High-throughput screening of tyrosine kinase inhibitor induced pluripotent stem cells

Science Translational Medicine

9,

DOI: 10.1126/scitranslmed.aaf2584

Citation Report

#	Article	IF	CITATIONS
1	The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs. Drug Metabolism Reviews, 2017, 49, 158-196.	1.5	25
2	Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicological Sciences, 2017, 158, 213-226.	1.4	45
3	Cardiac safety index for TKIs. Nature Reviews Drug Discovery, 2017, 16, 240-240.	21.5	0
4	Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell–Derived Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2014-2025.	1.1	68
5	PCL-PDMS-PCL Copolymer-Based Microspheres Mediate Cardiovascular Differentiation from Embryonic Stem Cells. Tissue Engineering - Part C: Methods, 2017, 23, 627-640.	1.1	16
6	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
7	The Evolving Roles of Human iPSC-Derived Cardiomyocytes in Drug Safety and Discovery. Cell Stem Cell, 2017, 21, 14-17.	5.2	69
8	Acquired long QT syndrome and phosphoinositide 3-kinase. Trends in Cardiovascular Medicine, 2017, 27, 451-459.	2.3	13
9	Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics. Frontiers in Physiology, 2017, 8, 651.	1.3	26
10	Paying the Toll in Nuclear Reprogramming. Frontiers in Cell and Developmental Biology, 2017, 5, 70.	1.8	4
11	Moving beyond the comprehensive in vitro proarrhythmia assay: Use of humanâ€induced pluripotent stem cellâ€derived cardiomyocytes to assess contractile effects associated with drugâ€induced structural cardiotoxicity. Journal of Applied Toxicology, 2018, 38, 1166-1176.	1.4	30
12	Human Induced Pluripotent Stem Cell Production and Expansion from Blood using a Nonâ€Integrating Viral Reprogramming Vector. Current Protocols in Molecular Biology, 2018, 122, e58.	2.9	13
13	Preclinical approaches to assess potential kinase inhibitor-induced cardiac toxicity: Past, present and future. Journal of Applied Toxicology, 2018, 38, 790-800.	1.4	17
14	Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2018, 11, e000043.	1.6	159
15	CRISPR/Cas9â€Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2018, 96, 21.11.1-21.11.20.	3.5	45
16	Differentiation and Contractile Analysis of GFPâ€Sarcomere Reporter hiPSC ardiomyocytes. Current Protocols in Human Genetics, 2018, 96, 21.12.1-21.12.12.	3.5	26
17	Omics-Based Platform for Studying Chemical Toxicity Using Stem Cells. Journal of Proteome Research, 2018, 17, 579-589.	1.8	5
18	Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicology Letters, 2018, 285, 74-80.	0.4	39

	CITATION	Report	
#	Article	IF	CITATIONS
19	<i>In Silico</i> Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers. Journal of Chemical Information and Modeling, 2018, 58, 943-956.	2.5	37
20	The Anti-Cancer Multikinase Inhibitor Sorafenib Impairs Cardiac Contractility by Reducing Phospholamban Phosphorylation and Sarcoplasmic Calcium Transients. Scientific Reports, 2018, 8, 5295.	1.6	22
21	Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Molecular Therapy, 2018, 26, 1624-1634.	3.7	63
22	Engineering of Mature Human Induced Pluripotent Stem Cellâ€Derived Cardiomyocytes Using Substrates with Multiscale Topography. Advanced Functional Materials, 2018, 28, 1707378.	7.8	43
23	Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems. Annual Review of Pharmacology and Toxicology, 2018, 58, 83-103.	4.2	89
24	Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical researchâ€practice gaps, challenges, and insights. Medicinal Research Reviews, 2018, 38, 325-376.	5.0	50
25	Humanity in a Dish: Population Genetics with iPSCs. Trends in Cell Biology, 2018, 28, 46-57.	3.6	23
26	Modern concepts in cardio-oncology. Journal of Thoracic Disease, 2018, 10, S4386-S4390.	0.6	13
27	Arrhythmias in Cancer and Cancer Treatment: A Review. , 2018, , 162-181.		0
28	Identification of cephalomannine as a drug candidate for glioblastoma via high-throughput drug screening. Journal of Electrophoresis, 2018, 62, 17-20.	0.2	2
29	OBSOLETE: Arrhythmias in Cancer and Cancer Treatment: A Review. , 2018, , .		0
30	OBSOLETE: Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Advancing Cardiovascular Medicine. , 2018, , .		0
31	Use of human induced pluripotent stem cell–derived cardiomyocytes to assess drug cardiotoxicity. Nature Protocols, 2018, 13, 3018-3041.	5.5	102
32	Genetic and Tissue Engineering Approaches to Modeling the Mechanics of Human Heart Failure for Drug Discovery. Frontiers in Cardiovascular Medicine, 2018, 5, 120.	1.1	13
33	Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA. Circulation Research, 2018, 123, 1066-1079.	2.0	159
34	Contractions of Human-iPSC-derived Cardiomyocyte Syncytia Measured with a Ca-sensitive Fluorescent Dye in Temperature-controlled 384-well Plates. Journal of Visualized Experiments, 2018, , .	0.2	1
35	Interdisciplinary Models for Research and Clinical Endeavors in Genomic Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2018, 11, e000046.	1.6	10
36	Modeling Hematological Diseases and Cancer With Patient-Specific Induced Pluripotent Stem Cells. Frontiers in Immunology, 2018, 9, 2243.	2.2	7

#	Article	IF	CITATIONS
37	Strategies for Improving the Maturity of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Research, 2018, 123, 512-514.	2.0	88
38	Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovascular Research, 2018, 114, 1828-1842.	1.8	40
39	Using iPSC Models to Probe Regulation of Cardiac Ion Channel Function. Current Cardiology Reports, 2018, 20, 57.	1.3	6
40	High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell, 2018, 22, 929-940.e4.	5.2	328
41	CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening. Drug Discovery Today: Technologies, 2018, 28, 13-21.	4.0	18
42	Exaggerated Cardiotoxicity of Sunitinib in Stressed 3-Dimensional Heart Muscles. JACC Basic To Translational Science, 2018, 3, 277-279.	1.9	2
43	Cardiovascular Precision Medicine in the Genomics Era. JACC Basic To Translational Science, 2018, 3, 313-326.	1.9	52
44	Cardiotoxicity associated with tyrosine kinase-targeted anticancer therapy. Molecular and Cellular Toxicology, 2018, 14, 247-254.	0.8	11
45	Induced pluripotent stem cell derived cardiac models: effects of Thymosin β4. Expert Opinion on Biological Therapy, 2018, 18, 111-120.	1.4	1
46	Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease?. Current Opinion in Pharmacology, 2018, 42, 55-61.	1.7	19
47	Disease modelling and drug discovery for hypertrophic cardiomyopathy using pluripotent stem cells: how far have we come?. European Heart Journal, 2018, 39, 3893-3895.	1.0	13
48	The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics, 2018, 8, 3176-3188.	4.6	39
49	Modelling cadmiumâ€induced cardiotoxicity using human pluripotent stem cellâ€derived cardiomyocytes. Journal of Cellular and Molecular Medicine, 2018, 22, 4221-4235.	1.6	38
50	Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications. Cells, 2018, 7, 48.	1.8	49
51	Determining the Pathogenicity of a Genomic Variant of Uncertain Significance Using CRISPR/Cas9 and Human-Induced Pluripotent Stem Cells. Circulation, 2018, 138, 2666-2681.	1.6	112
52	Generation of First Heart Field-like Cardiac Progenitors and Ventricular-like Cardiomyocytes from Human Pluripotent Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	13
53	Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Advanced Drug Delivery Reviews, 2019, 140, 3-11.	6.6	72
54	Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicology and Applied Pharmacology, 2019, 381, 114711.	1.3	48

	Сітат	CITATION REPORT	
#	Article	IF	Citations
55	Activation of PDGF pathway links LMNA mutation to dilated cardiomyopathy. Nature, 2019, 572, 335-340). 13.7	136
56	Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1317-1329.	1.1	67
57	The Convergence of Stem Cell Technologies and Phenotypic Drug Discovery. Cell Chemical Biology, 2019, 26, 1050-1066.	2.5	31
58	Workshop Report. Circulation Research, 2019, 125, 855-867.	2.0	53
59	Concise review: Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells, 2019, 38, 174-186.	1.4	29
60	Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicology and Applied Pharmacology, 2019, 383, 114761.	1.3	11
61	Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports, 2019, 13, 960-969.	2.3	62
62	Ponatinib-induced cardiotoxicity: delineating the signalling mechanisms and potential rescue strategies. Cardiovascular Research, 2019, 115, 966-977.	1.8	56
63	Genome-wide off-targets of drugs: risks and opportunities. Cell Biology and Toxicology, 2019, 35, 485-487.	2.4	16
64	Downregulation of miR-146a Contributes to Cardiac Dysfunction Induced by the Tyrosine Kinase Inhibitor Sunitinib. Frontiers in Pharmacology, 2019, 10, 914.	1.6	11
65	Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation Research, 2019, 125, e75-e92.	2.0	103
66	Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications, 2019, 10, 4325.	5.8	51
67	Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell, 2019, 25, 311-327.	5.2	106
68	Predictive inÂvitro toxicology screening to guide chemical design in drug discovery. Current Opinion in Toxicology, 2019, 15, 99-108.	2.6	7
69	hiPSCs in cardio-oncology: deciphering the genomics. Cardiovascular Research, 2019, 115, 935-948.	1.8	21
70	SarcTrack. Circulation Research, 2019, 124, 1172-1183.	2.0	94
71	Changing Hearts and Minds: Improving Outcomes in Cancer Treatment-Related Cardiotoxicity. Current Oncology Reports, 2019, 21, 9.	1.8	15
72	Assessing cardiac safety in oncology drug development. American Heart Journal, 2019, 214, 125-133.	1.2	10

#	Article	IF	CITATIONS
73	Heart Failure and Cancer: Mechanisms of Old and New Cardiotoxic Drugs in Cancer Patients. Cardiac Failure Review, 2019, 5, 112-118.	1.2	39
74	Cardio-oncology: Network-Based Prediction of Cancer Therapy-Induced Cardiotoxicity. Challenges and Advances in Computational Chemistry and Physics, 2019, , 75-97.	0.6	1
75	Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes asÂaÂModel to Study Trypanosoma cruzi Infection. Stem Cell Reports, 2019, 12, 1232-1241.	2.3	29
76	Three-Dimensional Monolayer Stress Microscopy. Biophysical Journal, 2019, 117, 111-128.	0.2	30
77	The West coast regional safety pharmacology society meeting update: Filling translational gaps in safety assessment. Journal of Pharmacological and Toxicological Methods, 2019, 98, 106582.	0.3	2
78	Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Systems, 2019, 8, 412-426.e7.	2.9	49
79	Upregulation of phosphoinositide 3-kinase prevents sunitinib-induced cardiotoxicity in vitro and in vivo. Archives of Toxicology, 2019, 93, 1697-1712.	1.9	9
80	Imatinib-induced changes in the expression profile of microRNA in the plasma and heart of mice—A comparison with doxorubicin. Biomedicine and Pharmacotherapy, 2019, 115, 108883.	2.5	20
81	Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2019, 12, 996-1006.	2.3	43
82	Concise Review: Precision Matchmaking: Induced Pluripotent Stem Cells Meet Cardio-Oncology. Stem Cells Translational Medicine, 2019, 8, 758-767.	1.6	5
83	Cardiac macrotissues-on-a-plate models for phenotypic drug screens. Advanced Drug Delivery Reviews, 2019, 140, 93-100.	6.6	21
84	MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct Size InÂVivo. Cell Stem Cell, 2019, 24, 579-591.e12.	5.2	66
85	Human-Induced Pluripotent Stem Cell Model of Trastuzumab-Induced Cardiac Dysfunction in Patients With Breast Cancer. Circulation, 2019, 139, 2451-2465.	1.6	136
86	Cell population balance of cardiovascular spheroids derived from human induced pluripotent stem cells. Scientific Reports, 2019, 9, 1295.	1.6	23
87	Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 2019, 59, 1073-1084.	2.5	123
88	Personalized medicine in cardio-oncology: the role of induced pluripotent stem cell. Cardiovascular Research, 2019, 115, 949-959.	1.8	38
89	Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 61-75.	1.5	13
90	Cardio-oncology - strategies for management of cancer-therapy related cardiovascular disease. International Journal of Cardiology, 2019, 280, 163-175.	0.8	138

#	Article	IF	CITATIONS
91	Thorough QT/QTc in a Dish: An <i>In Vitro</i> Human Model That Accurately Predicts Clinical Concentrationâ€QTc Relationships. Clinical Pharmacology and Therapeutics, 2019, 105, 1175-1186.	2.3	23
92	Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 395-419.	9.6	24
93	Notoginsenoside R1 protects oxygen and glucose deprivationâ€induced injury by upregulation of miRâ€⊋1 in cardiomyocytes. Journal of Cellular Biochemistry, 2019, 120, 9181-9192.	1.2	17
94	Concise Review: The Current State of Human In Vitro Cardiac Disease Modeling: A Focus on Gene Editing and Tissue Engineering. Stem Cells Translational Medicine, 2019, 8, 66-74.	1.6	27
95	Cancer therapy-induced cardiomyopathy: can human induced pluripotent stem cell modelling help prevent it?. European Heart Journal, 2019, 40, 1764-1770.	1.0	21
96	Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118493.	1.9	27
97	Dr. Daniel Acosta and In Vitro toxicology at the U.S. Food and Drug Administration's National Center for Toxicological Research. Toxicology in Vitro, 2020, 64, 104471.	1.1	2
98	Sexâ€specific SNPâ€SNP interaction analyses within topologically associated domains reveals ANGPT1 as a novel tumor suppressor gene for lung cancer. Genes Chromosomes and Cancer, 2020, 59, 13-22.	1.5	6
99	Dasatinib can Impair Left Ventricular Mechanical Function But May Lack Proarrhythmic Effect: A Proposal of Non-clinical Guidance for Predicting Clinical Cardiovascular Adverse Events of Tyrosine Kinase Inhibitors. Cardiovascular Toxicology, 2020, 20, 58-70.	1.1	10
100	Retinal stem cell transplantation: Balancing safety and potential. Progress in Retinal and Eye Research, 2020, 75, 100779.	7.3	137
101	Cell sources and methods for producing organotypic in vitro human tissue models. , 2020, , 13-45.		1
102	Cardiovascular Toxicity Induced by Kinase Inhibitors: Mechanisms and Preclinical Approaches. Chemical Research in Toxicology, 2020, 33, 125-136.	1.7	39
103	Detection of Drug-Induced Torsades de Pointes Arrhythmia Mechanisms Using hiPSC-CM Syncytial Monolayers in a High-Throughput Screening Voltage Sensitive Dye Assay. Toxicological Sciences, 2020, 173, 402-415.	1.4	25
104	Organ-on-a-chip and 3D printing as preclinical models for medical research and practice. , 2020, , 83-95.		8
105	Network integration and modelling of dynamic drug responses at multi-omics levels. Communications Biology, 2020, 3, 573.	2.0	28
106	Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell, 2020, 27, 813-821.e6.	5.2	33
107	Toward a Microencapsulated 3D hiPSC-Derived in vitro Cardiac Microtissue for Recapitulation of Human Heart Microenvironment Features. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580744.	2.0	11
108	Antiviral activity and safety of remdesivir against SARS-CoV-2 infection in human pluripotent stem cell-derived cardiomyocytes. Antiviral Research, 2020, 184, 104955.	1.9	62

#	Article	IF	CITATIONS
109	iPSC Modeling of RBM20-Deficient DCM Identifies Upregulation of RBM20 as a Therapeutic Strategy. Cell Reports, 2020, 32, 108117.	2.9	40
110	Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. International Journal of Molecular Sciences, 2020, 21, 7320.	1.8	19
111	Cardiac dysfunction in cancer patients: beyond direct cardiomyocyte damage of anticancer drugs: novel cardio-oncology insights from the joint 2019 meeting of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1820-1834.	1.8	51
112	Primer on Biomarker Discovery in Cardio-Oncology. JACC: CardioOncology, 2020, 2, 379-384.	1.7	14
113	Aortic "Disease-in-a-Dish― Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Frontiers in Cell and Developmental Biology, 2020, 8, 550504.	1.8	13
114	Metabolic Maturation Media Improve Physiological Function of Human iPSC-Derived Cardiomyocytes. Cell Reports, 2020, 32, 107925.	2.9	198
115	Induced pluripotent stem cells as a platform to understand patientâ€specific responses to opioids and anaesthetics. British Journal of Pharmacology, 2020, 177, 4581-4594.	2.7	7
116	Atlas of Exosomal microRNAs Secreted From Human iPSC-Derived Cardiac Cell Types. Circulation, 2020, 142, 1794-1796.	1.6	17
117	Assessment of Cardiotoxicity With Stem Cell-based Strategies. Clinical Therapeutics, 2020, 42, 1892-1910.	1.1	11
118	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€aâ€Chip for Drug Screening. Small Methods, 2020, 4, 2000438.	4.6	15
119	Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib. International Journal of Cardiology, 2020, 316, 214-221.	0.8	38
120	Clinical and Research Tools for the Study of Cardiovascular Effects of Cancer Therapy. Journal of Cardiovascular Translational Research, 2020, 13, 417-430.	1.1	1
121	Pluripotent Stem Cell Modeling of Anticancer Therapy–Induced Cardiotoxicity. Current Cardiology Reports, 2020, 22, 56.	1.3	2
122	Effects of Electrical Stimulation on hiPSC-CM Responses to Classic Ion Channel Blockers. Toxicological Sciences, 2020, 174, 254-265.	1.4	12
123	The roles of human induced pluripotent stem cell-derived cardiomyocytes in drug discovery: managing in vitro safety study expectations. Expert Opinion on Drug Discovery, 2020, 15, 719-729.	2.5	7
124	Intensive care for human hearts in pluripotent stem cell models. Npj Regenerative Medicine, 2020, 5, 4.	2.5	6
125	Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nature Reviews Cardiology, 2020, 17, 474-502.	6.1	332
126	Subtype-specific cardiomyocytes for precision medicine: Where are we now?. Stem Cells, 2020, 38, 822-833.	1.4	24

#	Article	IF	CITATIONS
127	Stem cells to help the heart. Science, 2020, 367, 1206-1206.	6.0	2
128	Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell, 2020, 26, 309-329.	5.2	174
129	Pharmacogenomics meets precision cardio-oncology: is there synergistic potential?. Human Molecular Genetics, 2020, 29, R177-R185.	1.4	1
130	Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection. Cell Reports Medicine, 2020, 1, 100052.	3.3	232
131	Integration of mechanical conditioning into a high throughput contractility assay for cardiac safety assessment. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106892.	0.3	5
132	Quantifying drug-induced structural toxicity in hepatocytes and cardiomyocytes derived from hiPSCs using a deep learning method. Journal of Pharmacological and Toxicological Methods, 2020, 105, 106895.	0.3	22
133	Modeling Cardiac Disease Mechanisms Using Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Progress, Promises and Challenges. International Journal of Molecular Sciences, 2020, 21, 4354.	1.8	46
134	Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging. BMC Biology, 2020, 18, 79.	1.7	12
135	Patient and Disease–Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacological Reviews, 2020, 72, 320-342.	7.1	121
136	Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Current Hematologic Malignancy Reports, 2020, 15, 20-30.	1.2	12
138	Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity. Journal of Cardiovascular Translational Research, 2020, 13, 377-389.	1.1	11
139	Inhibition of cardiomyocyte differentiation of human induced pluripotent stem cells by Ribavirin: Implication for its cardiac developmental toxicity. Toxicology, 2020, 435, 152422.	2.0	19
140	Mechanobiology Assays with Applications in Cardiomyocyte Biology and Cardiotoxicity. Advanced Healthcare Materials, 2020, 9, e1901656.	3.9	22
141	Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Frontiers in Cardiovascular Medicine, 2020, 7, 50.	1.1	36
142	Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovascular Research, 2021, 117, 694-711.	1.8	10
143	Improving cardiotoxicity prediction in cancer treatment: integration of conventional circulating biomarkers and novel exploratory tools. Archives of Toxicology, 2021, 95, 791-805.	1.9	4
144	Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 55-82.	2.6	26
145	Beyond genomics—technological advances improving the molecular characterization and precision treatment of heart failure. Heart Failure Reviews, 2021, 26, 405-415.	1.7	7

#	ARTICLE	IF	CITATIONS
147	Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity. Pharmacogenomics, 2021, 22, 41-54.	0.6	4
148	Drug Discovery in Induced Pluripotent Stem Cell Models. , 2021, , .		Ο
149	Human-induced pluripotent stem cell-derived cardiomyocytes, 3D cardiac structures, and heart-on-a-chip as tools for drug research. Pflugers Archiv European Journal of Physiology, 2021, 473, 1061-1085.	1.3	42
150	Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Frontiers in Pharmacology, 2021, 12, 607364.	1.6	20
151	Development and Application of Endothelial Cells Derived From Pluripotent Stem Cells in Microphysiological Systems Models. Frontiers in Cardiovascular Medicine, 2021, 8, 625016.	1.1	18
152	Human Induced Pluripotent Stem Cells as a Screening Platform for Drug-Induced Vascular Toxicity. Frontiers in Pharmacology, 2021, 12, 613837.	1.6	6
153	Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacologica Sinica, 2022, 43, 240-250.	2.8	7
155	Human-induced pluripotent stem cells in cardiovascular research: current approaches in cardiac differentiation, maturation strategies, and scalable production. Cardiovascular Research, 2022, 118, 20-36.	1.8	27
156	Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Archiv European Journal of Physiology, 2021, 473, 1087-1097.	1.3	5
157	Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 887-902.	1.5	21
158	Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells. Circulation Research, 2021, 128, 670-686.	2.0	35
159	Clinical Trial in a Dish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1019-1031.	1.1	21
160	Human iPSC modeling of heart disease for drug development. Cell Chemical Biology, 2021, 28, 271-282.	2.5	21
161	Human Pluripotent Stem Cell-Derived Cardiac Cells: Application in Disease Modeling, Cell Therapy, and Drug Discovery. Frontiers in Cell and Developmental Biology, 2021, 9, 655161.	1.8	9
162	Human Pluripotent Stem Cells for Modeling of Anticancer Therapy-Induced Cardiotoxicity and Cardioprotective Drug Discovery. Frontiers in Pharmacology, 2021, 12, 650039.	1.6	5
163	Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. International Journal of Molecular Sciences, 2021, 22, 3990.	1.8	22
164	The Combination of Cell Cultured Technology and In Silico Model to Inform the Drug Development. Pharmaceutics, 2021, 13, 704.	2.0	11
165	Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. ELife, 2021, 10, .	2.8	41

#	Article	IF	CITATIONS
166	Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals, 2021, 14, 525.	1.7	10
167	iPSC–endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine, 2021, 13, .	5.8	17
168	Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Current Oncology Reports, 2021, 23, 77.	1.8	2
169	Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomaterials Science and Engineering, 2021, 7, 3043-3052.	2.6	13
170	Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell, 2021, 28, 993-1015.	5.2	36
171	Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2021, 155, 66-77.	0.9	18
172	Atrial-specific hiPSC-derived cardiomyocytes in drug discovery and disease modeling. Methods, 2022, 203, 364-377.	1.9	9
173	Cardiac Safety of Kinase Inhibitors – Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Frontiers in Cardiovascular Medicine, 2021, 8, 639824.	1.1	4
174	Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 2021, 6, 30.	2.5	49
175	Deep learning detects cardiotoxicity in a high-content screen with induced pluripotent stem cell-derived cardiomyocytes. ELife, 2021, 10, .	2.8	25
176	Organs-on-chip models for cardiovascular drug development. Cardiovascular Research, 2021, 117, e164-e165.	1.8	5
177	Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation, 2021, 144, 382-392.	1.6	32
178	Combined genetic and chemical screens indicate protective potential for EGFR inhibition to cardiomyocytes under hypoxia. Scientific Reports, 2021, 11, 16661.	1.6	3
179	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
180	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
181	Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells, 2021, 10, 2558.	1.8	4
182	Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Frontiers in Cell and Developmental Biology, 2021, 9, 720099.	1.8	14
183	Organoid Technology: A Reliable Developmental Biology Tool for Organ-Specific Nanotoxicity Evaluation. Frontiers in Cell and Developmental Biology, 2021, 9, 696668.	1.8	22

#	Article	IF	CITATIONS
184	Modeling the cardiovascular toxicities of anticancer therapies in the era of precision medicine. , 2021, , 1-22.		0
185	Cardiovascular microphysiological systems (CVMPS) for safety studies – a pharma perspective. Lab on A Chip, 2021, 21, 458-472.	3.1	6
186	Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Delivery, 2021, 28, 594-606.	2.5	43
187	Generation of Human iPSCs by Protein Reprogramming and Stimulation of TLR3 Signaling. Methods in Molecular Biology, 2021, 2239, 153-162.	0.4	4
188	Phenotypic Screening of iPSC-Derived Cardiomyocytes for Cardiotoxicity Testing and Therapeutic Target Discovery. , 2019, , 19-34.		1
189	Systems pharmacology-based identification of pharmacogenomic determinants of adverse drug reactions using human iPSC-derived cell lines. Current Opinion in Systems Biology, 2017, 4, 9-15.	1.3	8
190	Vascular toxicity associated with anti-angiogenic drugs. Clinical Science, 2020, 134, 2503-2520.	1.8	33
193	A human population-based organotypic in vitro model for cardiotoxicity screening. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 441-452.	0.9	47
194	From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications. International Journal of Stem Cells, 2017, 10, 1-11.	0.8	6
195	Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World Journal of Stem Cells, 2019, 11, 1020-1044.	1.3	14
196	Surviving Cancer without a Broken Heart. Rambam Maimonides Medical Journal, 2019, 10, e0012.	0.4	5
197	Cardiotoxicity of Antineoplastic Therapies and Applications of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells, 2021, 10, 2823.	1.8	7
198	Recent progress of iPSC technology in cardiac diseases. Archives of Toxicology, 2021, 95, 3633-3650.	1.9	18
199	Papers of note in <i>Science Translational Medicine</i> 9 (377). Science Signaling, 2017, 10, .	1.6	0
200	Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Advancing Cardiovascular Medicine. , 2018, , 87-93.		0
202	Cancer Therapeutics-Related Cardiac Dysfunction ― Insights From Bench and Bedside of Onco-Cardiology ―. Circulation Journal, 2020, 84, 1446-1453.	0.7	10
203	Human Organoids for Predictive Toxicology Research and Drug Development. Frontiers in Genetics, 2021, 12, 767621.	1.1	40
205	Cancer in a dish: progress using stem cells as a platform for cancer research. American Journal of Cancer Research, 2018, 8, 944-954.	1.4	6

#	Article	IF	CITATIONS
206	Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiovascular Toxicology, 2022, 22, 141-151.	1.1	2
207	Tyrosine Kinase Inhibitors-Induced Arrhythmias: From Molecular Mechanisms, Pharmacokinetics to Therapeutic Strategies. Frontiers in Cardiovascular Medicine, 2021, 8, 758010.	1.1	15
208	Stem Cell Based Preclinical Drug Development and Toxicity Prediction. Current Pharmaceutical Design, 2021, 27, 2237-2251.	0.9	8
209	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
210	hiPSCs for population genetics. , 2022, , 19-44.		0
211	Proteomic cellular signatures of kinase inhibitor-induced cardiotoxicity. Scientific Data, 2022, 9, 18.	2.4	2
212	Kinase inhibitor-induced cardiotoxicity assessed in vitro with human pluripotent stem cell derived cardiomyocytes. Toxicology and Applied Pharmacology, 2022, 437, 115886.	1.3	1
213	From engineered heart tissue to cardiac organoid. Theranostics, 2022, 12, 2758-2772.	4.6	21
214	The correlation between serum leptin level and thyroid hormones in Jordanian hypothyroidism patients. Gazzetta Medica Italiana Archivio Per Le Scienze Mediche, 2022, 180, .	0.0	0
215	Activation of PDGFRA signaling contributes to filamin C–related arrhythmogenic cardiomyopathy. Science Advances, 2022, 8, eabk0052.	4.7	12
216	VEGF Receptor Inhibitor-Induced Hypertension: Emerging Mechanisms and Clinical Implications. Current Oncology Reports, 2022, 24, 463-474.	1.8	28
217	Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do?. Current Cardiology Reports, 2022, 24, 445-461.	1.3	10
218	Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. Frontiers in Cardiovascular Medicine, 2022, 9, 829553.	1.1	11
219	Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). International Journal of Molecular Sciences, 2022, 23, 3199.	1.8	13
220	Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Frontiers in Cell and Developmental Biology, 2022, 10, 855763.	1.8	23
221	Population-based high-throughput toxicity screen of human iPSC-derived cardiomyocytes and neurons. Cell Reports, 2022, 39, 110643.	2.9	13
223	Burden of tyrosine kinase inhibitor failure in Chinese chronic myeloid leukemia patients: a systematic literature review. Journal of Comparative Effectiveness Research, 2022, 11, 621-637.	0.6	2
224	Optogenetic Reporters Delivered as mRNA Facilitate Repeatable Action Potential and Calcium Handling Assessment in Human iPSC-Derived Cardiomyocytes. Stem Cells, 2022, 40, 655-668.	1.4	3

	Сіта	CITATION REPORT	
#	Article	IF	CITATIONS
227	Phenotypic screen identifies FOXO inhibitor to counteract maturation and promote expansion of human iPS cell-derived cardiomyocytes. Bioorganic and Medicinal Chemistry, 2022, 65, 116782.	1.4	3
228	Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight, 2022, 7, .	2.3	3
229	Protein and mRNA Quantification in Small Samples of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in 96-Well Microplates. Methods in Molecular Biology, 2022, , 15-37.	0.4	8
230	Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nature Reviews Cardiology, 2022, 19, 751-764.	6.1	29
231	Tissue-engineered heart chambers as a platform technology for drug discovery and disease modeling. , 2022, 138, 212916.		11
232	Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model. Materials, 2022, 15, 3960.	1.3	7
233	Utility of iPSC-Derived Cells for Disease Modeling, Drug Development, and Cell Therapy. Cells, 2022, 11, 1853.	, 1.8	19
234	Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics, 2022, 14, 1313.	2.0	14
235	Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicology Letters, 2022, 365, 11-23.	0.4	4
236	Modeling Susceptibility to Cardiotoxicity in Cancer Therapy Using Human iPSC-Derived Cardiac Cells and Systems Biology. Heart Failure Clinics, 2022, 18, 335-347.	1.0	1
237	Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Research, 2022, 82, 2777-2791.	0.4	7
238	Droplet Microarray Based Screening Identifies Proteins for Maintaining Pluripotency of hiPSCs. Advanced Healthcare Materials, 2022, 11, .	3.9	2
239	A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicology and Applied Pharmacology, 2022, 450, 116162.	1.3	3
240	Fluorescent hiPSC-derived MYH6-mScarlet cardiomyocytes for real-time tracking, imaging, and cardiotoxicity assays. Cell Biology and Toxicology, 2023, 39, 145-163.	2.4	1
241	Combinatorial approaches for novel cardiovascular drug discovery: a review of the literature. Expert Opinion on Drug Discovery, 2022, 17, 1111-1129.	2.5	2
242	Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	12
243	Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. Journal of Medicinal Chemistry, 2022, 65, 10898-10919.	2.9	7
244	Technical Applications of Microelectrode Array and Patch Clamp Recordings on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Journal of Visualized Experiments, 2022, , .	0.2	1

#	Article	IF	CITATIONS
245	Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	7
246	Merits of hiPSC-Derived Cardiomyocytes for In Vitro Research and Testing Drug Toxicity. Biomedicines, 2022, 10, 2764.	1.4	Ο
247	Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating. Frontiers in Chemical Engineering, 0, 4, .	1.3	0
248	Pentraxin 3 regulates tyrosine kinase inhibitor-associated cardiomyocyte contraction and mitochondrial dysfunction via ERK/JNK signalling pathways. Biomedicine and Pharmacotherapy, 2023, 157, 113962.	2.5	3
249	Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomedicine and Pharmacotherapy, 2023, 157, 113970.	2.5	5
251	Transcriptional Dysregulation Underlies Both Monogenic Arrhythmia Syndrome and Common Modifiers of Cardiac Repolarization. Circulation, 2023, 147, 824-840.	1.6	8
252	Ponatinib Drives Cardiotoxicity by S100A8/A9-NLRP3-IL-1β Mediated Inflammation. Circulation Research, 2023, 132, 267-289.	2.0	8
254	Predicting individual-specific cardiotoxicity responses induced by tyrosine kinase inhibitors. Frontiers in Pharmacology, 0, 14, .	1.6	2
255	Berberine attenuates sunitinib-induced cardiac dysfunction by normalizing calcium regulation disorder via SGK1 activation. Food and Chemical Toxicology, 2023, 175, 113743.	1.8	1
256	Cardiovascular toxicity of tyrosine kinase inhibitors during cancer treatment: Potential involvement of TRPM7. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	2
257	Artificial Intelligence for Risk Assessment of Cancer Therapy-Related Cardiotoxicity and Precision Cardio-Oncology. Computational Methods in Engineering & the Sciences, 2023, , 563-578.	0.3	0
258	Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension—Mechanisms and Mitigation. Hypertension, 2023, 80, 685-710.	1.3	7
260	Effective derivation of ventricular cardiomyocytes from hPSCs using ascorbic acid-containing maturation medium. Animal Cells and Systems, 2023, 27, 83-93.	0.8	0
261	Stem cells: Stem cells in toxicology. , 2024, , 719-726.		0
262	4D Thermo-Responsive Smart hiPSC-CM Cardiac Construct for Myocardial Cell Therapy. International Journal of Nanomedicine, 0, Volume 18, 1809-1821.	3.3	2
263	Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes. BMC Medicine, 2023, 21, .	2.3	8
268	Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17
281	Multifaceted Role of Induced Pluripotent Stem Cells in Preclinical Cardiac Regeneration Research. , 2023, , 1-61.		0

	CIT	ATION REPORT	
#	Article	IF	CITATIONS
282	Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicity. Cell Biology and Toxicology, 2023, 39, 2527-2549.	2.4	1
296	In vitro toxicology: Next generation models and methods to improve safety evaluation. , 2023, , 1-29.		О