Effect of temperature and relative humidity on stability gastro-intestinal digestion of microcapsules of Bordo groduced with different carrier agents

Food Chemistry 230, 257-264 DOI: 10.1016/j.foodchem.2017.03.038

Citation Report

#	Article	IF	CITATIONS
1	Effect of carrier agents on the physical properties and morphology of spray-dried Monascus pigment powder. LWT - Food Science and Technology, 2018, 98, 299-305.	5.2	14
2	Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. Food and Bioprocess Technology, 2018, 11, 1422-1436.	4.7	48
3	Anthocyanins in Food. , 2019, , 10-17.		8
4	Release behavior of 1â€methylcylopropene coated paperâ€based shellac solution in response to stepwise humidity changes to develop novel functional packaging for fruit. Packaging Technology and Science, 2019, 32, 523-533.	2.8	15
5	Recent progress in preparation and agricultural application of microcapsules. Journal of Biomedical Materials Research - Part A, 2019, 107, 2371-2385.	4.0	39
6	Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 2019, 294, 493-502.	8.2	98
7	Production and characterization of solid lipid microparticles loaded with guaraná (Paullinia cupana) seed extract. Food Research International, 2019, 123, 144-152.	6.2	30
8	Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 2019, 133, 168-177.	5.2	63
9	In vitro bioaccessibility of microencapsulated phenolic compounds of jussara (Euterpe edulis) Tj ETQq0 0 0 rgBT / 173-180.	Overlock 5.2	10 Tf 50 427 31
10	Microencapsulation of copigmented anthocyanins using double emulsion followed by complex coacervation: Preparation, characterization and stability. LWT - Food Science and Technology, 2020, 133, 110154.	5.2	21
11	Effect of ultrasonic assisted extraction on Dayak onion powder extraction (Eleutherine palmifolia). IOP Conference Series: Earth and Environmental Science, 2020, 475, 012015.	0.3	0
12	Microwaveâ€essisted extraction of bioactive compounds from <i>Araucaria angustifolia</i> bracts followed by encapsulation. Journal of Food Processing and Preservation, 2020, 44, e14484.	2.0	2
13	Encapsulation of Amazonian Blueberry juices: Evaluation of bioactive compounds and stability. LWT - Food Science and Technology, 2020, 124, 109152.	5.2	11
14	Mechanism of the temperature-responsive material regulating porous morphology on epoxy phenolic novolac resin microcapsule surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124581.	4.7	8
15	Anthocyanins: New techniques and challenges in microencapsulation. Food Research International, 2020, 133, 109092.	6.2	129
16	Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. International Journal of Food Engineering, 2020, 16, .	1.5	37
17	Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. LWT - Food Science and Technology, 2020, 123, 109097.	5.2	70
18	Application of soy protein isolate and cassava starch based film solutions as matrix for ionic encapsulation of carrot powders. Journal of Food Science and Technology, 2020, 57, 4171-4181.	2.8	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Microencapsulation and controlled release of bioactive compounds from grape pomace. Drying Technology, 2021, 39, 1018-1032.	3.1	16
20	Kinetic and thermodynamic studies on the degradation of carotene in carrot powder beads. Journal of Food Engineering, 2021, 288, 110145.	5.2	6
21	Microencapsulation and accelerated stability testing of bioactive compounds of Hibiscus sabdariffa. Journal of Food Measurement and Characterization, 2021, 15, 1599-1610.	3.2	10
22	Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. Food and Bioprocess Technology, 2021, 14, 1407-1431.	4.7	35
23	Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3164-3191.	11.7	58
24	Coâ€encapsulation of anthocyanins extracted from grape skins (<i>Vitis vinifera</i> var. Syrah) and αâ€ŧocopherol via spray drying. Journal of Food Processing and Preservation, 2021, 45, e16038.	2.0	3
25	Microencapsulation of avocado pear seed (Persea Americana mill) bioactive-rich extracts and evaluation of its antioxidants, in vitro starch digestibility and storage stability. Bulletin of the National Research Centre, 2022, 46, .	1.8	4
26	Accelerated stability testing and simulated gastrointestinal release of encapsulated betacyanins and phenolic compounds from Bougainvillea glabra bracts extract. Food Chemistry, 2022, 393, 133391.	8.2	6
27	Utilization of different carrier agents for chlorophyll encapsulation: Characterization and kinetic stability study. Food Research International, 2022, 160, 111650.	6.2	9
28	Encapsulated bioactive compounds from a winemaking byproduct for its application as functional ingredient in yogurt. Agrociencia Uruguay, 2021, 25, .	0.2	1
29	Transglutaminase-catalyzed modification of fish skin gelatin enhanced the protection of microcapsules to Limosilactobacillus reuteri. Food Bioscience, 2022, 50, 101961.	4.4	4
30	Transcriptome and metabolome reveal the effects of three canopy types on the flavonoids and phenolic acids in †Merlot' (Vitis vinifera L.) berry pericarp. Food Research International, 2023, 163, 112196.	6.2	4
31	Microencapsulation upholds biological activities of sheep whey hydrolysates and protects against inÂvitro gastrointestinal digestion. International Dairy Journal, 2023, 138, 105554.	3.0	0
32	Colorimetric porous microspheres of natural sodium alginate for chilled pork visual monitoring. International Journal of Biological Macromolecules, 2023, 230, 123198.	7.5	9
33	Nanoencapsulation of Cyanidin 3-O-Glucoside: Purpose, Technique, Bioavailability, and Stability. Nanomaterials, 2023, 13, 617.	4.1	2
34	Anthocyanins: Modified New Technologies and Challenges. Foods, 2023, 12, 1368.	4.3	9
35	Astaxanthin encapsulation in nanocapsule by high-pressure homogenization technology: a study on stability, antioxidant activity and <i>inÂvitro</i> release. Journal of Dispersion Science and Technology, 0, , 1-12.	2.4	1
36	Phenolic Composition of Brazilian BRS Carmem (Muscat Belly A × BRS Rúbea) Grapes: Evaluation of Their Potential Use as Bioingredients. Foods, 2023, 12, 2608.	4.3	0

#	Article	IF	CITATIONS
37	The potential of anthocyanin-loaded alginate hydrogel beads for intelligent packaging applications: Stability and sensitivity to volatile amines. Current Research in Food Science, 2023, 7, 100560.	5.8	4
38	Potential use of red hibiscus flower extract for the production of spray-chilled microparticles: Characterization, stability, and bioaccessibility in vitro of anthocyanins. Food Research International, 2023, 174, 113570.	6.2	0

CITATION REPORT

Nghiên cá» ©u Ä'á»™ng hỀ suy giá°£m hÃm lượng polyphenol và hoá°¡t tÃnh sinh hỀ cá»§a bá»™t sá°¥y phun cao chiá°¿t trâ (Syzygium Zeylanicum (L.) DC.) trong Ä'iá»u kiện cưỡng bức. Tap Chi Khoa Hoc = Journal of Science, 2023, 59,.

40	Valorization of Wastes Generated in Organic Grape Processing. Brazilian Archives of Biology and Technology, 0, 67, .	0.5	0
41	Packaging and storage of spray-dried food powders. , 2024, , 573-618.		0
42	Comparative analysis of freeze drying and spray drying methods for encapsulation of chlorophyll with maltodextrin and whey protein isolate. Food Chemistry: X, 2024, 21, 101156.	4.3	0