The history of leishmaniasis

Parasites and Vectors 10, 82 DOI: 10.1186/s13071-017-2028-5

Citation Report

#	Article	IF	CITATIONS
1	Feasibility of polymer-drug conjugates for non-cancer applications. Current Opinion in Colloid and Interface Science, 2017, 31, 51-66.	7.4	16
2	Disease: A Hitherto Unexplored Constraint on the Spread of Dogs (Canis lupus familiaris) in Pre-Columbian South America. Journal of World Prehistory, 2017, 30, 301-349.	3.6	12
3	Overview of Leishmaniasis with Special Emphasis on Kala-azar in South Asia. Neglected Tropical Diseases, 2017, , 1-63.	0.4	1
4	Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Marine Drugs, 2017, 15, 323.	4.6	29
5	An overview on <i>Leishmania</i> (<i>Mundinia</i>) <i>enriettii</i> : biology, immunopathology, LRV and extracellular vesicles during the host–parasite interaction. Parasitology, 2018, 145, 1265-1273.	1.5	19
6	Immunomodulation of dual specificity phosphatase 4 during visceral leishmaniasis. Microbes and Infection, 2018, 20, 111-121.	1.9	12
7	Macrophage Polarization in Leishmaniasis: Broadening Horizons. Frontiers in Immunology, 2018, 9, 2529.	4.8	130
8	Effects of Specific Electric Field Stimulation on the Release and Activity of Secreted Acid Phosphatases from Leishmania tarentolae and Implications for Therapy. Pathogens, 2018, 7, 77.	2.8	6
9	Vaccines for Human Leishmaniasis: Where Do We Stand and What Is Still Missing?. , 0, , .		16
10	Spatio-temporal distribution analysis of zoonotic cutaneous leishmaniasis in Qom Province, Iran. Journal of Parasitic Diseases, 2018, 42, 570-576.	1.0	19
11	SB-83, a 2-Amino-thiophene derivative orally bioavailable candidate for the leishmaniasis treatment. Biomedicine and Pharmacotherapy, 2018, 108, 1670-1678.	5.6	5
12	Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Molecular Diversity, 2018, 22, 779-790.	3.9	8
13	Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp Chemico-Biological Interactions, 2018, 293, 141-151.	4.0	18
14	Antitrypanosomal and Antileishmanial Activities. , 2018, , 175-196.		3
15	An outbreak of Leishmania major from an endemic to a non-endemic region posed a public health threat in Iraq from 2014-2017: Epidemiological, molecular and phylogenetic studies. PLoS Neglected Tropical Diseases, 2018, 12, e0006255.	3.0	19
16	Evaluation of methods for detection of asymptomatic individuals infected with Leishmania infantum in the state of PiauÃ , Brazil. PLoS Neglected Tropical Diseases, 2019, 13, e0007493.	3.0	11
17	Identification of HLA-I restricted epitopes in six vaccine candidates of Leishmania tropica using immunoinformatics and molecular dynamics simulation approaches. Infection, Genetics and Evolution, 2019, 75, 103953.	2.3	22
18	Leishmania donovani parasite requires Atg8 protein for infectivity and survival under stress. Cell Death and Disease, 2019, 10, 808.	6.3	24

#	Article	IF	CITATIONS
19	Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2019, 61, e33.	1.1	31
20	Disorganization of spleen compartments and dermatitis in canine visceral leishmaniasis. Surgical and Experimental Pathology, 2019, 2, .	0.6	6
21	Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. European Journal of Medicinal Chemistry, 2019, 183, 111660.	5.5	51
22	Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. European Journal of Medicinal Chemistry, 2019, 184, 111742.	5.5	25
23	Leishmania cytochrome b gene sequence polymorphisms in southern Iran: relationships with different cutaneous clinical manifestations. BMC Infectious Diseases, 2019, 19, 98.	2.9	9
24	Leishmania tropica: What we know from its experimental models. Advances in Parasitology, 2019, 104, 1-38.	3.2	12
25	Current status and management of canine leishmaniasis in Latin America. Research in Veterinary Science, 2019, 123, 261-272.	1.9	61
26	Plant Terpenoids as Lead Compounds Against Malaria and Leishmaniasis. Studies in Natural Products Chemistry, 2019, 62, 243-306.	1.8	7
27	Virtual and experimental screening of phenylfuranchalcones as potential anti-Leishmania candidates. Journal of Molecular Graphics and Modelling, 2019, 91, 164-171.	2.4	7
28	Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
29	Leishmaniasis control: limitations of current drugs and prospects of natural products. , 2019, , 293-350.		4
30	Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 410-417.	1.8	22
31	Evaluation of synthetic substituted 1,2-dioxanes as novel agents against human leishmaniasis. European Journal of Medicinal Chemistry, 2019, 170, 126-140.	5.5	10
32	Cutaneous leishmaniasis: an evolving disease with ancient roots. International Journal of Dermatology, 2019, 58, 834-843.	1.0	5
33	Experimental Cutaneous Leishmaniasis: Mouse Models for Resolution of Inflammation Versus Chronicity of Disease. Methods in Molecular Biology, 2019, 1971, 315-349.	0.9	5
34	In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Neglected Tropical Diseases, 2019, 13, e0007206.	3.0	57
35	Re-Emerging foci of visceral leishmaniasis in Armenia – first molecular diagnosis of clinical samples. Parasitology, 2019, 146, 857-864.	1.5	3
36	Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis. Molecules, 2019, 24, 4222.	3.8	16

#	Article	IF	CITATIONS
37	Haemophagocytic lymphohistiocytosis associated with leishmaniasis reactivation: a potential adverse event to anti-tumour necrosis factor-1± therapy. Scandinavian Journal of Rheumatology, 2019, 48, 342-343.	1.1	5
38	Anti-parasitic activity of polyether ionophores. European Journal of Medicinal Chemistry, 2019, 166, 32-47.	5.5	47
39	Leishmanicidal therapy targeted to parasite proteases. Life Sciences, 2019, 219, 163-181.	4.3	24
40	Antileishmanial and cytotoxic activities of a new limonoid and a new phenyl alkene from the stem bark of <i>Trichilia gilgiana</i> (Meliaceae). Natural Product Research, 2020, 34, 3182-3188.	1.8	13
41	Cutaneous leishmaniasis: A great imitator. Clinics in Dermatology, 2020, 38, 140-151.	1.6	59
42	A new multi-epitope peptide vaccine induces immune responses and protection against Leishmania infantum in BALB/c mice. Medical Microbiology and Immunology, 2020, 209, 69-79.	4.8	26
43	Nutrition, malnutrition, and leishmaniasis. Nutrition, 2020, 73, 110712.	2.4	27
44	Recent evolution on synthesis strategies and anti-leishmanial activity of β-carboline derivatives – An update. Heliyon, 2020, 6, e04916.	3.2	13
45	Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Advances, 2020, 10, 38328-38343.	3.6	17
46	Evaluation of the Pharmacophoric Role of the O–O Bond in Synthetic Antileishmanial Compounds: Comparison between 1,2-Dioxanes and Tetrahydropyrans. Journal of Medicinal Chemistry, 2020, 63, 13140-13158.	6.4	12
47	Association of cytokine gene polymorphisms with susceptibility to cutaneous leishmaniasis in a Turkish population. Parasite Immunology, 2020, 42, e12775.	1.5	3
48	Chemotactic activities of vasoactive intestinal peptide, neuropeptide Y and substance P in Leishmania braziliensis. Experimental Parasitology, 2020, 219, 108009.	1.2	3
49	Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis?. Microorganisms, 2020, 8, 1069.	3.6	16
50	4-nitrochalcone exerts leishmanicidal effect on L. amazonensis promastigotes and intracellular amastigotes, and the 4-nitrochalcone encapsulation in beeswax copaiba oil nanoparticles reduces macrophages cytotoxicity. European Journal of Pharmacology, 2020, 884, 173392.	3.5	16
51	The spreading of parasites by human migratory activities. Virulence, 2020, 11, 1177-1191.	4.4	16
52	Cytokine saga in visceral leishmaniasis. Cytokine, 2021, 147, 155322.	3.2	10
53	Transcriptomic profiling in Cutaneous Leishmaniasis patients. Expert Review of Proteomics, 2020, 17, 533-541.	3.0	4
54	Presence and diversity of Leishmania RNA virus in an old zoonotic cutaneous leishmaniasis focus, northeastern Iran: haplotype and phylogenetic based approach. International Journal of Infectious Diseases, 2020, 101, 6-13.	3.3	21

#	Article	IF	CITATIONS
55	Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals, 2020, 13, 215.	3.8	17
56	Leishmania infantum Seroprevalence in Cats From Touristic Areas of Italy and Greece. Frontiers in Veterinary Science, 2020, 7, 616566.	2.2	17
57	Resistance to Experimental Visceral Leishmaniasis in Mice Infected With Leishmania infantum Requires Batf3. Frontiers in Immunology, 2020, 11, 590934.	4.8	4
58	Overcoming multiâ€resistant leishmania treatment by nanoencapsulation of potent antimicrobials. Journal of Chemical Technology and Biotechnology, 2021, 96, 2123-2140.	3.2	17
59	Impedimetric immunosensor for rapid and simultaneous detection of chagas and visceral leishmaniasis for point of care diagnosis. Biosensors and Bioelectronics, 2020, 169, 112573.	10.1	24
60	Antileishmanial effects of <i>Sargassum vulgare</i> products and prediction of trypanothione reductase inhibition by fucosterol. Future Drug Discovery, 2020, 2, .	2.1	3
61	Enkephalins as a therapeutic intervention for visceral leishmaniasis. Medical Hypotheses, 2020, 144, 109956.	1.5	3
62	Leishmaniasis diagnosis: an update on the use of parasitological, immunological and molecular methods. Journal of Parasitic Diseases, 2020, 44, 253-272.	1.0	63
63	Relationship of Leishmania RNA Virus (LRV) and treatment failure in clinical isolates of Leishmania major. BMC Research Notes, 2020, 13, 126.	1.4	18
64	Activity of Chitosan and Its Derivatives against Leishmania major and Leishmania mexicana <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	24
65	Lipophosphoglycan-3 recombinant protein vaccine controls hepatic parasitism and prevents tissue damage in mice infected by Leishmania infantum chagasi. Biomedicine and Pharmacotherapy, 2020, 126, 110097.	5.6	9
66	Reactive oxygen species generating photosynthesized ferromagnetic iron oxide nanorods as promising antileishmanial agent. Nanomedicine, 2020, 15, 755-771.	3.3	7
67	Upscaling the Surveillance of Tick-Borne Pathogens in the French Caribbean Islands. Pathogens, 2020, 9, 176.	2.8	16
69	Methyl gallate: Selective antileishmanial activity correlates with host-cell directed effects. Chemico-Biological Interactions, 2020, 320, 109026.	4.0	13
70	Determination of anti-leishmanial drugs efficacy against Leishmania martiniquensis using a colorimetric assay. Parasite Epidemiology and Control, 2020, 9, e00143.	1.8	9
71	The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Diseases, 2020, 14, e0007831.	3.0	345
72	Relapsing cutaneous leishmaniasis in a patient requiring TNF-α-inhibitor Infliximab for Takayasu-arteritis: Case report and review of the literature. Travel Medicine and Infectious Disease, 2020, 37, 101700.	3.0	2
73	An impedimetric genosensor for Leishmania infantum based on electrodeposited cadmium sulfide nanosheets. Talanta, 2020, 217, 121080.	5.5	20

#	Article	IF	CITATIONS
74	Biological activity tuning of antibacterial urotropine <i>via</i> co-crystallization: synthesis, biological activity evaluation and computational insight. CrystEngComm, 2020, 22, 3439-3450.	2.6	7
75	In Vitro Anti-Leishmanial Effect of Metallic Meso-Substituted Porphyrin Derivatives against Leishmania braziliensis and Leishmania panamensis Promastigotes Properties. Molecules, 2020, 25, 1887.	3.8	20
76	Tetroxanes as New Agents against Leishmania amazonensis. Chemistry and Biodiversity, 2020, 17, e2000142.	2.1	5
77	Trypanocidal and leishmanicidal activity of six limonoids. Journal of Natural Medicines, 2020, 74, 606-611.	2.3	7
78	Bacteria composition and diversity in the gut of sand fly: impact on Leishmania and sand fly development. International Journal of Tropical Insect Science, 2021, 41, 25-32.	1.0	6
79	Prevalence and associated factors of asymptomatic leishmaniasis: a systematic review and meta-analysis. Parasitology International, 2021, 81, 102229.	1.3	20
80	Metabolomic approach of the antiprotozoal activity of medicinal Piper species used in Peruvian Amazon. Journal of Ethnopharmacology, 2021, 264, 113262.	4.1	10
81	Could chroman-4-one derivative be a better inhibitor of PTR1? – Reason for the identified disparity in its inhibitory potency in Trypanosoma brucei and Leishmania major. Computational Biology and Chemistry, 2021, 90, 107412.	2.3	4
82	Mass migration and climate change: Dermatologic manifestations. International Journal of Women's Dermatology, 2021, 7, 98-106.	2.0	9
83	A historical review of the role of cytokines involved in leishmaniasis. Cytokine, 2021, 145, 155297.	3.2	17
84	Synthesis and in vitro antileishmanial efficacy of novel quinazolinone derivatives. Chemical Biology and Drug Design, 2021, 97, 383-398.	3.2	14
85	PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Frontiers in Microbiology, 2021, 12, 583834.	3.5	11
86	Parasites of the Gastrointestinal Tract. , 2022, , 136-203.		2
87	Recent advances in the diagnostic methods of Leishmaniasis. , 2021, , 45-62.		0
89	An Introduction to Computational Pipelines for Analyzing Untargeted Metabolomics Data for Leishmaniasis. , 2021, , 375-402.		0
90	Identification of climatic and environmental factors associated with incidence of cutaneous leishmaniasis in Central Iran using satellite imagery. Asian Pacific Journal of Tropical Biomedicine, 2021, 11, 40.	1.2	4
91	Anti-leishmanial and anti-trypanosomal natural products from endophytes. Parasitology Research, 2021, 120, 785-796.	1.6	6
92	Climate beast: a potential threat for repercussions of disease status in Pakistan. Reviews on Environmental Health, 2021, 36, 177-183.	2.4	1

#	Article	IF	CITATIONS
93	An atypical presentation of cutaneous leishmaniasis. Anatolian Current Medical Journal:, 2021, 3, 66-68.	0.1	0
94	Bio-guided isolation of anti-leishmanial natural products from Diospyros gracilescens L. (Ebenaceae). BMC Complementary Medicine and Therapies, 2021, 21, 106.	2.7	15
95	The Maze Pathway of Coevolution: A Critical Review over the Leishmania and Its Endosymbiotic History. Genes, 2021, 12, 657.	2.4	18
97	Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669079.	3.9	20
98	Improved Performance of ELISA and Immunochromatographic Tests Using a New Chimeric A2-Based Protein for Human Visceral Leishmaniasis Diagnosis. Journal of Immunology Research, 2021, 2021, 1-15.	2.2	3
99	Eugenia piauhiensis Vellaff. essential oil and Î ³ -elemene its major constituent exhibit antileishmanial activity, promoting cell membrane damage and in vitro immunomodulation. Chemico-Biological Interactions, 2021, 339, 109429.	4.0	11
100	Leishmaniasis: where are we and where are we heading?. Parasitology Research, 2021, 120, 1541-1554.	1.6	56
101	Peptides to Tackle Leishmaniasis: Current Status and Future Directions. International Journal of Molecular Sciences, 2021, 22, 4400.	4.1	18
102	Leishmaniasis cutánea: una mirada a la clÃnica, diagnóstico y tratamiento de esta enigmática enfermedad. Piel, 2021, 36, 317-324.	0.0	1
103	Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express, 2021, 11, 69.	3.0	17
104	Prevalence of Leishmania infection in three communities of Oti Region, Ghana. PLoS Neglected Tropical Diseases, 2021, 15, e0009413.	3.0	5
105	Photodynamic effect of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin and (Zn2+ and Sn4+) derivatives against Leishmania spp in the promastigote stage: experimental and DFT study. Chemical Papers, 2021, 75, 4817.	2.2	6
106	Mechanisms of Immunopathogenesis in Cutaneous Leishmaniasis And Post Kala-azar Dermal Leishmaniasis (PKDL). Frontiers in Cellular and Infection Microbiology, 2021, 11, 685296.	3.9	40
107	Purinergic signaling: A new front-line determinant of resistance and susceptibility in leishmaniasis. Biomedical Journal, 2021, , .	3.1	4
108	Sand fly identification and screening for Leishmania spp. in six provinces of Thailand. Parasites and Vectors, 2021, 14, 352.	2.5	4
109	Amino-Substituted 3-Aryl- and 3-Heteroarylquinolines as Potential Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 12152-12162.	6.4	5
110	Multi-antigen vaccination with LPD nanoparticles containing rgp63 and rLmaC1N proteins induced effective immune response against leishmaniasis in animal model. Journal of Drug Delivery Science and Technology, 2021, 64, 102633.	3.0	0
111	Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasites and Vectors, 2021, 14, 419.	2.5	3

#	Article	IF	CITATIONS
112	Chromosome-scale genome sequencing, assembly and annotation of six genomes from subfamily Leishmaniinae. Scientific Data, 2021, 8, 234.	5.3	5
113	Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorganic and Medicinal Chemistry, 2021, 46, 116365.	3.0	3
114	In vitro anti-Leishmania activity and molecular docking of spiro-acridine compounds as potential multitarget agents against Leishmania infantum. Bioorganic and Medicinal Chemistry Letters, 2021, 49, 128289.	2.2	12
115	Quantitative evaluation of PpSP15-LmSTI1 fusion gene expression following transfection with an alphavirus-derived self-amplifying mRNA and conventional DNA vaccine platforms. Molecular and Cellular Probes, 2021, 59, 101749.	2.1	9
116	Electrochemical biosensors for neglected tropical diseases: A review. Talanta, 2021, 234, 122617.	5.5	19
117	Advancement in leishmaniasis diagnosis and therapeutics: An update. European Journal of Pharmacology, 2021, 910, 174436.	3.5	28
118	Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. European Journal of Medicinal Chemistry, 2021, 223, 113606.	5.5	22
119	Computational study on the allosteric mechanism of Leishmania major IF4E-1 by 4E-interacting protein-1: Unravelling the determinants of m7GTP cap recognition. Computational and Structural Biotechnology Journal, 2021, 19, 2027-2044.	4.1	10
120	Animal models for VL. , 2021, , 95-101.		0
121	Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 145-155.	1.6	10
123	A Therapeutic Approach Against Leishmania donovani by Predicting RNAi Molecules Against the Surface Protein, gp63. Current Bioinformatics, 2019, 14, 541-550.	1.5	11
124	Evaluation of Safety, Antileishmanial, and Chemistry of Ethanolic Leaves Extracts of Seven Medicinal Plants: An In-vitro Study. Open Chemistry Journal, 2020, 7, 26-36.	4.3	2
125	Gulucatime versus glucantime: A serious warning on counterfeit medicines. Journal of Research in Pharmacy Practice, 2019, 8, 228.	0.7	2
126	Emerging and neglected zoonoses in transplant population. World Journal of Transplantation, 2020, 10, 47-63.	1.6	19
127	Genotyping of Causative Agents of Cutaneous Leishmaniasis in Patients Using PCR-RFLP Method in Dasht-e-Azadegan County, Southwest of Iran, in 2016. Jundishapur Journal of Microbiology, 2019, 12, .	0.5	1
130	Leishmania martiniquensis is a New Causative Agent for Cutaneous and Visceral Leishmaniasis in Humans. Detskie Infekcii (Moskva), 2018, 17, 46-52.	0.3	0
131	Important Protozoan Diseases in the Lower Mekong River Basin. Parasitology Research Monographs, 2019, , 205-220.	0.3	0
133	DETECTION OF LEISHMANIA INFECTION IN STRAY DOGS IN HUMAN LEISHMANIASIS ENDEMIC AREA IN MYMENSINGH DISTRICT WITH ITS POSSIBLE PUBLIC HEALTH SIGNIFICANCE IN BANGLADESH. Journal of Veterinary Medical and One Health Research, 2019, 1, .	0.7	0

#	Article	IF	CITATIONS
134	Visualization of Leishmania tropica Infection in BALB/c Mice by Bioluminescence Imaging. Iranian Biomedical Journal, 2020, 24, 164-172.	0.7	0
135	Anti-malarial drugs as potential inhibitors of leishmania glycolytic enzymes: Development of new anti-leishmanial agents. Pharmacology and Clinical Pharmacy Research, 2020, 5, 77.	0.2	4
137	Applications of Nanometals in Cutaneous Infections. , 2020, , 71-92.		2
138	Spatial Distribution of Cutaneous Leishmaniasis Cases Referred to Health Centers of Three Khorasan Provinces in Iran Using Geographical Information System. Iranian Journal of Public Health, 0, , .	0.5	3
139	Discovery of 2-aminopyridine Derivatives with Antichagasic and Antileishmanial Activity Using Phenotypic Assays. Letters in Drug Design and Discovery, 2020, 17, 867-872.	0.7	0
140	Bir atipik kutanöz layşmanyaz olgusu. Anadolu Güncel Tıp Dergisi, 0, , .	0.0	0
141	Spatial Distribution of Cutaneous Leishmaniasis Cases Referred to Health Centers of Three Khorasan Provinces in Iran Using Geographical Information System. Iranian Journal of Public Health, 2019, 48, 1885-1892.	0.5	6
142	Chronic Skin Lesions as the Presentation of Diffuse Cutaneous Leishmaniasis in the HIV-Infected Woman: A Case Report and Review of Literatures. Galen, 2019, 8, e1294.	0.6	0
143	Leishmania Parasite: the Impact of New Serum-Free Medium as an Alternative for Fetal Bovine Serum. Iranian Biomedical Journal, 2021, 25, 349-58.	0.7	0
144	Visceral Leishmaniasis: Asymptomatic Facts. , 0, , .		Ο
144 145	Visceral Leishmaniasis: Asymptomatic Facts. , 0, , . Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335.	0.7	0
	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A	0.7	
145	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. ZooKeys,		3
145 146	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. ZooKeys, 2021, 1069, 1-313. Comparative proteomic analysis of <i>Leishmania</i>	1.1	3
145 146 147	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. ZooKeys, 2021, 1069, 1-313. Comparative proteomic analysis of <i>Leishmania</i> parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology, 2022, 149, 298-305. Embracing nature's complexity: Immunoparasitology in the wild. Seminars in Immunology, 2021, 53,	1.1 1.5	3 11 1
145 146 147 148	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. ZooKeys, 2021, 1069, 1-313. Comparative proteomic analysis of <i>Leishmania</i> parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology, 2022, 149, 298-305. Embracing nature's complexity: Immunoparasitology in the wild. Seminars in Immunology, 2021, 53, 101525. Antileishmanial Drug Discovery and Development: Time to Reset the Model?. Microorganisms, 2021, 9,	1.1 1.5 5.6	3 11 1 4
145 146 147 148 149	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335. An annotated checklist of the eukaryotic parasites of humans, exclusive of fungi and algae. ZooKeys, 2021, 1069, 1-313. Comparative proteomic analysis of <i>Leishmania</i> parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology, 2022, 149, 298-305. Embracing nature's complexity: Immunoparasitology in the wild. Seminars in Immunology, 2021, 53, 101525. Antileishmanial Drug Discovery and Development: Time to Reset the Model?. Microorganisms, 2021, 9, 2500.	1.1 1.5 5.6 3.6	3 11 1 4 32

#	Article	IF	CITATIONS
155	Exploring the paradox of defense between host and Leishmania parasite. International Immunopharmacology, 2022, 102, 108400.	3.8	11
156	Diagnosis of visceral and cutaneous leishmaniasis using loop-mediated isothermal amplification (LAMP) protocols: a systematic review and meta-analysis. Parasites and Vectors, 2022, 15, 34.	2.5	11
157	Molecular identification of Leishmania RNA virus in cutaneous leishmaniasis patients and rodent reservoirs in Isfahan province, Iran. Infection, Genetics and Evolution, 2022, 98, 105222.	2.3	3
158	Knowledge, attitude and prevention measures of students towards cutaneous leishmaniasis in Delanta district, Northeast Ethiopia. Parasite Epidemiology and Control, 2022, 17, e00241.	1.8	7
159	Paradoxical immune response in leishmaniasis: The role of tollâ€like receptors in disease progression. Parasite Immunology, 2022, 44, e12910.	1.5	7
160	Leishmaniasis: Molecular Aspects of Parasite Dimorphic Forms Life Cycle. , 0, , .		1
161	Leishmaniasis: Plants as a source of antileishmanial agents. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 227-247.	0.4	0
162	Community Engagement in Cutaneous Leishmaniasis Research in Brazil, Ethiopia, and Sri Lanka: A Decolonial Approach for Global Health. Frontiers in Public Health, 2022, 10, 823844.	2.7	5
163	Small molecules as kinetoplastid specific proteasome inhibitors for leishmaniasis: a patent review from 1998 to 2021. Expert Opinion on Therapeutic Patents, 2022, 32, 591-604.	5.0	14
164	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515.	4314 rgBT 2.8	Overlock 6
164 165	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78		
	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease -	2.8	6
165	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934. Down regulation of IL-10 and TGF-Î ² 1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the	2.8 3.5	6 9
165 166	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934. Down regulation of IL-10 and TGF. ¹² 1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838. Pediatric Cutaneous Leishmaniasis in Hormozgan Province, Southeast Iran during 2016-2020: A	 2.8 3.5 3.2 	6 9 1
165 166 167	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934. Down regulation of IL-10 and TGF. ¹² 1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838. Pediatric Cutaneous Leishmaniasis in Hormozgan Province, Southeast Iran during 2016-2020: A Descriptive Epidemiological Study. Journal of Occupational Health and Epidemiology, 2021, 10, 224-230.	2.83.53.20.4	6 9 1 0
165 166 167 168	Comparative Draft Cenomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934. Down regulation of IL-10 and TGF. ¹ ² 1 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838. Pediatric Cutaneous Leishmaniasis in Hormozgan Province, Southeast Iran during 2016-2020: A Descriptive Epidemiological Study. Journal of Occupational Health and Epidemiology, 2021, 10, 224-230. Culicoides Latreille (Diptera: Ceratopogonidae) as potential vectors for Leishmania martiniquensis and Trypanosoma sp. in northern Thailand. PLoS Neglected Tropical Diseases, 2021, 15, e0010014. Insecticide-treated net (ITN) use, factors associated with non-use of ITNs, and occurrence of sand flies in three communities with reported cases of cutaneous leishmaniasis in Ghana. PLoS ONE, 2021, 16,	 2.8 3.5 3.2 0.4 3.0 	6 9 1 0 15
165 166 167 168	Comparative Draft Genomes of Leishmania orientalis Isolate PCM2 (Formerly Named Leishmania) Tj ETQq1 1 0.78 Biology, 2022, 11, 515. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. European Journal of Pharmacology, 2022, 923, 174934. Down regulation of IL-10 and TGF-Î21 mRNA expression associated with reduced inflammatory process correlates with control of parasitism in the liver after treatingL. infantuminfected dogs with the LBMPL vaccine therapy. Cytokine, 2022, 153, 155838. Pediatric Cutaneous Leishmaniasis in Hormozgan Province, Southeast Iran during 2016-2020: A Descriptive Epidemiological Study. Journal of Occupational Health and Epidemiology, 2021, 10, 224-230. Culicoides Latreille (Diptera: Ceratopogonidae) as potential vectors for Leishmania martiniquensis and Trypanosoma sp. in northern Thailand. PLoS Neglected Tropical Diseases, 2021, 15, e0010014. Insecticide-treated net (ITN) use, factors associated with non-use of ITNs, and occurrence of sand flies in three communities with reported cases of cutaneous leishmaniasis in Ghana. PLoS ONE, 2021, 16, e0261192. Effects of <scp>anttiâ€<i>Leishmania</i></scp>	 2.8 3.5 3.2 0.4 3.0 2.5 	6 9 1 0 15 1

#	Article	IF	CITATIONS
175	Increasing the Sensitivity of <i>Leishmania</i> RNA Virus 2 (LRV2) Detection with a Modification in cDNA Synthesis. Turkiye Parazitolojii Dergisi, 2022, 46, 86-90.	0.6	1
176	Models for cytotoxicity screening of antileishmanial drugs: what has been done so far?. International Journal of Antimicrobial Agents, 2022, 60, 106612.	2.5	3
177	Prevalence of Leishmania RNA virus in Leishmania parasites in patients with tegumentary leishmaniasis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 2022, 16, e0010427.	3.0	4
178	Ruthenium Complexes, an Emerging Class of Leishmanicidal Drug Candidates. , 2022, 1, 129-142.		3
179	Cytokines and Signaling Networks Regulating Disease Outcomes in Leishmaniasis. Infection and Immunity, 2022, 90, .	2.2	6
180	Antileishmanial Agents Co-loaded in Transfersomes with Enhanced Macrophage Uptake and Reduced Toxicity. AAPS PharmSciTech, 2022, 23, .	3.3	17
181	Activity of Apo-Lactoferrin on Pathogenic Protozoa. Pharmaceutics, 2022, 14, 1702.	4.5	3
182	Distance-based paper device using combined SYBR safe and gold nanoparticle probe LAMP assay to detect Leishmania among patients with HIV. Scientific Reports, 2022, 12, .	3.3	8
183	Anti-trypanosomatid drug discovery: progress and challenges. Nature Reviews Microbiology, 2023, 21, 35-50.	28.6	52
184	Preparation and evaluation of physicochemical properties and anti-leishmanial activity of zirconium/tioxolone niosomes against Leishmania major. Arabian Journal of Chemistry, 2022, 15, 104156.	4.9	3
185	Design of a polytopic construct of LACK, TSA and GP63 proteins for the diagnosis of cutaneous leishmaniasis: An in silico strategy. Journal of Asia-Pacific Entomology, 2022, 25, 101982.	0.9	0
187	Antiparasitic therapeutic peptidomimetics. , 2022, , 371-415.		Ο
188	Making the Most of Its Short Reads: A Bioinformatics Workflow for Analysing the Short-Read-Only Data of Leishmania orientalis (Formerly Named Leishmania siamensis) Isolate PCM2 in Thailand. Biology, 2022, 11, 1272.	2.8	0
189	Design, Rational Repurposing, Synthesis, In Vitro Evaluation, Homology Modeling and In Silico Study of Sulfuretin Analogs as Potential Antileishmanial Hit Compounds. Pharmaceuticals, 2022, 15, 1058.	3.8	12
190	Gallic Acid Alkyl Esters: Trypanocidal and Leishmanicidal Activity, and Target Identification via Modeling Studies. Molecules, 2022, 27, 5876.	3.8	1
191	Epidemiological and clinical characteristics of cutaneous leishmaniasis among patients attending at Tefera Hailu Memorial Hospital, Sekota, Northeast Ethiopia: A five-year trend analysis (2016–2020). SAGE Open Medicine, 2022, 10, 205031212211297.	1.8	0
192	Spatiotemporal Distribution of Leishmaniasis in an Endemic Area of Northeast Brazil: Implications for Intervention Actions. Journal of Medical Entomology, 0, , .	1.8	0
193	Detection of Tropical Diseases Caused by Mosquitoes Using CRISPR-Based Biosensors. Tropical Medicine and Infectious Disease, 2022, 7, 309.	2.3	3

#	Article	IF	Citations
194	HAS 1: A natural product from soil-isolated Streptomyces species with potent activity against cutaneous leishmaniasis caused by Leishmania tropica. Frontiers in Pharmacology, 0, 13, .	3.5	2
196	Spatio-Temporal Pattern and Meteo-Climatic Determinants of Visceral Leishmaniasis in Italy. Tropical Medicine and Infectious Disease, 2022, 7, 337.	2.3	10
197	Intracellular pathogen Leishmania intervenes in iron loading into ferritin by cleaving chaperones in host macrophages as an iron acquisition strategy. Journal of Biological Chemistry, 2022, 298, 102646.	3.4	6
198	Antimony resistance mechanism in genetically different clinical isolates of Indian Kala-azar patients. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	2
199	In Vitro Determination of Antileshmanial Activities of Benzimidazolium Derivatives on L. major Promastigotes and Amastigotes. Acta Parasitologica, 2023, 68, 51-55.	1.1	1
200	Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasites and Vectors, 2022, 15, .	2.5	8
201	Current Status on 1,4-Dihydropyridine Derivatives against Human Pathogenic Parasites. Current Medicinal Chemistry, 2023, 30, 1689-1711.	2.4	2
202	Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties. Microbiology Spectrum, 2022, 10, .	3.0	1
203	Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
204	Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis. Journal of Drug Delivery Science and Technology, 2023, 79, 104005.	3.0	7
205	Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicology in Vitro, 2023, 87, 105524.	2.4	2
206	Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents. Molecular Diversity, 0, , .	3.9	1
207	Humoral response in Leishmaniasis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	0
208	Leishmania spp. in indigenous populations: A mini-review. Frontiers in Public Health, 0, 10, .	2.7	2
210	Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis—An updated review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5
211	Rewriting the history of leishmaniasis in Sri Lanka: An untold story since 1904. PLoS Neglected Tropical Diseases, 2022, 16, e0010918.	3.0	4
212	Isopropyl Gallate, a Gallic Acid Derivative: In Silico and In Vitro Investigation of Its Effects on Leishmania major. Pharmaceutics, 2022, 14, 2701.	4.5	2
213	Quercetin nano phytosome: as a novel anti-leishmania and anti-malarial natural product. Journal of Parasitic Diseases, 2023, 47, 257-264.	1.0	7

#	Article	IF	CITATIONS
214	Effect of Resveratrol and Its Derivatives on Leishmania Viability: A Meta-Analysis. Majallah-i 'ilmi Pizhuhishi-i Danishgah-i 'Ulum-i Pizishki Va Khadamat-i Bihdashti-i Darmani-i Zanjan, 2023, 31, 1-13.	0.1	0
215	Leishmaniasis: Tissue Tropism in Relation to the Species Diversity. , 2023, , 133-153.		3
217	Co-infection of Phlebotomus papatasi (Diptera: Psychodidae) gut bacteria with Leishmania major exacerbates the pathological responses of BALB/c mice. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
218	Nanoparticles for the treatment of visceral leishmaniasis: review. Journal of Nanoparticle Research, 2023, 25, .	1.9	5
219	Leishmaniasis: Recent epidemiological studies in the Middle East. Frontiers in Microbiology, 0, 13, .	3.5	13
220	Perspectives of vector management in the control and elimination of vector-borne zoonoses. Frontiers in Microbiology, 0, 14, .	3.5	0
221	Analysis of the mathematical model of cutaneous Leishmaniasis disease. AEJ - Alexandria Engineering Journal, 2023, 72, 117-134.	6.4	16
222	Rodent-borne zoonoses in Qatar: A possible One-Health framework for the intervention of future epidemic. One Health, 2023, 16, 100517.	3.4	5
223	Repellent and insecticidal activities of vegetal material against sand fly populations (Diptera:) Tj ETQq0 0 0 rgBT /	Overlock I	10 ₁ Tf 50 422
224	Co-delivery of amphotericin B and pentamidine loaded niosomal gel forÂtheÂtreatment of <i>Cutaneous leishmaniasis</i> . Drug Delivery, 2023, 30, .	5.7	11
225	Nature-derived alkaloids as a promising bioactive compound in drug discovery to meet global Leishmania needs. Letters in Drug Design and Discovery, 2023, 20, .	0.7	0
226	An update on antileishmanial agents from natural resources. , 2023, , 257-290.		0
228	Cultivation of Protozoa Parasites In Vitro: Growth Potential in Conventional Culture Media versus RPMI-PY Medium. Veterinary Sciences, 2023, 10, 252.	1.7	2
229	From Cork to India to Liverpool: Colonel Charles Donovan (1863–1951). Indian Journal of Dermatology, Venereology and Leprology, 0, .	0.6	0
230	Comprehensive proteomic analysis of autophagosomes derived from Leishmania-infected macrophages. PLoS ONE, 2023, 18, e0284026.	2.5	0
231	Expression analysis of DHFR and PTR1 genes in Leishmania major exposed to olive leaf extract. South African Journal of Botany, 2023, 157, 520-524.	2.5	0

232	Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals, 2023, 16, 613.	3.8	2
233	Genome diversity of Leishmania aethiopica. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	3

#	Article	IF	CITATIONS
234	Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens, 2023, 12, 706.	2.8	5
235	Molecular identification of Phlebotomus kandelakii apyrase and assessment of the immunogenicity of its recombinant protein in BALB/c mice. Scientific Reports, 2023, 13, .	3.3	1
236	Leishmania (Viannia) naiffi Lainson & Shaw 1989. Parasites and Vectors, 2023, 16, .	2.5	1
237	Fabrication of metal–organic framework based electrochemical Leishmania immunosensor. Microchemical Journal, 2023, 192, 108958.	4.5	0
239	Leishmaniasis: Immune Cells Crosstalk in Macrophage Polarization. Tropical Medicine and Infectious Disease, 2023, 8, 276.	2.3	2
240	High-risk spatiotemporal patterns of cutaneous leishmaniasis: a nationwide study in Iran from 2011 to 2020. Infectious Diseases of Poverty, 2023, 12, .	3.7	5
241	Next generation of selenocyanate and diselenides with upgraded leishmanicidal activity. Bioorganic Chemistry, 2023, 138, 106624.	4.1	0
242	The leishmaniases in Kenya: A scoping review. PLoS Neglected Tropical Diseases, 2023, 17, e0011358.	3.0	1
243	The oral repellent – science fiction or common sense? Insects, vector-borne diseases, failing strategies, and a bold proposition. Tropical Diseases, Travel Medicine and Vaccines, 2023, 9, .	2.2	2
244	Leishmaniasis Increase and Causes in Kabul City. , 2023, 2, 215-220.		0
245	Cutaneous leishmaniasis in Kutaber District, Ethiopia: Prevalence, sand fly fauna and community knowledge, attitude and practices. Heliyon, 2023, 9, e18286.	3.2	0
246	Localized Leishmania major infection disrupts systemic iron homeostasis that can be controlled by oral iron supplementation. Journal of Biological Chemistry, 2023, , 105064.	3.4	1
247	Covid -19 pandemic and epidemiological pattern of cutaneous leishmaniasis occurrence in Iran. , 2023, , 35-41.		0
248	Clinical and immunological spectra of human cutaneous leishmaniasis in North Africa and French Guiana. Frontiers in Immunology, 0, 14, .	4.8	2
249	Kinetoplast Genome of Leishmania spp. Is under Strong Purifying Selection. Tropical Medicine and Infectious Disease, 2023, 8, 384.	2.3	0
250	Tropical Diseases. , 2023, , 197-218.		0
251	Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain. Pathogens, 2023, 12, 1048.	2.8	0
252	First-Row Transition 7-Oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes: Antiparasitic Activity and Release Studies. Pharmaceuticals, 2023, 16, 1380.	3.8	0

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
254	Unfolded protein response pathway in leishmaniasis: A review. Parasite Immunology, 2023, 45, .	1.5	0
255	Molecular prevalence of canine leishmaniasis in Burdur, Türkiye. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 2023, 11, 244-252.	0.3	0
256	Immuno-metabolic signaling in leishmaniasis: insights gained from mathematical modeling. Bioinformatics Advances, 2023, 3, .	2.4	0
257	Investigation of Leishmania Parasite from Suspected Cases of Cutaneous Leishmaniasis. Black Sea Journal of Health Science, 2023, 6, 730-734.	0.9	0
258	Antileishmanial activity of 5-nitroindazole derivatives. Therapeutic Advances in Infectious Disease, 2023, 10, .	1.8	0
259	Looking through the lens of social science approaches: A scoping review of leishmaniases and Chagas disease research. Acta Tropica, 2024, 249, 107059.	2.0	0
260	A molecular signature for IL-10-producing Th1 cells in protozoan parasitic diseases. JCI Insight, 0, , .	5.0	0
261	Cutaneous Leishmaniasis Prevalence and Clinical Overview: A Single Center Study from Saudi Arabia, Eastern Region, Al-Ahsa. Tropical Medicine and Infectious Disease, 2023, 8, 507.	2.3	0
262	Secondary Metabolites of Plant Origin in Parasitic Manifestations. , 2023, , 61-87.		0
263	Target-Based Rational Improvement Strategies and Pitfalls in Leishmania Drug Discovery. , 2023, , 329-383.		0
264	Evaluation of the Diagnostic Sensitivity of the VIASURE Leishmania Real-Time PCR Detection Kit Prototype for the Diagnosis of Cutaneous and Visceral Leishmaniasis. Transboundary and Emerging Diseases, 2023, 2023, 1-8.	3.0	0
265	Antileishmanial and Antitrypanosomes Drugs for the Current Century. Microorganisms, 2024, 12, 43.	3.6	0
266	Genetic variation and geographic distribution of Leishmania orientalis and Leishmania martiniquensis among Leishmania/HIV co-infection in Thailand. Scientific Reports, 2023, 13, .	3.3	0
267	Diagnosis of Cutaneous Leishmaniasis Using FTIR Spectroscopy and Machine Learning: An Animal Model Study. ACS Infectious Diseases, 2024, 10, 467-474.	3.8	0
268	Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis. Transboundary and Emerging Diseases, 2024, 2024, 1-15.	3.0	0
269	A review on potential therapeutic targets for the treatment of leishmaniasis. Parasitology International, 2024, 100, 102863.	1.3	1
270	The Burden of Visceral Leishmaniasis: Need of Review, Innovations, and Solutions. , 2023, , 1-17.		0
271	Identification of potential inhibitor against Leishmania donovani mitochondrial DNA primase through in-silico and in vitro drug repurposing approaches. Scientific Reports, 2024, 14, .	3.3	Ο

#	Article	IF	CITATIONS
272	Genetic Diversity of Leishmania major Isolated from Different Dermal Lesions Using ITS2 Region. Acta Parasitologica, 2024, 69, 831-838.	1.1	0
	FVB/NJ strain as a mouse model for cutaneous leishmaniasis by Leishmania (L.) amazonensis. Memorias Do Instituto Oswaldo Cruz, 0, 119, .	1.6	0