Prethermal Phases of Matter Protected by Time-Transla

Physical Review X
7,
DOI: 10.1103/physrevx.7.011026

Citation Report1 Phase transitions and adiabatic preparation of a fractional Chern insulator in a boson cold-atommodel. Physical Review B, 2017, 96, .9 Prethermal time crystals in a one-dimensional periodically driven Floquet system. Physical Review B, 2017, 96, .
10 Symmetry-protected topological order at nonzero temperature. Physical Review A, 2017, 96, .1.0
11 Disorder-induced transitions in resonantly driven Floquet topological insulators. Physical Review B, 2017, 96, .1.123
12 Radical chiral Floquet phases in a periodically driven Kitaev model and beyond. Physical Review B, 2017,
96, .1.158Topological invariants of Floquet systems: General formulation, special properties, and Floquet1.1123topological defects. Physical Review B, 2017, 96, .
14 Floquet Dynamics of Boundary-Driven Systems at Criticality. Physical Review Letters, 2017, 118, 260602. 2.9 25
15 Floquet topological phases with symmetry in all dimensions. Physical Review B, 2017, 95, .1.186
16 Critical Time Crystals in Dipolar Systems. Physical Review Letters, 2017, 119, 010602. 2.9 107
17 Fate of a discrete time crystal in an open system. Physical Review B, 2017, 95, .1.160
18 Prethermal Strong Zero Modes and Topological Qubits. Physical Review X, 2017, 7, .2.8

\#	Article	IF	Citations
19	Time Crystal Behavior of Excited Eigenstates. Physical Review Letters, 2017, 119, 250602.	2.9	44
20	Setting Boundaries with Memory: Generation of Topological Boundary States in Floquet-Induced Synthetic Crystals. Physical Review Letters, 2018, 120, 106402.	2.9	17
21	Topological energy conversion through the bulk or the boundary of driven systems. Physical Review B, 2018, 97, .	1.1	22
22	Logarithmically Slow Relaxation in Quasiperiodically Driven Random Spin Chains. Physical Review Letters, 2018, 120, 070602.	2.9	55
23	Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state. Physical Review A, 2018, 97, .	1.0	28
24	Absence of thermalization in finite isolated interacting Floquet systems. Physical Review B, 2018,97,	1.1	35
25	Periodic and quasiperiodic revivals in periodically driven interacting quantum systems. Physical Review B, 2018, 97 , .	1.1	24
26	Discrete Time-Crystalline Order in Cavity and Circuit QED Systems. Physical Review Letters, 2018, 120, 040404.	2.9	150
27	P31 NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate. Physical Review B, 2018, 97, .	1.1	56
28	Temporal Order in Periodically Driven Spins in Star-Shaped Clusters. Physical Review Letters, 2018, 120, 180602.	2.9	119
29	Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System. Physical Review Letters, 2018, 120, 180603.	2.9	189
30	Clean Floquet Time Crystals: Models and Realizations in Cold Atoms. Physical Review Letters, 2018, 120, 110603.	2.9	86
31	Shattered time: can a dissipative time crystal survive many-body correlations?. New Journal of Physics, 2018, 20, 123003.	1.2	61
32	Strong-disorder renormalization group for periodically driven systems. Physical Review B, 2018, 98,	1.1	10

```
34 Observation of a Space-Time Crystal in a Superfluid Quantum Gas. Physical Review Letters, 2018, 121,
185301.
```

\#	Article	IF	Citations
37	Time crystals in periodically driven systems. Physics Today, 2018, 71, 40-47.	0.3	54
38	Tracking the quantized information transfer at the edge of a chiral Floquet phase. Physical Review B, 2018, 98,	1.1	13
39	Universal spectral correlations in the chaotic wave function and the development of quantum chaos. Physical Review B, 2018, 98, .	1.1	34
40	Floquet Supersymmetry. Physical Review Letters, 2018, 120, 210603.	2.9	9
41	Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal. Physical Review Letters, 2018, 120, 215301.	2.9	113
42	Suppression of Heating in Quantum Spin Clusters under Periodic Driving as a Dynamic Localization Effect. Physical Review Letters, 2018, 121, 050602.	2.9	15
43	Boundary Time Crystals. Physical Review Letters, 2018, 121, 035301.	2.9	162
44	Many-Body Dynamics and Gap Opening in Interacting Periodically Driven Systems. Physical Review Letters, 2018, 121, 036801.	2.9	13

45 Interacting Floquet topological phases in three dimensions. Physical Review B, 2018, 98, 1.1
46 Spatial-Translation-Induced Discrete Time Crystals. Physical Review Letters, 2018, 121, 093001. 2.9
47 Learning phase transitions from dynamics. Physical Review B, 2018, 98, .1.143
48 Spin Polarization through Floquet Resonances in a Driven Central Spin Model. Physical Review Letters, 2018, 121, 080401. 2.9 23String order parameters for one-dimensional Floquet symmetry protected topological phases.Physical Review B, 2018, 97, .1.110
50 Many-body localization, symmetry and topology. Reports on Progress in Physics, 2018, 81, 082501. 8.1 6951 Infinite family of three-dimensional Floquet topological paramagnets. Physical Review B, 2018, 97, .1.112
Simulation of Non-Abelian Braiding in Majorana Time Crystals. Physical Review Letters, 2018, 120, 2.9 69

\#	Article	IF	Citations	
55	Analog of Hamilton-Jacobi theory for the time-evolution operator. Physical Review A, 2019, 100, .	1.0	13	
56	Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models. Physical Review Letters, 2019, 123, 030601.	2.9	77	
57	Topologically protected braiding in a single wire using Floquet Majorana modes. Physical Review B, 2019, 100, .	1.1	33	
58	Period- <mml:math xmlns:mml="http:\|	www.w3.org/1998/Math/MathML" display="inline"> mml:mrow mml:min</mml:mi> </mml:mrow> </mml:math> Discrete Time Crystals and Quasicrystals with Ultracold Bosons. Physical Review Letters, 2019, 123, 150601.	2.9	51
59	Integrable Many-Body Quantum Floquet-Thouless Pumps. Physical Review Letters, 2019, 123, 170603.	2.9	34	
60	Emergent Prethermalization Signatures in Out-of-Time Ordered Correlations. Physical Review Letters, 2019, 123, 090605.	2.9	48	
61	Dicke time crystals in driven-dissipative quantum many-body systems. New Journal of Physics, 2019, 21, 073028.	1.2	90	
62	Classical Many-Body Time Crystals. Physical Review Letters, 2019, 123, 124301.	2.9	46	
63	Dynamics of a space-time crystal in an atomic Bose-Einstein condensate. Physical Review A, 2019, 99, .	1.0	19	
64	Steady states of interacting Floquet insulators. Physical Review B, 2019, 99,	1.1	27	
65	Probing Quantum Thermalization of a Disordered Dipolar Spin Ensemble with Discrete Time-Crystalline Order. Physical Review Letters, 2019, 122, 043603.	2.9	33	
66	Flow Equation Approach to Periodically Driven Quantum Systems. Physical Review X, 2019, 9,	2.8	44	
67	Emergent limit cycles and time crystal dynamics in an atom-cavity system. Physical Review A, 2019, 99, .	1.0	47	
68	Almost strong (<mml:math) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50227 Td (xmlns:mml="http:\|	$\begin{gathered} \mathrm{rg} / 1 \mathrm{~g} \\ 1.1 \end{gathered}$	Math/Math 18	

69	Discrete time crystal in globally driven interacting quantum systems without disorder. Physical Review A, 2019, 99,.	1.0
70	Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains. Physical Review B, 2019,99,.	1.1

71 Floquet time crystals in clock models. Physical Review B, 2019, 99, .
1.1

69
Floquet Majorana zero and <mml:math72 xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mi ï $\epsilon / \mathrm{mml}: \mathrm{mi}></ \mathrm{mml}$:math > modes in planar1.1
Josephson junctions. Physical Review B, 2019, 99, .

\#	Article	IF	Citations	
73	Emergent statistical bubble localization in a<mml:math xmlns:mml="http:\|	www.w3.org/1998/Math/MathML">mml:msub<mml:mi mathvariant="double-struck">Z<\|mml:mi>mml:mn2</mml:mn></mml:msub></mml:math>lattice gauge theory. Physical Review B, 2019, 99, .	1.1	3
74	Interacting invariants for Floquet phases of fermions in two dimensions. Physical Review B, 2019, 99,	1.1	45	
75	Floquet engineering of topological phases protected by emergent symmetries under resonant drives. Physical Review A, 2019, 100, .	1.0	0	
76	Quantum many-body scars from magnon condensation. Physical Review B, 2019, 100,	1.1	96	
77	Quantum Time Crystals from Hamiltonians with Long-Range Interactions. Physical Review Letters, 2019, 123, 210602.	2.9	87	
78	Discrete time crystals in many-body quantum chaos. Physical Review B, 2019, 100,	1.1	14	
79	Classical stochastic discrete time crystals. Physical Review E, 2019, 100, 060105.	0.8	32	
80	Dissipation Induced Nonstationarity in a Quantum Gas. Physical Review Letters, 2019, 123, 260401.	2.9	60	
81	Floquet Hopf Insulators. Physical Review Letters, 2019, 123, 266803.	2.9	24	
82	Time crystals in a shaken atom-cavity system. Physical Review A, 2019, 100,	1.0	34	
83	Heating Rates in Periodically Driven Strongly Interacting Quantum Many-Body Systems. Physical Review Letters, 2019, 123, 240603.	2.9	40	
84	Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems. Physical Review Letters, 2019, 122, 015701.	2.9	90	

Time operators and time crystals: self-adjointness by topology change. Journal of Physics A:
Mathematical and Theoretical, 2020, 53, 025301.
86 Emergent Hydrodynamics in Nonequilibrium Quantum Systems. Physical Review Letters, 2020, 125, 030601.

Time Crystals Protected by Floquet Dynamical Symmetry in Hubbard Models. Physical Review Letters, 2020, 125, 060601.

High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes.
Physical Review A, 2020, 102, .
$1.0 \quad 14$

Emergent Spatial Structure and Entanglement Localization in Floquet Conformal Field Theory.
Physical Review X, 2020, 10, .

Classification of <mml:math

Classification of <mml:math
xmlns:mml="http:|/www.w3.org/1998/Math/MathML">mml:mrowmml:miS</mml:mi> mml:msubmml:mi Lx./mml:mixsmml:m
deformed Floquet conformal field theories. Physical Review B, 2020, 102,

93 Floquet dynamical quantum phase transition in the extended XY model: Nonadiabatic to adiabaticScaling of Loschmidt echo in a boundary-driven critical <mml:math104 xmlns:mml="http:|/www.w3.org/1998/Math/MathML" > mml:msub <mml:mi$1.1 \quad 1$mathvariant="double-struck" \rangle Z<|mml:mi><mml:mn > $3</ \mathrm{mml}: \mathrm{mn}\rangle\langle\mid \mathrm{mml}: \mathrm{msub}\rangle<\mid \mathrm{mml}:$ math > Potts model.Physical Review B, 2020, 101

$$
1
$$

Disentangling supercohomology symmetry-protected topological phases in three spatial dimensions.

\#	Article	IF	Citations
109	Prethermal quasiconserved observables in Floquet quantum systems. Physical Review B, 2021, 103, .	1.1	11
110	Floquet conformal field theories with generally deformed Hamiltonians. SciPost Physics, 2021, 10,	1.5	15
111	Real-time correlation function of Floquet conformal fields. Physical Review D, 2021, 103, .	1.6	6
112	Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science, 2021, 371, 1355-1359.	6.0	186
113	Chimera Time-Crystalline Order in Quantum Spin Networks. Physical Review Letters, 2021, 126, 120606.	2.9	9
114	Energy diffusion and absorption in chaotic systems with rapid periodic driving. Physical Review Research, 2021, 3, .	1.3	15
115	Programmable quantum simulations of spin systems with trapped ions. Reviews of Modern Physics, 2021, 93, .	16.4	316
116	Quantum quench in a driven Ising chain. Physical Review B, 2021, 103, .	1.1	2
117	Critical theory for the breakdown of photon blockade. Physical Review Research, 2021, 3, .	1.3	10
118	Route to Extend the Lifetime of a Discrete Time Crystal in a Finite Spin Chain without Disorder. Atoms, 2021, 9, 25.	0.7	3
119	Periodically, quasiperiodically, and randomly driven conformal field theories. Physical Review Research, 2021, 3, .	1.3	20
120	Critical properties of the prethermal Floquet time crystal. Physical Review B, 2021, 103, .	1.1	13
121	Observation of a prethermal discrete time crystal. Science, 2021, 372, 1192-1196.	6.0	93
122	Impact of drive harmonics on the stability of Floquet many-body localization. Physical Review B, 2021, 103, .	1.1	1

123 Topological and dynamical features of periodically driven spin ladders. Physical Review B, 2021, 103, .
1.1

6

124 Rigorous Bounds on the Heating Rate in Thue-Morse Quasiperiodically and Randomly Driven Quantum Many-Body Systems. Physical Review Letters, 2021, 127, 050602.
2.9

16

125 Scaling of temporal entanglement in proximity to integrability. Physical Review B, 2021, 104, .
1.1

14

126 Statistical Floquet prethermalization of the Bose-Hubbard model. SciPost Physics, 2021, 11,.	1.5	7

\#	Article	IF	Citations
127	Analytic approaches to periodically driven closed quantum systems: methods and applications. Journal of Physics Condensed Matter, 2021, 33, 443003.	0.7	27
128	Correlations and dynamical quantum phase transitions in an interacting topological insulator. Physical Review B, 2021, 104, .	1.1	15
129	Discrete Time-Crystalline Order Enabled by Quantum Many-Body Scars: Entanglement Steering via Periodic Driving. Physical Review Letters, 2021, 127, 090602.	2.9	28
130	Dynamics of fluctuation correlation in a periodically driven classical system. Physical Review B, 2021, 104, .	1.1	8
131	Dephasing-induced growth of discrete time-crystalline order in spin networks. Physical Review B, 2021, 104, .	1.1	2
132	Nonlocal discrete time crystals in periodically driven surface codes. Physical Review B, 2021, 104, .	1.1	6
133	Flow equations for disordered Floquet systems. SciPost Physics, 2021, 11 , .	1.5	7
134	Polynomial filter diagonalization of large Floquet unitary operators. SciPost Physics, 2021, 11,	1.5	4
135	Classical Prethermal Phases of Matter. Physical Review Letters, 2021, 127, 140602.	2.9	37
136	Many-Body Physics in the NISQ Era: Quantum Programming a Discrete Time Crystal. PRX Quantum, 2021, 2,	3.5	41
137	Floquet Phases of Matter via Classical Prethermalization. Physical Review Letters, 2021, 127, 140603.	2.9	26
138	Stroboscopic aliasing in long-range interacting quantum systems. SciPost Physics Core, 2021, 4, .	0.9	8
139	Classical approaches to prethermal discrete time crystals in one, two, and three dimensions. Physical Review B, 2021, 104, .	1.1	20
140	Discrete Time Crystals and Related Phenomena. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 39-172.	0.1	2

141 Combating quasiparticle poisoning with multiple Majorana fermions in a periodically-driven quantum
wire. Journal of Physics Condensed Matter, 2020, 32, 435301.

Coherent dynamics in frustrated coupled parametric oscillators. New Journal of Physics, 2020, 22,

\#	Article	IF	
145	Time crystallinity and finite-size effects in clean Floquet systems. Physical Review B, 2020, 102, .	1.1	18
146	Homogeneous Floquet time crystal from weak ergodicity breaking. Physical Review B, 2020, 102,	1.1	9
147	Exponentially slow heating in short and long-range interacting Floquet systems. Physical Review Research, 2019, 1, .	1.3	40
148	Homogeneous Floquet time crystal protected by gauge invariance. Physical Review Research, 2020, 2,	1.3	36
149	Prethermalization in a classical phonon field: Slow relaxation of the number of phonons. Physical Review Research, 2020, 2, .	1.3	8
150	Time-induced second-order topological superconductors. Physical Review Research, 2020, 2,	1.3	35
151	Quantum frequency locking and downconversion in a driven qubit-cavity system. Physical Review Research, 2020, 2, .	1.3	11
152	From dynamical localization to bunching in interacting Floquet systems. SciPost Physics, 2018, 5,	1.5	4
153	Exponentially long lifetime of universal quasi-steady states in topological Floquet pumps. SciPost Physics, 2020, 9, .	1.5	9
154	Time crystallinity in open quantum systems. Quantum - the Open Journal for Quantum Science, 0, 4, 270.	0.0	27

155 Fragility of classical Hamiltonian period doubling to quantum fluctuations. Physical Review B, 2021, 104, .
$1.1 \quad 2$
156 Formation of spatial patterns by spin-selective excitations of interacting fermions. Physical Review B, 2020, 102, .
1.1

3

157 Time crystals in the driven transverse field Ising model under quasiperiodic modulation. New Journal of Physics, 2020, 22, 125001.
1.2

6
158 Double Braiding Majoranas for Quantum Computing and Hamiltonian Engineering. PRX Quantum, 2020,
1, .
3.5

10

Many-bodyâ€"localized discrete time crystal with a programmable spin-based quantum simulator.
6.0

80

\#	Article	IF	Citations
163	Floquet engineering of low-energy dispersions and dynamical localization in a periodically kicked three-band system. Physical Review B, 2021, 104, .	1.1	13
164	Quantum repetition codes as building blocks of large-period discrete time crystals. Physical Review B, 2021, 104,.	1.1	6
165	Universal nonadiabatic energy pumping in a quasiperiodically driven extended system. Physical Review B, 2021, 104, .	1.1	8
166	Floquet prethermal phase protected by $\mathrm{U}(1)$ symmetry on a superconducting quantum processor. Physical Review A, 2022, 105, .	1.0	8
167	Stability of the Discrete Time-Crystalline Order in Spin-Optomechanical and Open Cavity QED Systems. Photonics, 2022, 9, 61.	0.9	1
168	Topological micromotion of Floquet quantum systems. Physical Review B, 2022, 105,	1.1	3
169	Driven Hubbard model on a triangular lattice: Tunable Heisenberg antiferromagnet with a chiral three-spin term. Physical Review B, 2022, 105, .	1.1	5
170	Absence of Heating in a Uniform Fermi Gas Created by Periodic Driving. Physical Review X, 2022, 12,	2.8	8
171	Observation of time-crystalline eigenstate order on a quantum processor., 2022, , .		2
172	Criticality and rigidity of dissipative discrete time crystals in solids. Physical Review Research, 2022, 4,	1.3	5
173	Energy diffusion and prethermalization in chaotic billiards under rapid periodic driving. Physical Review E, 2021, 104, 064210.	0.8	2
174	Dynamics of the order parameter statistics in the long range Ising model. SciPost Physics, 2022, 12,	1.5	2
175	Dissipative time crystal in an atom-cavity system: Influence of trap and competing interactions. Physical Review A, 2022, 105, .	1.0	13
176	Simulation of Quantum Many-Body Dynamics with Tensor Processing Units: Floquet Prethermalization. PRX Quantum, 2022, 3, .	3.5	13
177	Orbital magnetization of Floquet topological systems. Physical Review B, 2022, 105, .	1.1	7
178	Inverse Faraday effect in Mott insulators. Physical Review B, 2022, 105,	1.1	10
179	Floquet topological systems with flat bands: Edge modes, Berry curvature, and orbital magnetization. Physical Review B, 2022, 105, .	1.1	3
180	Proposed Fermi-surface reservoir engineering and application to realizing unconventional Fermi superfluids in a driven-dissipative nonequilibrium Fermi gas. Physical Review A, 2022, 106, .	1.0	4

\#	Article	IF	
181	Square-root Floquet topological phases and time crystals. Physical Review B, 2022, 106, .	1.1	13
182	Discrete Time Crystals Enforced by Floquet-Bloch Scars. Physical Review Letters, 2022, 129,	2.9	6
183	Tuning between Continuous Time Crystals and Many-Body Scars in Long-Range <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">mml:miX</mml:mi>mml:miY</mml:mi>mml:miZ</mml:mi></mml:math>Spin Chains. Physical Review Letters, 2022, 129, .	2.9	1
184	Discrete Time-Crystalline Response Stabilized by Domain-Wall Confinement. Physical Review X, 2022, 12,	2.8	13
185	Clean two-dimensional Floquet time crystal. Physical Review B, 2022, 106, .	1.1	3
186	Periodically, Quasi-periodically, and Randomly Driven Conformal Field Theories (II): Furstenberg's Theorem and Exceptions to Heating Phases. SciPost Physics, 2022, 13, .	1.5	7
187	Dynamical l-bits and persistent oscillations in Stark many-body localization. Physical Review B, 2022, 106, .	1.1	10
188	Prethermal nematic order and staircase heating in a driven frustrated Ising magnet with dipolar interactions. Physical Review B, 2022, 106, .	1.1	6
189	Adiabatic and irreversible classical discrete time crystals. SciPost Physics, 2022, 13, .	1.5	0
190	Low-energy prethermal phase and crossover to thermalization in nonlinear kicked rotors. Physical Review A, 2022, 106,	1.0	4
191	Effect of quasiperiodic and random noise on many-body dynamical decoupling protocols. Physical Review B, 2022, 106, .	1.1	2
192	Driving induced ergodicity breaking in a kinetic constraint quantum system. Journal of Physics B: Atomic, Molecular and Optical Physics, 0, , .	0.6	0
193	Metastable discrete time-crystal resonances in a dissipative central spin system. Physical Review B, 2022, 106, .	1.1	7
194	Symmetry-protected topological corner modes in a periodically driven interacting spin lattice. Physical Review B, 2022, 106, .	1.1	2

Matrix product operator approach to nonequilibrium Floquet steady states. Physical Review B, 2022,

State Preparation in the Heisenberg Model through Adiabatic Spiraling. Quantum - the Open Journal

