Evaluation of climateâ€related carbon turnover process boreal and temperate forests

Global Change Biology 23, 3076-3091 DOI: 10.1111/gcb.13660

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of climateâ€related carbon turnover processes in global vegetation models for boreal and temperate forests. Clobal Change Biology, 2017, 23, 3076-3091.	4.2	52
2	Evaluating the effect of alternative carbon allocation schemes in a land surface modelÂ(CLM4.5) on carbon fluxes, pools, and turnover in temperate forests. Geoscientific Model Development, 2017, 10, 3499-3517.	1.3	32
3	Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Global Change Biology, 2018, 24, 2284-2304.	4.2	81
4	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
5	Gap models and their individual-based relatives in the assessment of the consequences of global change. Environmental Research Letters, 2018, 13, 033001.	2.2	56
6	Spatial Variability in Growth limate Relationships of Amur Cork Tree (<i>Phellodendron) Tj ETQq1 1 0.784314 n Geophysical Research G: Biogeosciences, 2018, 123, 1625-1636.</i>	rgBT /Over 1.3	lock 10 Tf 5 11
7	Estimation of Above-Ground Biomass over Boreal Forests on Siberia Using Updated In Situ, ALOS-2 PALSAR-2, and RADARSAT-2 Data. Remote Sensing, 2018, 10, 1550.	1.8	29
8	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	2.2	3
9	Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere. Scientific Reports, 2018, 8, 10962.	1.6	7
10	Evaluation of CMIP5 Earth System Models for the Spatial Patterns of Biomass and Soil Carbon Turnover Times and Their Linkage with Climate. Journal of Climate, 2018, 31, 5947-5960.	1.2	36
11	Global fire emissions buffered by the production of pyrogenic carbon. Nature Geoscience, 2019, 12, 742-747.	5.4	140
12	Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surveys in Geophysics, 2019, 40, 693-707.	2.1	49
13	Sapwood biomass carbon in northern boreal and temperate forests. Global Ecology and Biogeography, 2019, 28, 640-660.	2.7	12
14	Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system. Earth System Dynamics, 2019, 10, 233-255.	2.7	21
15	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	1.9	38
16	The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 2019, 227, 44-60.	4.6	172
17	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	1.3	85
18	Understanding the Land Carbon Cycle with Space Data: Current Status and Prospects. Surveys in Geophysics, 2019, 40, 735-755.	2.1	22

#	Article	IF	CITATIONS
19	Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24662-24667.	3.3	52
20	Disequilibrium of terrestrial ecosystem CO ₂ budget caused by disturbance-induced emissions and non-CO ₂ carbon export flows: a global model assessment. Earth System Dynamics, 2019, 10, 685-709.	2.7	22
21	Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Scientific Reports, 2019, 9, 18757.	1.6	28
22	Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from longâ€ŧerm data assimilation. Global Change Biology, 2019, 25, 938-953.	4.2	42
23	Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 53-68.	1.4	60
24	Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 2019, 5, eaat4313.	4.7	282
25	Projecting Forest Dynamics Across Europe: Potentials and Pitfalls of Empirical Mortality Algorithms. Ecosystems, 2020, 23, 188-203.	1.6	9
26	Combining European Earth Observation products with Dynamic Global Vegetation Models for estimating Essential Biodiversity Variables. International Journal of Digital Earth, 2020, 13, 262-277.	1.6	13
27	Plant respiration: Controlled by photosynthesis or biomass?. Global Change Biology, 2020, 26, 1739-1753.	4.2	66
28	Excessive positive response of modelâ€simulated land net primary production to climate changes over circumboreal forests. Plant-Environment Interactions, 2020, 1, 102-121.	0.7	5
29	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
30	Global human "predation―on plant growth and biomass. Global Ecology and Biogeography, 2020, 29, 1052-1064.	2.7	7
31	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	4.2	50
32	Diversity of growth responses to recent droughts reveals the capacity of Atlantic Forest trees to cope well with current climatic variability. Forest Ecology and Management, 2021, 480, 118656.	1.4	9
33	Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions. Ecological Studies, 2021, , 69-100.	0.4	8
34	Dataâ€driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 2021, 27, 1678-1688.	4.2	8
35	Evaluating five forest models using multi-decadal inventory data from mountain forests. Ecological Modelling, 2021, 445, 109493.	1.2	9
36	The Uâ€shaped pattern of sizeâ€dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. Journal of Ecology, 2021, 109, 2421-2433.	1.9	7

CITATION REPORT

#	Article	IF	CITATIONS
37	Run to the hills: Forest growth responsiveness to drought increased at higher elevation during the late 20th century. Science of the Total Environment, 2021, 772, 145286.	3.9	18
38	Evaluating two land surface models for Brazil using a full carbon cycle benchmark with uncertainties. Climate Resilience and Sustainability, 2022, 1, e10.	0.9	4
39	Carbon and Nitrogen Turnover Times of South Korean Forests Estimated via Dataâ€Model Fusion. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006368.	1.3	3
41	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	1.3	45
42	Apparent ecosystem carbon turnover time: uncertainties and robust features. Earth System Science Data, 2020, 12, 2517-2536.	3.7	17
43	The Role of the Biomass Mission in Carbon Cycle Science and Politics. , 2021, , .		0
44	OUP accepted manuscript. Tree Physiology, 2021, , .	1.4	1
45	A data-driven estimate of litterfall and forest carbon turnover and the drivers of their inter-annual variabilities in forest ecosystems across China. Science of the Total Environment, 2022, 821, 153341.	3.9	4
46	Climate Sensitivities of Carbon Turnover Times in Soil and Vegetation: Understanding Their Effects on Forest Carbon Sequestration. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
47	Simulation of the Impact of Environmental Disturbances on Forest Biomass in Taiwan. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	0
48	Forest biomass turnover time estimation in China based on spatially explicit rootÂ:Âshoot ratios. Global Ecology and Biogeography, 2022, 31, 1332-1344.	2.7	1
49	Peaking productivity by 2060. Nature Climate Change, 2022, 12, 505-506.	8.1	4
50	The evolution, complexity and diversity of models of longâ€ŧerm forest dynamics. Journal of Ecology, 2022, 110, 2288-2307.	1.9	22
51	Increased forest coverage will induce more carbon fixation in vegetation than in soil during 2015–2060 in China based on CMIP6. Environmental Research Letters, 2022, 17, 105002. 	2.2	6

CITATION REPORT