Ceria and ceria-based nanostructured materials for pho

Nano Energy 34, 313-337 DOI: 10.1016/j.nanoen.2017.02.029

Citation Report

#	Article		CITATIONS
1	Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation. Journal of Environmental Chemical Engineering, 2017, 5, 5054-5060.	3.3	26
2	Controlled Synthesis of CeO ₂ NS-Au-CdSQDs Ternary Nanoheterostructure: A Promising Visible Light Responsive Photocatalyst for H ₂ Evolution. Inorganic Chemistry, 2017, 56, 12297-12307.		50
3	Mesoporous NiS ₂ Nanospheres Anode with Pseudocapacitance for Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery. Small, 2017, 13, 1701744.	5.2	168
4	Solar fuel from photo-thermal catalytic reactions with spectrum-selectivity: a review. Frontiers in Energy, 2017, 11, 437-451.	1.2	43
5	Photovoltaic performance and stability of fullerene/cerium oxide double electron transport layer superior to single one in p-i-n perovskite solar cells. Journal of Power Sources, 2018, 389, 13-19.	4.0	15
6	Core-shell structured α-Fe2O3@CeO2 heterojunction for the enhanced visible-light photocatalytic activity. Materials Research Bulletin, 2018, 101, 20-28.	2.7	42
7	Construction of Z-Scheme System for Enhanced Photocatalytic H ₂ Evolution Based on CdS Quantum Dots/CeO ₂ Nanorods Heterojunction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2552-2562.	3.2	105
8	Thermal characterization of Er-doped and Er–Gd co-doped ceria-based electrolyte materials for SOFC. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1233-1239.	2.0	19
9	Poly(vinylpyrrolidone) tailored porous ceria as a carbon-free support for methanol electrooxidation. Electrochimica Acta, 2018, 290, 55-62.	2.6	17
10	Template synthesis of cobalt molybdenum sulfide hollow nanoboxes as enhanced bifunctional Pt-free electrocatalysts for dye-sensitized solar cells and alkaline hydrogen evolution. Electrochimica Acta, 2018, 289, 448-458.	2.6	30
11	Improving catalytic converter performance by controlling the structural and redox properties of Zr-doped CeO2 nanorods supported Pd catalysts. Research on Chemical Intermediates, 2018, 44, 7753-7767.	1.3	2
12	Ultrafast, Continuous and Shape-Controlled Preparation of CeO ₂ Nanostructures: Nanorods and Nanocubes in a Microfluidic System. Industrial & Engineering Chemistry Research, 2018, 57, 7525-7532.	1.8	19
13	Surface modification of CeO2 nanoflakes by low temperature plasma treatment to enhance imine yield: Influences of different plasma atmospheres. Applied Surface Science, 2018, 454, 173-180.	3.1	27
14	Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 238, 111-118.	10.8	178
15	Ag/CeO2 Composites for Catalytic Abatement of CO, Soot and VOCs. Catalysts, 2018, 8, 285.	1.6	65
16	Ultrathin CdS shell-sensitized hollow S-doped CeO ₂ spheres for efficient visible-light photocatalysis. Catalysis Science and Technology, 2019, 9, 1357-1364.	2.1	166
17	Syntheses and Applications of Noble-Metal-free CeO2-Based Mixed-Oxide Nanocatalysts. CheM, 2019, 5, 1743-1774.	5.8	125
18	Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Applied Catalysis B: Environmental, 2019, 254, 580-586.	10.8	226

#	Article		CITATIONS
19	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
20	Understanding CeO ₂ â€Based Nanostructures through Advanced Electron Microscopy in 2D and 3D. Particle and Particle Systems Characterization, 2019, 36, 1800287.	1.2	22
21	Ceria-Based Materials in Hydrogenation and Reforming Reactions for CO2 Valorization. Frontiers in Chemistry, 2019, 7, 28.	1.8	98
22	Multivariate comparison of photocatalytic properties of thirteen nanostructured metal oxides for water purification. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 851-864.	0.9	9
23	Oxygen Vacancy Generation and Stabilization in CeO _{2–<i>x</i>} by Cu Introduction with Improved CO ₂ Photocatalytic Reduction Activity. ACS Catalysis, 2019, 9, 4573-4581.	5.5	364
24	Green separation of rare earth elements by valence-selective crystallization of MOFs. Chemical Communications, 2019, 55, 14902-14905.	2.2	9
25	Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Applied Surface Science, 2019, 463, 244-252.	3.1	63
26	Scalable synthesis of SnCo/NC composite as a high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 975-981.	2.8	18
27	Synthesis of ceria nanoparticles in pores of SBA-15: Pore size effect and influence of citric acid addition. Microporous and Mesoporous Materials, 2019, 277, 10-16.	2.2	28
28	The synthesis and characterization of hydrous cerium oxide nanoparticles loaded on porous silica micro-sphere as novel and efficient adsorbents to remove phosphate radicals from water. Microporous and Mesoporous Materials, 2019, 279, 73-81.	2.2	32
29	Towards carbon monoxide sensors based on europium doped cerium dioxide. Applied Surface Science, 2019, 464, 692-699.	3.1	41
30	Photoelectrodeposition effect of lanthanum oxide-modified ceria particles on the removal of lead (II) ions from water. Catalysis Today, 2019, 321-322, 128-134.	2.2	9
31	Catalytic applications of cerium dioxide. , 2020, , 45-108.		11
32	Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. , 2020, , 109-167.		17
33	Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO2/CN heterojunction as photocatalyst. Separation and Purification Technology, 2020, 237, 116329.	3.9	45
34	Cerium oxide based materials for water treatment – A review. Journal of Environmental Chemical Engineering, 2020, 8, 104439.	3.3	42
35	Au-Decorated Ce–Ti Mixed Oxides for Efficient CO Preferential Photooxidation. ACS Applied Materials & Interfaces, 2020, 12, 38019-38030.	4.0	12
36	Electrochemical Response of Highly Porous Percolative CGO Electrospun Membranes. Catalysts, 2020, 10, 756.	1.6	Ο

#	Article	IF	CITATIONS
37	Self-assembled bio-inspired Au/CeO2 nano-composites for visible white LED light irradiated photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124908.	2.3	20
38	Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochimica Acta, 2020, 353, 136502.	2.6	75
39	Heterojunction photocatalyst for organic degradation: Superior photocatalytic activity through the phase and interface engineering. Ceramics International, 2020, 46, 23245-23256.	2.3	14
40	Novel Approaches of Nanoceria with Magnetic, Photoluminescent, and Gas-Sensing Properties. ACS Omega, 2020, 5, 14879-14889.	1.6	16
41	All solid-state Z‑scheme CeO2/ZnIn2S4 hybrid for the photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution. Applied Catalysis B: Environmental, 2020, 277, 119235.	10.8	119
42	Accelerated generation of hydroxyl radical through surface polarization on BiVO4 microtubes for efficient chlortetracycline degradation. Chemical Engineering Journal, 2020, 400, 125871.	6.6	49
43	Organic–Rare Earth Hybrid Anode with Superior Cyclability for Lithium Ion Battery. Advanced Materials Interfaces, 2020, 7, 1902168.	1.9	15
44	Efficient Photon Conversion via Double Charge Dynamics CeO ₂ –BiFeO ₃ p–n Heterojunction Photocatalyst Promising toward N ₂ Fixation and Phenol–Cr(VI) Detoxification. Inorganic Chemistry, 2020, 59, 3856-3873.	1.9	98
45	Macro-Porous Ceria Photocatalysts Synthesized Using Silica Nanospheres for Efficient Adsorption and UV-Photocatalysis System. Journal of Chemical Engineering of Japan, 2020, 53, 120-125.	0.3	1
46	Photoreductive dissolution of cerium oxide nanoparticles and their size-dependent absorption properties. Physical Chemistry Chemical Physics, 2020, 22, 5756-5764.	1.3	11
47	Preparation of pyramidal SnO/CeO ₂ nano-heterojunctions with enhanced photocatalytic activity for degradation of tetracycline. Nanotechnology, 2020, 31, 215702.	1.3	19
48	The synthesis of monodispersed M-CeO ₂ /SiO ₂ nanoparticles and formation of UV absorption coatings with them. RSC Advances, 2020, 10, 4554-4560.	1.7	4
49	Semiconductor mixed oxides as innovative materials for the photocatalytic removal of organic pollutants. , 2020, , 385-430.		1
50	Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catalysis Today, 2021, 375, 506-513.	2.2	85
51	Ag–CeO2/SBA-15 composite prepared from Pluronic P123@SBA-15 hybrid as catalyst for room-temperature reduction of 4-nitrophenol. Catalysis Today, 2021, 375, 576-584.	2.2	21
52	Ni–Fe–WSx polynary hollow nanoboxes as promising electrode catalysts for high-efficiency triiodide reduction in dye-sensitized solar cells. Journal of Alloys and Compounds, 2021, 851, 156899.	2.8	34
53	Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. Nano Energy, 2021, 79, 105483.	8.2	51
54	Crystal facet and surface defect engineered low dimensional CeO ₂ (0D, 1D, 2D) based photocatalytic materials towards energy generation and pollution abatement. Materials Advances, 2021. 2. 6942-6983.	2.6	18

#	Article	IF	CITATIONS
55	Ceria doping boosts methylene blue photodegradation in titania nanostructures. Materials Chemistry Frontiers, 2021, 5, 4138-4152.	3.2	23
56	Electrocatalytic property of nitrogen-doped graphite-supported CeO2-CoOx. Materials Research Express, 2021, 8, 035510.	0.8	2
57	Biomass-Assisted Synthesis of CeO ₂ Nanorods for CO ₂ Photoreduction under Visible Light. ACS Applied Nano Materials, 2021, 4, 4226-4237.	2.4	15
58	Direct Z-scheme CeO2@LDH core–shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation. Journal of Hazardous Materials, 2021, 408, 124908.	6.5	134
59	Exploring the enhancement effects of hetero-metal doping in CeO2 on CO2 photocatalytic reduction performance. Chemical Engineering Journal, 2022, 427, 130987.	6.6	34
60	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146
61	One-step synthesis of reduced graphene oxide based ceric dioxide modified with cadmium sulfide (CeO2/CdS/RGO) heterojunction with enhanced sunlight-driven photocatalytic activity. Journal of Colloid and Interface Science, 2021, 594, 621-634.	5.0	38
62	The gas sensor utilizing CeO2 nanorods for the low temperature detection of hydrogen. Inorganic Chemistry Communication, 2021, 130, 108692.	1.8	15
63	Effect of Additional Doping of the Cu–Mn–Ce–O Solid Solution on the Catalytic Properties. Russian Journal of Inorganic Chemistry, 2021, 66, 1212-1216.	0.3	5
64	Facile in-situ synthesis of floating CeO2@ expanded graphite composites with efficient adsorption and visible light photocatalytic degradation of phenol. Journal of Environmental Chemical Engineering, 2021, 9, 106252.	3.3	2
65	Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate. Chemical Engineering Journal, 2021, 425, 130640.	6.6	43
66	In-situ annealed "M-scheme―MXene-based photocatalyst for enhanced photoelectric performance and highly selective CO2 photoreduction. Nano Energy, 2021, 90, 106532.	8.2	27
67	A Review on Ceo ₂ â€Based Electrocatalyst and Photocatalyst in Energy Conversion. Advanced Energy and Sustainability Research, 2021, 2, 2000063.	2.8	60
68	Construction of core-shell heterojunction regulating α-Fe2O3 layer on CeO2 nanotube arrays enables highly efficient Z-scheme photoelectrocatalysis. Applied Catalysis B: Environmental, 2020, 276, 119138.	10.8	210
69	Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C3N4) and g-C3N4/Metal Oxide Composite Photocatalysts. Current Organic Chemistry, 2020, 24, 673-693.	0.9	33
70	CeO2 quantum dots anchored g-C3N4: synthesis, characterization and photocatalytic performance. Applied Surface Science, 2022, 576, 151901.	3.1	19
71	Ceria and rare earth oxides (R2O3) ceramic nanomaterials. , 2022, , 13-45.		0
72	External influences of cactus type composite for hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 903, 163813.	2.8	6

#	Article	IF	CITATIONS
73	Construction of 0d/2d Ceo2/Cds Direct Z-Scheme Heterostructures for Effective Photocatalytic H2 Evolution and Cr(Vi) Reduction. SSRN Electronic Journal, 0, , .	0.4	0
74	Carbon Nanotube-Threaded Mesocrystalline CeO ₂ for Enhanced Photocatalytic NO Removal. ACS Applied Nano Materials, 2022, 5, 3581-3590.	2.4	12
75	Effect of the Ag–CeO2 interaction and the nature of pore structure on the catalytic activities of different Ag–CeO2/mesoporous-SiO2 catalysts on the reduction of 4-nitrophenol. Journal of Porous Materials, 2022, 29, 893-906.	1.3	3
76	Thermal tuning of the morphology of hydrothermally synthesized CeO2 nanotubes for photocatalytic applications. Ceramics International, 2022, 48, 17802-17815.	2.3	4
77	Preparation of CeO2/UiO-66-NH2 Heterojunction and Study on a Photocatalytic Degradation Mechanism. Materials, 2022, 15, 2564.	1.3	4
78	Facile fabrication of efficient Pr2Ce2O7 ceramic nanostructure for enhanced photocatalytic performances under solar light. Ceramics International, 2022, 48, 24695-24705.	2.3	44
79	Ag–CeO ₂ Composite Aerogels as Photocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 7335-7345.	2.5	20
80	Disordered Structure and Enhanced Redox Properties of Gd-Doped Ceo2-Tio2 Induced by Oxygen Vacancies. SSRN Electronic Journal, 0, , .	0.4	0
81	Highly efficient CeO2-supported noble-metal catalysts: From single atoms to nanoclusters. Chem Catalysis, 2022, 2, 1594-1623.	2.9	39
83	Construction of 0D/2D CeO2/CdS direct Z-scheme heterostructures for effective photocatalytic H2 evolution and Cr(VI) reduction. Separation and Purification Technology, 2022, 295, 121294.	3.9	32
85	Collaborative influence of morphology tuning and RE (La, Y, and Sm) doping on photocatalytic performance of nanoceria. Environmental Science and Pollution Research, 2022, 29, 88866-88881.	2.7	4
86	Mechanistic Investigation of Enhanced Catalytic Selectivity toward Alcohol Oxidation with Ce Oxysulfate Clusters. Journal of the American Chemical Society, 2022, 144, 12092-12101.	6.6	6
87	Using a CeO2 quantum dot hole extraction-layer for enhanced solar water splitting activity of BiVO4 photoanodes. Chemical Engineering Journal, 2022, 450, 137917.	6.6	20
88	Structural, morphological and optical properties of Ni-doped CeO2 nanospheres prepared by surfactant free co-precipitation technique. Open Journal of Science and Technology, 2021, 4, 165-177.	0.2	1
89	Photoluminescence Response and Magnetic Character of Iron Doped Ceria Thin Films. SSRN Electronic Journal, 0, , .	0.4	0
90	Facile Synthesis of Stable Cerium Dioxide Sols in Nonpolar Solvents. Molecules, 2022, 27, 5028.	1.7	4
91	Nano-CeO2-loaded chitosan-bocglycine zinc complex for the photocatalytic degradation of picric acid by the combination of Fenton's reagent. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	4
92	A sensitive electrochemical sensor for nitenpyram detection based on CeO2/MWCNTs nanocomposite. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	10

#	Article	IF	CITATIONS
93	Synthesis of porous biocarbon supported Ni3S4/CeO2 nanocomposite as high-efficient electrode materials for asymmetric supercapacitors. Journal of Saudi Chemical Society, 2022, 26, 101530.	2.4	9
94	Inâ~'Situ Synthesis of Direct Zâ~'Scheme 2d/2d Znin2s4@Ceo2 Heterostructure Toward Enhanced Photodegradation and Cr(Vi) Reduction. SSRN Electronic Journal, 0, , .	0.4	0
95	A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction. Catalysts, 2022, 12, 1101.	1.6	30
96	Structure and Surface Relaxation of CeO2 Nanoparticles Unveiled by Combining Real and Reciprocal Space Total Scattering Analysis. Nanomaterials, 2022, 12, 3385.	1.9	1
97	Insight into symmetry matching heterogeneous facet junction photocatalysts via {211} faceted CeO2 nanobelts@Î-Bi2O3 nanowires. International Journal of Hydrogen Energy, 2022, 47, 39070-39080.	3.8	1
98	In-situ synthesis of direct Z-scheme 2D/2D ZnIn2S4@CeO2 heterostructure toward enhanced photodegradation and Cr(VI) reduction. Journal of Alloys and Compounds, 2023, 931, 167430.	2.8	15
99	Co-catalyst free direct Z–scheme photocatalytic system with simultaneous hydrogen evolution and degradation of organic pollutants. International Journal of Hydrogen Energy, 2023, 48, 576-585.	3.8	10
100	Modification of Polymeric Carbon Nitride with Au–CeO2 Hybrids to Improve Photocatalytic Activity for Hydrogen Evolution. Molecules, 2022, 27, 7489.	1.7	2
101	CeO2-CDs clusters decorated Co(OH)2 nanosheets for improved photocatalytic ammonia synthesis. Journal of Colloid and Interface Science, 2023, 634, 642-650.	5.0	9
102	Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Frontiers in Chemistry, 0, 10, .	1.8	6
103	Syntheses and Redox Properties of Carboxylate-Ligated Hexanuclear Ce(IV) Clusters and Their Photoinduced Homolysis of the Ce(IV)–Ligand Covalent Bond. Inorganic Chemistry, 2022, 61, 20461-20471.	1.9	1
104	F-doped CeO2 supported Co-based nanoparticles for enhanced photocatalytic H2 evolution from ammonia borane. International Journal of Hydrogen Energy, 2023, 48, 13202-13212.	3.8	7
105	Heterojunction of CuMn2O4/CeO2 nanocomposites for promoted photocatalytic H2 evolution under visible light. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143, 104692.	2.7	10
106	Double-layered core–shell heterostructures of mSiO2@CdS@CeO2 abrasive systems toward photochemical mechanical polishing (PCMP) applications. Applied Surface Science, 2023, 614, 156274.	3.1	9
107	Engineering covalently integrated COF@CeO2 Z-scheme heterostructure for visible light driven photocatalytic CO2 conversion. Applied Surface Science, 2023, 615, 156335.	3.1	4
108	Stepwise photoassisted decomposition of carbohydrates to H2. Joule, 2023, 7, 333-349.	11.7	11
109	Highly dispersed Gd-CeO2 nanocrystals supported on mesoporous silica composite particles towards photochemical (photo-assisted chemical) mechanical polishing. Ceramics International, 2023, 49, 16932-16943.	2.3	6
110	Ceria-based photocatalysts in water-splitting for hydrogen production and carbon dioxide reduction. Catalysis Reviews - Science and Engineering, 0, , 1-78.	5.7	7

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Ceriaâ€Based Therapeutic Antioxidants for Biomedical Applications. Advanced Materials, 2024	1, 36, .	11.1	14
112	Synergetic Effect of Fe2O3 Doped-CeO2 Nanocomposites Prepared via Different Techniques Photocatalytic Desulfurization of Heavy Gas Oil. Arabian Journal for Science and Engineering, 48, 15837-15850.		1.7	1
113	The Relationship between Photoluminescence Emissions and Photocatalytic Activity of CeO ₂ Nanocrystals. Inorganic Chemistry, 2023, 62, 4291-4303.		1.9	4
114	Enhanced redox properties of Gd-doped CeO2–TiO2 induced by oxygen vacancies and diso structure. Materials Today Chemistry, 2023, 29, 101440.	dered	1.7	1
115	Metal Oxide Aerogels: A New Horizon for Stabilizing Anodes in Rechargeable Zinc Metal Batte Advanced Energy Materials, 2023, 13, .	ries.	10.2	11
121	Cerium-based nanomaterials for photo/electrocatalysis. Science China Chemistry, 2023, 66, 2	204-2220.	4.2	2
123	Recent progress and prospects of rare earth elements for advanced aqueous zinc batteries. In Chemistry Frontiers, 2023, 10, 5802-5811.	organic	3.0	5