Prethermal Phases of Matter Protected by Time-Transla

Physical Review X 7, DOI: 10.1103/physrevx.7.011026

Citation Report

#	Article	IF	CITATIONS
1	Phase transitions and adiabatic preparation of a fractional Chern insulator in a boson cold-atom model. Physical Review B, 2017, 96, .	3.2	38
2	Quantum time crystal by decoherence: Proposal with an incommensurate charge density wave ring. Physical Review B, 2017, 96, .	3.2	16
3	Effects of local periodic driving on transport and generation of bound states. Physical Review B, 2017, 96, .	3.2	12
4	Topological Frequency Conversion in Strongly Driven Quantum Systems. Physical Review X, 2017, 7, .	8.9	103
5	Eigenstate phases with finite on-site non-Abelian symmetry. Physical Review B, 2017, 96, .	3.2	16
6	Dynamically enriched topological orders in driven two-dimensional systems. Physical Review B, 2017, 95, .	3.2	47
7	Many-body localization caused by temporal disorder. Physical Review B, 2017, 96, .	3.2	36
8	Defining time crystals via representation theory. Physical Review B, 2017, 96, .	3.2	42
9	Prethermal time crystals in a one-dimensional periodically driven Floquet system. Physical Review B, 2017, 96, .	3.2	44
10	Symmetry-protected topological order at nonzero temperature. Physical Review A, 2017, 96, .	2.5	31
11	Disorder-induced transitions in resonantly driven Floquet topological insulators. Physical Review B, 2017, 96, .	3.2	23
12	Radical chiral Floquet phases in a periodically driven Kitaev model and beyond. Physical Review B, 2017, 96, .	3.2	58
13	Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects. Physical Review B, 2017, 96, .	3.2	123
14	Floquet Dynamics of Boundary-Driven Systems at Criticality. Physical Review Letters, 2017, 118, 260602.	7.8	25
15	Floquet topological phases with symmetry in all dimensions. Physical Review B, 2017, 95, .	3.2	86
16	Critical Time Crystals in Dipolar Systems. Physical Review Letters, 2017, 119, 010602.	7.8	107
17	Fate of a discrete time crystal in an open system. Physical Review B, 2017, 95, .	3.2	60
18	Prethermal Strong Zero Modes and Topological Qubits. Physical Review X, 2017, 7, .	8.9	60

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
19	Time Crystal Behavior of Excited Eigenstates. Physical Review Letters, 2017, 119, 250602.	7.8	44
20	Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals. Physical Review Letters, 2018, 120, 106402.	7.8	17
21	Topological energy conversion through the bulk or the boundary of driven systems. Physical Review B, 2018, 97, .	3.2	22
22	Logarithmically Slow Relaxation in Quasiperiodically Driven Random Spin Chains. Physical Review Letters, 2018, 120, 070602.	7.8	55
23	Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state. Physical Review A, 2018, 97, .	2.5	28
24	Absence of thermalization in finite isolated interacting Floquet systems. Physical Review B, 2018, 97, .	3.2	35
25	Periodic and quasiperiodic revivals in periodically driven interacting quantum systems. Physical Review B, 2018, 97, .	3.2	24
26	Discrete Time-Crystalline Order in Cavity and Circuit QED Systems. Physical Review Letters, 2018, 120, 040404.	7.8	150
27	P31 NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Physical Review B, 2018, 97, .	3.2	56
28	Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. Physical Review Letters, 2018, 120, 180602.	7.8	119
29	Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. Physical Review Letters, 2018, 120, 180603.	7.8	189
30	Clean Floquet Time Crystals: Models and Realizations in Cold Atoms. Physical Review Letters, 2018, 120, 110603.	7.8	86
31	Shattered time: can a dissipative time crystal survive many-body correlations?. New Journal of Physics, 2018, 20, 123003.	2.9	61
32	Strong-disorder renormalization group for periodically driven systems. Physical Review B, 2018, 98, .	3.2	10
33	Minimalist approach to the classification of symmetry protected topological phases. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 445001.	2.1	36
34	Observation of a Space-Time Crystal in a Superfluid Quantum Gas. Physical Review Letters, 2018, 121, 185301.	7.8	104
35	Charge density wave and charge pump of interacting fermions in circularly shaken hexagonal optical lattices. Physical Review A, 2018, 98, .	2.5	15
36	Stability and pre-thermalization in chains of classical kicked rotors. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 465001.	2.1	25

#	Article	IF	Citations
37	Time crystals in periodically driven systems. Physics Today, 2018, 71, 40-47.	0.3	54
38	Tracking the quantized information transfer at the edge of a chiral Floquet phase. Physical Review B, 2018, 98, .	3.2	13
39	Universal spectral correlations in the chaotic wave function and the development of quantum chaos. Physical Review B, 2018, 98, .	3.2	34
40	Floquet Supersymmetry. Physical Review Letters, 2018, 120, 210603.	7.8	9
41	Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal. Physical Review Letters, 2018, 120, 215301.	7.8	113
42	Suppression of Heating in Quantum Spin Clusters under Periodic Driving as a Dynamic Localization Effect. Physical Review Letters, 2018, 121, 050602.	7.8	15
43	Boundary Time Crystals. Physical Review Letters, 2018, 121, 035301.	7.8	162
44	Many-Body Dynamics and Gap Opening in Interacting Periodically Driven Systems. Physical Review Letters, 2018, 121, 036801.	7.8	13
45	Interacting Floquet topological phases in three dimensions. Physical Review B, 2018, 98, .	3.2	10
46	Spatial-Translation-Induced Discrete Time Crystals. Physical Review Letters, 2018, 121, 093001.	7.8	26
47	Learning phase transitions from dynamics. Physical Review B, 2018, 98, .	3.2	43
48	Spin Polarization through Floquet Resonances in a Driven Central Spin Model. Physical Review Letters, 2018, 121, 080401.	7.8	23
49	String order parameters for one-dimensional Floquet symmetry protected topological phases. Physical Review B, 2018, 97, .	3.2	10
50	Many-body localization, symmetry and topology. Reports on Progress in Physics, 2018, 81, 082501.	20.1	69
51	Infinite family of three-dimensional Floquet topological paramagnets. Physical Review B, 2018, 97, .	3.2	12
52	Simulation of Non-Abelian Braiding in Majorana Time Crystals. Physical Review Letters, 2018, 120, 230405.	7.8	69
53	Onset of Floquet thermalization. Physical Review B, 2018, 97, .	3.2	66
54	High-frequency expansion for Floquet prethermal phases with emergent symmetries: Application to time crystals and Floquet engineering. Physical Review B, 2019, 100, .	3.2	12

#	Article	IF	CITATIONS
55	Analog of Hamilton-Jacobi theory for the time-evolution operator. Physical Review A, 2019, 100, .	2.5	13
56	Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models. Physical Review Letters, 2019, 123, 030601.	7.8	77
57	Topologically protected braiding in a single wire using Floquet Majorana modes. Physical Review B, 2019, 100, .	3.2	33
58	Period- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math> Discrete Time Crystals and Quasicrystals with Ultracold Bosons. Physical Review Letters, 2019, 123, 150601.	7.8	51
59	Integrable Many-Body Quantum Floquet-Thouless Pumps. Physical Review Letters, 2019, 123, 170603.	7.8	34
60	Emergent Prethermalization Signatures in Out-of-Time Ordered Correlations. Physical Review Letters, 2019, 123, 090605.	7.8	48
61	Dicke time crystals in driven-dissipative quantum many-body systems. New Journal of Physics, 2019, 21, 073028.	2.9	90
62	Classical Many-Body Time Crystals. Physical Review Letters, 2019, 123, 124301.	7.8	46
63	Dynamics of a space-time crystal in an atomic Bose-Einstein condensate. Physical Review A, 2019, 99, .	2.5	19
64	Steady states of interacting Floquet insulators. Physical Review B, 2019, 99, .	3.2	27
65	Probing Quantum Thermalization of a Disordered Dipolar Spin Ensemble with Discrete Time-Crystalline Order. Physical Review Letters, 2019, 122, 043603.	7.8	33
66	Flow Equation Approach to Periodically Driven Quantum Systems. Physical Review X, 2019, 9, .	8.9	44
67	Emergent limit cycles and time crystal dynamics in an atom-cavity system. Physical Review A, 2019, 99, .	2.5	47
68	Almost strong (<mml:math) (xmlns:mml="http://www.w3</td><td>org/1998
3.2</td><td>/Math/Math
18</td></tr><tr><td>69</td><td>Discrete time crystal in globally driven interacting quantum systems without disorder. Physical
Review A, 2019, 99, .</td><td>2.5</td><td>48</td></tr><tr><td>70</td><td>Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains. Physical Review B, 2019, 99, .</td><td>3.2</td><td>48</td></tr><tr><td>71</td><td>Floquet time crystals in clock models. Physical Review B, 2019, 99, .</td><td>3.2</td><td>69</td></tr><tr><td>72</td><td>Floquet Majorana zero and <mml:math
xmlns:mml=" 0.784314="" 1="" 10="" 1998="" 227="" 50="" etqq1="" http:="" math="" mathml"="" overlock="" rgbt="" td="" tf="" tj="" www.w3.org=""><mml:mi>ï€</mml:mi> modes in planar Josephson junctions. Physical Review B, 2019, 99, .</mml:math)>	3.2	24

#	Article	IF	CITATIONS
73	Emergent statistical bubble localization in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z<mml:mn>2</mml:mn></mml:mi </mml:msub>lattice gauge theory. Physical Review B, 2019, 99, .</mml:math 	3.2	3
74	Interacting invariants for Floquet phases of fermions in two dimensions. Physical Review B, 2019, 99, .	3.2	45
75	Floquet engineering of topological phases protected by emergent symmetries under resonant drives. Physical Review A, 2019, 100, .	2.5	0
76	Quantum many-body scars from magnon condensation. Physical Review B, 2019, 100, .	3.2	96
77	Quantum Time Crystals from Hamiltonians with Long-Range Interactions. Physical Review Letters, 2019, 123, 210602.	7.8	87
78	Discrete time crystals in many-body quantum chaos. Physical Review B, 2019, 100, .	3.2	14
79	Classical stochastic discrete time crystals. Physical Review E, 2019, 100, 060105.	2.1	32
80	Dissipation Induced Nonstationarity in a Quantum Gas. Physical Review Letters, 2019, 123, 260401.	7.8	60
81	Floquet Hopf Insulators. Physical Review Letters, 2019, 123, 266803.	7.8	24
82	Time crystals in a shaken atom-cavity system. Physical Review A, 2019, 100, .	2.5	34
83	Heating Rates in Periodically Driven Strongly Interacting Quantum Many-Body Systems. Physical Review Letters, 2019, 123, 240603.	7.8	40
84	Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems. Physical Review Letters, 2019, 122, 015701.	7.8	90
85	Time operators and time crystals: self-adjointness by topology change. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 025301.	2.1	4
86	Emergent Hydrodynamics in Nonequilibrium Quantum Systems. Physical Review Letters, 2020, 125, 030601.	7.8	27
87	Time Crystals Protected by Floquet Dynamical Symmetry in Hubbard Models. Physical Review Letters, 2020, 125, 060601.	7.8	30
88	High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes. Physical Review A, 2020, 102,	2.5	14
89	Emergent Spatial Structure and Entanglement Localization in Floquet Conformal Field Theory. Physical Review X, 2020, 10, .	8.9	24
90	Dynamical Enhancement of Symmetries in Many-Body Systems. Physical Review Letters, 2020, 125, 080602.	7.8	8

#	Article	IF	CITATIONS
91	Unitary Subharmonic Response and Floquet Majorana Modes. Physical Review Letters, 2020, 125, 086804.	7.8	7
92	Classification of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:msub><mml:m deformed Floquet conformal field theories. Physical Review B, 2020, 102, .</mml:m </mml:msub></mml:mrow></mml:math 	ni>L ≋,/⊉ nml:	mi¤smml:mr
93	Floquet dynamical quantum phase transition in the extended XY model: Nonadiabatic to adiabatic to to adiabatic	3.2	45
94	Long-Lived Interacting Phases of Matter Protected by Multiple Time-Translation Symmetries in Quasiperiodically Driven Systems. Physical Review X, 2020, 10, .	8.9	56
95	Floquet Prethermalization in a Bose-Hubbard System. Physical Review X, 2020, 10, .	8.9	77
96	Prethermalization without Temperature. Physical Review X, 2020, 10, .	8.9	42
97	Effective Floquet Hamiltonians for periodically driven twisted bilayer graphene. Physical Review B, 2020, 101, .	3.2	33
98	Discrete time crystal in a finite chain of Rydberg atoms without disorder. Physical Review A, 2020, 101, .	2.5	24
99	Periodically Driven Sachdev-Ye-Kitaev Models. Physical Review Letters, 2020, 124, 106401.	7.8	27
100	Condensed matter physics in time crystals. New Journal of Physics, 2020, 22, 075003.	2.9	44
101	Long-Range Prethermal Phases of Nonequilibrium Matter. Physical Review X, 2020, 10, .	8.9	61
102	Effective Floquet Hamiltonian in the low-frequency regime. Physical Review B, 2020, 101, .	3.2	33
103	Response of a quantum disordered spin system to a local periodic drive. Physical Review B, 2020, 101, .	3.2	3
104	Scaling of Loschmidt echo in a boundary-driven critical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z<mml:mn>3</mml:mn></mml:mi </mml:msub> Potts model. Physical Review B, 2020, 101, .</mml:math 	3.2	1
105	Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions. Physical Review Research, 2021, 3, .	3.6	9
106	Random Multipolar Driving: Tunably Slow Heating through Spectral Engineering. Physical Review Letters, 2021, 126, 040601.	7.8	30
107	Critical properties of the Floquet time crystal within the Gaussian approximation. Physical Review B, 2021, 103, .	3.2	12
108	Effective response theory for Floquet topological systems. Physical Review Research, 2021, 3, .	3.6	11

#	Article	IF	CITATIONS
109	Prethermal quasiconserved observables in Floquet quantum systems. Physical Review B, 2021, 103, .	3.2	11
110	Floquet conformal field theories with generally deformed Hamiltonians. SciPost Physics, 2021, 10, .	4.9	15
111	Real-time correlation function of Floquet conformal fields. Physical Review D, 2021, 103, .	4.7	6
112	Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science, 2021, 371, 1355-1359.	12.6	186
113	Chimera Time-Crystalline Order in Quantum Spin Networks. Physical Review Letters, 2021, 126, 120606.	7.8	9
114	Energy diffusion and absorption in chaotic systems with rapid periodic driving. Physical Review Research, 2021, 3, .	3.6	15
115	Programmable quantum simulations of spin systems with trapped ions. Reviews of Modern Physics, 2021, 93, .	45.6	316
116	Quantum quench in a driven Ising chain. Physical Review B, 2021, 103, .	3.2	2
117	Critical theory for the breakdown of photon blockade. Physical Review Research, 2021, 3, .	3.6	10
118	Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. Atoms, 2021, 9, 25.	1.6	3
119	Periodically, quasiperiodically, and randomly driven conformal field theories. Physical Review Research, 2021, 3, .	3.6	20
120	Critical properties of the prethermal Floquet time crystal. Physical Review B, 2021, 103, .	3.2	13
121	Observation of a prethermal discrete time crystal. Science, 2021, 372, 1192-1196.	12.6	93
122	Impact of drive harmonics on the stability of Floquet many-body localization. Physical Review B, 2021, 103, .	3.2	1
123	Topological and dynamical features of periodically driven spin ladders. Physical Review B, 2021, 103, .	3.2	6
124	Rigorous Bounds on the Heating Rate in Thue-Morse Quasiperiodically and Randomly Driven Quantum Many-Body Systems. Physical Review Letters, 2021, 127, 050602.	7.8	16
125	Scaling of temporal entanglement in proximity to integrability. Physical Review B, 2021, 104, .	3.2	14
126	Statistical Floquet prethermalization of the Bose-Hubbard model. SciPost Physics, 2021, 11, .	4.9	7

τιων Ρ

#	Article	IF	CITATIONS
127	Analytic approaches to periodically driven closed quantum systems: methods and applications. Journal of Physics Condensed Matter, 2021, 33, 443003.	1.8	27
128	Correlations and dynamical quantum phase transitions in an interacting topological insulator. Physical Review B, 2021, 104, .	3.2	15
129	Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving. Physical Review Letters, 2021, 127, 090602.	7.8	28
130	Dynamics of fluctuation correlation in a periodically driven classical system. Physical Review B, 2021, 104, .	3.2	8
131	Dephasing-induced growth of discrete time-crystalline order in spin networks. Physical Review B, 2021, 104, .	3.2	2
132	Nonlocal discrete time crystals in periodically driven surface codes. Physical Review B, 2021, 104, .	3.2	6
133	Flow equations for disordered Floquet systems. SciPost Physics, 2021, 11, .	4.9	7
134	Polynomial filter diagonalization of large Floquet unitary operators. SciPost Physics, 2021, 11, .	4.9	4
135	Classical Prethermal Phases of Matter. Physical Review Letters, 2021, 127, 140602.	7.8	37
136	Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum, 2021, 2, .	9.2	41
137	Floquet Phases of Matter via Classical Prethermalization. Physical Review Letters, 2021, 127, 140603.	7.8	26
138	Stroboscopic aliasing in long-range interacting quantum systems. SciPost Physics Core, 2021, 4, .	2.8	8
139	Classical approaches to prethermal discrete time crystals in one, two, and three dimensions. Physical Review B, 2021, 104, .	3.2	20
140	Discrete Time Crystals and Related Phenomena. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 39-172.	0.2	2
141	Combating quasiparticle poisoning with multiple Majorana fermions in a periodically-driven quantum wire. Journal of Physics Condensed Matter, 2020, 32, 435301.	1.8	8
142	From a continuous to a discrete time crystal in a dissipative atom-cavity system. New Journal of Physics, 2020, 22, 085002.	2.9	39
143	Coherent dynamics in frustrated coupled parametric oscillators. New Journal of Physics, 2020, 22, 085005.	2.9	11
144	On the long-term stability of space-time crystals. New Journal of Physics, 2020, 22, 105001.	2.9	7

		CITATION REP	ORT	
#	Article		IF	CITATIONS
145	Time crystallinity and finite-size effects in clean Floquet systems. Physical Review B, 2020, 1	02,.	3.2	18
146	Homogeneous Floquet time crystal from weak ergodicity breaking. Physical Review B, 2020,	102,.	3.2	9
147	Exponentially slow heating in short and long-range interacting Floquet systems. Physical Rev Research, 2019, 1, .	view	3.6	40
148	Homogeneous Floquet time crystal protected by gauge invariance. Physical Review Research	n, 2020, 2, .	3.6	36
149	Prethermalization in a classical phonon field: Slow relaxation of the number of phonons. Phy Review Research, 2020, 2, .	sical	3.6	8
150	Time-induced second-order topological superconductors. Physical Review Research, 2020, 2		3.6	35
151	Quantum frequency locking and downconversion in a driven qubit-cavity system. Physical Re Research, 2020, 2, .	zview	3.6	11
152	From dynamical localization to bunching in interacting Floquet systems. SciPost Physics, 20	18, 5, .	4.9	4
153	Exponentially long lifetime of universal quasi-steady states in topological Floquet pumps. Sc Physics, 2020, 9, .	iPost	4.9	9
154	Time crystallinity in open quantum systems. Quantum - the Open Journal for Quantum Scier 270.	ıce, 0, 4,	0.0	27
155	Fragility of classical Hamiltonian period doubling to quantum fluctuations. Physical Review E 104, .	i, 2021,	3.2	2
156	Formation of spatial patterns by spin-selective excitations of interacting fermions. Physical R 2020, 102, .	leview B,	3.2	3
157	Time crystals in the driven transverse field Ising model under quasiperiodic modulation. New of Physics, 2020, 22, 125001.	Journal	2.9	6
158	Double Braiding Majoranas for Quantum Computing and Hamiltonian Engineering. PRX Qua 1, .	ntum, 2020,	9.2	10
159	Many-body–localized discrete time crystal with a programmable spin-based quantum simu Science, 2021, 374, 1474-1478.	ılator.	12.6	80
160	Autonomous topological time crystals and knotty molecular motors. Journal of Physics Conc Matter, 2021, 33, 015702.	lensed	1.8	0
161	Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topolog insulators. Physical Review Research, 2020, 2, .	cal	3.6	6
162	Discrete time crystals in Bose-Einstein condensates and the symmetry-breaking edge in a sir two-mode theory. Physical Review A, 2021, 104, .	nple	2.5	5

#	Article	IF	CITATIONS
163	Floquet engineering of low-energy dispersions and dynamical localization in a periodically kicked three-band system. Physical Review B, 2021, 104, .	3.2	13
164	Quantum repetition codes as building blocks of large-period discrete time crystals. Physical Review B, 2021, 104, .	3.2	6
165	Universal nonadiabatic energy pumping in a quasiperiodically driven extended system. Physical Review B, 2021, 104, .	3.2	8
166	Floquet prethermal phase protected by U(1) symmetry on a superconducting quantum processor. Physical Review A, 2022, 105, .	2.5	8
167	Stability of the Discrete Time-Crystalline Order in Spin-Optomechanical and Open Cavity QED Systems. Photonics, 2022, 9, 61.	2.0	1
168	Topological micromotion of Floquet quantum systems. Physical Review B, 2022, 105, .	3.2	3
169	Driven Hubbard model on a triangular lattice: Tunable Heisenberg antiferromagnet with a chiral three-spin term. Physical Review B, 2022, 105, .	3.2	5
170	Absence of Heating in a Uniform Fermi Gas Created by Periodic Driving. Physical Review X, 2022, 12, .	8.9	8
171	Observation of time-crystalline eigenstate order on a quantum processor. , 2022, , .		2
172	Criticality and rigidity of dissipative discrete time crystals in solids. Physical Review Research, 2022, 4,	3.6	5
173	Energy diffusion and prethermalization in chaotic billiards under rapid periodic driving. Physical Review E, 2021, 104, 064210.	2.1	2
174	Dynamics of the order parameter statistics in the long range Ising model. SciPost Physics, 2022, 12, .	4.9	2
175	Dissipative time crystal in an atom-cavity system: Influence of trap and competing interactions. Physical Review A, 2022, 105, .	2.5	13
176	Simulation of Quantum Many-Body Dynamics with Tensor Processing Units: Floquet Prethermalization. PRX Quantum, 2022, 3, .	9.2	13
177	Orbital magnetization of Floquet topological systems. Physical Review B, 2022, 105, .	3.2	7
178	Inverse Faraday effect in Mott insulators. Physical Review B, 2022, 105, .	3.2	10
179	Floquet topological systems with flat bands: Edge modes, Berry curvature, and orbital magnetization. Physical Review B, 2022, 105, .	3.2	3
180	Proposed Fermi-surface reservoir engineering and application to realizing unconventional Fermi superfluids in a driven-dissipative nonequilibrium Fermi gas. Physical Review A, 2022, 106, .	2.5	4

	Сітаті	CITATION REPORT		
#	Article	IF	CITATIONS	
181	Square-root Floquet topological phases and time crystals. Physical Review B, 2022, 106, .	3.2	13	
182	Discrete Time Crystals Enforced by Floquet-Bloch Scars. Physical Review Letters, 2022, 129, .	7.8	6	
183	Tuning between Continuous Time Crystals and Many-Body Scars in Long-Range <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>X</mml:mi><mml:mi>Y</mml:mi><mml:mi>Z</mml:mi>K Chains. Physical Review Letters, 2022, 129, .</mml:math 	7.8	1	
184	Discrete Time-Crystalline Response Stabilized by Domain-Wall Confinement. Physical Review X, 2022, 12, .	8.9	13	
185	Clean two-dimensional Floquet time crystal. Physical Review B, 2022, 106, .	3.2	3	
186	Periodically, Quasi-periodically, and Randomly Driven Conformal Field Theories (II): Furstenberg's Theorem and Exceptions to Heating Phases. SciPost Physics, 2022, 13, .	4.9	7	
187	Dynamical l-bits and persistent oscillations in Stark many-body localization. Physical Review B, 2022, 106, .	3.2	10	
188	Prethermal nematic order and staircase heating in a driven frustrated Ising magnet with dipolar interactions. Physical Review B, 2022, 106, .	3.2	6	
189	Adiabatic and irreversible classical discrete time crystals. SciPost Physics, 2022, 13, .	4.9	0	
190	Low-energy prethermal phase and crossover to thermalization in nonlinear kicked rotors. Physical Review A, 2022, 106, .	2.5	4	
191	Effect of quasiperiodic and random noise on many-body dynamical decoupling protocols. Physical Review B, 2022, 106, .	3.2	2	
192	Driving induced ergodicity breaking in a kinetic constraint quantum system. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	1.5	0	
193	Metastable discrete time-crystal resonances in a dissipative central spin system. Physical Review B, 2022, 106, .	3.2	7	
194	Symmetry-protected topological corner modes in a periodically driven interacting spin lattice. Physical Review B, 2022, 106, .	3.2	2	
195	Noise-resilient edge modes on a chain of superconducting qubits. Science, 2022, 378, 785-790.	12.6	30	
196	Matrix product operator approach to nonequilibrium Floquet steady states. Physical Review B, 2022, 106, .	3.2	2	
197	Dissipative time crystals with long-range Lindbladians. Physical Review B, 2022, 106, .	3.2	9	
198	Exploring the Regime of Fragmentation in Strongly Tilted Fermi-Hubbard Chains. Physical Review Letters, 2023, 130, .	7.8	22	

#	Article	IF	Citations
199	State Preparation in the Heisenberg Model through Adiabatic Spiraling. Quantum - the Open Journal for Quantum Science, 0, 7, 970.	0.0	3
200	Mode softening in time-crystalline transitions of open quantum systems. Physical Review A, 2023, 107, .	2.5	9
201	Discrete Time Crystal Enabled by Stark Many-Body Localization. Physical Review Letters, 2023, 130, .	7.8	2
202	Dissipative Prethermal Discrete Time Crystal. Physical Review Letters, 2023, 130, .	7.8	2
203	Classical phase space crystals in an open environment. Physical Review B, 2023, 107, .	3.2	0
204	Arrested development and fragmentation in strongly-interacting Floquet systems. SciPost Physics, 2023, 14, .	4.9	2
205	Electronic Mechanism that Quenches Field-Driven Heating as Illustrated with the Static Holstein Model. Physical Review Letters, 2023, 130, .	7.8	1
206	<i>Colloquium</i> : Quantum and classical discrete time crystals. Reviews of Modern Physics, 2023, 95, .	45.6	16
207	Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator. Physical Review X, 2023, 13, .	8.9	7
208	Prethermalization and the Local Robustness of Gapped Systems. Physical Review Letters, 2023, 131, .	7.8	1
209	The role of fluctuations in quantum and classical time crystals. SciPost Physics Core, 2023, 6, .	2.8	0
210	Simulating Prethermalization Using Near-Term Quantum Computers. PRX Quantum, 2023, 4, .	9.2	1
211	Quasi-Floquet Prethermalization in a Disordered Dipolar Spin Ensemble in Diamond. Physical Review Letters, 2023, 131, .	7.8	4
212	Discrete time crystal made of topological edge magnons. Physical Review B, 2023, 108, .	3.2	0
213	Decay rates of almost strong modes in Floquet spin chains beyond Fermi's Golden Rule. Physical Review B, 2023, 108, .	3.2	1
214	Solvable model for discrete time crystal enforced by nonsymmorphic dynamical symmetry. Physical Review Research, 2023, 5, .	3.6	0
215	Analytical theory of cat scars with discrete time-crystalline dynamics in Floquet systems. Physical Review B, 2023, 108, .	3.2	0
216	Temporal disorder in spatiotemporal order. Physical Review B, 2023, 108, .	3.2	1

#	Article	IF	CITATIONS
217	Speed limits and locality in many-body quantum dynamics. Reports on Progress in Physics, 2023, 86, 116001.	20.1	5
218	Simulating Heisenberg interactions in the Ising model with strong drive fields. Physical Review A, 2023, 108, .	2.5	3
219	Absolutely Stable Time Crystals at Finite Temperature. Physical Review Letters, 2023, 131, .	7.8	0
220	Universality classes of thermalization for mesoscopic Floquet systems. Physical Review B, 2023, 108, .	3.2	1
221	Discrete time crystals with absolute stability. Physical Review B, 2023, 108, .	3.2	0
222	Observation of a Prethermal <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>U</mml:mi><mml:mo stretchy="false">(<mml:mn>1</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50="" 53<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>378.0 (stre</td><td>etcby="false</td></mml:mo)></mml:mo </mml:mrow></mml:math>	37 8.0 (stre	etc b y="false
223	13,. Nonequilibrium dynamics of bosons with dipole symmetry: Large- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>N</mml:mi> Keldysh approach. Physical Review B, 2023, 108, .</mml:math 	3.2	0
224	Prethermal discrete time crystal in driven-dissipative dipolar systems. Physical Review A, 2024, 109, .	2.5	0
225	Universal transport in periodically driven systems without long-lived quasiparticles. Physical Review Research, 2024, 6, .	3.6	1
226	Robustness and Eventual Slow Decay of Bound States of Interacting Microwave Photons in the Google Quantum Al Experiment. PRX Quantum, 2024, 5, .	9.2	1
227	Emergent strong zero mode through local Floquet engineering. Physical Review B, 2024, 109, .	3.2	0
228	Engineering subharmonic responses beyond prethermalization via Floquet scar states. Physical Review B, 2024, 109, .	3.2	Ο
229	Stable Measurement-Induced Floquet Enriched Topological Order. Physical Review Letters, 2024, 132, .	7.8	0