotating black holes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 795, 496-501.	1.5	11
189	Mass-radius relation of self-gravitating Bose-Einstein condensates with a central black hole. European Physical Journal Plus, 2019, 134, 1.	1.2	19
190	Generalized Euler, Smoluchowski and SchrĶdinger equations admitting self-similar solutions with a Tsallis invariant profile. European Physical Journal Plus, 2019, 134, 1.	1.2	11
191	QMBlender: Particle-based visualization of 3D quantum wave function dynamics. Journal of Computational Science, 2019, 35, 44-56.	1.5	11
192	Probing dark matter structure down to 107 solar masses: flux ratio statistics in gravitational lenses with line-of-sight haloes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5721-5738.	1.6	79
193	Dark photon dark matter from a network of cosmic strings. Physical Review D, 2019, 99, .	1.6	77
194	The astrophysics of nanohertz gravitational waves. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	166
195	The fate of dense scalar stars. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 044-044.	1.9	24
196	Looking for ultralight dark matter near supermassive black holes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.	1.9	62
197	Axion boson stars. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 061-061.	1.9	56
198	Axion landscape cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 062-062.	1.9	9

#	Article	IF	CITATIONS
199	Unified Dark Matter, Dark Energy and baryogenesis via a "cosmological wetting transition― Journal of Cosmology and Astroparticle Physics, 2019, 2019, 069-069.	1.9	8
200	<i>Colloquium</i> : The physics of axion stars. Reviews of Modern Physics, 2019, 91, .	16.4	56
201	Emergent Solution to the Strong CP Problem. Physical Review Letters, 2019, 123, 161602.	2.9	4
202	Dark Matter Haloes and Subhaloes. Galaxies, 2019, 7, 81.	1.1	74
203	On long range axion hairs for black holes. Classical and Quantum Gravity, 2019, 36, 215015.	1.5	4
204	Quantum field theory of axion-photon mixing and vacuum polarization. Journal of Physics: Conference Series, 2019, 1275, 012052.	0.3	0
205	Hunting for the Dark Matter Wake Induced by the Large Magellanic Cloud. Astrophysical Journal, 2019, 884, 51.	1.6	111
206	A stable finite-volume method for scalar field dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2367-2376.	1.6	13
207	Axion core–halo mass and the black hole–halo mass relation: constraints on a few parsec scales. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4497-4503.	1.6	24
208	Predictions for the abundance of high-redshift galaxies in a fuzzy dark matter universe. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5551-5565.	1.6	16
209	Imprints of temperature fluctuations on the z â^1⁄4 5 Lyman-α forest: a view from radiation-hydrodynamic simulations of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3177-3195.	1.6	33
210	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. II. Constraints on Fuzzy Dark Matter. Astrophysical Journal, 2019, 885, 155.	1.6	33
211	Predictive model of BEC dark matter halos with a solitonic core and an isothermal atmosphere. Physical Review D, 2019, 100, .	1.6	46
212	Could galactic magnetic fields be generated by charged ultra-light boson dark matter?. European Physical Journal C, 2019, 79, 1.	1.4	2
213	Link between antimatter and dark matter probed. Nature, 2019, 575, 293-294.	13.7	1
214	How do scalar-field dark matter halos react to orbiting bodies?. Physical Review D, 2019, 99, .	1.6	2
215	Searches for other vacua. Part I. Bubbles in our universe. Journal of High Energy Physics, 2019, 2019, 1.	1.6	8
216	Impact of multiple modes on the black-hole superradiant instability. Physical Review D, 2019, 99, .	1.6	34

	CITATION	LEPUKI	
#	Article	IF	CITATIONS
217	First Star-Forming Structures in Fuzzy Cosmic Filaments. Physical Review Letters, 2019, 123, 141301.	2.9	94
218	Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits. Astrophysical Journal, 2019, 880, 91.	1.6	76
219	Dynamical evolutions of \$ ewcommand{e}{{m e}} ell\$ -boson stars in spherical symmetry. Classical and Quantum Gravity, 2019, 36, 215013.	1.5	25
220	Probing boson stars with extreme mass ratio inspirals. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 032-032.	1.9	18
221	Too big to fail in light of Gaia. Monthly Notices of the Royal Astronomical Society, 2019, 490, 231-242.	1.6	67
222	Cross-correlation between 21-cm radiation and CMB <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>B</mml:mi> modes from the cosmic birefringence in the presence of a light scalar field. Physical Review D, 2019, 100</mml:math 	1.6	5
223	Formation, gravitational clustering, and interactions of nonrelativistic solitons in an expanding universe. Physical Review D, 2019, 100, .	1.6	57
224	Open quantum dynamics induced by light scalar fields. Physical Review D, 2019, 100, .	1.6	13
225	Bounds on ultralight hidden-photon dark matter from observation of the 21Âcm signal at cosmic dawn. Physical Review D, 2019, 99, .	1.6	26
226	Beyond subhalos: Probing the collective effect of the Universe's small-scale structure with gravitational lensing. Physical Review D, 2019, 100, .	1.6	23
227	Impact of kinetic and potential self-interactions on scalar dark matter. Physical Review D, 2019, 100, .	1.6	18
228	Geometrical destabilisation of ultra-light axions in string inflation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	1.9	24
229	Galaxy formation and dark matter: small scale problems and quantum effects on astrophysical scales. Journal of Physics: Conference Series, 2019, 1253, 012007.	0.3	1
230	Effective field theory for black holes with induced scalar charges. Physical Review D, 2019, 100, .	1.6	16
231	Ultralight dark matter in disk galaxies. Physical Review D, 2019, 99, .	1.6	51
232	Testing the nature of dark compact objects: a status report. Living Reviews in Relativity, 2019, 22, 1.	8.2	494
233	Scalar field effects on the orbit of S2 star. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4606-4621.	1.6	37
234	Dark disk substructure and superfluid dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 797, 134871.	1.5	18

#	Article	IF	CITATIONS
235	Ultra-light scalar saving the 3 + 1 neutrino scheme from the cosmological bounds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 797, 134911.	1.5	31
236	Bose–Einstein condensate of ultra-light axions as a candidate for the dark matter galaxy halos. Modern Physics Letters A, 2019, 34, 1950361.	0.5	4
237	Jeans instability and turbulent gravitational collapse of Bose–Einstein condensate dark matter halos. European Physical Journal C, 2019, 79, 1.	1.4	22
238	Inflaxion dark matter. Journal of High Energy Physics, 2019, 2019, 1.	1.6	9
239	The distribution of dark matter in galaxies. Astronomy and Astrophysics Review, 2019, 27, 1.	9.1	155
240	Probing ultralight bosons with binary black holes. Physical Review D, 2019, 99, .	1.6	134
241	Axion–photon mixing in quantum field theory and vacuum energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 790, 427-435.	1.5	28
242	Relaxation in a Fuzzy Dark Matter Halo. Astrophysical Journal, 2019, 871, 28.	1.6	85
243	Patterns of Gravitational Cooling in Schrödinger Newton System. Journal of the Korean Physical Society, 2019, 74, 756-763.	0.3	2
244	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
245	Black hole hair from scalar dark matter. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 038-038.	1.9	46
246	The equation of state of dark matter superfluids. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 054-054.	1.9	18
247	Constraints on Axionlike Dark Matter with Masses Down to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><m Physical Review Letters, 2019, 122, 231301.</m </mml:mrow></mml:msup></mml:mrow></mml:math 	ml:mo>â^'	</td
248	Constraints on Dark Matter Microphysics from the Milky Way Satellite Population. Astrophysical Journal Letters, 2019, 878, L32.	3.0	110
249	Kerr black holes with synchronised scalar hair and higher azimuthal harmonic index. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 792, 436-444.	1.5	25
250	Scalar field dark matter spectator during inflation: the effect of self-interaction. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	1.9	21
251	Lattice formulation of axion inflation. Application to preheating. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 002-002.	1.9	61
252	Scalar field dark matter with a cosh potential, revisited. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	11

#	Article	IF	CITATIONS
253	Dark Matter With Stückelberg Axions. Frontiers in Physics, 2019, 7, .	1.0	1
254	Ultralight boson cloud depletion in binary systems. Physical Review D, 2019, 99, .	1.6	54
255	Novel constraints on fermionic dark matter from galactic observables II: Galaxy scaling relations. Physics of the Dark Universe, 2019, 24, 100278.	1.8	23
256	Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and numerical evidence as a basis for accurate kinetic simulations. Physical Review E, 2019, 99, 052126.	0.8	9
257	Review of cosmic phase transitions: their significance and experimental signatures. Reports on Progress in Physics, 2019, 82, 076901.	8.1	127
258	Hunting Axion Dark Matter with Protoplanetary Disk Polarimetry. Physical Review Letters, 2019, 122, 191101.	2.9	39
259	Detecting dark photon dark matter with Gaia-like astrometry observations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	1.9	9
260	Strong Gravitational Lensing by Wave Dark Matter Halos. Astrophysical Journal, 2019, 872, 11.	1.6	8
261	The global stability of M33: still a puzzle. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4710-4723.	1.6	25
262	Cosmological Simulation for Fuzzy Dark Matter Model. Frontiers in Astronomy and Space Sciences, 2019, 5, .	1.1	27
263	Abundance matching for low-mass galaxies in the CDM and FDM models. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4364-4371.	1.6	9
264	Compact objects as the catalysts for vacuum decays. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 791, 149-155.	1.5	21
265	Heating of Milky Way disc stars by dark matter fluctuations in cold dark matter and fuzzy dark matter paradigms. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2861-2876.	1.6	55
266	Fornax globular cluster distributions: implications for the cusp-core problem. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2546-2557.	1.6	19
267	Semiclassical path to cosmic large-scale structure. Physical Review D, 2019, 99, .	1.6	16
268	Dark matter haloes in the multicomponent model – I. Substructure. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3983-4003.	1.6	8
269	Flavor of cosmic neutrinos preserved by ultralight dark matter. Physical Review D, 2019, 99, .	1.6	35
270	Directed searches for gravitational waves from ultralight bosons. Physical Review D, 2019, 99, .	1.6	65

#	Article	IF	CITATIONS
271	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	1.9	741
272	Symmetron scalar fields: Modified gravity, dark matter, or both?. Physical Review D, 2019, 99, .	1.6	23
273	Gravitational wave emission from collisions of compact scalar solitons. Physical Review D, 2019, 99, .	1.6	50
274	Constraining the photon coupling of ultra-light dark-matter axion-like particles by polarization variations of parsec-scale jets in active galaxies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 059-059.	1.9	40
275	Numerical and perturbative computations of the fuzzy dark matter model. Physical Review D, 2019, 99, .	1.6	58
276	Relaxation of structures resulting from head-on mergers of ultralight bosonic dark matter cores. Physical Review D, 2019, 99, .	1.6	9
277	Scalar field dark matter: helping or hurting small-scale problems in cosmology?. Monthly Notices of the Royal Astronomical Society, 2019, 483, 289-298.	1.6	58
278	Quartet-metric/multi-component gravity: scalar graviton as emergent dark substance. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 055-055.	1.9	2
279	New scalar field quartessence. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 043-043.	1.9	16
280	The GALAH survey and Gaia DR2: dissecting the stellar disc's phase space by age, action, chemistry, and location. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1167-1191.	1.6	145
281	Emergent long-range interactions in Bose-Einstein condensates. Physical Review D, 2019, 99, .	1.6	11
282	Use of Geodesy and Geophysics Measurements to Probe the Gravitational Interaction. Fundamental Theories of Physics, 2019, , 317-358.	0.1	1
283	Testing extreme-axion wave-like dark matter using the BOSS Lyman-alpha forest data. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4273-4286.	1.6	38
284	Massive and charged scalar field in Kerr-Newman spacetime: Absorption and superradiance. Physical Review D, 2019, 99, .	1.6	22
285	Spherical collapse of fuzzy dark matter. Physical Review D, 2019, 99, .	1.6	5
286	Measuring the small-scale matter power spectrum with high-resolution CMB lensing. Physical Review D, 2019, 99, .	1.6	19
287	Axionic instabilities and new black hole solutions. Physical Review D, 2019, 99, .	1.6	59
288	Can fermionic dark matter mimic supermassive black holes?. International Journal of Modern Physics D, 2019, 28, 1943003.	0.9	5

	CHATION	REPORT	
#	Article	IF	CITATIONS
289	Dynamical friction in superfluids. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 074-074.	1.9	26
290	A mechanism for formation of Bose-Einstein condensation in cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 061-061.	1.9	4
291	SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 2019, 73, 1.	0.6	75
292	Stellar accelerations and the galactic gravitational field. Publications of the Astronomical Society of Australia, 2019, 36, .	1.3	18
293	Formation and mass growth of axion stars in axion miniclusters. Physical Review D, 2019, 100, .	1.6	71
294	Model independent analysis of MeV scale dark matter. II. Implications from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mi>e</mml:mi>xmml:mo>â^</mml:msup><mml:msup><mml: colliders and direct detection. Physical Review D. 2019. 100.</mml: </mml:msup></mml:math 	mi>e ^{1.6} /mml:	mi ⁷ <mml:m⊂< td=""></mml:m⊂<>
295	Field-theoretic approach to large-scale structure formation. Physical Review D, 2019, 100, .	1.6	5
296	Super-Planckian axions from near-conformality. Physical Review D, 2019, 100, .	1.6	6
297	Duration of classicality of an inhomogeneous quantum field with repulsive contact self-interactions. Physical Review D, 2019, 100, .	1.6	2
298	Co-interacting dark matter. Physical Review D, 2019, 100, .	1.6	2
299	EHT Constraint on the Ultralight Scalar Hair of the M87 Supermassive Black Hole. Universe, 2019, 5, 220.	0.9	90
300	A Quantum Model for the Dynamics of Cold Dark Matter. Condensed Matter, 2019, 4, 89.	0.8	2
301	Constraining Primordial Black Hole Abundance with the Galactic 511ÂkeV Line. Physical Review Letters, 2019, 123, 251102.	2.9	100
302	Stueckelberg Bosons as ultralight dark matter candidate. Modern Physics Letters A, 2019, 34, 1950330.	0.5	4
303	Derivation of the core mass-halo mass relation of fermionic and bosonic dark matter halos from an effective thermodynamical model. Physical Review D, 2019, 100, .	1.6	32
304	CMB constraints on the stochastic gravitational-wave background at Mpc scales. Physical Review D, 2019, 100, .	1.6	14
305	Energy balance of a Bose gas in a curved space-time. General Relativity and Gravitation, 2019, 51, 1.	0.7	7
306	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	27

#	Article	IF	CITATIONS
307	Dark matter heats up in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1401-1420.	1.6	143
308	Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3227-3243.	1.6	100
309	Direct detection of ultralight dark matter via astronomical ephemeris. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019, 789, 220-227.	1.5	4
310	De Sitter vs Quintessence in String Theory. Fortschritte Der Physik, 2019, 67, 1800079.	1.5	117
311	Cosmological simulations of galaxy formation. Nature Reviews Physics, 2020, 2, 42-66.	11.9	317
312	Black hole formation in relativistic Oscillaton collisions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	1.9	14
313	Cosmic acceleration from topological considerations II: fiber bundles. Classical and Quantum Gravity, 2020, 37, 015005.	1.5	0
314	No chiral light bending by clumps of axion-like particles. Physics of the Dark Universe, 2020, 27, 100428.	1.8	13
315	Dynamical friction in a Fuzzy Dark Matter universe. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 001-001.	1.9	54
316	From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems. Physica D: Nonlinear Phenomena, 2020, 403, 132301.	1.3	25
317	How sound are our ultralight axion approximations?. Physical Review D, 2020, 101, .	1.6	19
318	Relic abundance of dark photon dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 801, 135136.	1.5	144
319	Multiple ultralight axionic wave dark matter and astronomical structures. Physics of the Dark Universe, 2020, 30, 100636.	1.8	25
320	Wave turbulence in self-gravitating Bose gases and nonlocal nonlinear optics. Physical Review A, 2020, 102, .	1.0	15
321	Bose-Einstein condensate dark matter model with three-particle interaction and two-phase structure. Physical Review D, 2020, 102, .	1.6	9
322	Power of halometry. Physical Review D, 2020, 102, .	1.6	15
323	Inflaton clusters and inflaton stars. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 030-030.	1.9	23
324	Revisiting the stability of quadratic Poincaré gauge gravity. European Physical Journal C, 2020, 80, 1.	1.4	22

#	Article	IF	CITATIONS
325	Pulsar timing residual induced by ultralight vector dark matter. European Physical Journal C, 2020, 80, 1.	1.4	18
326	New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1188-1201.	1.6	25
327	Multiband gravitational-wave searches for ultralight bosons. Physical Review D, 2020, 102, .	1.6	30
328	Constraining the nature of ultra light dark matter particles with the 21Åcm forest. Physical Review D, 2020, 101, .	1.6	15
329	Fuzzy Dark Matter from Clockwork Axion Model. Journal of the Korean Physical Society, 2020, 77, 1107-1112.	0.3	0
330	Intensity mapping as a probe of axion dark matter. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3162-3177.	1.6	28
331	The mass of our Galaxy from satellite proper motions in the Gaia era. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5178-5193.	1.6	32
332	Asymmetric surface brightness structure of caustic crossing arc in SDSS J1226+2152: a case for dark matter substructure. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3192-3208.	1.6	14
333	Dark matter cores and cusps in spiral galaxies and their explanations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 027-027.	1.9	45
334	Dark matter relic density from conformally or disformally coupled light scalars. Physical Review D, 2020, 102, .	1.6	11
335	Simulating Ultralight Dark Matter in Chapel. , 2020, , .		3
336	ETHOS – an effective parametrization and classification for structure formation: the non-linear regime at z â‰3 5. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3403-3419.	1.6	20
337	Dynamical formation and stability of fermion-boson stars. Physical Review D, 2020, 102, .	1.6	29
338	Pulsar timing array constraints on spin-2 ULDM. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 031-031.	1.9	14
339	Tidal Love numbers of Proca stars. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 029-029.	1.9	13
340	Dark Matters on the Scale of Galaxies. Universe, 2020, 6, 107.	0.9	62
341	Fermion-boson stars with a quartic self-interaction in the boson sector. Physical Review D, 2020, 102, .	1.6	21
342	Enhanced spectrum of primordial perturbations, galaxy formation, and small-scale structure. Physical Review D, 2020, 102, .	1.6	7

#	Article	IF	Citations
343	First Results on Dark Matter Substructure from Astrometric Weak Lensing. Physical Review Letters, 2020, 125, 111101.	2.9	20
344	Multiple Images and Flux Ratio Anomaly of Fuzzy Gravitational Lenses. Physical Review Letters, 2020, 125, 111102.	2.9	14
345	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
346	Search for ultralight bosons in Cygnus X-1 with Advanced LIGO. Physical Review D, 2020, 101, .	1.6	56
347	Quasinormal modes of massive vector fields on the Kerr spacetime. Physical Review D, 2020, 102, .	1.6	14
348	Stringent constraints on the light boson model with supermassive black hole spin measurements. European Physical Journal Plus, 2020, 135, 1.	1.2	7
349	Stirred and shaken: Dynamical behavior of boson stars and dark matter cores. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135944.	1.5	29
350	Axion quality from the (anti)symmetric of SU(\$\$ mathcal{N} \$\$). Journal of High Energy Physics, 2020, 2020, 1.	1.6	24
351	Synchronized gravitational atoms from mergers of bosonic stars. Physical Review D, 2020, 102, .	1.6	26
352	Relaxation times for Bose-Einstein condensation in axion miniclusters. Physical Review D, 2020, 102, .	1.6	27
353	Axion star nucleation in dark minihalos around primordial black holes. Physical Review D, 2020, 102, .	1.6	21
354	21Âcm forest probes on axion dark matter in postinflationary Peccei-Quinn symmetry breaking scenarios. Physical Review D, 2020, 102, .	1.6	5
355	Response of ultralight dark matter to supermassive black holes and binaries. Physical Review D, 2020, 102, .	1.6	53
356	Quantum tunneling rate of dilute axion stars close to the maximum mass. Physical Review D, 2020, 102, .	1.6	10
357	Ultralight vector dark matter search with auxiliary length channels of gravitational wave detectors. Physical Review D, 2020, 102, .	1.6	24
358	Supersymmetry unification, naturalness, and discovery prospects at HL-LHC and HE-LHC. European Physical Journal: Special Topics, 2020, 229, 3047-3059.	1.2	2
359	Simulating mixed fuzzy and cold dark matter. Physical Review D, 2020, 102, .	1.6	46
360	Baryonic effects on the matter bispectrum. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2887-2911.	1.6	30

#	Article	IF	CITATIONS
361	High-resolution simulations of dark matter subhalo disruption in a Milky-Way-like tidal field. Monthly Notices of the Royal Astronomical Society, 2020, 499, 116-128.	1.6	22
362	Ejection of supermassive black holes and implications for merger rates in fuzzy dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2575-2586.	1.6	6
363	Baryonic effects on CMB lensing and neutrino mass constraints. Physical Review D, 2020, 101, .	1.6	13
364	Gravitational theory of cosmology, galaxies and galaxy clusters. European Physical Journal C, 2020, 80, 1.	1.4	13
365	The Higgs Field and Early Universe Cosmology: A (Brief) Review. Physics, 2020, 2, 503-520.	0.5	7
366	Soliton solution for the central dark mass in 47-Tuc globular cluster and implications for the axiverse. Physical Review D, 2020, 101, .	1.6	8
367	Searching for millicharged particles with superconducting radio-frequency cavities. Physical Review D, 2020, 102, .	1.6	4
368	Degenerate fermion dark matter from a broken U(1)Bâ^'L gauge symmetry. Physical Review D, 2020, 102, .	1.6	10
369	Glueball scattering cross section in lattice <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false"> (<mml:mn>2</mml:mn><mml:mo stretchy="false">) </mml:mo></mml:mo </mml:math 	1.6	25
370	Yang-Mills theory. Physical Review D, 2020, 102, . Probing bosonic stars with atomic clocks. Physical Review D, 2020, 102, .	1.6	7
371	Nonrelativistic formation of scalar clumps as a candidate for dark matter. Physical Review D, 2020, 102, .	1.6	6
372	Probing the angle of birefringence due to long range axion hair from pulsars. Physical Review D, 2020, 102, .	1.6	17
373	Degenerate Sub-keV fermion dark matter from a solution to the Hubble tension. Physical Review D, 2020, 101, .	1.6	19
374	Gravitational atoms: General framework for the construction of multistate axially symmetric solutions of the SchrĶdinger-Poisson system. Physical Review D, 2020, 101, .	1.6	23
375	Implications of MilkyÂWay substructures for the nature of dark matter. Physical Review D, 2020, 101, .	1.6	24
376	Soliton Random Walk and the Cluster-Stripping Problem in Ultralight Dark Matter. Physical Review Letters, 2020, 124, 201301.	2.9	37
377	Does Modified Gravity Predict Fast Stellar Bars in Spiral Galaxies?. Astrophysical Journal, 2020, 895, 13.	1.6	6
378	The Schrödinger-Poisson method for Large-Scale Structure. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 003-003.	1.9	13

#	Article	IF	CITATIONS
379	Probing the small-scale matter power spectrum with large-scale 21-cm data. Physical Review D, 2020, 101, .	1.6	57
380	An axion-like particle from an SO(10) seesaw with U(1). Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 802, 135273.	1.5	1
381	Constraint on the mass of fuzzy dark matter from the rotation curve of the MilkyÂWay. Physical Review D, 2020, 101, .	1.6	9
382	Small-scale structure of fuzzy and axion-like dark matter. Progress in Particle and Nuclear Physics, 2020, 113, 103787.	5.6	101
383	Galaxy formation with BECDM – II. Cosmic filaments and first galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2027-2044.	1.6	58
384	Light scalar dark matter coupled to a trace of energy-momentum tensor. Physical Review D, 2020, 101, .	1.6	1
385	Science case for the Einstein telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 050-050.	1.9	602
386	Black Hole Superradiant Instability from Ultralight Spin-2 Fields. Physical Review Letters, 2020, 124, 211101.	2.9	62
387	Dynamical <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mo>â,,"</mml:mo></mml:math> -boson stars: Generic stability and evidence for nonspherical solutions. Physical Review D, 2020, 101, .	1.6	17
388	Modified initial power spectrum and too big to fail problem. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4907-4913.	1.6	5
389	Evolution of diffuse scalar clouds around binary black holes. Physical Review D, 2020, 101, .	1.6	9
390	Stability of axion dark matter-photon conversion. Physical Review D, 2020, 101, .	1.6	12
391	Fingerprint matching of beyond-WIMP dark matter: neural network approach. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	1.9	3
392	Rotating axion boson stars. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	35
393	Early structure formation constraints on the ultralight axion in the postinflation scenario. Physical Review D, 2020, 101, .	1.6	23
394	Gravitational interactions and neutrino masses. Physical Review D, 2020, 101, .	1.6	4
395	<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>k</mml:mi></mml:math> -essence scalar dark matter solitons around supermassive black holes. Physical Review D, 2020, 101, .	1.6	7
396	Detecting axionlike dark matter with linearly polarized pulsar light. Physical Review D, 2020, 101, .	1.6	24

#	ARTICLE	IF	CITATIONS
397	Cosmological implications of electromagnetically interacting dark matter: milli-charged particles and atoms with singly and doubly charged dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	1
398	Bound Dark Matter (BDM) towards solving the small scale structure problem. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	1.9	2
399	Subhalo destruction in the Apostle and Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5780-5793.	1.6	46
400	Gravitational and chiral anomalies in the running vacuum universe and matter-antimatter asymmetry. Physical Review D, 2020, 101, .	1.6	50
401	Fate of scalar dark matter solitons around supermassive galactic black holes. Physical Review D, 2020, 101, .	1.6	22
402	Secular effects of ultralight dark matter on binary pulsars. Physical Review D, 2020, 101, .	1.6	21
403	Quantum anomalies in string-inspired running vacuum universe: Inflation and axion dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 803, 135342.	1.5	31
404	Constraints on ultralight axions from compact binary systems. Physical Review D, 2020, 101, .	1.6	35
405	Optical properties of dynamical axion backgrounds. Physical Review D, 2020, 101, .	1.6	20
406	Effective theories for a nonrelativistic field in an expanding universe: Induced self-interaction, pressure, sound speed, and viscosity. Journal of High Energy Physics, 2020, 2020, 1.	1.6	12
407	Core mass-halo mass relation of bosonic and fermionic dark matter halos harboring a supermassive black hole. Physical Review D, 2020, 101, .	1.6	15
408	Subhalo mass function and ultralight bosonic dark matter. Physical Review D, 2020, 101, .	1.6	71
409	Evolution of black hole shadows from superradiance. Physical Review D, 2020, 101, .	1.6	17
410	No static regular black holes in Einstein-complex-scalar-Gauss-Bonnet gravity. Physical Review D, 2020, 102, .	1.6	14
411	How to tell an accreting boson star from a black hole. Monthly Notices of the Royal Astronomical Society, 2020, 497, 521-535.	1.6	80
412	Minimal cosmological masses for nearly standard-model photons or gluons. General Relativity and Gravitation, 2020, 52, 1.	0.7	1
413	Oscillons and dark matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 006-006.	1.9	37
414	Fuzzy dark matter soliton cores around supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5721-5729.	1.6	37

	CITATION REP	ORT	
ARTICLE Dynamical evidence of a dark solitonic core of <mml:math< td=""><td></td><td>IF</td><td>CITATIONS</td></mml:math<>		IF	CITATIONS
xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e257" altimg="si73.svg"> <mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><m in the milky way. Physics of the Dark Universe, 2020, 28, 100503.</m </mml:mrow></mml:msup></mml:mrow>	ml:mn>0 <td>1.8 ∩row> < mr</td> <td>26 ml:mrow><r< td=""></r<></td>	1.8 ∩row> < mr	26 ml:mrow> <r< td=""></r<>
Axion Stars. Symmetry, 2020, 12, 25.		1.1	18
Investigation of two colliding solitonic cores in fuzzy dark matter models. Physical Rev 101, .	view D, 2020,	1.6	16
Dynamical solution to the axion domain wall problem. Physical Review D, 2020, 101, .		1.6	5
A dwarf–dwarf merger and dark matter core as a solution to the globular cluster pro Fornax dSph. Monthly Notices of the Royal Astronomical Society, 2020, 493, 320-336		1.6	23
Lighting the Dark: Evolution of the Postinflationary Universe. Physical Review Letters, 061301.	2020, 124,	2.9	38
Jeans instability in dark matter halos. Physica Scripta, 2020, 95, 055005.		1.2	15

422	The effect of fluctuating fuzzy axion haloes on stellar dynamics: a stochastic model. Monthly Notices of the Royal Astronomical Society, 2020, 492, 877-894.	1.6	23
423	Oscillon of ultra-light axion-like particle. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 2020, 047-047.	1.9	19
424	The Big Bang is a Coordinate Singularity for \$\$k = -1\$\$ Inflationary FLRW Spacetimes. Foundations of Physics, 2020, 50, 385-428.	0.6	9
425	Axion resonances in binary pulsar systems. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 2020, 061-061.	1.9	10

426	Large-misalignment mechanism for the formation of compact axion structures: Signatures from the QCD axion to fuzzy dark matter. Physical Review D, 2020, 101, .	1.6	118
427	Nonadiabatic cosmological production of ultralight dark matter. Physical Review D, 2020, 101, .	1.6	23
428	The Galactic Center Black Hole, Sgr A*, as a Probe of New Gravitational Physics with the Scalaron Fifth Force. Astrophysical Journal, 2020, 893, 31.	1.6	14
429	Chostly galaxies as solitons of Bose-Einstein dark matter. Physical Review D, 2020, 101, .	1.6	27
430	Dynamic signatures of black hole binaries with superradiant clouds. Physical Review D, 2020, 101, .	1.6	43
431	Review of Nontopological Solitons in Theories with U(1)-Symmetry. Journal of Experimental and Theoretical Physics, 2020, 130, 301-320.	0.2	37
	Darb matter clusters and time correlations in direct detection experiments Journal of High Energy		

Physics, 2020, 2020, 1.

#

415

417

419

421

#	Article	IF	CITATIONS
433	Viable secret neutrino interactions with ultralight dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 802, 135182.	1.5	17
434	Do we have any hope of detecting scattering between dark energy and baryons through cosmology?. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1139-1152.	1.6	58
435	Baryon-driven growth of solitonic cores in fuzzy dark matter halos. Physical Review D, 2020, 101, .	1.6	39
436	A generalized Higgs potential with two degenerate minima for a dark QCD matter scenario. European Physical Journal C, 2020, 80, 1.	1.4	1
437	Ultra-light Dark Matter Is Incompatible with the Milky Way's Dwarf Satellites. Astrophysical Journal, 2020, 893, 21.	1.6	60
438	The Clustering Dynamics of Primordial Black Holes in N-Body Simulations. Universe, 2021, 7, 18.	0.9	36
439	Selective enhancement of the QCD axion couplings. Physical Review D, 2021, 103, .	1.6	23
440	Unifying dark matter, dark energy and inflation with a fuzzy dark fluid. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033-033.	1.9	6
441	Vortices and waves in light dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 011-011.	1.9	39
442	Probing axion dark matter with 21Âcm fluctuations from minihalos. Physical Review D, 2021, 103, .	1.6	4
443	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2021, , 1-33.		0
444	Evidence of a population of dark subhaloes from <i>Gaia</i> and Pan-STARRS observations of the GD-1 stream. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2364-2380.	1.6	47
445	Stability of multistate configurations of fuzzy dark matter. Astronomische Nachrichten, 2021, 342, 398-403.	0.6	5
446	The axion quality problem: global symmetry breaking and wormholes. Journal of High Energy Physics, 2021, 2021, 1.	1.6	19
447	Oscillations and random walk of the soliton core in a fuzzy dark matter halo. Physical Review D, 2021, 103, .	1.6	36
448	Neutrino masses and mixing in models with large extra dimensions and localized fermions. Physical Review D, 2021, 103, .	1.6	9
449	Axion Emission Can Explain a New Hard X-Ray Excess from Nearby Isolated Neutron Stars. Physical Review Letters, 2021, 126, 021102.	2.9	31
450	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>BICEP</mml:mi><mml:mo>/</mml:mo><mml:mi>K</mml:mi>< XII: Constraints on axionlike polarization oscillations in the cosmic microwave background. Physical Review D. 2021. 103</mml:mrow></mml:math></pre>		- ≺mml:mi>℃ 12

	CITATION		ſ
#	Article	IF	Citations
451	Growth of accretion driven scalar hair around Kerr black holes. Physical Review D, 2021, 103, .	1.6	21
452	Bounds on Velocity-dependent Dark Matter–Proton Scattering from Milky Way Satellite Abundance. Astrophysical Journal Letters, 2021, 907, L46.	3.0	31
453	Gravitational waves from binary black hole mergers surrounded by scalar field clouds: Numerical simulations and observational implications. Physical Review D, 2021, 103, .	1.6	15
454	Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds. Frontiers in Physics, 2021, 8, .	1.0	38
455	Superheavy dark matter from string theory. Journal of High Energy Physics, 2021, 2021, 1.	1.6	10
456	Stability of rotating scalar boson stars with nonlinear interactions. Physical Review D, 2021, 103, .	1.6	47
457	General framework for cosmological dark matter bounds using <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi> -body simulations. Physical Review D, 2021, 103, .</mml:math 	1.6	21
458	Light dark matter annihilation and scattering in LHC detectors. SciPost Physics, 2021, 10, .	1.5	8
459	Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. Physical Review Letters, 2021, 126, 071302.	2.9	134
460	Eridanus II: A Fossil from Reionization with an Off-center Star Cluster. Astrophysical Journal, 2021, 908, 18.	1.6	30
461	Axion and dark photon limits from Crab Nebula high-energy gamma rays. Physical Review D, 2021, 103, .	1.6	15
462	Gravitational effects on oscillon lifetimes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 102.	1.9	13
463	Spin precession as a new window into disformal scalar fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 001.	1.9	7
464	Global view of axion stars with nearly Planck-scale decay constants. Physical Review D, 2021, 103, .	1.6	7
465	Barred spiral galaxies in modified gravity theories. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2833-2860.	1.6	22
466	Constraints on Dark Matter Properties from Observations of MilkyÂWay Satellite Galaxies. Physical Review Letters, 2021, 126, 091101.	2.9	144
467	Observational constraints on complex quintessence with attractive self-interaction. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4008-4015.	1.6	4
468	Ultralight fermionic dark matter. Physical Review D, 2021, 103, .	1.6	19

ATION R

#	Article	IF	CITATIONS
469	Toward Cosmological Simulations of Dark Matter on Quantum Computers. Astrophysical Journal, 2021, 910, 29.	1.6	7
470	Evolving ultralight scalars into non-linearity with Lagrangian perturbation theory. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2391-2404.	1.6	10
471	Polytropic spheres modelling dark matter haloes of dwarf galaxies. Astronomy and Astrophysics, 2021, 647, A29.	2.1	9
472	Impact of helical electromagnetic fields on the axion window. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 025.	1.9	3
473	Core-halo mass relation in scalar field dark matter models and its consequences for the formation of supermassive black holes. Physical Review D, 2021, 103, .	1.6	23
474	Wave dark matter and ultra-diffuse galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2868-2876.	1.6	8
475	Self-gravitating Equilibria of Non-minimally Coupled Dark Matter Halos. Astrophysical Journal, 2021, 910, 76.	1.6	6
476	Don't cross the streams: caustics from fuzzy dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 076.	1.9	28
477	Consequences for the Scalar Field Dark Matter Model from the McGaugh Observed-baryon Acceleration Correlation. Astrophysical Journal, 2021, 909, 162.	1.6	4
478	Dynamical friction in Bose-Einstein condensed self-interacting dark matter at finite temperatures, and the Fornax dwarf spheroidal. Astronomy and Astrophysics, 2021, 647, A70.	2.1	9
479	Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature, 2021, 591, 564-569.	13.7	168
480	Unitarity limits on thermal dark matter in (non-)standard cosmologies. Journal of High Energy Physics, 2021, 2021, 1.	1.6	16
481	Searching for ultralight bosons within spin measurements of a population of binary black hole mergers. Physical Review D, 2021, 103, .	1.6	28
482	A novel estimator for the equation of state of the IGM by Ly α forest tomography. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6202-6222.	1.6	4
483	Probing oscillons of ultra-light axion-like particle by 21 cm forest. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 019.	1.9	2
484	Simulating intergalactic gas for DESI-like small scale Lymanα forest observations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 059.	1.9	18
485	The imitation game: Proca stars that can mimic the Schwarzschild shadow. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 051.	1.9	83
486	Experimental Constraint on Axionlike Particles over Seven Orders of Magnitude in Mass. Physical Review Letters, 2021, 126, 171301.	2.9	37

	Сіл	TATION REPORT	
#	Article	IF	CITATIONS
487	Broken into Pieces: ATLAS and Aliqa Uma as One Single Stream. Astrophysical Journal, 2021, 911, 149	. 1.6	46
488	Kilobyte Cosmic Birefringence from ALP domain walls. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	40
489	Self-interacting hidden sector dark matter, small scale galaxy structure anomalies, and a dark force. Physical Review D, 2021, 103, .	1.6	13
490	Constraints on long range force from perihelion precession of planets in a gauged \$\$L_e-L_{mu ,au }\$\$ scenario. European Physical Journal C, 2021, 81, 1.	1.4	18
491	Dark matter and the early Universe: A review. Progress in Particle and Nuclear Physics, 2021, 119, 103865.	5.6	82
492	Scalar field dark matter as an alternative explanation for the anisotropic distribution of satellite galaxies. Physical Review D, 2021, 103, .	1.6	9
493	Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons. Physical Review D, 2021, 103, .	1.6	37
494	Narrowing the Mass Range of Fuzzy Dark Matter with Ultrafaint Dwarfs. Astrophysical Journal Letters, 2021, 912, L3.	3.0	34
495	Nonlinear cosmological structure with ultralight bosons via modified gravity. Physical Review D, 2021, 103, .	1.6	4
496	All-sky dynamical response of the Galactic halo to the LargeÂMagellanic Cloud. Nature, 2021, 592, 534-536.	13.7	64
497	Baryonic and leptonic GeV dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 815, 136151.	1.5	3
498	Constraints on Ultralight Scalar Bosons within Black Hole Spin Measurements from the LIGO-Virgo GWTC-2. Physical Review Letters, 2021, 126, 151102.	2.9	48
499	Weak gravitational quantum effects in boson particles. General Relativity and Gravitation, 2021, 53, 1	. 0.7	2
500	Velocity Dispersion of the GD-1 Stellar Stream. Astrophysical Journal Letters, 2021, 911, L32.	3.0	14
501	Evolution of perturbation and power spectrum in a two-component ultralight axionic universe. Physical Review D, 2021, 103, .	1.6	4
502	An even lighter QCD axion. Journal of High Energy Physics, 2021, 2021, 1.	1.6	51
503	Bridging the gap: spectral distortions meet gravitational waves. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4396-4405.	1.6	22
504	Axions: From magnetars and neutron star mergers to beam dumps and BECs. International Journal of Modern Physics D, 2021, 30, 2130002.	0.9	15

			2
#	ARTICLE	IF	CITATIONS
505	Charging the conformal window. Physical Review D, 2021, 103, .	1.6	12
506	Black hole superradiance of self-interacting scalar fields. Physical Review D, 2021, 103, .	1.6	91
507	Properties of ultralight bosons from heavy quasar spins via superradiance. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	22
508	CMB birefringence from ultralight-axion string networks. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 055.	1.9	22
509	An emulator for the Lyman-α forest in beyond-ΛCDM cosmologies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033.	1.9	24
510	Structure formation limits on axion-like dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	1.9	9
511	Self-gravitating vector dark matter. Physical Review D, 2021, 103, .	1.6	25
512	Constraining light dark photons from GW190517_055101 and GW190426_152155. Physical Review D, 2021, 103, .	1.6	7
513	Fuzzy Dark Matter and the 21 cm Power Spectrum. Astrophysical Journal, 2021, 913, 7.	1.6	24
514	The cosmological evolution of self-interacting dark matter. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 013.	1.9	23
515	Soliton oscillations and revised constraints from Eridanus II of fuzzy dark matter. Physical Review D, 2021, 103, .	1.6	19
516	Oscillon collapse to black holes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 027.	1.9	21
517	Jeans mass-radius relation of self-gravitating Bose-Einstein condensates and typical parameters of the dark matter particle. Physical Review D, 2021, 103, .	1.6	20
518	Effects of oscillating spacetime metric background on a complex scalar field and formation of topological vortices. Physical Review D, 2021, 103, .	1.6	3
519	Coherent Soliton States Hidden in Phase Space and Stabilized by Gravitational Incoherent Structures. Physical Review Letters, 2021, 127, 014101.	2.9	5
520	Cosmological perturbations for ultralight axionlike particles in a state of Bose-Einstein condensate. Physical Review D, 2021, 103, .	1.6	2
521	Axial Anomaly in Galaxies and the Dark Universe. Universe, 2021, 7, 198.	0.9	6
522	Rapid onset of the 21-cm signal suggests a preferred mass range for dark matter particle. Physical Review D, 2021, 103, .	1.6	7

CITATION REPORT ARTICLE IF CITATIONS Dipole radiation and beyond from axion stars in electromagnetic fields. Journal of High Energy 1.6 17 Physics, 2021, 2021, 1. Dark matter from a dark connection. Modern Physics Letters A, 2021, 36, 2150134. A multi-temperature universe can allow a sub-MeV dark photon dark matter. Journal of High Energy 7 1.6 Physics, 2021, 2021, 1. Observing invisible axions with gravitational waves. Journal of Cosmology and Astroparticle Physics, 1.9 2021, 2021, 034. Imprint of ultralight vector fields on gravitational wave propagation. Physical Review D, 2021, 103, . 1.6 3 Relativistic viscous effects on the primordial gravitational waves spectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008. Anomalies and parities for quintessential and ultra-light axions. Physics Letters, Section B: Nuclear, 1.5 1 Elementary Particle and High-Energy Physics, 2021, 817, 136248. Landau equation for self-gravitating classical and quantum particles: application to dark matter. 1.2 European Physical Journal Plus, 2021, 136, 1. Relaxation in a Fuzzy Dark Matter Halo. II. Self-consistent Kinetic Equations. Astrophysical Journal, 1.6 11 2021, 915, 27. Superfluid Rayleighâ€"Plesset extension of FLRW cosmology. Annals of Physics, 2021, 429, 168490. 1.0 Structure of the oscillon: The dynamics of attractive self-interaction. Physical Review D, 2021, 103, . 1.6 19 Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the 1.6 non-linear dynamics. Monthly Notices of the Royal Astronomical Sociéty, 2021, 506, 2603-2618. Gravitational waves from an axion-dark photon system: A lattice study. SciPost Physics, 2021, 11, . 1.5 15 On the Random Motion of Nuclear Objects in a Fuzzy Dark Matter Halo. Astrophysical Journal, 2021, 1.6 916, 27. Density perturbations in axionlike particles: Classical versus quantum field treatment. Physical 1.6 4 Review D, 2021, 104, . Instability of rotating Bose stars. Physical Review D, 2021, 104, . 24 Complex Scalar Field Reheating and Primordial Black Hole production. Journal of Cosmology and 1.9 8 Astroparticle Physics, 2021, 2021, 001.

540To Observe, or Not to Observe, Quantum-Coherent Dark Matter in the Milky Way, That is a Question.1.11Frontiers in Astronomy and Space Sciences, 2021, 8, .

#

523

524

525

527

529

531

533

534

535

537

#	Article	IF	CITATIONS
541	Simulations of axion minihalos. Physical Review D, 2021, 104, .	1.6	28
542	Unifying dark matter and dark energy with non-canonical scalars. European Physical Journal C, 2021, 81, 1.	1.4	4
543	Fifth-force screening around extremely compact sources. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 052.	1.9	6
544	Probing ultralight dark matter with future ground-based gravitational-wave detectors. Physical Review D, 2021, 104, .	1.6	23
545	Core fragmentation in simplest superfluid dark matter scenario. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 819, 136422.	1.5	7
546	Assessing the Fornax globular cluster timing problem in different models of dark matter. Physical Review D, 2021, 104, .	1.6	16
547	A stabilization mechanism for excited fermion–boson stars. Classical and Quantum Gravity, 2021, 38, 194001.	1.5	16
548	Axi-Higgs cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 057.	1.9	20
549	Effective cross section of fuzzy dark matter halos. Journal of the Korean Physical Society, 2021, 79, 582-588.	0.3	3
550	Tidal deformability of dressed black holes and tests of ultralight bosons in extended mass ranges. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 032.	1.9	26
551	Stable vortex in Bose-Einstein condensate dark matter. Low Temperature Physics, 2021, 47, 684-692.	0.2	9
552	Constraining ultra-light axions with galaxy cluster number counts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	1.9	3
553	Moduli stabilisation and the statistics of axion physics in the landscape. Journal of High Energy Physics, 2021, 2021, 1.	1.6	14
554	Dark photon portal into mirror world. Modern Physics Letters A, 0, , .	0.5	4
555	Cosmological constraints on scalar field dark matter. International Journal of Modern Physics D, 2021, 30, .	0.9	2
556	Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	150
557	Beyond Schrödinger-Poisson: nonrelativistic effective field theory for scalar dark matter. Journal of High Energy Physics, 2021, 2021, 1.	1.6	17
558	Constraints on axionic fuzzy dark matter from light bending and Shapiro time delay. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 041.	1.9	9

#	Article	IF	CITATIONS
559	Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs. Universe, 2021, 7, 344.	0.9	3
560	Wave Dark Matter. Annual Review of Astronomy and Astrophysics, 2021, 59, 247-289.	8.1	133
561	Recent Progress in the Physics of Axions and Axion-Like Particles. Annual Review of Nuclear and Particle Science, 2021, 71, 225-252.	3.5	73
562	Fast galaxy bars continue to challenge standard cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 508, 926-939.	1.6	36
563	The stochastic axiverse. Journal of High Energy Physics, 2021, 2021, 1.	1.6	12
564	Boson stars and oscillatons: A review. International Journal of Modern Physics D, 2021, 30, .	0.9	52
565	Magnetized vector boson gas at any temperature. Physical Review C, 2021, 104, .	1.1	3
566	The Milky Way, coming into focus: Precision astrometry probes its evolution and its dark matter. Progress in Particle and Nuclear Physics, 2021, 121, 103904.	5.6	8
567	Strongly-interacting ultralight millicharged particles. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 822, 136653.	1.5	12
568	Black hole binaries and light fields: Gravitational molecules. Physical Review D, 2021, 103, .	1.6	19
569	Multipolar boson stars: Macroscopic Bose-Einstein condensates akin to hydrogen orbitals. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 812, 136027.	1.5	32
570	Signatures of ultralight dark matter in neutrino oscillation experiments. Journal of High Energy Physics, 2021, 2021, 1.	1.6	21
571	Ultralight DM bosons with an axion-like potential: scale-dependent constraints revisited. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 051-051.	1.9	17
572	Constraining the Small-Scale Clustering of Dark Matter with Stellar Streams. Thirty Years of Astronomical Discovery With UKIRT, 2019, , 9-18.	0.3	1
573	Black holes with synchronised Proca hair: linear clouds and fundamental non-linear solutions. Journal of High Energy Physics, 2020, 2020, 1.	1.6	24
574	Light dark photon dark matter from inflation. Journal of High Energy Physics, 2020, 2020, 170.	1.6	31
575	SCALAR: an AMR code to simulate axion-like dark matter models. Astronomy and Astrophysics, 2020, 641, A107.	2.1	8
576	Constraints on the astrophysical environment of binaries with gravitational-wave observations. Astronomy and Astrophysics, 2020, 644, A147.	2.1	42

#	Article	IF	CITATIONS
577	The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.	1.5	90
578	Baryonic effects for weak lensing. Part II. Combination with X-ray data and extended cosmologies. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 020-020.	1.9	27
579	Galactic condensates composed of multiple axion species. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 020-020.	1.9	17
580	Probing cosmic-ray accelerated light dark matter with IceCube. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	1.9	23
581	Long range dark matter self-interactions and plasma instabilities. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	13
582	The Universe at <i>z</i> > 10: predictions for <i>JWST</i> from the <scp>universemachine</scp> DR1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5702-5718.	1.6	74
583	The LBT satellites of Nearby Galaxies Survey (LBT-SONG): the satellite population of NGC 628. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3854-3869.	1.6	25
584	Probing the nature of dark matter with accreted globular cluster streams. Monthly Notices of the Royal Astronomical Society, 2020, 501, 179-200.	1.6	33
585	Cosmological perturbations for two cold fluids in $\hat{\nu}$ CDM. Monthly Notices of the Royal Astronomical Society, 2021, 503, 406-425.	1.6	13
586	Scaling relations of fuzzy dark matter haloes – I. Individual systems in their cosmological environment. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1539-1556.	1.6	31
587	Cosmological tension of ultralight axion dark matter and its solutions. Physical Review D, 2020, 102, .	1.6	16
588	Testing Bose–Einstein condensate dark matter models with the SPARC galactic rotation curves data. European Physical Journal C, 2020, 80, 1.	1.4	24
589	Bounds on very weakly interacting ultra light scalar and pseudoscalar dark matter from quantum gravity. European Physical Journal C, 2020, 80, 1.	1.4	7
590	The dawn of the post-naturalness era. , 2018, , 267-292.		19
591	Subjecting Dark Matter Candidates to the Cluster Test. Fluctuation and Noise Letters, 2020, 19, 2050016.	1.0	2
592	Galaxy Rotation Curves in the µ-Deformation Based Approach to Dark Matter. Ukrainian Journal of Physics, 2019, 64, 1042.	0.1	7
593	Dark matter with n-body numerical simulations. Revista Mexicana De Fisica E, 2020, 17, 241-254.	0.2	5
594	Testing the Prediction of Fuzzy Dark Matter Theory in the Milky Way Center. Astrophysical Journal, 2020, 889, 88.	1.6	20

	CITATION	Report	
#	Article	IF	CITATIONS
595	Deep Learning the Morphology of Dark Matter Substructure. Astrophysical Journal, 2020, 893, 15.	1.6	29
596	Fuzzy Dark Matter and Dark Matter Halo Cores. Astrophysical Journal, 2020, 904, 161.	1.6	52
597	Diversity of Dark Matter Density Profiles in the Galactic Dwarf Spheroidal Satellites. Astrophysical Journal, 2020, 904, 45.	1.6	46
598	Cold Particle Dark Matter. Symmetry, 2021, 13, 1945.	1.1	0
599	Earth as a transducer for dark-photon dark-matter detection. Physical Review D, 2021, 104, .	1.6	19
600	Searching for ultralight bosons with supermassive black hole ringdown. Physical Review D, 2021, 104,	1.6	16
601	Sterile neutrino dark matter catalyzed by a very light dark photon. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 041.	1.9	14
602	Long-wavelength nonlinear perturbations of a complex scalar field. Physical Review D, 2021, 104, .	1.6	2
603	Galaxy Rotation Curves Disfavor Traditional and Self-interacting Dark Matter Halos, Preferring a Disk Component or Einasto Function. Astrophysical Journal Letters, 2021, 920, L10.	3.0	6
604	Novel constraints on the particle nature of dark matter from stellar streams. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043.	1.9	40
605	Lower mass bounds on FIMP dark matter produced via freeze-in. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 045.	1.9	39
606	The dynamics of three nearby EO galaxies in refracted gravity. Astronomy and Astrophysics, 0, , .	2.1	4
607	Cold Dark Matter: A Gluonic Bose–Einstein Condensate in Anti-de Sitter Space Time. Universe, 2021, 7, 402.	0.9	5
608	Dark matter from an even lighter QCD axion: trapped misalignment. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 001.	1.9	31
609	New insights into the formation and growth of boson stars in dark matter halos. Physical Review D, 2021, 104, .	1.6	43
610	Two-scalar Bose-Einstein condensates: from stars to galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 028.	1.9	12
611	The Effects of Dark Matter and Baryonic Physics on the Milky Way Subhalo Population in the Presence of the Large Magellanic Cloud. Astrophysical Journal Letters, 2021, 920, L11.	3.0	16
612	Spin-orbit effects for compact binaries in scalar-tensor gravity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 075.	1.9	14

ARTICLE IF CITATIONS # Using the redshift evolution of the Lyman- \hat{l} effective opacity as a probe of dark matter models. Journal 613 1.9 3 of Cosmology and Astroparticle Physics, 2021, 2021, 077. Standard Models and What Lies Beyond. Springer Theses, 2020, , 5-36. 614 615 Gravitational Waves. Lecture Notes in Physics, 2020, , 191-219. 0.3 0 Axionic dark matter halos in the gravitational field of baryonic matter. Modern Physics Letters A, 0.5 2020, 35, 2050248. Two-component axionic dark matter halos. Modern Physics Letters A, 2020, 35, 2050227. 617 0.5 2 The Sun: Light Dark Matter and Sterile Neutrinos. Astrophysical Journal, 2020, 905, 22. 1.6 Constraints on Ultra Light Dark Matter from Compact Binary Systems. Springer Proceedings in 619 0.1 0 Physics, 2020, , 317-320. Dark Matter. Lecture Notes in Physics, 2020, , 9-48. 0.3 The Final Size of the Universe Based on the Elasticity of the Fabric of Spacetime. Journal of High Energy 621 0.3 0 Physics Gravitation and Cosmology, 2020, 06, 450-461. New and old probes of dark matter scenarios on galactic and sub-galactic scales. Journal of Physics G: 1.4 Nuclear and Particle Physics, 0, , . Superradiance and stability of Kerr black hole enclosed by anisotropic fluid matter. Physics Letters, 624 1.5 15 Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 823, 136775. Dynamical Analysis of the Dark Matter and Central Black Hole Mass in the Dwarf Spheroidal Leo I. 1.6 Astrophysical Journal, 2021, 921, 107. Axion Oscillations in Binary Systems: Angle-action Surgery. Astrophysical Journal, 2020, 901, 85. 626 1.6 3 Stuckelberg SUSY QED and infrared problem. Modern Physics Letters A, 2020, 35, 2050303. What is the halo mass function in a fuzzy dark matter cosmology?. Monthly Notices of the Royal 628 1.6 17 Astronomical Society, 2021, 510, 1425-1430. Modifying PyUltraLight to model scalar dark matter with self-interactions. Physical Review D, 2021, 104,. Dynamical friction from scalar dark matter in the relativistic regime. Physical Review D, 2021, 104, . 630 1.6 35 Dynamical Friction in Nonlocal Gravity. Astrophysical Journal, 2021, 922, 9.

#	Article	IF	Citations
632	Incoherent localized structures and hidden coherent solitons from the gravitational instability of the SchrĶdinger-Poisson equation. Physical Review E, 2021, 104, 054205.	0.8	4
633	Using atomic clocks to detect local dark matter halos. Physical Review D, 2021, 104, .	1.6	3
634	Search for dark-photon dark matter in the SuperMAG geomagnetic field dataset. Physical Review D, 2021, 104, .	1.6	13
635	Weak scale as a trigger. Physical Review D, 2021, 104, .	1.6	23
636	The effect of inhomogeneous reionization on the LymanÂα forest power spectrum at redshift z > 4: implications for thermal parameter recovery. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6119-6137.	1.6	14
637	Ultralight axions versus primordial black holes. Modern Physics Letters A, 2021, 36, .	0.5	2
638	Dark photon limits: A handbook. Physical Review D, 2021, 104, .	1.6	101
639	Gravitational lensing <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension from ultralight axion galactic cores. Physical Review D, 2021, 104, .	1.6	8
640	Newton, entanglement, and the graviton. Physical Review D, 2022, 105, .	1.6	29
641	The diversity of core–halo structure in the fuzzy dark matter model. Monthly Notices of the Royal Astronomical Society, 2022, 511, 943-952.	1.6	34
643	Constraining ultra light dark matter with the Galactic nuclear star cluster. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1757-1770.	1.6	1
644	Probing ultra-light axion dark matter from 21 cm tomography using Convolutional Neural Networks. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 020.	1.9	2
645	Bosonic dark matter in a coherent state driven by thermal fermions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 825, 136880.	1.5	2
646	Vortex-bright soliton complexes in <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>1.0</td><td>3</td></mmi:math>	1.0	3
647	BoseaC"Einstein condensates: Annals of Physics, 2022, 497, 166736. Gravitational wave signature of the fifth force for dark matter. Classical and Quantum Gravity, 2020, 37, 245009.	1.5	1
648	Gravitational waves from superradiant instabilities of rotating black holes. Modern Physics Letters A, 2021, 36, .	0.5	2
649	Sliding Naturalness: New Solution to the Strong- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>C</mml:mi><mml:mi>P</mml:mi> and Electroweak-Hierarchy Problems. Physical Review Letters, 2022, 128, 021803.</mml:math 	2.9	21
650	Construction of wave dark matter halos: Numerical algorithm and analytical constraints. Physical Review D, 2022, 105, .	1.6	19

#	Article	IF	CITATIONS
651	A bound on energy extraction (and hairiness) from superradiance. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 824, 136835.	1.5	9
652	Gravitational collapse in the postinflationary Universe. Physical Review D, 2022, 105, .	1.6	22
653	Thraxions: towards full string models. Journal of High Energy Physics, 2022, 2022, .	1.6	10
654	Tidal deformability and radial oscillations of anisotropic polytropic spheres. Physical Review D, 2022, 105, .	1.6	5
655	Field excitation in fuzzy dark matter near a strong gravitational wave source. Physical Review D, 2022, 105, .	1.6	2
656	Description of the properties of dark matter by deformed statistics. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 013104.	0.9	5
657	Diluted axion star collisions with neutron stars. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 041.	1.9	8
658	Primordial Weibel instability. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 028.	1.9	2
659	Sliding naturalness: cosmological selection of the weak scale. Journal of High Energy Physics, 2022, 2022, 1.	1.6	15
660	Large-scale dark matter simulations. Living Reviews in Solar Physics, 2022, 8, 1.	5.0	57
661	Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals. Nature Astronomy, 2022, 6, 464-470.	4.2	39
662	Stochastic fluctuations of bosonic dark matter. Nature Communications, 2021, 12, 7321.	5.8	59
663	Ultralight bosons for strong gravity applications from simple Standard Model extensions. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 047.	1.9	22
664	Scalarons mimicking dark matter in the Hu–Sawicki model of <i>f</i> (<i>R </i>) gravity. Modern Physics Letters A, 2021, 36, .	0.5	10
665	High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array. Physical Review Research, 2022, 4, .	1.3	16
666	Solitons in the dark: First approach to non-linear structure formation with fuzzy dark matter. Astronomy and Astrophysics, 2022, 662, A29.	2.1	15
667	Soliton boson stars, Q-balls and the causal Buchdahl bound. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	1.9	19
668	Supermassive Black Holes, Ultralight Dark Matter, and Gravitational Waves from a First Order Phase Transition. Physical Review Letters, 2022, 128, 081101.	2.9	11

#	Article	IF	CITATIONS
669	Self-gravitating clusters of Bose-Einstein gas with planar, cylindrical, or spherical symmetry: Gaseous density profiles and onset of condensation. Physical Review E, 2022, 105, 034145.	0.8	2
670	A heuristic wave equation parameterizing BEC dark matter halos with a quantum core and an isothermal atmosphere. European Physical Journal B, 2022, 95, 1.	0.6	9
671	Gravitational waves and kicks from the merger of unequal mass, highly compact boson stars. Physical Review D, 2022, 105, .	1.6	31
672	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
673	Neutrino interactions with ultralight axion-like dark matter. European Physical Journal C, 2022, 82, 1.	1.4	7
674	Dark Matter Superfluidity. SciPost Physics Lecture Notes, 0, , .	0.0	5
675	Extreme â""-boson stars. Classical and Quantum Gravity, 2022, 39, 094001.	1.5	13
676	Probing for an ultralight dark photon from inverse Compton-like scattering. Physical Review D, 2022, 105, .	1.6	6
677	Scattering and absorption of a scalar field impinging on a charged black hole in the Einstein-Maxwell-dilaton theory. Physical Review D, 2022, 105, .	1.6	8
678	Neutron Stars with Baryon Number Violation, Probing Dark Sectors. Symmetry, 2022, 14, 518.	1.1	19
679	Interactions of Self-Localised Optical Wavepackets in Reorientational Soft Matter. Applied Sciences (Switzerland), 2022, 12, 2607.	1.3	2
680	Gravitational radiation from binary systems in massive graviton theories. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 019.	1.9	8
681	Threshold and infrared singularities: Time evolution, asymptotic state, and entanglement entropy. Physical Review D, 2022, 105, .	1.6	1
682	Gravitational focusing of wave dark matter. Physical Review D, 2022, 105, .	1.6	16
683	Analytic Solution to the Dynamical Friction Acting on Circularly Moving Perturbers. Astrophysical Journal, 2022, 928, 64.	1.6	4
684	Axion cloud evaporation during inspiral of black hole binaries: The effects of backreaction and radiation. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	11
685	Near-horizon microstructure and superradiant instabilities of black holes. Physical Review D, 2022, 105, .	1.6	6
686	Dynamical friction from ultralight dark matter. Physical Review D, 2022, 105, .	1.6	12

#	Article	IF	CITATIONS
687	Extracting the Subhalo Mass Function from Strong Lens Images with Image Segmentation. Astrophysical Journal, 2022, 927, 83.	1.6	13
688	Adiabatic evolution of the self-interacting axion field around rotating black holes. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	5
689	Systematics of type IIB moduli stabilisation with odd axions. Journal of High Energy Physics, 2022, 2022, 1.	1.6	13
690	High Quality QCD Axion at Gravitational Wave Observatories. Physical Review Letters, 2022, 128, 141101.	2.9	14
691	Applications of the close-limit approximation: horizonless compact objects and scalar fields. Classical and Quantum Gravity, 2022, 39, 105005.	1.5	2
692	Cosmological constraints on dark matter interactions with ordinary matter. Physics Reports, 2022, 961, 1-35.	10.3	33
693	Axion fragmentation on the lattice. Journal of High Energy Physics, 2021, 2021, .	1.6	8
694	Passage of test particles through oscillating spherically symmetric dark matter configurations. Physical Review D, 2021, 104, .	1.6	3
695	Dark Matter Realism. Foundations of Physics, 2022, 52, .	0.6	4
696	Ultralight dark matter or dark radiation cosmologically produced from infrared dressing. Physical Review D, 2021, 104, .	1.6	2
697	Can tides explain the low dark matter density in Fornax?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 2186-2205.	1.6	12
698	The Cusp–Core Problem in Gas-Poor Dwarf Spheroidal Galaxies. Galaxies, 2022, 10, 5.	1.1	9
699	Extra-dimensional model of dark matter. Physical Review D, 2021, 104, .	1.6	6
700	Heterodyne broadband detection of axion dark matter. Physical Review D, 2021, 104, .	1.6	27
701	The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics. Astrophysical Journal, 2022, 929, 17.	1.6	5
702	Dynamical friction of black holes in ultralight dark matter. Physical Review D, 2022, 105, .	1.6	32
703	Galactic Anomalies and Particle Dark Matter. Symmetry, 2022, 14, 812.	1.1	3
704	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350

ARTICLE IF CITATIONS # Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey. Physical Review 705 1.6 7 D, 2022, 105, . Superradiance evolution of black hole shadows revisited. Physical Review D, 2022, 105, . 1.6 Galactic rotation curves versus ultralight dark matter: A systematic comparison with SPARC data. 709 1.6 32 Physical Review D, 2022, 105, . Solving the SchrÄgdinger-Poisson system using the coordinate adaptive moving mesh method. Physical Review D, 2022, 105, . Chiral models of composite axions and accidental Peccei-Quinn symmetry. Journal of High Energy 711 1.6 10 Physics, 2022, 2022, 1. Deep Zoom-In Simulation of a Fuzzy Dark Matter Galactic Halo. Physical Review Letters, 2022, 128, 181301. 713 SchrĶdinger-Poisson solitons: Perturbation theory. Physical Review D, 2022, 105, . 1.6 20 Bose–Einstein Condensate dark matter models in the presence of baryonic matter and random 714 1.4 confining potentials. European Physical Journal C, 2022, 82, . Scalar field dark matter with two components: Combined approach from particle physics and 715 1.6 5 cosmology. Physical Review D, 2022, 105, . Nonminimally coupled ultralight axions as cold dark matter. Physical Review D, 2022, 105, . 1.6 Stellar dynamics and dark matter in Local Group dwarf galaxies. Nature Astronomy, 2022, 6, 659-672. 717 4.2 16 Cointeracting dark matter and conformally coupled light scalars. Physical Review D, 2022, 105, . 718 1.6 Exploring delaying and heating effects on the 21-cm signature of fuzzy dark matter. Physical Review D, 719 1.6 10 2022, 105, . Axion cosmology in the presence of nontrivial Nambu-Goldstone modes. Physical Review D, 2022, 105, . 1.6 The Imprint of Superradiance on Hierarchical Black Hole Mergers. Astrophysical Journal, 2022, 931, 79. 721 3 1.6 Fuzzy Dark Matter candidates from string theory. Journal of High Energy Physics, 2022, 2022, . Sharp Signals of Boson Clouds in Black Hole Binary Inspirals. Physical Review Letters, 2022, 128, . 723 2.9 23 A search for annihilating dark matter in 47 Tucanae and Omega Centauri. Publications of the 724 1.3 Astronomical Society of Australia, 2022, 39, .

#	Article	IF	CITATIONS
725	Neutrino meets ultralight dark matter: 0ν2ββ decay and cosmology. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 034.	1.9	13
726	Probing non-thermal light DM with structure formation and N _{eff} . Journal of Cosmology and Astroparticle Physics, 2022, 2022, 013.	1.9	2
727	Gravitational instability with a dark matter background: exploring the different scenarios. European Physical Journal C, 2022, 82, .	1.4	4
728	Density wakes driving dynamical friction in cored potentials. Monthly Notices of the Royal Astronomical Society, 2022, 515, 407-436.	1.6	8
729	Self-similar solutions for fuzzy dark matter. Physical Review D, 2022, 105, .	1.6	1
730	Quantum Tunneling of Fuzzy Dark Matter out of Satellite Galaxies. Research Notes of the AAS, 2022, 6, 120.	0.3	2
731	Science potential for stellar-mass black holes as neighbors of Sgr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow>Physical Review D, 2022, 105, .</mml:mrow></mml:math 	1.6 > <td>1 row></td>	1 row>
732	Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 014.	1.9	7
733	Dynamical Friction in Globular Cluster-rich Ultra-diffuse Galaxies: The Case of NGC5846-UDG1. Astrophysical Journal Letters, 2022, 932, L10.	3.0	3
734	The distribution and morphologies of Fornax Cluster dwarf galaxies suggest they lack dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2981-3013.	1.6	23
735	Accurate effective fluid approximation for ultralight axions. Physical Review D, 2022, 105, .	1.6	6
736	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2022, , 1377-1410.		0
737	Ionization of gravitational atoms. Physical Review D, 2022, 105, .	1.6	30
738	Possible formation mechanism of multistate gravitational atoms. Physical Review D, 2022, 105, .	1.6	2
739	Tidal disruption of solitons in self-interacting ultralight axion dark matter. Physical Review D, 2022, 105, .	1.6	9
740	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
741	Probing cosmic strings by reconstructing polarization rotation of the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	10
742	From Galactic Bars to the Hubble Tension: Weighing Up the Astrophysical Evidence for Milgromian Gravity. Symmetry, 2022, 14, 1331.	1.1	50

#	Article	IF	CITATIONS
743	Cosmological mass of the photon and dark energy as its Bose–Einstein condensate in de Sitter space. Indian Journal of Physics, 2023, 97, 605-621.	0.9	1
744	Relaxation times for Bose-Einstein condensation by self-interaction and gravity. Physical Review D, 2022, 106, .	1.6	9
745	Nonequilibrium scalar field dynamics starting from Fock states: Absence of thermalization in one-dimensional phonons coupled to fermions. Physical Review B, 2022, 106, .	1.1	1
746	Cosmic filament spin from dark matter vortices. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 833, 137298.	1.5	4
747	Primordial black holes in matter-dominated eras: The role of accretion. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 832, 137265.	1.5	11
748	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
749	New mechanism for primordial black hole formation during reheating. Physical Review D, 2022, 106, .	1.6	12
750	Predictions from the logotropic model: The universal surface density of dark matter halos and the present proportions of dark matter and dark energy. Physics of the Dark Universe, 2022, 37, 101098.	1.8	8
751	Probing the nature of dark matter via gravitational waves lensed by small dark matter halos. Physical Review D, 2022, 106, .	1.6	17
752	Compact groups in GDM cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3199-3211.	1.6	0
753	Fuzzy dark matter and the Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5646-5664.	1.6	21
754	Small-scale structure in vector dark matter. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 014.	1.9	29
755	Cosmological simulations of self-interacting Bose-Einstein condensate dark matter. Astronomy and Astrophysics, 2022, 666, A95.	2.1	7
756	Impact of relativistic corrections on the detectability of dark-matter spikes with gravitational waves. Physical Review D, 2022, 106, .	1.6	18
757	Dark photon stars: formation and role as dark matter substructure. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 018.	1.9	31
758	Superradiant evolution of the shadow and photon ring of Sgr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">A</mml:mi </mml:mrow><mml:mrow><mml:mo>â<†</mml:mo></mml:mrow><td>1.6 sup> <td>34 :mrow></td></td></mml:msup></mml:mrow></mml:math 	1. 6 sup> <td>34 :mrow></td>	34 :mrow>
759	Physical Review D, 2022, 106, . Testing multiflavored ultralight dark matter models with SPARC. Physical Review D, 2022, 106, .	1.6	7
760	Probing ultralight axions with the 21-cm signal during cosmic dawn. Physical Review D, 2022, 106, .	1.6	9

ARTICLE IF CITATIONS # Piercing of a boson star by a black hole. Physical Review D, 2022, 106, . 761 1.6 11 Nonclassicality of axionlike dark matter through gravitational self-interactions. Physical Review D, 1.6 2022, 106, . Cosmological models based on a complex scalar field with a power-law potential associated with a 763 3 1.6 polytropic equation of state. Physical Review D, 2022, 106, . Vortices in Black Holes. Physical Review Letters, 2022, 129, . 764 2.9 Subsonic accretion and dynamical friction for a black hole moving through a self-interacting scalar 765 1.6 8 dark matter cloud. Physical Review D, 2022, 106, . Light from the Darkness: Detecting Ultra-diffuse Galaxies in the Perseus Cluster through Over-densities of Globular Clusters with a Log-Gaussian Cox Process. Astrophysical Journal, 2022, 935, 1.6 3. Construction and Evolution of Equilibrium Configurations of the Schrödinger–Poisson System in 767 0.9 3 the Madelung Frame. Universe, 2022, 8, 432. Viability of ultralight bosonic dark matter in dwarf galaxies. Physical Review D, 2022, 106, . 1.6 769 Astrophysical Searches and Constraints., 2023, , 73-122. 1 Introduction to Dark Matter., 2023, , 1-30. Constraining fundamental constant variations from ultralight dark matter with pulsar timing arrays. 771 10 1.6 Physical Review D, 2022, 106, . Searching for axionlike time-dependent cosmic birefringence with data from SPT-3G. Physical Review D, 2022, 106, . Predictive model of fermionic dark matter halos with a quantum core and an isothermal atmosphere. 773 1.6 8 Physical Review D, 2022, 106, . Anisotropies in cosmological 21Âcm background by oscillons/I-balls of ultra-light axion-like particle. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 066. 774 1.9 Quantum fluctuations masquerade as haloes: bounds on ultra-light dark matter from quadruply 775 1.6 11 imaged quasars. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1867-1883. Closing the window on fuzzy dark matter with the 21-cm signal. Physical Review D, 2022, 106, . Astroparticle Constraints from Cosmic Reionization and Primordial Galaxy Formation. Universe, 2022, 777 0.9 5 8, 476. Accelerating Early Massive Galaxy Formation with Primordial Black Holes. Astrophysical Journal Letters, 2022, 937, L30.

ARTICLE IF CITATIONS # A non-linear solution to the <i>S</i>8 tension?. Monthly Notices of the Royal Astronomical Society, 779 1.6 48 2022, 516, 5355-5366. Production of primordial black holes via single field inflation and observational constraints. 1.4 European Physical Journal C, 2022, 82, . 781 SchrĶdinger–Poisson systems under gradient fields. Scientific Reports, 2022, 12, . 1.6 1 Axions in string theory — slaying the Hydra of dark radiation. Journal of High Energy Physics, 2022, 2022,. K-Essence Lagrangians of Polytropic and Logotropic Unified Dark Matter and Dark Energy Models. 783 0.6 5 Astronomy, 2022, 1, 126-221. Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2. Physical Review D, 784 1.6 2022, 106, . 785 After the Dark Ages. Journal of Physics A: Mathematical and Theoretical, 0, , . 0.7 0 Implications of the cosmic birefringence measurement for the axion dark matter search. Journal of 1.9 Cosmology and Astroparticle Physics, 2022, 2022, 062. 787 Dark energy and dark matter in emergent gravity. Journal of the Korean Physical Society, 0, , . 0.3 2 New logotropic model based on a complex scalar field with a logarithmic potential. Physical Review 788 1.6 D, 2022, 106, . A self-consistent wave description of axion miniclusters and their survival in the galaxy. Journal of 789 1.9 6 Cosmology and Astroparticle Physics, 2022, 2022, 081. Constraints on the mass and self-coupling of ultra-light scalar field dark matter using observational 790 limits on galactic central mass. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 074. Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint dwarf galaxies. Physical 791 1.6 39 Review D, 2022, 106, . Cross section calculations in theories of self-interacting dark matter. Physical Review D, 2022, 106, . 792 1.6 Axion couplings in grand unified theories. Journal of High Energy Physics, 2022, 2022, . 793 1.6 15 Growth of fluctuations in Chaplygin gas cosmologies: A nonlinear Jeans scale for unified dark 794 matter. Physical Review D, 2022, 106, . The effect of the deforming dark matter haloes of the Milky Way and the Large Magellanic Cloud on 795 1.6 21 the Orphan–Chenab stream. Monthly Notices of the Royal Astronomical Society, 2022, 518, 774-790. Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release. 19 1.6 Physical Review D, 2022, 106, .

#	ARTICLE	IF	CITATIONS
797	Is the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>î,</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">Â⁻</mml:mo </mml:mrow></mml:mover </mml:mrow></mml:math> Parameter of QCD Constant?. Physical Review Letters, 2022, 129, .	2.9	1
798	The quantum character of the Scalar Field Dark Matter. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5247-5259.	1.6	3
799	Constraints on ultralight axions, vector gauge bosons, and unparticles from geodetic and frame-dragging measurements. European Physical Journal C, 2022, 82, .	1.4	5
800	Ultralight pion and superheavy baryon dark matter. Physical Review D, 2022, 106, .	1.6	5
801	Astroparticle Constraints from the Cosmic Star Formation Rate Density at High Redshift: Current Status and Forecasts for JWST. Universe, 2022, 8, 589.	0.9	4
802	Magnetostatic boson stars. Physical Review D, 2022, 106, .	1.6	3
803	Hunt for light primordial black hole dark matter with ultrahigh-frequency gravitational waves. Physical Review D, 2022, 106, .	1.6	23
804	Dissipation of oscillating scalar backgrounds in an FLRW universe. Journal of High Energy Physics, 2022, .	1.6	4
805	Constraining ultralight bosonic dark matter with Keck observations of S2's orbit and kinematics. Physical Review D, 2022, 106, .	1.6	10
806	Black Hole in Quantum Wave Dark Matter. Fortschritte Der Physik, 2023, 71, .	1.5	17
807	Analytical approach to the core-halo structure of fuzzy dark matter. Physical Review D, 2022, 106, .	1.6	4
808	Observational signatures of massive black hole progenitor pathways: could Leo I be a smoking gun?. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5997-6003.	1.6	4
809	Swampland bounds on dark sectors. Journal of High Energy Physics, 2022, 2022, .	1.6	7
810	Self-interacting superfluid dark matter droplets. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4064-4072.	1.6	9
811	Exploration of simple scenarios involving fuzzy dark matter cores and gas at local scales. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3838-3849.	1.6	4
812	Can ultralight dark matter explain the age–velocity dispersion relation of the Milky Way disc: A revised and improved treatment. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4045-4063.	1.6	5
813	Cosmological constraints on the multiscalar field dark matter model. Physical Review D, 2022, 106, .	1.6	8
814	Unravelling the interplay between SIDM and baryons in MW haloes: defining where baryons dictate heat transfer. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5623-5636.	1.6	5

#	Article	IF	CITATIONS
815	Effect of Dark Matter Distribution on Scalaron Gravity near the Galactic Center Black Hole and Its Prospects. Astrophysical Journal, 2022, 941, 183.	1.6	3
816	Brownian axionlike particles. Physical Review D, 2022, 106, .	1.6	7
817	Search for Ultralight Dark Matter from Long-Term Frequency Comparisons of Optical and Microwave Atomic Clocks. Physical Review Letters, 2022, 129, .	2.9	15
818	High quality axion in supersymmetric models. Journal of High Energy Physics, 2022, 2022, .	1.6	5
819	If Dark Matter is Fuzzy, the First Stars Form in Massive Pancakes. Astrophysical Journal Letters, 2022, 941, L18.	3.0	4
820	Unveiling cosmological information on small scales with line intensity mapping. Physical Review D, 2022, 106, .	1.6	6
821	On the cosmic web elongation in fuzzy dark matter cosmologies: Effects on density profiles, shapes, and alignments of haloes. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4183-4202.	1.6	8
822	One-Electron Quantum Cyclotron as a Milli-eV Dark-Photon Detector. Physical Review Letters, 2022, 129, .	2.9	3
823	New Constraints on the Dark Matter Density Profiles of Dwarf Galaxies from Proper Motions of Globular Cluster Streams. Astrophysical Journal Letters, 2022, 941, L38.	3.0	3
824	Dynamical friction in fuzzy dark matter: Circular orbits. Physical Review D, 2023, 107, .	1.6	7
825	The emergence of universal relations in the AdS black holes thermodynamics. Physica Scripta, 2023, 98, 025305.	1.2	5
826	Narrowing the allowed mass range of ultralight bosons with the S2 star. Astronomy and Astrophysics, 2023, 670, L4.	2.1	7
827	Axion-Higgs cosmology: Cosmic microwave background and cosmological tensions. Physical Review D, 2023, 107, .	1.6	2
828	Analyzing planar galactic halo distributions with fuzzy/cold dark matter models. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	1
829	Parasitic black holes: The swallowing of a fuzzy dark matter soliton. Physical Review D, 2022, 106, .	1.6	12
830	Asymmetric dark matter from gravitational waves. Physical Review D, 2022, 106, .	1.6	4
831	Black hole merger simulations in wave dark matter environments. Physical Review D, 2023, 107, .	1.6	11
832	Statistics of Galactic-scale Quasar Pairs at Cosmic Noon. Astrophysical Journal, 2023, 943, 38.	1.6	6

	CHAHONT		
#	Article	IF	Citations
833	On the collective properties of quantum media. European Physical Journal Plus, 2023, 138, .	1.2	4
834	Quantum kinetic theory of Jeans instability in non-minimal matter-curvature coupling gravity. European Physical Journal C, 2023, 83, .	1.4	3
835	Axionic Festina Lente. Journal of High Energy Physics, 2023, 2023, .	1.6	5
836	No room to hide: implications of cosmic-ray upscattering for GeV-scale dark matter. Journal of High Energy Physics, 2023, 2023, .	1.6	10
837	Full-shape BOSS constraints on dark matter interacting with dark radiation and lifting the S ₈ tension. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 034.	1.9	9
838	Scalar dark matter production from preheating and structure formation constraints. Physical Review D, 2023, 107, .	1.6	8
839	Multifield ultralight dark matter. Physical Review D, 2023, 107, .	1.6	11
840	Phase structure and critical behaviour of charged-AdS black holes with perfect fluid dark matter. Physics of the Dark Universe, 2023, 40, 101220.	1.8	2
842	Standard Model ofÂCosmology. Springer Theses, 2022, , 73-176.	0.0	0
843	Consistency tests of structure formation simulations ofÂscalar field dark matter. Astronomische Nachrichten, 2023, 344, .	0.6	1
844	Weak deflection angle, greybody bound and shadow for charged massive BTZ black hole. Annals of Physics, 2023, 450, 169242.	1.0	3
845	The CIDER simulations: non-linear structure formation in the constrained interacting dark energy scenario. Monthly Notices of the Royal Astronomical Society, 2023, 521, 613-629.	1.6	0
846	Free streaming length of axion-like particle after oscillon/I-ball decays. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 024.	1.9	1
847	The origin and fate of the Gaia phase-space snail. Monthly Notices of the Royal Astronomical Society, 2023, 521, 114-123.	1.6	15
848	Coherent and incoherent structures in fuzzy dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3625-3647.	1.6	8
849	Self-interacting scalar field distributions around Schwarzschild black holes. Physical Review D, 2023, 107, .	1.6	2
850	Quantum tunneling of ultralight dark matter out of satellite galaxies. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 059.	1.9	1
851	Boson stars and their relatives in semiclassical gravity. Physical Review D, 2023, 107, .	1.6	9

#	Article	IF	CITATIONS
852	Dirac-boson stars. Journal of High Energy Physics, 2023, 2023, .	1.6	5
853	Cosmological structure formation and soliton phase transition in fuzzy dark matter with axion self-interactions. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2608-2615.	1.6	14
854	Parametric resonance in neutrino oscillations induced by ultra-light dark matter and implications for KamLAND and JUNO. Journal of High Energy Physics, 2023, 2023, .	1.6	7
855	From a microscopic inertial active matter model to the SchrĶdinger equation. Nature Communications, 2023, 14, .	5.8	12
856	Nonequilibrium dynamics of axionlike particles: The quantum master equation. Physical Review D, 2023, 107, .	1.6	5
857	Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity, 2023, 26, .	8.2	107
858	Simulations of multifield ultralight axionlike dark matter. Physical Review D, 2023, 107, .	1.6	8
859	Production of PBHs from inflaton structures. Physical Review D, 2023, 107, .	1.6	6
860	Prospects of probing dark matter condensates with gravitational waves. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 041.	1.9	3
861	Stringent pulsar timing bounds on light scalar couplings to matter. Physical Review D, 2023, 107, .	1.6	4
862	Pulsar Polarization Arrays. Physical Review Letters, 2023, 130, .	2.9	6
863	Measuring the Quantum State of Dark Matter. Annalen Der Physik, 2024, 536, .	0.9	0
864	Adiabatically compressed wave dark matter halo and intermediate-mass-ratio inspirals. Physical Review D, 2023, 107, .	1.6	6
865	Cosmological simulations of two-component wave dark matter. Monthly Notices of the Royal Astronomical Society, 2023, 522, 515-534.	1.6	7
866	Subdominant modes of the scalar superradiant instability and gravitational wave beats. Physical Review D, 2023, 107, .	1.6	0
867	Self-interacting gravitational atoms in the strong-gravity regime. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 018.	1.9	4
868	Novel constraints on fifth forces and ultralight dark sector with asteroidal data. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 031.	1.9	6
869	Soliton formation and the core-halo mass relation: An eigenstate perspective. Physical Review D, 2023, 107, .	1.6	10

#	Article	IF	CITATIONS
870	Superfluid dark matter around black holes. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 2023, 048.	1.9	9
871	Fuzzy Aquarius: evolution of a Milky-way like system in the Fuzzy Dark Matter scenario. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1451-1463.	1.6	5
872	European Spallation Source as a searching tool for an ultralight scalar field. Physical Review D, 2023, 107, .	1.6	3
873	Dark photon dark matter from an oscillating dilaton. Physical Review D, 2023, 107, .	1.6	7
874	Einstein rings modulated by wavelike dark matter from anomalies in gravitationally lensed images. Nature Astronomy, 2023, 7, 736-747.	4.2	10
875	Fermionic Dark Matter: Physics, Astrophysics, and Cosmology. Universe, 2023, 9, 197.	0.9	3
882	Refractive Index and Damping of Gravitational Waves in a Medium. Lecture Notes in Physics, 2023, , 193-214.	0.3	0
886	Gravitational Wave Radiation from Compact Binaries. Lecture Notes in Physics, 2023, , 73-107.	0.3	0
897	A quantum view of lensed images. Nature Astronomy, 2023, 7, 646-647.	4.2	0
930	Overview on Dark Matter Models. , 2023, , .		0
959	Black Holes: On the Universality of the Kerr Hypothesis. Lecture Notes in Physics, 2023, , 315-331.	0.3	2
960	Boson Stars. Lecture Notes in Physics, 2023, , 347-362.	0.3	0