Amide proton transfer-weighted MRI detection of trau

Journal of Cerebral Blood Flow and Metabolism 37, 3422-3432 DOI: 10.1177/0271678x17690165

Citation Report

#	Article	IF	CITATIONS
1	Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology - English Edition, 2018, 21, 137-151.	0.7	135
2	The Applicability of Amide Proton Transfer Imaging in the Nervous System: Focus on Hypoxic-Ischemic Encephalopathy in the Neonate. Cellular and Molecular Neurobiology, 2018, 38, 797-807.	1.7	9
3	Towards the complex dependence of MTR _{asym} on <i>T</i> _{1w} in amide proton transfer (APT) imaging. NMR in Biomedicine, 2018, 31, e3934.	1.6	68
4	APTâ€weighted MRI: Techniques, current neuro applications, and challenging issues. Journal of Magnetic Resonance Imaging, 2019, 50, 347-364.	1.9	224
5	Amide Proton Transfer MRI Signal as a Surrogate Biomarker of Ischemic Stroke Recovery in Patients With Supportive Treatment. Frontiers in Neurology, 2019, 10, 104.	1.1	15
6	Imaging of glutamate in acute traumatic brain injury using chemical exchange saturation transfer. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1652-1663.	1.1	19
7	Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radical Biology and Medicine, 2019, 131, 345-355.	1.3	126
8	Quantifying amide proton exchange rate and concentration in chemical exchange saturation transfer imaging of the human brain. NeuroImage, 2019, 189, 202-213.	2.1	50
9	Mapping the Changes of Glutamate Using Glutamate Chemical Exchange Saturation Transfer (GluCEST) Technique in a Traumatic Brain Injury Model: A Longitudinal Pilot Study. ACS Chemical Neuroscience, 2019, 10, 649-657.	1.7	26
10	Amide Proton Transfer-Weighted (APTw) Imaging of Intracranial Infection in Children: Initial Experience and Comparison with Gadolinium-Enhanced T1-Weighted Imaging. BioMed Research International, 2020, 2020, 1-13.	0.9	4
11	Protein-based amide proton transfer-weighted MR imaging of amnestic mild cognitive impairment. NeuroImage: Clinical, 2020, 25, 102153.	1.4	19
12	Amide proton transfer-weighted magnetic resonance imaging of human brain aging at 3 Tesla. Quantitative Imaging in Medicine and Surgery, 2020, 10, 727-742.	1.1	11
13	Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. European Radiology, 2021, 31, 1401-1409.	2.3	4
14	Translational neuroimaging in mild traumatic brain injury. Journal of Neuroscience Research, 2022, 100, 1201-1217.	1.3	11
15	Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood–Brain Barrier Breakdown. Cells, 2021, 10, 1009.	1.8	28
16	The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurological Research, 2022, 44, 65-89.	0.6	6
17	Brain pH Imaging and its Applications. Neuroscience, 2021, 474, 51-62.	1.1	13
18	Improving Amide Proton Transfer-Weighted MRI Reconstruction Using T2-Weighted Images. Lecture Notes in Computer Science, 2020, 12262, 3-12.	1.0	4

#	Article	IF	CITATIONS
19	Lu Tong Ke Li protects neurons from injury by regulating inflammation in rats with brain trauma. , 2022, 8, 100-108.		2
20	Amide proton transfer imaging in stroke. NMR in Biomedicine, 2023, 36, e4734.	1.6	12
22	Amide Proton Transfer-Weighted Magnetic Resonance Imaging for Detecting Severity and Predicting Outcome after Traumatic Brain Injury in Rats. Neurotrauma Reports, 2022, 3, 261-275.	0.5	0
24	Predicting a Favorable (mRS 0–2) or Unfavorable (mRS 3–6) Stroke Outcome by Arterial Spin Labeling and Amide Proton Transfer Imaging in Post-Thrombolysis Stroke Patients. Journal of Personalized Medicine, 2023, 13, 248.	1.1	1