Human-started wildfires expand the fire niche across the

Proceedings of the National Academy of Sciences of the Unite 114, 2946-2951

DOI: 10.1073/pnas.1617394114

Citation Report

#	ARTICLE	IF	CITATIONS
1	Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4582-4590.	3.3	536
2	Surging wildfire activity in a grassland biome. Geophysical Research Letters, 2017, 44, 5986-5993.	1.5	71
3	Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13750-13755.	3.3	137
4	A wireless sensor network for early forest fire detection and monitoring as a decision factor in the context of a complex integrated emergency response system. , 2017, , .		19
5	Disturbance Hydrology: Preparing for an Increasingly Disturbed Future. Water Resources Research, 2017, 53, 10007-10016.	1.7	33
6	Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environmental Research Letters, 2017, 12, 065005.	2.2	84
7	Modeling Fuel Treatment Leverage: Encounter Rates, Risk Reduction, and Suppression Cost Impacts. Forests, 2017, 8, 469.	0.9	38
8	Spatial and Temporal Variability and Trends in 2001–2016 Global Fire Activity. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2524-2536.	1.2	65
9	Atmospheric and Surface Climate Associated With 1986–2013 Wildfires in North America. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1588-1609.	1.3	13
10	Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Natural Hazards, 2018, 92, 543-565.	1.6	23
11	Burned forests impact water supplies. Nature Communications, 2018, 9, 1307.	5.8	116
12	Late Holocene influence of societies on the fire regime in southern Québec temperate forests. Quaternary Science Reviews, 2018, 180, 63-74.	1.4	33
13	Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biological Invasions, 2018, 20, 1493-1506.	1.2	189
14	Fire regimes approaching historic norms reduce wildfireâ€facilitated conversion from forest to nonâ€forest. Ecosphere, 2018, 9, e02182.	1.0	80
15	Assessing Transboundary Wildfire Exposure in the Southwestern United States. Risk Analysis, 2018, 38, 2105-2127.	1.5	27
16	Influences of fire–vegetation feedbacks and postâ€fire recovery rates on forest landscape vulnerability to altered fire regimes. Journal of Ecology, 2018, 106, 1925-1940.	1.9	114
17	Rapid growth of the US wildland-urban interface raises wildfire risk. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3314-3319.	3.3	628
18	Recognizing Women Leaders in Fire Science: Revisited. Fire, 2018, 1, 45.	1.2	4

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	Asynchronous lightning and Santa Ana winds highlight human role in southern California fire regimes. Environmental Research Letters, 2018, 13, 074024.	2.2	6
20	Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth, 2018, 2, 229-247.	1.9	176
21	Natural Disasters Trends. SSRN Electronic Journal, 2018, , .	0.4	2
22	Changes in Lightning Fire Incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire, 2018, 1, 38.	1.2	33
23	Fire Refugia: What Are They, and Why Do They Matter for Global Change?. BioScience, 0, , .	2.2	51
24	Environmental Conditions, Ignition Type, and Air Quality Impacts of Wildfires in the Southeastern and Western United States. Earth's Future, 2018, 6, 1442-1456.	2.4	38
25	Challenges of an Autonomous Wildfire Geolocation System Based on Synthetic Vision Technology. Sensors, 2018, 18, 3631.	2.1	7
26	The Year 2017: Megafires and Management in the Cerrado. Fire, 2018, 1, 49.	1.2	69
27	Historical patterns of wildfire ignition sources in California ecosystems. International Journal of Wildland Fire, 2018, 27, 781.	1.0	83
28	Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests, 2018, 9, 159.	0.9	29
29	Ignition Sources. , 2018, , 1-17.		9
30	Insights on the persistence of pines (<i>Pinus</i> species) in the Late Cretaceous and their increasing dominance in the Anthropocene. Ecology and Evolution, 2018, 8, 10345-10359.	0.8	13
31	Wildland Fire Prevention: a Review. Current Forestry Reports, 2018, 4, 178-190.	3.4	23
32	Switching on the Big Burn of 2017. Fire, 2018, 1, 17.	1.2	65
33	Forest management in the Sierra Nevada provides limited carbon storage potential: an expert elicitation. Ecosphere, 2018, 9, e02321.	1.0	5
34	Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quaternary Science Reviews, 2018, 201, 44-56.	1.4	67
35	Investigation of high ozone events due to wildfire smoke in an urban area. Atmospheric Environment, 2018, 194, 146-157.	1.9	62
36	Human-Related Ignitions Increase the Number of Large Wildfires across U.S. Ecoregions. Fire, 2018, 1, 4.	1.2	82

#	Article	IF	CITATIONS
37	Historical Drivers and Contemporary Perceptions of Wildfire in a Post-Industrial Rural Landscape. Fire, 2018, 1, 33.	1.2	7
38	Wildfires managed for restoration enhance ecological resilience. Ecosphere, 2018, 9, e02161.	1.0	51
39	Effect of Reduced Summer Cloud Shading on Evaporative Demand and Wildfire in Coastal Southern California. Geophysical Research Letters, 2018, 45, 5653-5662.	1.5	23
40	Projecting wildfire emissions over the south-eastern United States to mid-century. International Journal of Wildland Fire, 2018, 27, 313.	1.0	4
41	Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Science of the Total Environment, 2018, 637-638, 1137-1149.	3.9	47
42	Does Wildfire Open a Policy Window? Local Government and Community Adaptation After Fire in the United States. Environmental Management, 2018, 62, 210-228.	1.2	39
43	Climate Change Amplifications of Climateâ€Fire Teleconnections in the Southern Hemisphere. Geophysical Research Letters, 2018, 45, 5071-5081.	1.5	53
44	Summary of workshop large outdoor fires and the built environment. Fire Safety Journal, 2018, 100, 76-92.	1.4	51
45	Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model. Ecological Modelling, 2018, 384, 87-102.	1.2	39
46	Brief Communication: Synoptic-scale differences between Sundowner and Santa Ana wind regimes in the Santa Ynez Mountains, California. Natural Hazards and Earth System Sciences, 2018, 18, 419-427.	1.5	19
47	A New Picture of Fire Extent, Variability, and Drought Interaction in Prescribed Fire Landscapes: Insights From Florida Government Records. Geophysical Research Letters, 2018, 45, 7874-7884.	1.5	49
48	Severe Urban Outdoor Air Pollution and Children's Structural and Functional Brain Development, From Evidence to Precautionary Strategic Action. Frontiers in Public Health, 2018, 6, 95.	1.3	24
49	Global patterns of interannual climate–fire relationships. Global Change Biology, 2018, 24, 5164-5175.	4.2	191
50	The 2017 North Bay and Southern California Fires: A Case Study. Fire, 2018, 1, 18.	1.2	120
51	Spatial Distribution of Wildfires Ignited under Katabatic versus Non-Katabatic Winds in Mediterranean Southern California USA. Fire, 2018, 1, 19.	1.2	41
52	US particulate matter air quality improves except in wildfire-prone areas. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7901-7906.	3.3	258
53	Influence of uncertainties in burned area estimates on modeled wildland fire PM2.5 and ozone pollution in the contiguous U.S Atmospheric Environment, 2018, 191, 328-339.	1.9	35
54	Mapping future fire probability under climate change: Does vegetation matter?. PLoS ONE, 2018, 13, e0201680.	1.1	41

#	Article	IF	CITATIONS
55	Climate Change and Future Wildfire in the Western United States: An Ecological Approach to Nonstationarity. Earth's Future, 2018, 6, 1097-1111.	2.4	105
56	Recognizing Women Leaders in Fire Science. Fire, 2018, 1, 30.	1.2	4
57	Reframing the Challenge of Global Wildfire Threats to Water Supplies. Earth's Future, 2018, 6, 772-776.	2.4	45
58	Human-related ignitions concurrent with high winds promote large wildfires across the USA. International Journal of Wildland Fire, 2018, 27, 377.	1.0	57
59	Rapid WUI growth in a natural amenity-rich region in central-western Patagonia, Argentina. International Journal of Wildland Fire, 2019, 28, 473.	1.0	30
60	Mechanisms of Fire Seasonality Effects on Plant Populations. Trends in Ecology and Evolution, 2019, 34, 1104-1117.	4.2	92
61	Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environmental Research Letters, 2019, 14, 064007.	2.2	30
62	Estimating Canopy Fuel Attributes from Low-Density LiDAR. Fire, 2019, 2, 38.	1.2	19
63	Do lakes feel the burn? Ecological consequences of increasing exposure of lakes to fire in the continental United States. Global Change Biology, 2019, 25, 2841-2854.	4.2	28
64	Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth's Future, 2019, 7, 892-910.	2.4	540
65	Climate, Environment, and Disturbance History Govern Resilience of Western North American Forests. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	174
66	Drivers of Wildfire Occurrence Patterns in the Inland Riverine Environment of New South Wales, Australia. Forests, 2019, 10, 524.	0.9	5
67	Fine-scale assessment of cross-boundary wildfire events in the western United States. Natural Hazards and Earth System Sciences, 2019, 19, 1755-1777.	1.5	14
69	Invasive grasses increase fire occurrence and frequency across US ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23594-23599.	3.3	141
70	A dataset on human perception of and response to wildfire smoke. Scientific Data, 2019, 6, 229.	2.4	8
71	Forest resilience under global environmental change: Do we have the information we need? A systematic review. PLoS ONE, 2019, 14, e0222207.	1.1	34
72	Patterns of woodboring beetle activity following fires and bark beetle outbreaks in montane forests of California, USA. Fire Ecology, 2019, 15, .	1.1	21
75	Anthromes displaying evidence of weekly cycles in active fire data cover 70% of the global land surface. Scientific Reports, 2019, 9, 11424.	1.6	4

		CITATION REPORT	
#	Article	IF	CITATIONS
76	Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments. PLoS ONE, 2019, 14, e0222011.	1.1	23
77	Wildfire prevention through prophylactic treatment of high-risk landscapes using viscoelastic retardant fluids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20820-20827.	, 3.3	27
78	Contribution of Wildland-Fire Smoke to US PM _{2.5} and Its Influence on Recent Trends Environmental Science & Technology, 2019, 53, 1797-1804.	. 4.6	139
79	Consequences of climatic thresholds for projecting fire activity and ecological change. Global Ecology and Biogeography, 2019, 28, 521-532.	2.7	12
80	Fifteen years of changes in fire ignition frequency in Sardinia (Italy): A rich-get-richer process. Ecological Indicators, 2019, 104, 543-548.	2.6	15
81	Firebrand Generation From Thermally-Degraded Cylindrical Wooden Dowels. Frontiers in Mechanic Engineering, 2019, 5, .	al 0.8	16
82	Changes in Fire Activity in Africa from 2002 to 2016 and Their Potential Drivers. Geophysical Resea Letters, 2019, 46, 7643-7653.	irch 1.5	56
83	Scientists' warning on wildfire — a Canadian perspective. Canadian Journal of Forest Researcl 49, 1015-1023.	h, 2019, _{0.8}	120
84	We're Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risl 2019, 2, 30.	k. Fire, 1.2	128
85	Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pinela Ecosphere, 2019, 10, e02772.	and. 1.0	13
86	Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11319-11328.	3.3	156
87	The Effect of Ecophysiological Traits on Live Fuel Moisture Content. Fire, 2019, 2, 28.	1.2	32
88	On the causes of the summer 2015 Eastern Washington wildfires. Environmental Research Communications, 2019, 1, 011009.	0.9	3
89	Spatial, Temporal and Electrical Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events. Fire, 2019, 2, 18.	2 1.2	27
90	Disturbance Ecology in the Anthropocene. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	82
91	Repeated fires reduce plant diversity in lowâ€elevation Wyoming big sagebrush ecosystems (1984 Ecosphere, 2019, 10, e02591.	–2014). 1.0	66
92	The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, <scp>USA</scp> . Ecosphere, 2019, 10, e02702.	1.0	60
93	Modeling Post-Fire Tree Mortality Using a Logistic Regression Method within a Forest Landscape Model. Forests, 2019, 10, 25.	0.9	7

#	Article	IF	CITATIONS
94	Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima. Ecological Applications, 2019, 29, e01898.	1.8	45
95	Four-fold increase in solar forcing on snow in western U.S. burned forests since 1999. Nature Communications, 2019, 10, 2026.	5.8	57
97	The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environmental Change, 2019, 56, 41-55.	3.6	74
98	A landscape model of variable social-ecological fire regimes. Ecological Modelling, 2019, 401, 85-93.	1.2	30
99	Effects of changing development patterns and ignition locations within Central Texas. PLoS ONE, 2019, 14, e0211454.	1.1	3
100	Post-Fire Carbon Dynamics in Subalpine Forests of the Rocky Mountains. Fire, 2019, 2, 58.	1.2	14
101	Deciphering Active Wildfires in the Southwestern USA Using Topological Data Analysis. Climate, 2019, 7, 135.	1.2	2
102	A Socio-Ecological Approach to Mitigating Wildfire Vulnerability in the Wildland Urban Interface: A Case Study from the 2017 Thomas Fire. Fire, 2019, 2, 9.	1.2	38
103	High wildfire damage in interface communities in California. International Journal of Wildland Fire, 2019, 28, 641.	1.0	78
104	Evaluating wildfire emissions projection methods in comparisons of simulated and observed air quality. Atmospheric Chemistry and Physics, 2019, 19, 15157-15181.	1.9	1
105	Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences, 2019, 16, 3883-3910.	1.3	32
106	Spatiotemporal variability of human–fire interactions on the Navajo Nation. Ecosphere, 2019, 10, e02932.	1.0	19
107	Optimizing Forest Management Stabilizes Carbon Under Projected Climate and Wildfires. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3075-3087.	1.3	20
109	The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in Headwater Catchments. Ecosystems, 2019, 22, 643-657.	1.6	73
110	Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science, 2019, 363, .	6.0	34
111	Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research, 2019, 49, 256-269.	0.8	261
112	Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 2019, 266-267, 198-207.	1.9	194
113	Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States. Remote Sensing of Environment, 2019, 220, 30-40.	4.6	34

#	Article	IF	CITATIONS
114	Wildfire recovery as a "hot moment―for creating fire-adapted communities. International Journal of Disaster Risk Reduction, 2020, 42, 101354.	1.8	37
115	Effects of 20th entury settlement fires on landscape structure and forest composition in eastern Quebec, Canada. Journal of Vegetation Science, 2020, 31, 40-52.	1.1	11
116	Identifying opportunities for the use of broadcast prescribed fire on Colorado's Front Range. Forest Ecology and Management, 2020, 458, 117655.	1.4	5
117	Effects of policy change on wildland fire management strategies: evidence for a paradigm shift in the western US?. International Journal of Wildland Fire, 2020, 29, 857.	1.0	31
118	Classifying Large Wildfires in the United States by Land Cover. Remote Sensing, 2020, 12, 2966.	1.8	10
119	In the Line of Fire: Consequences of Human-Ignited Wildfires to Homes in the U.S. (1992–2015). Fire, 2020, 3, 50.	1.2	55
120	Scale in the study of Indigenous burning. Nature Sustainability, 2020, 3, 898-899.	11.5	25
121	Applying classification methodology to high-consequence firesetting. Psychology, Crime and Law, 2020, 26, 710-732.	0.8	7
122	Reclassifying the Wildland–Urban Interface Using Fire Occurrences for the United States. Land, 2020, 9, 225.	1.2	9
123	Observational evidence of wildfire-promoting soil moisture anomalies. Scientific Reports, 2020, 10, 11008.	1.6	40
124	Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. European Journal of Forest Research, 2020, 139, 935-945.	1.1	33
125	Key structural features in cis â€carane, (+)â€3â€carene, cis â€pinane, (+)â€Î±â€pinene, and (â^')â€Î²â€pinene in turpentine beetle primary attraction when released with ethanol. Agricultural and Forest Entomology, 2020, 23, 243.	luencing r 0.7	ed 4
126	Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data. Remote Sensing, 2020, 12, 3682.	1.8	68
127	Fungal community structure and seasonal trajectories respond similarly to fire across pyrophilic ecosystems. FEMS Microbiology Ecology, 2020, 97, .	1.3	11
128	Frequent fire slows microbial decomposition of newly deposited fine fuels in a pyrophilic ecosystem. Oecologia, 2020, 193, 631-643.	0.9	17
129	Seed source pattern and terrain have scale-dependent effects on post-fire tree recovery. Landscape Ecology, 2020, 35, 1945-1959.	1.9	14
130	Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated Future Conditions in the Western United States. Reviews of Geophysics, 2020, 58, e2019RG000692.	9.0	68
131	Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5102-5114.	2.3	18

#	Article	IF	CITATIONS
132	Wildfire Trend Analysis over the Contiguous United States Using Remote Sensing Observations. Remote Sensing, 2020, 12, 2565.	1.8	10
133	Forecasting Global Fire Emissions on Subseasonal to Seasonal (S2S) Time Scales. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001955.	1.3	13
134	Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience, 2020, 70, 659-673.	2.2	323
135	Easy-To-Interpret Procedure to Analyze Fire Seasonality and the Influence of Land Use in Fire Occurrence: A Case Study in Central Italy. Fire, 2020, 3, 46.	1.2	2
136	Wildfire Risk Assessment Based on Geospatial Open Data: Application on Chios, Greece. ISPRS International Journal of Geo-Information, 2020, 9, 516.	1.4	11
137	Burned Area Mapping Using Multi-Temporal Sentinel-2 Data by Applying the Relative Differenced Aerosol-Free Vegetation Index (RdAFRI). Remote Sensing, 2020, 12, 2753.	1.8	4
138	On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: Caution in the use of Advanced Very High Resolution Radiometer data. Science of Remote Sensing, 2020, 2, 100007.	2.2	13
139	Fire Danger Observed from Space. Surveys in Geophysics, 2020, 41, 1437-1459.	2.1	17
140	Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Scientific Reports, 2020, 10, 13790.	1.6	124
141	A changing climate is snuffing out postâ€fire recovery in montane forests. Global Ecology and Biogeography, 2020, 29, 2039-2051.	2.7	52
142	Rising Trends in Heatwave Metrics Across Southern California. Earth's Future, 2020, 8, e2020EF001480.	2.4	36
143	Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 2020, 1, 500-515.	12.2	419
144	Large Wildfires in the Western United States Exacerbated by Tropospheric Drying Linked to a Multiâ€Decadal Trend in the Expansion of the Hadley Circulation. Geophysical Research Letters, 2020, 47, e2020GL087911.	1.5	11
145	Editorial: Climate, Land Use, and Fire: Can Models Inform Management?. Frontiers in Earth Science, 2020, 8, .	0.8	1
146	Building Loss in WUI Disasters: Evaluating the Core Components of the Wildland–Urban Interface Definition. Fire, 2020, 3, 73.	1.2	33
147	Bushfires – Climate, people and policies. Geographical Journal, 2020, 186, 424-430.	1.6	1
148	Verification of Red Flag Warnings across the Northwestern U.S. as Forecasts of Large Fire Occurrence. Fire, 2020, 3, 60.	1.2	2
149	A multi-century, tree-ring-derived perspective of the North Cascades (USA) 2014–2016 snow drought. Climatic Change, 2020, 162, 127-143.	1.7	16

#	Article	IF	CITATIONS
150	Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters, 2020, 15, 094016.	2.2	322
151	Seeds of Success: A conservation and restoration investment in the future of <scp>U.S.</scp> lands. Conservation Science and Practice, 2020, 2, e209.	0.9	6
152	Seasonality and trends in human- and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018. International Journal of Wildland Fire, 2020, 29, 473.	1.0	36
153	Evidence-based mapping of the wildland-urban interface to better identify human communities threatened by wildfires. Environmental Research Letters, 2020, 15, 094069.	2.2	38
154	Human activity, daylight saving time and wildfire occurrence. Science of the Total Environment, 2020, 727, 138044.	3.9	13
155	Pathological effects of nano-sized particles on the respiratory system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102242.	1.7	49
156	Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Natural Hazards and Earth System Sciences, 2020, 20, 1097-1106.	1.5	9
157	Population collapse and retreat to fire refugia of the Tasmanian endemic conifer <i>Athrotaxis selaginoides</i> following the transition from Aboriginal to European fire management. Global Change Biology, 2020, 26, 3108-3121.	4.2	10
158	The Extreme 2018 Northern California Fire Season. Bulletin of the American Meteorological Society, 2020, 101, S1-S4.	1.7	30
159	Resource Allocation under Fire. Land Economics, 2020, 96, 92-110.	0.5	20
159 160	Resource Allocation under Fire. Land Economics, 2020, 96, 92-110. Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5.	0.5	20
	Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from		
160	Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 2020,	1.2	11
160 161	 Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 2020, 12, 1869. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of 	1.2 1.8	11 24
160 161 162	 Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 2020, 12, 1869. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of the Total Environment, 2020, 737, 139561. Finding common ground: agreement on increasing wildfire risk crosses political lines. Environmental 	1.2 1.8 3.9	11 24 26
160 161 162 163	Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 2020, 12, 1869. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of the Total Environment, 2020, 737, 139561. Finding common ground: agreement on increasing wildfire risk crosses political lines. Environmental Research Letters, 2020, 15, 065002. A 30-Yr Climatology of Meteorological Conditions Associated with Lightning Days in the Interior	1.2 1.8 3.9 2.2	11 24 26 11
160 161 162 163 164	 Flash Characteristics and Precipitation Metrics of Western U.S. Lightning-Initiated Wildfires from 2017. Fire, 2020, 3, 5. Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Remote Sensing, 2020, 12, 1869. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of the Total Environment, 2020, 737, 139561. Finding common ground: agreement on increasing wildfire risk crosses political lines. Environmental Research Letters, 2020, 15, 065002. A 30-Yr Climatology of Meteorological Conditions Associated with Lightning Days in the Interior Western United States. Journal of Climate, 2020, 33, 3771-3785. Climate Extremes and Compound Hazards in a Warming World. Annual Review of Earth and Planetary 	1.2 1.8 3.9 2.2 1.2	11 24 26 11 4

#	Article	IF	CITATIONS
168	After the fire: Perceptions of land use planning to reduce wildfire risk in eight communities across the United States. International Journal of Disaster Risk Reduction, 2020, 45, 101444.	1.8	23
169	Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 2020, 15, 030201.	2.2	105
170	Anthropogenic and lightningâ€started fires are becoming larger and more frequent over a longer season length in the U.S.A Global Ecology and Biogeography, 2020, 29, 668-681.	2.7	77
171	Compounded Heat and Fire Risk for Future U.S. Populations. Sustainability, 2020, 12, 3277.	1.6	9
172	Invasive grasses: A new perfect storm for forested ecosystems?. Forest Ecology and Management, 2020, 463, 117985.	1.4	64
173	Wildfire and prescribed burning impacts on air quality in the United States. Journal of the Air and Waste Management Association, 2020, 70, 583-615.	0.9	180
174	The application of comprehensive two-dimensional gas chromatography to the analysis of wildfire debris for ignitable liquid residue. Forensic Science International, 2020, 310, 110256.	1.3	10
175	The Landsat Burned Area algorithm and products for the conterminous United States. Remote Sensing of Environment, 2020, 244, 111801.	4.6	76
176	Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Science of the Total Environment, 2020, 725, 138331.	3.9	74
177	Does short-interval fire inhibit postfire recovery of chaparral across southern California?. Science of the Total Environment, 2021, 751, 142271.	3.9	8
178	Abandoning Holocene Dreams: Proactive Biodiversity Conservation in a Changing World. Annals of the American Association of Geographers, 2021, 111, 880-888.	1.5	18
179	A traitâ€based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. Journal of Ecology, 2021, 109, 313-326.	1.9	18
180	Problematic Exclusions: Analysis of the Clean Air Act's Exceptional Event Rule Revisions. Society and Natural Resources, 2021, 34, 135-148.	0.9	7
181	Spatial analysis of wildfire incidence in the USA: the role of climatic spillovers. Environment, Development and Sustainability, 2021, 23, 6084-6105.	2.7	6
182	Is there a dry season in the Southeast US?. Global Change Biology, 2021, 27, 713-715.	4.2	2
183	Towards understanding the effect of cedar roof covering application on firebrand production in large outdoor fires. Journal of Cleaner Production, 2021, 278, 123243.	4.6	7
184	Fire regimes are linked to precipitation patterns in the southeastern U.S Global Change Biology, 2021, 27, e5-e6.	4.2	0
185	Analysis of trends in disaster risk. International Journal of Disaster Risk Reduction, 2021, 53, 101989.	1.8	9

#	Article	IF	CITATIONS
186	Economic footprint of California wildfires in 2018. Nature Sustainability, 2021, 4, 252-260.	11.5	131
187	Climate change driven changes of vegetation fires in the Czech Republic. Theoretical and Applied Climatology, 2021, 143, 691-699.	1.3	21
188	Can we manage a future with more fire? Effectiveness of defensible space treatment depends on housing amount and configuration. Landscape Ecology, 2021, 36, 309-330.	1.9	21
189	Explaining Sentinel 2-based dNBR and RdNBR variability with reference data from the bird's eye (UAS) perspective. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102262.	1.4	21
190	Summer runoff generation in foothill catchments of the Colorado Front Range. Journal of Hydrology, 2021, 595, 125672.	2.3	4
191	Intraspecific trait variability shapes leaf trait response to altered fire regimes. Annals of Botany, 2021, 127, 543-552.	1.4	8
192	Simulated Indigenous fire stewardship increases the population growth rate of an understorey herb. Journal of Ecology, 2021, 109, 1133-1147.	1.9	14
193	Wildfire alters the disturbance impacts of an emerging forest disease via changes to host occurrence and demographic structure. Journal of Ecology, 2021, 109, 676-691.	1.9	13
194	The importance of small fires for wildfire hazard in urbanised landscapes of the northeastern US. International Journal of Wildland Fire, 2021, 30, 307.	1.0	5
195	Futuring: Trends in Fire Science and Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 599-631.	0.1	0
196	Utilizing Nature's Nurture? Lightning, Nitrogen Supply, and Crop Production. SSRN Electronic Journal, 0, , .	0.4	0
197	The role of forests in the carbon cycle and in climate change. , 2021, , 561-579.		3
198	The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen. Nature Communications, 2021, 12, 503.	5.8	18
199	Wildfire in Australia during 2019-2020, Its Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. Journal of Environmental Protection, 2021, 12, 391-414.	0.3	33
200	Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology, 2021, 8, 15.	1.3	10
203	Conflict and Climate: Drivers of Fire Activity in Syria in the Twenty-First Century. Earth Interactions, 2021, 25, 119-135.	0.7	6
204	Fire Regimes, Landscape Dynamics, and Landscape Management. Springer Textbooks in Earth Sciences, Geography and Environment, 2021, , 421-507.	0.1	2
205	Spatial accessibility of anthropogenic fire ignition sources of grassland fire in northeast China. International Journal of Wildland Fire, 2021, , .	1.0	4

ATION P

#	ARTICLE	IF	Citations
206	Seasonal Impact of Phosphate-Based Fire Retardants on Soil Chemistry Following the Prophylactic Treatment of Vegetation. Environmental Science & amp; Technology, 2021, 55, 2316-2323.	4.6	4
207	Will land use land cover change drive atmospheric conditions to become more conducive to wildfires in the United States?. International Journal of Climatology, 2021, 41, 3578-3597.	1.5	4
208	Could the exception become the rule? "Uncontrollable―air pollution events in the U.S. due to wildland fires. Environmental Research Letters, 0, , .	2.2	10
209	How climate change and fire exclusion drive wildfire regimes at actionable scales. Environmental Research Letters, 2021, 16, 024051.	2.2	38
210	Climate, Fuel, and Land Use Shaped the Spatial Pattern of Wildfire in California's Sierra Nevada. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005786.	1.3	21
211	Protective Decision-Making in Bushfire Part 1: A Rapid Systematic Review of the â€~Wait and See' Literature. Fire, 2021, 4, 4.	1.2	16
212	Meteorological Environments Associated With California Wildfires and Their Potential Roles in Wildfire Changes During 1984–2017. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033180.	1.2	19
213	Nonlocal self-organization of a dissipative system. Physical Review E, 2021, 103, 032127.	0.8	0
214	The role of fire in global forest loss dynamics. Global Change Biology, 2021, 27, 2377-2391.	4.2	71
215	Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environmental Research Letters, 2021, 16, 035019.	2.2	34
216	Vegetation ecology with anthropic drivers and consequences. Progress in Physical Geography, 2021, 45, 446-459.	1.4	7
217	Contrasting Geographic Patterns of Ignition Probability and Burn Severity in the Mojave Desert. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
219	Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 2021, 165, 1.	1.7	96
220	Spatiotemporal Prescribed Fire Patterns in Washington State, USA. Fire, 2021, 4, 19.	1.2	5
222	Spatial and temporal pattern of wildfires in California from 2000 to 2019. Scientific Reports, 2021, 11, 8779.	1.6	48
223	Wetland Fires and Its Environmental Conditions. Jurnal Ilmu Lingkungan, 2021, 19, 21-28.	0.0	1
224	Consequences of Piñon-Juniper Woodland Fuel Reduction: Prescribed Fire Increases Soil Erosion While Mastication Does Not. Ecosystems, 2022, 25, 122-135.	1.6	9
225	Epiphytic macrolichen communities take decades to recover after highâ€severity wildfire in chaparral shrublands. Diversity and Distributions, 2022, 28, 454-462.	1.9	6

#	Article	IF	CITATIONS
226	Rapid Monitoring of the Abundance and Spread of Exotic Annual Grasses in the Western United States Using Remote Sensing and Machine Learning. AGU Advances, 2021, 2, e2020AV000298.	2.3	16
227	Warming enabled upslope advance in western US forest fires. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	83
228	The relationship between the polar jet stream and extreme wildfire events in North America. Journal of Climate, 2021, , 1-59.	1.2	10
229	Smoke from regional wildfires alters lake ecology. Scientific Reports, 2021, 11, 10922.	1.6	15
230	A Framework for the Eltonian Niche of Humans. BioScience, 2021, 71, 928-941.	2.2	10
231	A Bi-Spectral Microbolometer Sensor for Wildfire Measurement. Sensors, 2021, 21, 3690.	2.1	7
232	Rocky Mountain subalpine forests now burning more than any time in recent millennia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	60
233	Global ground strike point characteristics in negative downward lightning flashes – PartÂ2: Algorithm validation. Natural Hazards and Earth System Sciences, 2021, 21, 1921-1933.	1.5	11
234	Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape. Environmental Research Letters, 2021, 16, 064081.	2.2	12
236	Leveraging the NEON Airborne Observation Platform for socioâ€environmental systems research. Ecosphere, 2021, 12, e03640.	1.0	7
237	Wildfires and global change. Frontiers in Ecology and the Environment, 2021, 19, 387-395.	1.9	153
238	A multi-analysis approach for estimating regional health impacts from the 2017 Northern California wildfires. Journal of the Air and Waste Management Association, 2021, 71, 791-814.	0.9	25
239	Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. Earth's Future, 2021, 9, e2020EF001910.	2.4	31
240	Application of bug navigation algorithms for large-scale agent-based evacuation modeling to support decision making. Fire Safety Journal, 2021, 122, 103322.	1.4	8
242	Does conserving roadless wildland increase wildfire activity in western US national forests?. Environmental Research Letters, 2021, 16, 084040.	2.2	8
243	Patterns of mega-forest fires in east Siberia will become less predictable with climate warming. Environmental Advances, 2021, 4, 100041.	2.2	12
244	Ignitions explain more than temperature or precipitation in driving Santa Ana wind fires. Science Advances, 2021, 7, .	4.7	11
245	Attribution of the role of climate change in the forest fires in Sweden 2018. Natural Hazards and Earth System Sciences, 2021, 21, 2169-2179.	1.5	39

#	Article	IF	Citations
246	Understanding Brazil's catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, 2021, 19, 233-255.	1.0	89
247	Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. Journal of Environmental Management, 2021, 289, 112508.	3.8	17
248	Causalidad de los incendios forestales en Pinar del RÃo, Cuba (1975-2018). Colombia Forestal, 2021, 24, 24-38.	0.5	0
249	Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi. Land, 2021, 10, 764.	1.2	3
250	Risky Development: Increasing Exposure to Natural Hazards in the United States. Earth's Future, 2021, 9, e2020EF001795.	2.4	40
251	Asymmetrical Lightning Fire Season Expansion in the Boreal Forest of Northeast China. Forests, 2021, 12, 1023.	0.9	3
252	Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology, 2021, 55, 10280-10290.	4.6	31
253	Protecting restoration investments from the cheatgrassâ€fire cycle in sagebrush steppe. Conservation Science and Practice, 2021, 3, e508.	0.9	17
254	Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model. Biogeosciences, 2021, 18, 4005-4020.	1.3	19
255	Human augmentation of historical red pine fire regimes in the Boundary Waters Canoe Area Wilderness. Ecosphere, 2021, 12, e03673.	1.0	11
256	Effects of Spatial Resolution on Burned Forest Classification With ICESat-2 Photon Counting Data. Frontiers in Remote Sensing, 2021, 2, .	1.3	3
257	Mapping Wetland Burned Area from Sentinel-2 across the Southeastern United States and Its Contributions Relative to Landsat-8 (2016–2019). Fire, 2021, 4, 52.	1.2	16
258	Post-wildfire rebuilding and new development in California indicates minimal adaptation to fire risk. Land Use Policy, 2021, 107, 105502.	2.5	12
259	Adapting western North American forests to climate change and wildfires: 10 common questions. Ecological Applications, 2021, 31, e02433.	1.8	133
260	Interactions between landscape and local factors inform spatial action planning in post-fire forest environments. Landscape Ecology, 2021, 36, 3523-3537.	1.9	2
261	Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecological Applications, 2021, 31, e02431.	1.8	153
262	Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecology and Evolution, 2021, 11, 12259-12284.	0.8	27
263	21st Century Planning Techniques for Creating Fire-Resilient Forests in the American West. Forests, 2021, 12, 1084.	0.9	5

#	Article	IF	CITATIONS
264	Wildfire and climate change adaptation of western North American forests: a case for intentional management. Ecological Applications, 2021, 31, e02432.	1.8	93
265	Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire. Ecological Applications, 2021, 31, e02411.	1.8	6
266	Assessing urban mortality from wildfires with a citizen science network. Air Quality, Atmosphere and Health, 2021, 14, 2015-2027.	1.5	5
267	Protective Decision-Making in Bushfire Part 2: A Rapid Systematic Review of the â€~Leave Early' Literature. Fire, 2021, 4, 42.	1.2	4
268	The impact of wildfire smoke on ozone production in an urban area: Insights from field observations and photochemical box modeling. Atmospheric Environment, 2021, 267, 118764.	1.9	22
269	GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park, Nanjing. Remote Sensing, 2021, 13, 3704.	1.8	24
270	Megafire affects stream sediment flux and dissolved organic matter reactivity, but land use dominates nutrient dynamics in semiarid watersheds. PLoS ONE, 2021, 16, e0257733.	1.1	7
271	Season of prescribed fire determines grassland restoration outcomes after fire exclusion and overgrazing. Ecosphere, 2021, 12, e03730.	1.0	4
272	Estimated Mortality and Morbidity Attributable to Smoke Plumes in the United States: Not Just a Western US Problem. GeoHealth, 2021, 5, e2021GH000457.	1.9	55
273	The Dust Emission Potential of Agriculturalâ€Like Fires—Theoretical Estimates From Two Conceptually Different Dust Emission Parameterizations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034355.	1.2	6
274	NMDI application for monitoring different vegetation covers in the Atlantic Forest biome, Brazil. Weather and Climate Extremes, 2021, 33, 100329.	1.6	9
275	Red turpentine beetle primary attraction increases linearly with (â^')â€Î²â€pinene+ethanol dose regardless of component ratios, and no change in response with addition of highâ€release frontalin. Agricultural and Forest Entomology, 0, , .	0.7	3
276	From flames to inflammation: how wildfires affect patterns of wildlife disease. Fire Ecology, 2021, 17, .	1.1	18
277	Effects of fire on soil respiration and its components in a Dahurian larch (Larix gmelinii) forest in northeast China: Implications for forest ecosystem carbon cycling. Geoderma, 2021, 402, 115273.	2.3	20
278	Planning for future fire: Scenario analysis of an accelerated fuel reduction plan for the western United States. Landscape and Urban Planning, 2021, 215, 104212.	3.4	32
279	Opposite anomalous synoptic patterns for potential California large wildfire spread and extinguishing in 2018 cases. Atmospheric Research, 2021, 262, 105804.	1.8	1
280	Effects of fire season on the reproductive success of the post-fire flowerer Doryanthes excelsa. Environmental and Experimental Botany, 2021, 192, 104634.	2.0	7
281	Fire Ecology of Rocky Mountain Forests. Managing Forest Ecosystems, 2021, , 287-336.	0.4	6

	CHATION R	LPORT	
#	ARTICLE	IF	Citations
282	Fire in Floodplain Forests of the Southeastern USA. Managing Forest Ecosystems, 2021, , 201-242.	0.4	0
283	Fire and Forests in the 21st Century: Managing Resilience Under Changing Climates and Fire Regimes in USA Forests. Managing Forest Ecosystems, 2021, , 465-502.	0.4	8
284	Increasing Synchronous Fire Danger in Forests of the Western United States. Geophysical Research Letters, 2021, 48, e2020GL091377.	1.5	53
285	Fire Ecology and Management of Forest Ecosystems in the Western Central Hardwoods and Prairie-Forest Border. Managing Forest Ecosystems, 2021, , 149-199.	0.4	0
286	lgnition. , 2018, , 1-9.		2
287	Emergence of a New Climate and Human-Caused Wildfire Era for Western USA Forests. , 2018, , .		3
288	The complexities of wildfires. Nature Geoscience, 2019, 12, 81-81.	5.4	10
289	Net reductions or spatiotemporal displacement of intentional wildfires in response to arrests? Evidence from Spain. International Journal of Wildland Fire, 2019, 28, 397.	1.0	5
290	Patterns and trends in simultaneous wildfire activity in the United States from 1984 to 2015. International Journal of Wildland Fire, 2020, 29, 1057.	1.0	21
291	Climate change projected to reduce prescribed burning opportunities in the south-eastern United States. International Journal of Wildland Fire, 2020, 29, 764.	1.0	43
292	An evaluation of advanced baseline imager fire radiative power based wildfire emissions using carbon monoxide observed by the Tropospheric Monitoring Instrument across the conterminous United States. Environmental Research Letters, 2020, 15, 094049.	2.2	15
293	Human-caused fires release more carbon than lightning-caused fires in the conterminous United States. Environmental Research Letters, 2021, 16, 014013.	2.2	7
295	The effect of scale in quantifying fire impacts on species habitats. Fire Ecology, 2020, 16, .	1.1	10
296	Megafires on the Southern Great Plains. Journal of Operational Meteorology, 0, , 164-179.	0.9	20
297	Non-native plants exert strong but under-studied influence on fire dynamics. NeoBiota, 0, 61, 47-64.	1.0	3
298	Trends and spatial shifts in lightning fires and smoke concentrations in response to 21st century climate over the national forests and parks of the western United States. Atmospheric Chemistry and Physics, 2020, 20, 8827-8838.	1.9	32
299	The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 2019, 11, 529-552.	3.7	227
304	Spectral Rule-Based Expert System for Automatic Near Real-Time Thermal Anomalies Detection in Geostationary GOES-16 ABI Imagery. , 2021, , .		Ο

#	Article	IF	CITATIONS
305	Disturbance shapes the US forest governance frontier: A review and conceptual framework for understanding governance change. Ambio, 2021, 50, 2168-2182.	2.8	6
306	Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic. Nature Communications, 2021, 12, 6048.	5.8	26
307	COVID-19 lockdowns drive decline in active fires in southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
308	Stranded land constrains public land management and contributes to larger fires. Environmental Research Letters, 2021, 16, 114014.	2.2	4
309	Different post-fire stages encompass different plant community compositions in fire-prone grasslands from Southern Brazil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 285, 151937.	0.6	4
312	Dry Thunderstorms. , 2019, , 1-10.		1
313	On the Prevalence of Forest Fires in Spain. SSRN Electronic Journal, 0, , .	0.4	0
314	Wildfires and Older PeopleÂ. , 2019, , 1-4.		0
315	Fire Data. , 2020, , 1-23.		0
316	Impact of geophysical and anthropogenic factors on wildfire size: a spatiotemporal data-driven risk assessment approach using statistical learning. Stochastic Environmental Research and Risk Assessment, 2022, 36, 1103-1129.	1.9	3
317	The role of fruits and fires in the germination of a rare subshrub, Amorpha georgiana (Fabaceae)1. Journal of the Torrey Botanical Society, 2020, 147, .	0.1	0
318	Fire Data. , 2020, , 335-357.		0
319	Economics of WUI/Wildfire Prevention and Education. , 2020, , 237-244.		0
320	Ignition. , 2020, , 649-657.		0
321	Cost-effective fuel treatment planning: a theoretical justification and case study. International Journal of Wildland Fire, 2020, 29, 42.	1.0	11
322	Dry Thunderstorms. , 2020, , 227-236.		0
323	Ignition Sources. , 2020, , 662-676.		0
324	Modeling wildfire ignition origins in southern California using linear network point processes. Annals of Applied Statistics, 2020, 14, .	0.5	1

#	Article	IF	Citations
325	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	1.9	34
326	Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	66
327	Relationships of climate, human activity, and fire history to spatiotemporal variation in annual fire probability across California. PLoS ONE, 2021, 16, e0254723.	1.1	3
328	The interactive global fire module pyrE (v1.0). Geoscientific Model Development, 2020, 13, 3091-3118.	1.3	1
329	Long-term forest health implications of roadlessness. Environmental Research Letters, 2020, 15, 104023.	2.2	4
330	Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Climate Research, 2020, 82, 33-54.	0.4	8
331	Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agricultural and Forest Meteorology, 2022, 312, 108723.	1.9	11
332	Preliminary study on the validation of ECMWF with the ground-based data for the Indonesia Fire Danger Rating System (Ina-FDRS). , 2021, , .		0
333	Spatially Resolved Photochemistry Impacts Emissions Estimates in Fresh Wildfire Plumes. Geophysical Research Letters, 2021, 48, e2021GL095443.	1.5	7
334	Hydrological and Meteorological Controls on Large Wildfire Ignition and Burned Area in Northern California during 2017–2020. Fire, 2021, 4, 90.	1.2	0
335	Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters, 2021, 16, 125008.	2.2	34
336	The initial assessment of the impacts of Covid-19 pandemic on forest resilience and forest-dependent community resilience in East Kalimantan. IOP Conference Series: Earth and Environmental Science, 2021, 917, 012014.	0.2	1
337	Assessing the socio-economic and land-cover drivers of wildfire activity and its spatiotemporal distribution in south-central Chile. Science of the Total Environment, 2022, 810, 152002.	3.9	13
338	Changes in Key Physical Soil Properties of Post-pyrogenic Forest Ecosystems: a Case Study of Catastrophic Fires in Russian Sub-boreal Forest. Innovations in Landscape Research, 2022, , 687-700.	0.2	0
339	The human–grass–fire cycle: how people and invasives coâ€occur to drive fire regimes. Frontiers in Ecology and the Environment, 2022, 20, 117-126.	1.9	9
340	Limitations to Propagule Dispersal Will Constrain Postfire Recovery of Plants and Fungi in Western Coniferous Forests. BioScience, 2022, 72, 347-364.	2.2	21
341	Leveraging NASA Soil Moisture Active Passive for Assessing Fire Susceptibility and Potential Impacts Over Australia and California. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 779-787.	2.3	12
342	Wildfires and Older People. , 2021, , 5438-5441.		0

ARTICLE IF CITATIONS # Mixedâ€severity wildfire and salvage logging affect the populations of a forestâ€dependent carnivoran 344 1.0 4 and a competitor. Ecosphere, 2022, 13, . Effects of Wildfire Destruction on Migration, Consumer Credit, and Financial Distress. SSRN 345 0.4 Electronic Journal, 0, , . Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate 346 2.6 20 change. Communications Earth & Environment, 2021, 2, . Examining the status of forest fire emission in 2020 and its connection to COVID-19 incidents in West 347 Coast regions of the United States. Environmental Research, 2022, 210, 112818. Biodiversity and the Anthropocene., 2024, , 660-667. 348 0 Assessing Potential Safety Zone Suitability Using a New Online Mapping Tool. Fire, 2022, 5, 5. 1.2 Northward expansion of fire-adaptative vegetation in future warming. Environmental Research 350 2.2 5 Letters, 2022, 17, 024008. Changes in land use enhance the sensitivity of tropical ecosystems to fire-climate extremes. Scientific 351 1.6 Reports, 2022, 12, 964. Smoke from 2020 United States wildfires responsible for substantial solar energy forecast errors. 352 2.2 14 Environmental Research Letters, 2022, 17, 034010. Quantifying Carbon Monoxide Emissions on the Scale of Large Wildfires. Geophysical Research 1.5 14 Letters, 2022, 49, . Lightning patterns in the Pantanal: Untangling natural and anthropogenic-induced wildfires. Science 354 3.9 23 of the Total Environment, 2022, 820, 153021. Climate Changes Consequences from Sun-Earth Connections and Anthropogenic Relationships. Natural Science, 2022, 14, 24-41. Use of GCA—GC for the characterization of odours in forensic applications. Comprehensive Analytical 356 0.7 5 Chemistry, 2022, 96, 335-365. Plant-water sensitivity regulates wildfire vulnerability. Nature Ecology and Evolution, 2022, 6, 332-339. 3.4 PMU-Driven Non-Preemptive Disconnection of Overhead Lines at the Approach or Break-Out of Forest 358 2 4.6 Fires. IEEE Transactions on Power Systems, 2023, 38, 168-176. Fire and regeneration from seeds in a warming world, with emphasis on Australia., 2022, , 229-242. Wildfire probability models calibrated using past human and lightning ignition patterns can inform 362 2.0 8 mitigation of post-fire hydrologic hazards. Geomatics, Natural Hazards and Risk, 2022, 13, 568-590. Wildfire–atmosphere interaction index for extreme-fire behaviour. Natural Hazards and Earth System 1.5 Sciences, 2022, 22, 509-522.

#	Article	IF	CITATIONS
364	Human ignitions on private lands drive USFS cross-boundary wildfire transmission and community impacts in the western US. Scientific Reports, 2022, 12, 2624.	1.6	18
365	Humanâ€mediated trophic mismatch between fire, plants and herbivores. Ecography, 2022, 2022, .	2.1	2
366	The season for large fires in Southern California is projected to lengthen in a changing climate. Communications Earth & Environment, 2022, 3, .	2.6	31
367	Spatiotemporal Dynamics and Climate Influence of Forest Fires in Fujian Province, China. Forests, 2022, 13, 423.	0.9	7
368	U.S. fires became larger, more frequent, and more widespread in the 2000s. Science Advances, 2022, 8, eabc0020.	4.7	75
369	A cyclical wildfire pattern as the outcome of a coupled human natural system. Scientific Reports, 2022, 12, 5280.	1.6	6
370	Simulating Potential Impacts of Fuel Treatments on Fire Behavior and Evacuation Time of the 2018 Camp Fire in Northern California. Fire, 2022, 5, 37.	1.2	3
371	The wildland–urban interface in the United States based on 125 million building locations. Ecological Applications, 2022, 32, e2597.	1.8	24
372	MDIR Monthly Ignition Risk Maps, an Integrated Open-Source Strategy for Wildfire Prevention. Forests, 2022, 13, 408.	0.9	3
373	Spatial patterns and drivers for wildfire ignitions in California. Environmental Research Letters, 2022, 17, 055004.	2.2	13
374	Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity. Fire, 2022, 5, 41.	1.2	14
375	Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters, 2022, 17, 045014.	2.2	14
376	Wild, tamed, and domesticated: Three fire macroregimes for global pyrogeography in the Anthropocene. Ecological Applications, 2022, 32, .	1.8	11
377	Shifting season of fire and its interaction with fire severity: Impacts on reproductive effort in resprouting plants. Ecology and Evolution, 2022, 12, e8717.	0.8	7
378	Streamflow Response to Wildfire Differs With Season and Elevation in Adjacent Headwaters of the Lower Colorado River Basin. Water Resources Research, 2022, 58, .	1.7	10
379	Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus?. Biological Conservation, 2022, 268, 109499.	1.9	17
380	Adaptation Strategies and Approaches for Managing Fire in a Changing Climate. Climate, 2022, 10, 58.	1.2	15
381	The Fiscal Burden of Wildfires: State Expenditures and Funding Mechanisms for Wildfire Suppression in the Western U.S. and Implications for Federal Policy. State and Local Government Review, 2021, 53, 337-351.	0.3	4

#	Article	IF	CITATIONS
382	The Wildland Firefighter Exposure and Health Effect (WFFEHE) Study: Rationale, Design, and Methods of a Repeated-Measures Study. Annals of Work Exposures and Health, 2022, 66, 714-727.	0.6	6
383	Fire Seasonality, Seasonal Temperature Cues, Dormancy Cycling, and Moisture Availability Mediate Post-fire Germination of Species With Physiological Dormancy. Frontiers in Plant Science, 2021, 12, 795711.	1.7	6
385	Evaluation of low-resolution remotely sensed datasets for burned area assessment within the wildland-urban interface. Remote Sensing Applications: Society and Environment, 2022, 26, 100752.	0.8	3
386	New seasonal pattern of pollution emerges from changing North American wildfires. Nature Communications, 2022, 13, 2043.	5.8	18
387	Sensitivity of biomass burning emissions estimates to land surface information. Biogeosciences, 2022, 19, 2059-2078.	1.3	5
388	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
389	Wildfire controls on land surface properties in mixed conifer and ponderosa pine forests of Sierra Nevada and Klamath mountains, Western US. Agricultural and Forest Meteorology, 2022, 320, 108939.	1.9	1
392	Weather Research and Forecasting—Fire Simulated Burned Area and Propagation Direction Sensitivity to Initiation Point Location and Time. Fire, 2022, 5, 58.	1.2	0
393	Spatio-Temporal Assessment of Thunderstorms' Effects on Wildfire in Australia in 2017–2020 Using Data from the ISS LIS and MODIS Space-Based Observations. Atmosphere, 2022, 13, 662.	1.0	1
394	Anthropogenic and Lightning Fire Incidence and Burned Area in Europe. Land, 2022, 11, 651.	1.2	9
395	The Character and Changing Frequency of Extreme California Fire Weather. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
396	Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nature Communications, 2022, 13, 2717.	5.8	30
397	Vegetation type conversion in the US Southwest: frontline observations and management responses. Fire Ecology, 2022, 18, .	1.1	17
398	Validating the 6Âyear (2016–2021) anthropogenic induced small island wildfire hazards in Pulau Seribu archipelago, Indonesia. Progress in Disaster Science, 2022, 14, 100236.	1.4	3
399	Young forests and fire: Using lidar–imagery fusion to explore fuels and burn severity in a subalpine forest reburn. Ecosphere, 2022, 13, .	1.0	3
400	On the prevalence of forest fires in Spain. Natural Hazards, 0, , .	1.6	1
401	Impacts of Fine Particulate Matter From Wildfire Smoke on Respiratory and Cardiovascular Health in California. GeoHealth, 2022, 6, .	1.9	27
402	Anthropogenic Land Use and Land Cover Changes—A Review on Its Environmental Consequences and Climate Change. Journal of the Indian Society of Remote Sensing, 2022, 50, 1615-1640.	1.2	53

#	Article	IF	CITATIONS
403	Wildland fires ignited by avian electrocutions. Wildlife Society Bulletin, 2022, 46, .	0.4	5
404	Persistent Positive Anomalies in Geopotential Heights Promote Wildfires in Western North America. Journal of Climate, 2022, 35, 6469-6486.	1.2	9
405	Trends in western USA fire fuels using historical data and modeling. Fire Ecology, 2022, 18, .	1.1	6
406	NO _x and O ₃ Trends at U.S. Nonâ€Attainment Areas for 1995–2020: Influence of COVIDâ€19 Reductions and Wildland Fires on Policyâ€Relevant Concentrations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
407	Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM _{2.5} . Environmental Science and Technology Letters, 2022, 9, 501-506.	3.9	41
408	Ice Sheet Melt and Ozone Hole Variations on Three Solar Cycles Possible Anthropogenic Interactions. Atmospheric and Climate Sciences, 2022, 12, 564-587.	0.1	1
409	Modern Pyromes: Biogeographical Patterns of Fire Characteristics across the Contiguous United States. Fire, 2022, 5, 95.	1.2	2
410	Conceptualizing a probabilistic risk and loss assessment framework for wildfires. Natural Hazards, 2022, 114, 1153-1169.	1.6	4
411	Meteorological Conditions Associated with Lightning Ignited Fires and Long-Continuing-Current Lightning in Arizona, New Mexico and Florida. Fire, 2022, 5, 96.	1.2	6
412	The North American treeâ€ring fireâ€scar network. Ecosphere, 2022, 13, .	1.0	26
413	Wildfire burn severity and emissions inventory: an example implementation over California. Environmental Research Letters, 2022, 17, 085008.	2.2	9
414	Holocene fire history in southwestern China linked to climate change and human activities. Quaternary Science Reviews, 2022, 289, 107615.	1.4	8
416	Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data. Remote Sensing of Environment, 2022, 280, 113172.	4.6	10
417	High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region. Environments - MDPI, 2022, 9, 96.	1.5	1
418	Vegetation fires along the Czech rail network. Fire Ecology, 2022, 18, .	1.1	4
419	Reimagine fire science for the anthropocene. , 2022, 1, .		27
420	Pyrogeography across the western Palaearctic: A diversity of fire regimes. Global Ecology and Biogeography, 2022, 31, 1923-1932.	2.7	14
421	Spatial Predictions of Human and Natural-Caused Wildfire Likelihood across Montana (USA). Forests, 2022, 13, 1200.	0.9	2

#	Article	IF	CITATIONS
422	The Construction of Probabilistic Wildfire Risk Estimates for Individual Real Estate Parcels for the Contiguous United States. Fire, 2022, 5, 117.	1.2	6
423	Meteorological and geographical factors associated with dry lightning in central and northern California. , 2022, 1, 025001.		5
424	A century of transformation: fire regime transitions from 1919 to 2019 in southeastern British Columbia, Canada. Landscape Ecology, 2022, 37, 2707-2727.	1.9	5
425	Bibliometric analysis of fires on wildland-urban interfaces. Natural Hazards Research, 2022, 2, 147-153.	2.0	4
426	Red turpentine beetle primary attraction to βâ€pinene or 3â€carene (with and without ethanol) varies in western <scp>US</scp> pine forests. Agricultural and Forest Entomology, 0, , .	0.7	2
427	Reestablishing a foundational species: Limitations on postâ€wildfire sagebrush seedling establishment. Ecosphere, 2022, 13, .	1.0	2
428	The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile. Earth System Science Data, 2022, 14, 3599-3613.	3.7	3
429	Preservation biases are pervasive in Holocene paleofire records. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 602, 111165.	1.0	4
430	Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope. Remote Sensing of Environment, 2022, 280, 113203.	4.6	15
431	The Dynamic Temperate and Boreal Fire and Forest-Ecosystem Simulator (DYNAFFOREST): Development and evaluation. Environmental Modelling and Software, 2022, 156, 105473.	1.9	7
432	Tuberculosis Diagnoses Following Wildfire Smoke Exposure in California. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 336-345.	2.5	5
433	Impacts of livestock grazing on the probability of burning in wildfires vary by region and vegetation type in California. Journal of Environmental Management, 2022, 322, 116092.	3.8	4
434	Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading From Remote-Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	24
435	Assessment of the Meteorological Factors of Fire Hazards for the Southern Ural Region. Geography and Natural Resources, 2022, 43, 175-181.	0.1	2
436	Quantifying drivers of change in social-ecological systems: land management impacts wildfire probability in forests of the western US. Regional Environmental Change, 2022, 22, .	1.4	3
437	Decline in Seasonal Snow during a Projected 20-Year Dry Spell. Hydrology, 2022, 9, 155.	1.3	2
438	Comparison of airborne measurements of NO, NO ₂ , HONO, NO _{<i>y</i>} , and CO during FIREX-AQ. Atmospheric Measurement Techniques, 2022, 15, 4901-4930.	1.2	17
439	Using Structure Location Data to Map the Wildland–Urban Interface in Montana, USA. Fire, 2022, 5, 129.	1.2	2

#	Article	IF	CITATIONS
441	Analyzing the Spatiotemporal Patterns of Forests Carbon Sink and Sources Between 2000 and 2019. Earth's Future, 2022, 10, .	2.4	3
442	Where There's Smoke, There's Fuel: Dynamic Vegetation Data Improve Predictions of Wildfire Hazard in the Great Basin. Rangeland Ecology and Management, 2023, 89, 20-32.	1.1	15
443	Reviewing the links and feedbacks between climate change and air pollution in Europe. Frontiers in Environmental Science, 0, 10, .	1.5	7
444	Wildfire Risk in the Complex Terrain of the Santa Barbara Wildland–Urban Interface during Extreme Winds. Fire, 2022, 5, 138.	1.2	2
445	Probabilistic Wildfire risk assessment methodology and evaluation of a supply chain network. International Journal of Disaster Risk Reduction, 2022, 82, 103340.	1.8	2
447	Beyond Particulate Matter Mass: Heightened Levels of Lead and Other Pollutants Associated with Destructive Fire Events in California. Environmental Science & Technology, 2022, 56, 14272-14283.	4.6	14
448	Grazing Intensity Effects on Fire Ignition Risk and Spread in Sagebrush Steppe. Rangeland Ecology and Management, 2023, 89, 51-60.	1.1	3
449	Wildfire, protected areas and forest ownership: The case of China. Land Use Policy, 2022, 122, 106372.	2.5	0
450	Contemporary (1984–2020) fire history metrics for the conterminous United States and ecoregional differences by land ownership. International Journal of Wildland Fire, 2022, 31, 1167-1183.	1.0	2
451	Human- and lightning-caused wildland fire ignition clusters in British Columbia, Canada. International Journal of Wildland Fire, 2022, 31, 1043-1055.	1.0	3
452	Using ecosystem integrity to maximize climate mitigation and minimize risk in international forest policy. Frontiers in Forests and Global Change, 0, 5, .	1.0	7
454	Non-native plant associations with wildfire, tree removals, and deer in the eastern United States. Landscape Online, 0, , 1104.	0.0	4
455	Social Vulnerability, Wildfire Risk, and Ecological Concerns Over the American Wildland-Urban Interface in the San Francisco Bay Area: A Sustainable Development Perspective. Bandung: Journal of the Global South, 2022, 9, 412-443.	0.2	0
456	On the Potential of Flaming Hotspot Detection at Night via Multiband Visible/Near-Infrared Imaging. Remote Sensing, 2022, 14, 5019.	1.8	0
457	Research gaps limit understanding of invasion-fire cycles. Biological Invasions, 2023, 25, 693-711.	1.2	1
458	Overview of extreme weather events, impacts and forecasting techniques. , 2023, , 1-86.		0
459	Forest Fire Detection for Edge Devices. , 2022, , .		2
460	North American fire weather catalyzed by the extratropical transition of tropical cyclones. Climate Dynamics, 2023, 61, 65-78.	1.7	1

#	Article	IF	CITATIONS
461	Drought then wildfire reveals a compound disturbance in a resprouting forest. Ecological Applications, 2023, 33, .	1.8	6
462	The Response of Soil Physicochemical Properties in the Hyrcanian Forests of Iran to Forest Fire Events. Fire, 2022, 5, 195.	1.2	3
463	Future Direction of Fuels Management in Sagebrush Rangelands. Rangeland Ecology and Management, 2023, 86, 50-63.	1.1	3
464	Investigation of the potential effects of firefighting water additives on soil invertebrates and terrestrial plants. Chemosphere, 2023, 313, 137496.	4.2	2
465	Rethinking the focus on forest fires in federal wildland fire management: Landscape patterns and trends of non-forest and forest burned area. Journal of Environmental Management, 2023, 327, 116718.	3.8	10
466	Debris flow occurrence under changing climate and wildfire regimes: A southern California perspective. Geomorphology, 2023, 422, 108538.	1.1	7
467	Land management drives dynamic changes to microbial function through edaphic factors and soil biota. Pedobiologia, 2023, 96, 150859.	0.5	8
468	Future expansion, seasonal lengthening and intensification of fire activity under climate change in southeastern France. International Journal of Wildland Fire, 2023, 32, 4-14.	1.0	5
469	Mapping the Wildland-Urban Interface from Houses Location and Terrain Slope in Patagonia, Argentina. , 0, , .		1
471	Expanding wildland-urban interface alters forest structure and landscape context in the northern United States. Environmental Research Letters, 0, , .	2.2	2
472	Automated habitat monitoring systems linked to adaptive management: a new paradigm for species conservation in an era of rapid environmental change. Landscape Ecology, 2023, 38, 7-22.	1.9	5
473	Turning up the heat: Longâ€ŧerm water quality responses to wildfires and climate change in a hypereutrophic lake. Ecosphere, 2022, 13, .	1.0	4
474	Wildfire Response: A System on the Brink?. Journal of Forestry, 2023, 121, 121-124.	0.5	3
475	Highâ€severity burned area and proportion exceed historic conditions in Sierra Nevada, California, and adjacent ranges. Ecosphere, 2023, 14, .	1.0	11
476	Large mitigation potential of smoke PM _{2.5} in the US from human-ignited fires. Environmental Research Letters, 2023, 18, 014002.	2.2	1
477	The Economic Incidence of Wildfire Suppression in the United States. American Economic Journal: Applied Economics, 2023, 15, 442-473.	1.5	7
478	Novel climate–fire–vegetation interactions and their influence on forest ecosystems in the western <scp>USA</scp> . Functional Ecology, 2023, 37, 2126-2142.	1.7	3
479	The drivers and predictability of wildfire re-burns in the western United States (US). , 2023, 2, 015001.		0

#	Article	IF	CITATIONS
480	Human population growth and accessibility from cities shape rangeland condition in the American West. Landscape and Urban Planning, 2023, 232, 104673.	3.4	5
481	Fire Influence on Regional to Global Environments and Air Quality (FIREXâ€AQ). Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	24
482	Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions. Atmosphere, 2023, 14, 29.	1.0	1
483	Wildfires Impact Assessment on PM Levels Using Generalized Additive Mixed Models. Atmosphere, 2023, 14, 231.	1.0	0
484	Shifting social-ecological fire regimes explain increasing structure loss from Western wildfires. , 2023, 2, .		11
485	Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer?. Meteorology, 2023, 2, 74-86.	0.6	4
486	Estimating Climate-Sensitive Wildfire Risk and Tree Mortality Models for Use in Broad-Scale U.S. Forest Carbon Projections. Forests, 2023, 14, 302.	0.9	1
488	Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, <scp>USA</scp> . Ecosphere, 2023, 14, .	1.0	2
489	Fire Has a Positive Effect on the Abundance of Sun Spiders (Arachnida: Solifugae) in the Cerrado-Pantanal Ecotone. Fire, 2023, 6, 69.	1.2	1
490	Future Direction of Fuels Management in Sagebrush Rangelands. Rangeland Ecology and Management, 2023, 89, 113-126.	1.1	1
491	Occurrence, Area Burned, and Seasonality Trends of Forest Fires in the Natural Subregions of Alberta over 1959–2021. Fire, 2023, 6, 96.	1.2	4
492	Fires and their key drivers in Mexico. International Journal of Wildland Fire, 2023, 32, 651-664.	1.0	1
493	Study on the socioeconomic and climatic effects of forest fire incidence in the Changbai Mountain area based on a cross-classified multilevel model. Geomatics, Natural Hazards and Risk, 2023, 14, .	2.0	0
494	Review of Research on Human Behavior in Large Outdoor Fires. Fire Technology, 0, , .	1.5	0
495	Towards a Comprehensive Dataset for Next-Day Wildfire Prediction. , 2022, , .		1
496	High-resolution wildfire simulations reveal complexity of climate change impacts on projected burn probability for Southern California. Fire Ecology, 2023, 19, .	1.1	5
497	Examining socioeconomic factors associated with wildfire occurrence and burned area in Galicia (Spain) using spatial and temporal data. Fire Ecology, 2023, 19, .	1.1	7
498	Assessing large landscape patterns of potential fire connectivity using circuit methods. Landscape Ecology, 2023, 38, 1663-1676.	1.9	1

	Сіта	tation Report		
#	ARTICLE	IF	CITATIONS	
499	Wildfire Susceptibility of Land Use and Topographic Features in the Western United States: Implications for the Landscape Management. Forests, 2023, 14, 807.	0.9	1	
516	Regional and Urban Air Quality in the Americas. , 2023, , 1-43.		0	
523	Forest Health in the Anthropocene. , 2023, , 745-772.		0	
552	Rangeland Biodiversity. , 2023, , 209-249.		0	
556	Regional and Urban Air Quality in the Americas. , 2023, , 665-707.		0	
561	Burn Severity Mapping with L-band UAVSAR Observations Over Los Angeles' Largest Wildfire. , 2023	, , .	0	
572	Hazard Mapping and Analysis of Wildfires: An Oklahoma Case Study. , 2023, , .		0	
595	Machine Learning Algorithm and Multi Sensor Suite for Orbital Power Line Management and Wildfire Prediction. , 2024, , .		Ο	