Seven temperate terrestrial planets around the nearby

Nature 542, 456-460

DOI: 10.1038/nature21360

Citation Report

#	Article	IF	CITATIONS
2	Earth's seven sisters. Nature, 2017, 542, 421-422.	13.7	3
3	Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman- $\langle i \rangle \hat{l} \pm \langle i \rangle$ line. Astronomy and Astrophysics, 2017, 599, L3.	2.1	85
4	Remote Sensing of Potential Biosignatures from Rocky, Liquid, or Icy (Exo)Planetary Surfaces. Astrobiology, 2017, 17, 231-252.	1.5	29
5	Fast Litho-panspermia in the Habitable Zone of the TRAPPIST-1 System. Astrophysical Journal Letters, 2017, 839, L21.	3.0	13
6	Worlds without Moons: Exomoon Constraints for Compact Planetary Systems. Astrophysical Journal Letters, 2017, 839, L19.	3.0	17
7	The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star. Icarus, 2017, 293, 52-58.	1.1	93
8	A temperate rocky super-Earth transiting a nearby cool star. Nature, 2017, 544, 333-336.	13.7	275
9	Convergent Migration Renders TRAPPIST-1 Long-lived. Astrophysical Journal Letters, 2017, 840, L19.	3.0	98
10	Reflections on O ₂ as a Biosignature in Exoplanetary Atmospheres. Astrobiology, 2017, 17, 1022-1052.	1.5	119
11	Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets. Astrophysical Journal Letters, 2017, 841, L3.	3.0	40
12	Plausible Compositions of the Seven TRAPPIST-1 Planets Using Long-term Dynamical Simulations. Astrophysical Journal Letters, 2017, 842, L5.	3.0	53
13	A seven-planet resonant chain in TRAPPIST-1. Nature Astronomy, 2017, 1, .	4.2	263
14	New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations. Astronomical Journal, 2017, 153, 265.	1.9	55
15	A Statistical Comparative Planetology Approach to the Hunt for Habitable Exoplanets and Life Beyond the Solar System. Astrophysical Journal Letters, 2017, 841, L24.	3.0	80
16	Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs ^{â^—} . Astrophysical Journal, 2017, 841, 116.	1.6	29
17	Habitability Properties of Circumbinary Planets. Astronomical Journal, 2017, 153, 273.	1.9	32
18	Frequent Flaring in the TRAPPIST-1 System—Unsuited for Life?. Astrophysical Journal, 2017, 841, 124.	1.6	137
19	A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature, 2017, 546, 514-518.	13.7	205

#	ARTICLE	IF	CITATIONS
20	Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets. Astrophysical Journal, 2017, 842, 40.	1.6	95
21	Enhanced interplanetary panspermia in the TRAPPIST-1 system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6689-6693.	3.3	44
22	Mass, Density, and Formation Constraints in the Compact, Sub-Earth Kepler-444 System including Two Mars-mass Planets. Astrophysical Journal Letters, 2017, 838, L11.	3.0	51
23	Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model. Astrophysical Journal Letters, 2017, 839, L1.	3.0	167
24	War or peace? The possible scenarios of colonising Mars. Space Policy, 2017, 42, 31-36.	0.8	9
25	Risks for Life on Habitable Planets from Superflares of Their Host Stars. Astrophysical Journal, 2017, 848, 41.	1.6	59
26	The variability of magnetic activity in solarâ€type stars. Astronomische Nachrichten, 2017, 338, 753-772.	0.6	26
27	A Six-planet System around the Star HD 34445. Astronomical Journal, 2017, 154, 181.	1.9	30
28	Collisional Fragmentation Is Not a Barrier to Close-in Planet Formation. Astronomical Journal, 2017, 154, 175.	1.9	36
29	Saving Super-Earths: Interplay between Pebble Accretion and Type I Migration. Astronomical Journal, 2017, 153, 222.	1.9	35
30	Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating. Nature Astronomy, 2017, 1, 878-885.	4.2	57
31	No Snowball on Habitable Tidally Locked Planets. Astrophysical Journal, 2017, 845, 132.	1.6	78
32	Astrometric Constraints on the Masses of Long-period Gas Giant Planets in the TRAPPIST-1 Planetary System. Astronomical Journal, 2017, 154, 103.	1.9	31
33	Phase transitions in MgSiO3 post-perovskite in super-Earth mantles. Earth and Planetary Science Letters, 2017, 478, 40-45.	1.8	45
34	Red-edge position of habitable exoplanets around M-dwarfs. Scientific Reports, 2017, 7, 7561.	1.6	19
35	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 605, A92.	2.1	27
36	Temporal Evolution of the High-energy Irradiation and Water Content of TRAPPIST-1 Exoplanets. Astronomical Journal, 2017, 154, 121.	1.9	104
37	Reduced Diversity of Life around Proxima Centauri and TRAPPIST-1. Astrophysical Journal Letters, 2017, 846, L21.	3.0	23

#	Article	IF	CITATIONS
38	Non-randomness of exponential distance relation in the planetary system: An answer to Lecar. Advances in Space Research, 2017, 60, 2314-2318.	1.2	1
39	On the Age of the TRAPPIST-1 System. Astrophysical Journal, 2017, 845, 110.	1.6	88
40	How Simple Could Life Be?. Angewandte Chemie - International Edition, 2017, 56, 10998-11002.	7.2	20
41	Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model. Astrophysical Journal, 2017, 844, 19.	1.6	37
42	Roche-lobe Overflow in Eccentric Planet–Star Systems. Astrophysical Journal, 2017, 844, 12.	1.6	33
43	Lightning chemistry on Earth-like exoplanets. Monthly Notices of the Royal Astronomical Society, 2017, 470, 187-196.	1.6	55
44	The Densities of Planets in Multiple Stellar Systems. Astronomical Journal, 2017, 154, 66.	1.9	55
45	Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2879-2885.	1.6	29
46	Monitoring Telluric Absorption with CAMAL. Publications of the Astronomical Society of the Pacific, 2017, 129, 085002.	1.0	12
47	How to Characterize Habitable Worlds and Signs of Life. Annual Review of Astronomy and Astrophysics, 2017, 55, 433-485.	8.1	170
48	Brave new worlds?. Nature Astronomy, 2017, 1, .	4.2	0
49	On the Magnetic Protection of the Atmosphere of Proxima Centauri b. Astrophysical Journal Letters, 2017, 844, L13.	3.0	107
50	Wie einfach kann Leben sein?. Angewandte Chemie, 2017, 129, 11142-11146.	1.6	2
51	Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance. Astrophysical Journal, 2017, 844, 147.	1.6	45
52	Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs. Astrophysical Journal, 2017, 845, 5.	1.6	138
53	The Search for Another Earth-Like Planet and Life Elsewhere. , 0, , 30-56.		0
54	Formation of TRAPPIST-1 and other compact systems. Astronomy and Astrophysics, 2017, 604, A1.	2.1	128
55	Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1750-1770.	1.6	244

#	Article	IF	Citations
56	TRAPPIST-1: The dawning of the age of Aquarius. Bioengineered, 2017, 8, 194-195.	1.4	2
57	Planet–Planet Occultations in TRAPPIST-1 and Other Exoplanet Systems. Astrophysical Journal, 2017, 851, 94.	1.6	33
58	Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 2017, 14, 5.	7.8	262
59	Terahertz: dictating the frequency of life. Do macromolecular vibrational modes impose thermal limitations on terrestrial life?. Journal of the Royal Society Interface, 2017, 14, 20170673.	1.5	8
60	An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf. Astrophysical Journal Letters, 2017, 840, L3.	3.0	94
61	A Search for Additional Bodies in the GJ 1132 Planetary System from 21 Ground-based Transits and a 100-hr Spitzer Campaign. Astronomical Journal, 2017, 154, 142.	1.9	43
63	The Origin of Life on Earth and the Design of Alternative Life Forms. Molecular Frontiers Journal, 2017, 01, 121-131.	0.9	9
64	Effect of Deep Eutectic Solvent Nanostructure on Phospholipid Bilayer Phases. Langmuir, 2017, 33, 6878-6884.	1.6	43
65	The Surface UV Environment on Planets Orbiting MÂDwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up. Astrophysical Journal, 2017, 843, 110.	1.6	100
66	The Cosmic Shoreline: The Evidence that Escape Determines which Planets Have Atmospheres, and what this May Mean for Proxima Centauri B. Astrophysical Journal, 2017, 843, 122.	1.6	134
67	Exoplanets as probes of the winds of host stars: the case of the M dwarf GJ 436. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4026-4033.	1.6	66
68	Hubble Space Telescope astrometry of the closest brown dwarf binary system – I. Overview and improved orbitâ~ Monthly Notices of the Royal Astronomical Society, 2017, 470, 1140-1155.	1.6	15
69	A minimum mass nebula for M dwarfs. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 470, L1-L5.	1.2	38
70	Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST. Astrophysical Journal, 2017, 850, 121.	1.6	222
71	A Panchromatic View of Brown Dwarf Aurorae. Astrophysical Journal, 2017, 846, 75.	1.6	46
72	The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres. Astrophysical Journal, 2017, 851, 77.	1.6	63
73	On the spin states of habitable zone exoplanets around M dwarfs: the effect of a near-resonant companion. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3217-3229.	1.6	36
74	Probing the magnetosphere of the M8.5 dwarf TVLMÂ513â°'46546 by modelling its auroral radio emission. Hint of star exoplanet interaction?. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1949-1967.	1.6	11

#	Article	IF	Citations
75	HAZMAT. II. Ultraviolet Variability of Low-mass Stars in the GALEX Archive. Astronomical Journal, 2017, 154, 67.	1.9	27
76	The Solar Neighborhood. XXXX. Parallax Results from the CTIOPI 0.9 m Program: New Young Stars Near the Sun. Astronomical Journal, 2017, 154, 151.	1.9	39
77	The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets. Astrophysical Journal Letters, 2017, 843, L33.	3.0	106
78	Near Mean-motion Resonances in the System Observed by Kepler: Affected by Mass Accretion and Type I Migration. Astronomical Journal, 2017, 154, 236.	1.9	35
79	Stable habitable zones of single Jovian planet systems. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4494-4507.	1.6	33
80	Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs. II. Properties of 11 T dwarfs. Astrophysical Journal, 2017, 848, 83.	1.6	80
81	UV surface habitability of the TRAPPIST-1 system. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L26-L30.	1.2	78
82	Tidal Star-Planet Interactions: A Stellar and Planetary Perspective. , 2017, , 1-30.		0
83	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2017, , 1-20.		2
84	Observing Exoplanets with the Spitzer Space Telescope. , 2017, , 1-25.		0
86	These seven alien worlds could help explain how planets form. Nature, 2017, , .	13.7	0
87	The HARPS search for southern extra-solar planets. Astronomy and Astrophysics, 2017, 605, L11.	2.1	49
88	An intermediate luminosity optical transient (ILOTs) model for the young stellar object ASASSN-15qi. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4938-4943.	1.6	10
89	Habitable exoplanets detection: overview of challenges and current state-of-the-art [Invited]. Optics Express, 2017, 25, 28825.	1.7	2
90	Exoplanet Predictions Based on Harmonic Orbit Resonances. Galaxies, 2017, 5, 56.	1.1	3
91	Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Frontiers in Microbiology, 2017, 8, 1407.	1.5	49
92	Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics. Astronomical Journal, 2017, 154, 256.	1.9	19
93	The EBLM project. Astronomy and Astrophysics, 2017, 604, L6.	2.1	26

#	Article	IF	Citations
94	Universal scaling relation for magnetic sails: momentum braking in the limit of dilute interstellar media. Journal of Physics Communications, 2017, 1, 045007.	0.5	9
95	HADES RV Programme with HARPS-N at TNG. Astronomy and Astrophysics, 2017, 608, A63.	2.1	14
96	The EBLM Project. Astronomy and Astrophysics, 2017, 608, A129.	2.1	56
97	Eclipse, transit and occultation geometry of planetary systems at exo-syzygy. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2672-2683.	1.6	29
98	Galactic habitable zone around M and FGK stars with chemical evolution models that include dust. Astronomy and Astrophysics, 2017, 605, A38.	2.1	25
99	Constraining planet structure and composition from stellar chemistry: trends in different stellar populations. Astronomy and Astrophysics, 2017, 608, A94.	2.1	55
100	Transmission spectroscopy with the ACE-FTS infrared spectral atlas of Earth: A model validation and feasibility study. Molecular Astrophysics, 2018, 11, 1-22.	1.7	22
101	The K2-HERMES Survey. I. Planet-candidate Properties from K2 Campaigns 1–3. Astronomical Journal, 2018, 155, 84.	1.9	38
102	HAZMAT. III. The UV Evolution of Mid- to Late-M Stars with GALEX. Astronomical Journal, 2018, 155, 122.	1.9	44
103	Simulated <i>JWST </i> /INIRISS Transit Spectroscopy of Anticipated Tess Planets Compared to Select Discoveries from Space-based and Ground-based Surveys. Publications of the Astronomical Society of the Pacific, 2018, 130, 044401.	1.0	50
104	NGTS-1b: a hot Jupiter transiting an M-dwarf. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4467-4475.	1.6	91
105	The Next Generation Transit Survey (NGTS). Monthly Notices of the Royal Astronomical Society, 2018, 475, 4476-4493.	1.6	189
106	Habitability from Tidally Induced Tectonics. Astrophysical Journal, 2018, 857, 106.	1.6	15
107	Exoplanet Biosignatures: A Framework for Their Assessment. Astrobiology, 2018, 18, 709-738.	1.5	139
108	Growth and evolution of satellites in a Jovian massive disc. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1347-1362.	1.6	11
109	Equation of state of iron under core conditions of large rocky exoplanets. Nature Astronomy, 2018, 2, 452-458.	4.2	71
110	Exoplanets – the beginning of a new era in astrophysics. European Physical Journal H, 2018, 43, 1-41.	0.5	1
111	A New Desalination Pump Helps Define the pH of Ocean Worlds. Astrophysical Journal, 2018, 857, 65.	1.6	4

#	ARTICLE	IF	Citations
112	Proxima b: The Detection of the Earth-Type Planet Candidate Orbiting Our Closest Neighbor. , 2018, , $1\text{-}18$.		0
113	On the Biohabitability of M-dwarf Planets. Astrophysical Journal, 2018, 856, 165.	1.6	14
114	Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets. Astrophysical Journal Letters, 2018, 856, L11.	3.0	19
115	Applications of 14C, the Most Versatile Radionuclide to Explore Our World. Lecture Notes in Physics, 2018, , 1-30.	0.3	1
116	Searching for red worlds. Nature Astronomy, 2018, 2, 344-344.	4.2	36
117	Strategies for Constraining the Atmospheres of Temperate Terrestrial Planets with JWST. Astrophysical Journal Letters, 2018, 856, L34.	3.0	82
118	The contribution of the ARIEL space mission to the study of planetary formation. Experimental Astronomy, 2018, 46, 45-65.	1.6	19
119	Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course. Physics Teacher, 2018, 56, 170-173.	0.2	5
120	Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1. Nature Astronomy, 2018, 2, 214-219.	4.2	179
121	The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets. Astrophysical Journal, 2018, 853, 122.	1.6	224
122	Atomic oxygen ions as ionospheric biomarkers on exoplanets. Nature Astronomy, 2018, 2, 287-291.	4.2	9
123	Transiting Exoplanet Monitoring Project (TEMP). III. On the Relocation of the Kepler-9 b Transit. Astronomical Journal, 2018, 155, 73.	1.9	34
124	Atmospheric Circulation, Chemistry, and Infrared Spectra of Titan-like Exoplanets around Different Stellar Types. Astrophysical Journal, 2018, 853, 58.	1.6	10
125	Finding mountains with molehills: the detectability of exotopography. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4978-4985.	1.6	31
126	Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search. Astronomical Journal, 2018, 155, 93.	1.9	11
127	The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists. Astronomical Journal, 2018, 155, 57.	1.9	76
128	A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at 30 pc. Astronomical Journal, 2018, 155, 72.	1.9	44
129	Stellar Parameters for Trappist-1. Astrophysical Journal, 2018, 853, 30.	1.6	71

#	ARTICLE	IF	CITATIONS
130	Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Science Advances, 2018, 4, eaao5747.	4.7	111
131	Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 260-265.	3.3	159
132	Early 2017 observations of TRAPPIST-1 with Spitzer. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3577-3597.	1.6	100
133	Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone. Astrophysical Journal, 2018, 852, 67.	1.6	105
134	Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5267-5274.	1.6	11
135	Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. Astronomical Journal, 2018, 155, 94.	1.9	246
136	Confirming Variability in the Secondary Eclipse Depth of the Super-Earth 55 Cancri e. Astronomical Journal, 2018, 155, 221.	1.9	34
137	Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology, 2018, 18, 663-708.	1.5	328
138	Water Loss from Young Planets. Space Science Reviews, 2018, 214, 1.	3.7	13
139	Ages for Exoplanet Host Stars. , 2018, , 1-18.		3
140	Planetary Migration in Protoplanetary Disks. , 2018, , 1-32.		0
141	The Detectability of Earth's Biosignatures Across Time. , 2018, , 1-17.		0
142	Peering into space with the Morocco OukaÃ-meden Observatory. Nature Astronomy, 2018, 2, 352-354.	4.2	7
143	Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138. Monthly Notices of the Royal Astronomical Society, 2018, 478, 460-486.	1.6	26
144	Exoplanet Classification and Yield Estimates for Direct Imaging Missions. Astrophysical Journal, 2018, 856, 122.	1.6	60
145	SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST., 2018, , 1-17.		1
146	Characterizing Evaporating Atmospheres of Exoplanets. , 2018, , 1-18.		0
147	Radio Emission from Ultracool Dwarfs. , 2018, , 1-21.		0

#	Article	IF	CITATIONS
148	Habitability in Brown Dwarf Systems. , 2018, , 1-22.		1
149	Star-Planet Interactions and Habitability: Radiative Effects. , 2018, , 1-23.		3
150	Exoplanets around Low-mass Stars Unveiled by K2. Astronomical Journal, 2018, 155, 127.	1.9	85
151	The Influence of a Substellar Continent on the Climate of a Tidally Locked Exoplanet. Astrophysical Journal, 2018, 854, 171.	1.6	42
152	Resonance capture and dynamics of three-planet systems. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1414-1425.	1.6	22
153	An Earth-sized exoplanet with a Mercury-like composition. Nature Astronomy, 2018, 2, 393-400.	4.2	75
154	A method to estimate stellar ages from kinematical data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 184-197.	1.6	13
155	Where can a Trappist-1 planetary system be produced?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5460-5473.	1.6	41
156	The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes. Astrophysical Journal, 2018, 854, 134.	1.6	6
157	The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. Astrobiology, 2018, 18, 133-189.	1.5	102
158	Inward migration of the TRAPPIST-1 planets as inferred from their water-rich compositions. Nature Astronomy, 2018, 2, 297-302.	4.2	91
159	Why do we find ourselves around a yellow star instead of a red star?. International Journal of Astrobiology, 2018, 17, 77-86.	0.9	47
160	The search for habitable planets with biosignature gases framed by a †Biosignature Drake Equationâ€. International Journal of Astrobiology, 2018, 17, 294-302.	0.9	16
161	Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. Origins of Life and Evolution of Biospheres, 2018, 48, 35-54.	0.8	30
162	Physical constraints on the likelihood of life on exoplanets. International Journal of Astrobiology, 2018, 17, 116-126.	0.9	40
163	Transit visibility zones of the Solar system planets. Monthly Notices of the Royal Astronomical Society, 2018, 473, 345-354.	1.6	35
164	N-Body Simulations and Galactic Habitability. , 2018, , 173-197.		3
165	Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result. Astronomical Journal, 2018, 155, 12.	1.9	11

#	Article	IF	Citations
166	Transit spectroscopy of temperate Jupiters with ARIEL: a feasibility study. Experimental Astronomy, 2018, 46, 31-44.	1.6	28
167	Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits. New Astronomy, 2018, 58, 107-123.	0.8	28
168	Biosignature Anisotropy Modeled on Temperate Tidally Locked M-dwarf Planets. Astrophysical Journal Letters, 2018, 868, L6.	3.0	30
169	Refraction in exoplanet atmospheres. Astronomy and Astrophysics, 2018, 609, A90.	2.1	5
170	Discovery of the first Earth-sized planets orbiting a star other than our Sun in the Kepler-20 system. New Astronomy Reviews, 2018, 83, 12-17.	5.2	1
171	An Improved Transit Measurement for a 2.4 R _⊕ Planet Orbiting A Bright Mid-M Dwarf K2–28. Astronomical Journal, 2018, 155, 223.	1.9	3
172	Atmospheric thermal tides and planetary spin. Astronomy and Astrophysics, 2018, 609, A118.	2.1	4
173	Exoplanet-induced Radio Emission from M Dwarfs. Astrophysical Journal, 2018, 854, 72.	1.6	42
174	Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets. Astrophysical Journal, 2018, 857, 98.	1.6	64
175	Effective Induction Heating around Strongly Magnetized Stars. Astrophysical Journal, 2018, 858, 105.	1.6	28
176	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2018, 609, A117.	2.1	103
177	Clear and Cloudy Exoplanet Forecasts for JWST: Maps, Retrieved Composition, and Constraints on Formation with MIRI and NIRCam. Astronomical Journal, 2018, 156, 40.	1.9	28
178	Hydrohalite Salt-albedo Feedback Could Cool M-dwarf Planets. Astrophysical Journal, 2018, 867, 11.	1.6	16
179	A Radial velocity survey of spatially resolved young, low-mass binaries. Astronomy and Astrophysics, 2018, 618, A5.	2.1	7
180	Exploring the stellar properties of M dwarfs with high-resolution spectroscopy from the optical to the near-infrared. Astronomy and Astrophysics, 2018, 620, A180.	2.1	48
181	Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2649-2672.	1.6	36
182	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2018, 620, A171.	2.1	26
183	Modelling the atmosphere of potential habitable planets. Proceedings of the International Astronomical Union, 2018, 14, 172-175.	0.0	0

#	Article	IF	CITATIONS
184	A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What?. Geosciences (Switzerland), 2018, 8, 362.	1.0	18
185	SAFARI – I. A SPHERE discovery of a super metal-rich M-dwarf companion to the star HD 86006. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4958-4970.	1.6	2
186	Simultaneous characterization of the atmospheres, surfaces, and exomoons of nearby rocky exoplanets. Earth and Planetary Physics, 2018, 2, 247-256.	0.4	1
187	Using warm dust to constrain unseen planets. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5560-5579.	1.6	12
188	Zodiacal Exoplanets in Time (ZEIT). VIII. A Two-planet System in Praesepe from K2 Campaign 16. Astronomical Journal, 2018, 156, 195.	1.9	72
189	Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys. Astrophysical Journal, 2018, 868, 43.	1.6	16
190	A Revised Exoplanet Yield from the <i>Transiting Exoplanet Survey Satellite</i> (<i>TESS</i>). Astrophysical Journal, Supplement Series, 2018, 239, 2.	3.0	215
191	Impacts of Dust Feedback on a Dust Ring Induced by a Planet in a Protoplanetary Disk. Astrophysical Journal, 2018, 868, 48.	1.6	36
192	Evolved Climates and Observational Discriminants for the TRAPPIST-1 Planetary System. Astrophysical Journal, 2018, 867, 76.	1.6	119
193	Three Pathways for Observed Resonant Chains. Astronomical Journal, 2018, 156, 228.	1.9	24
194	Why do protoplanetary disks appear not massive enough to form the known exoplanet population?. Astronomy and Astrophysics, 2018, 618, L3.	2.1	151
195	A Survey and Analysis of College Students' Understanding of Planet Formation Before Instruction. Astrobiology, 2018, 18, 1594-1610.	1.5	1
196	K2 Ultracool Dwarfs Survey. III. White Light Flares Are Ubiquitous in M6-L0 Dwarfs. Astrophysical Journal, 2018, 858, 55.	1.6	54
197	SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST., 2018, , 1007-1023.		16
198	Characterizing Evaporating Atmospheres of Exoplanets. , 2018, , 1509-1526.		2
199	ESPRESSO on VLT: An Instrument for Exoplanet Research. , 2018, , 883-901.		11
200	Spectroscopic Direct Detection of Exoplanets. , 2018, , 1485-1508.		28
201	Ages for Exoplanet Host Stars. , 2018, , 1679-1696.		1

#	Article	IF	CITATIONS
202	The Rossiter–McLaughlin Effect in Exoplanet Research. , 2018, , 1375-1401.		47
203	Tidal Star-Planet Interactions: A Stellar and Planetary Perspective. , 2018, , 1801-1831.		8
204	Space Missions for Exoplanet Research: Overview and Introduction. , 2018, , 1123-1134.		1
205	Observing Exoplanets with the Spitzer Space Telescope. , 2018, , 1179-1203.		1
206	CHEOPS: CHaracterizing ExOPlanets Satellite. , 2018, , 1257-1281.		10
207	Observing Exoplanets with the James Webb Space Telescope. , 2018, , 1283-1308.		1
208	Space Missions for Exoplanet Science: PLATO. , 2018, , 1309-1330.		11
209	Tightly Packed Planetary Systems. , 2018, , 2713-2730.		0
210	Planetary Migration in Protoplanetary Disks. , 2018, , 2287-2317.		10
211	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
212	Planet Populations as a Function of Stellar Properties. , 2018, , 2009-2034.		19
213	Planet Occurrence: Doppler and Transit Surveys. , 2018, , 1949-1966.		8
214	Proxima b: The Detection of the Earth-Type Planet Candidate Orbiting Our Closest Neighbor. , 2018, , 2627-2644.		0
215	Factors Affecting Exoplanet Habitability. , 2018, , 2771-2794.		17
216	The Habitable Zone: The Climatic Limits of Habitability. , 2018, , 2981-2993.		4
217	Habitability in Brown Dwarf Systems., 2018,, 3069-3090.		2
218	Planet Formation, Migration, and Habitability., 2018,, 2879-2895.		0
219	The Detectability of Earth's Biosignatures Across Time. , 2018, , 3225-3241.		1

#	Article	IF	CITATIONS
220	Star-Planet Interactions and Habitability: Radiative Effects., 2018,, 2995-3017.		3
221	Radial velocity follow-up of GJ1132 with HARPS. Astronomy and Astrophysics, 2018, 618, A142.	2.1	54
222	The SOPHIE search for northern extrasolar planets. Astronomy and Astrophysics, 2018, 618, A103.	2.1	20
223	Using Deep Space Climate Observatory Measurements to Study the Earth as an Exoplanet. Astronomical Journal, 2018, 156, 26.	1.9	37
224	Distinguishing the albedo of exoplanets from stellar activity. Astronomy and Astrophysics, 2018, 611, A8.	2.1	13
225	Photospheric properties and fundamental parameters of M dwarfs. Astronomy and Astrophysics, 2018, 610, A19.	2.1	25
226	A transiting super-Earth close to the inner edge of the habitable zone of an M0 dwarf star. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	3
227	Revised Exoplanet Radii and Habitability Using <i>Gaia</i> Data Release 2. Astrophysical Journal, Supplement Series, 2018, 239, 14.	3.0	22
228	A New Method for Calibration of Gain Variation in a Detector System. Astronomical Journal, 2018, 156, 288.	1.9	3
229	Limits on Clouds and Hazes for the TRAPPIST-1 Planets. Astronomical Journal, 2018, 156, 252.	1.9	43
230	Impurity Resistivity of fcc and hcp Fe-Based Alloys: Thermal Stratification at the Top of the Core of Super-Earths. Frontiers in Earth Science, 2018, 6, .	0.8	24
231	Sixty Validated Planets from K2 Campaigns 5–8. Astronomical Journal, 2018, 156, 277.	1.9	53
232	Editorial: Habitability Beyond Earth. Frontiers in Microbiology, 2018, 9, 2645.	1.5	2
233	Detecting Ocean Glint on Exoplanets Using Multiphase Mapping. Astronomical Journal, 2018, 156, 301.	1.9	49
234	The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra. Astronomical Journal, 2018, 156, 178.	1.9	88
235	A Framework for Prioritizing the <i>TESS</i> Planetary Candidates Most Amenable to Atmospheric Characterization. Publications of the Astronomical Society of the Pacific, 2018, 130, 114401.	1.0	314
236	Spectroscopic Direct Detection of Exoplanets. , 2018, , 1-24.		1
237	The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra. Astronomy and Astrophysics, 2018, 612, A111.	2.1	14

#	Article	IF	CITATIONS
238	Resolved millimeter-dust continuum cavity around the very low mass young star CIDA 1. Astronomy and Astrophysics, 2018, 615, A95.	2.1	18
239	Three small transiting planets around the M-dwarf host star LP 358-499. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L131-L135.	1.2	27
240	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	1.6	249
241	A temperate exo-Earth around a quiet M dwarf at 3.4 parsec. Astronomy and Astrophysics, 2018, 613, A25.	2.1	92
242	The Hidden Depths of Planetary Atmospheres. Astrophysical Journal, 2018, 865, 12.	1.6	11
243	The 0.8–4.5 μm Broadband Transmission Spectra of TRAPPIST-1 Planets. Astronomical Journal, 2018, 156, 218.	1.9	29
244	A Deep Radio Limit for the TRAPPIST-1 System. Astrophysical Journal, 2018, 866, 155.	1.6	9
245	A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet. Astronomical Journal, 2018, 156, 245.	1.9	35
246	Transit Photometry as an Exoplanet Discovery Method. , 2018, , 633-657.		12
247	Radio Emission from Ultracool Dwarfs. , 2018, , 589-609.		3
248	Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. , 2018, , 797-816.		18
249	High-precision stellar abundances of the elements: methods and applications. Astronomy and Astrophysics Review, 2018, 26, 1.	9.1	73
250	Activity of the M8 Dwarf TRAPPIST-1. Astronomy Reports, 2018, 62, 412-419.	0.2	5
251	A Framework for Planet Detection with Faint Light-curve Echoes. Astronomical Journal, 2018, 156, 200.	1.9	2
252	Photochemical Oxygen in Non-1-bar CO ₂ Atmospheres of Terrestrial Exoplanets. Astrophysical Journal, 2018, 867, 17.	1.6	8
253	Evaporation of planetary atmospheres due to XUV illumination by quasars. Monthly Notices of the Royal Astronomical Society, 2018, 479, 171-182.	1.6	19
254	Resolving faint structures in the debris disk around TWA 7. Astronomy and Astrophysics, 2018, 617, A109.	2.1	29
255	Survival of non-coplanar, closely packed planetary systems after a close encounter. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2205-2212.	1.6	28

#	Article	IF	CITATIONS
256	Extreme Computing for Extreme Adaptive Optics. , 2018, , .		3
257	Observing Oceans in Tightly Packed Planetary Systems: Perspectives from Polarization Modeling of the TRAPPIST-1 System. Astronomical Journal, 2018, 156, 143.	1.9	6
258	A low-mass eclipsing binary within the fully convective zone from the Next Generation Transit Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1897-1907.	1.6	10
259	A search for transiting planets in the $\langle i \rangle \hat{l}^2 \langle i \rangle$ Pictoris system. Astronomy and Astrophysics, 2018, 615, A145.	2.1	7
260	Habitability in the Omega Centauri Cluster. Astrophysical Journal, 2018, 864, 115.	1.6	9
261	Robust Transiting Exoplanet Radii in the Presence of Starspots from Ingress and Egress Durations. Astronomical Journal, 2018, 156, 91.	1.9	18
262	Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1. Astrophysical Journal Letters, 2018, 863, L32.	3.0	17
264	Radial velocities., 0,, 17-80.		0
265	Astrometry. , 0, , 81-102.		0
266	Timing., 0,, 103-118.		0
267	Microlensing., 0,, 119-152.		0
269	Host stars., 0,, 373-428.		0
270	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
271	Formation and evolution. , 0, , 449-558.		0
272	Interiors and atmospheres., 0,, 559-648.		0
273	The solar system. , 0, , 649-700.		0
279	Interior Characterization in Multiplanetary Systems: TRAPPIST-1. Astrophysical Journal, 2018, 865, 20.	1.6	49
280	Possible Bright Starspots on TRAPPIST-1. Astrophysical Journal, 2018, 857, 39.	1.6	65

#	Article	IF	CITATIONS
281	The Vegetation Red Edge Biosignature Through Time on Earth and Exoplanets. Astrobiology, 2018, 18, 1123-1136.	1.5	21
283	The scatter of the M dwarf mass–radius relationship. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1083-1096.	1.6	68
284	Kepler-503b: An Object at the Hydrogen Burning Mass Limit Orbiting a Subgiant Star. Astrophysical Journal Letters, 2018, 861, L4.	3.0	17
285	Aliasing in the Radial Velocities of YZ Ceti: An Ultra-short Period for YZ Ceti c?. Astrophysical Journal Letters, 2018, 864, L28.	3.0	7
287	Dynamical and Biological Panspermia Constraints Within Multiplanet Exosystems. Astrobiology, 2018, 18, 1106-1122.	1.5	8
288	A Likely Detection of a Two-planet System in a Low-magnification Microlensing Event. Astronomical Journal, 2018, 155, 263.	1.9	18
289	Eyes on K2-3: A system of three likely sub-Neptunes characterized with HARPS-N and HARPS. Astronomy and Astrophysics, 2018, 615, A69.	2.1	29
290	Detectability of Biosignatures in Anoxic Atmospheres with the James Webb Space Telescope: A TRAPPIST-1e Case Study. Astronomical Journal, 2018, 156, 114.	1.9	98
291	Habitability of Exoplanet Waterworlds. Astrophysical Journal, 2018, 864, 75.	1.6	76
292	Masses and Radii of Four Very Low-mass Stars in F+M Eclipsing Binary Systems. Astronomical Journal, 2018, 156, 27.	1.9	19
293	Plate Tectonics, Planetary Magnetism and Life. , 2018, , 155-192.		0
294	Characterization and Properties of Earth-like Planets. Proceedings of the International Astronomical Union, 2018, 14, 194-201.	0.0	0
295	Dimensionality and integrals of motion of the Trappist-1 planetary system. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4874-4878.	1.6	3
296	Transit Photometry as an Exoplanet Discovery Method. , 2018, , 1-25.		0
297	SPECULOOS Exoplanet Search and Its Prototype on TRAPPIST. , 2018, , 1-17.		1
298	Formation of Terrestrial Planets. , 2018, , 1-59.		0
299	Planet Occurrence: Doppler and Transit Surveys., 2018,, 1-18.		2
300	Basic Theory Exoplanet Detection. Springer Theses, 2018, , 5-22.	0.0	0

#	Article	IF	Citations
301	Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars. Monthly Notices of the Royal Astronomical Society, 2018, 477, 808-815.	1.6	11
302	New inner boundaries of the habitable zones around M dwarfs. Earth and Planetary Science Letters, 2018, 492, 121-129.	1.8	28
303	Dynamical Constraints on Nontransiting Planets Orbiting TRAPPIST-1. Astronomical Journal, 2018, 155, 239.	1.9	4
304	Properties of the single Jovian planet population and the pursuit of Solar system analogues. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3646-3658.	1.6	12
305	Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment. Astrobiology, 2018, 18, 630-662.	1.5	194
306	The TRAPPIST-1 system: orbital evolution, tidal dissipation, formation and habitability. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5032-5056.	1.6	47
307	The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations. Astronomical Journal, 2018, 155, 54.	1.9	32
308	Observational Techniques with Transiting Exoplanetary Atmospheres. Astrophysics and Space Science Library, 2018, , 3-48.	1.0	11
309	Selection for Gaia across Multiple Scales. Trends in Ecology and Evolution, 2018, 33, 633-645.	4.2	62
310	Exoplanet Biosignatures: Observational Prospects. Astrobiology, 2018, 18, 739-778.	1.5	130
311	Planet Populations as a Function of Stellar Properties. , 2018, , 1-26.		4
312	Factors Affecting Exoplanet Habitability. , 2018, , 1-24.		4
313	The RoPES project with HARPS and HARPS-N. Astronomy and Astrophysics, 2018, 612, A41.	2.1	7
314	Measuring Model-independent Masses and Radii of Single-lined Eclipsing Binaries: Analytic Precision Estimates. Astrophysical Journal, 2018, 862, 53.	1.6	11
315	The origin of RNA precursors on exoplanets. Science Advances, 2018, 4, eaar3302.	4.7	100
316	A More Comprehensive Habitable Zone for Finding Life on Other Planets. Geosciences (Switzerland), 2018, 8, 280.	1.0	54
317	Polarization of Trappist-1 by the Transit of Its Planets. Astrophysical Journal, 2018, 861, 41.	1.6	6
318	Evolution of Earth-like Planetary Atmospheres around M Dwarf Stars: Assessing the Atmospheres and Biospheres with a Coupled Atmosphere Biogeochemical Model. Astrobiology, 2018, 18, 856-872.	1.5	13

#	Article	IF	Citations
319	Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System. Astrophysical Journal, 2018, 857, 142.	1.6	52
320	Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets. Astronomy and Astrophysics, 2018, 612, A86.	2.1	130
321	Oceanic tides from Earth-like to ocean planets. Astronomy and Astrophysics, 2018, 615, A23.	2.1	16
322	Detecting transit signatures of exoplanetary rings using SOAP3.0. Astronomy and Astrophysics, 2018, 609, A21.	2.1	20
323	Simulating the exoplanet yield of a space-based mid-infrared interferometer based on <i>Kepler </i> statistics. Astronomy and Astrophysics, 2018, 609, A4.	2.1	28
324	The CARMENES Search for Exoplanets around M Dwarfs: A Low-mass Planet in the Temperate Zone of the Nearby K2-18. Astronomical Journal, 2018, 155, 257.	1.9	43
325	Implications of Tides for Life on Exoplanets. Astrobiology, 2018, 18, 967-982.	1.5	21
326	The nature of the TRAPPIST-1 exoplanets. Astronomy and Astrophysics, 2018, 613, A68.	2.1	246
327	The Impact of Stellar Distances on Habitable Zone Planets. Astrophysical Journal Letters, 2018, 861, L21.	3.0	27
328	K2 Ultracool Dwarfs Survey. IV. Monster Flares Observed on the Young Brown Dwarf CFHT-BD-Tau 4. Astrophysical Journal, 2018, 861, 76.	1.6	17
329	On the stability of a climate model for an Earth-like planet with land-ocean coverage. Journal of Physics Communications, 2018, 2, 065018.	0.5	5
330	Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability. Astronomical Journal, 2018, 155, 195.	1.9	55
331	Theoretical validation of potential habitability via analytical and boosted tree methods: An optimistic study on recently discovered exoplanets. Astronomy and Computing, 2018, 23, 141-150.	0.8	21
332	The extremely truncated circumstellar disc of V410 X-ray 1: a precursor to TRAPPIST-1?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 325-334.	1.6	2
333	The nature of the giant exomoon candidate Kepler-1625 b-i. Astronomy and Astrophysics, 2018, 610, A39.	2.1	27
334	Interior structures and tidal heating in the TRAPPIST-1 planets. Astronomy and Astrophysics, 2018, 613, A37.	2.1	49
335	Ground-based Optical Transmission Spectroscopy of the Small, Rocky Exoplanet GJ 1132b. Astronomical Journal, 2018, 156, 42.	1.9	52
336	Transits. , 0, , 153-328.		0

#	Article	IF	CITATIONS
337	Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions. ACS Earth and Space Chemistry, 2018, 2, 977-1000.	1.2	16
338	Exploring exomoon atmospheres with an idealized general circulation model. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3477-3489.	1.6	8
339	HADES RV programme with HARPS-N at TNG. Astronomy and Astrophysics, 2018, 612, A89.	2.1	51
340	Breaking mean-motion resonances during Type I planet migration. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3998-4009.	1.6	10
341	Exploring Kepler Giant Planets in the Habitable Zone. Astrophysical Journal, 2018, 860, 67.	1.6	32
342	Stellar and Planetary Characterization of the Ross 128 Exoplanetary System from APOGEE Spectra. Astrophysical Journal Letters, 2018, 860, L15.	3.0	21
343	Stratosphere circulation on tidally locked ExoEarths. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4672-4685.	1.6	51
344	Ground-based detection of G star superflares with NGTS. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4655-4664.	1.6	22
345	Two planetary systems with transiting Earth-sized and super-Earth planets orbiting late-type dwarf stars. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L1-L5.	1.2	5
346	The Productivity of Oxygenic Photosynthesis around Cool, M Dwarf Stars. Astrophysical Journal, 2018, 859, 171.	1.6	32
347	Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1651-1671.	1.6	20
348	Spitzer Space Telescope: Innovations and Optimizations in the Extended Mission Era. , 2018, , .		0
349	Evolutionary Exobiology II: investigating biological potential of synchronously-rotating worlds. International Journal of Astrobiology, 2019, 18, 362-376.	0.9	4
350	Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-sized planet optimal for atmospheric characterization. Astronomy and Astrophysics, 2019, 628, A39.	2.1	97
351	Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4530-4545.	1.6	9
352	The Independent Discovery of Planet Candidates around Low-mass Stars and Astrophysical False Positives from the First Two <i>TESS</i> Sectors. Astronomical Journal, 2019, 158, 81.	1.9	7
353	Do the planets in the HD 34445 system really exist?. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3818-3825.	1.6	0
354	The chaotic nature of TRAPPIST-1 planetary spin states. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5739-5747.	1.6	11

#	ARTICLE	IF	CITATIONS
355	The runaway greenhouse radius inflation effect. Astronomy and Astrophysics, 2019, 628, A12.	2.1	46
356	A Thousand Earths: A Very Large Aperture, Ultralight Space Telescope Array for Atmospheric Biosignature Surveys. Astronomical Journal, 2019, 158, 83.	1.9	31
357	Geoscience for Understanding Habitability in the Solar System and Beyond. Space Science Reviews, 2019, 215, 1.	3.7	14
358	The Boundary between Gas-rich and Gas-poor Planets. Astrophysical Journal, 2019, 878, 36.	1.6	47
359	The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST. Astronomical Journal, 2019, 158, 27.	1.9	161
360	Observing Isotopologue Bands in Terrestrial Exoplanet Atmospheres with the James Webb Space Telescope: Implications for Identifying Past Atmospheric and Ocean Loss. Astronomical Journal, 2019, 158, 26.	1.9	35
361	Exoplanet interiors and habitability. Advances in Physics: X, 2019, 4, 1630316.	1.5	9
362	Multiverse Predictions for Habitability: Number of Potentially Habitable Planets. Universe, 2019, 5, 157.	0.9	6
363	Kepler Planet Occurrence Rates for Mid-type M Dwarfs as a Function of Spectral Type. Astronomical Journal, 2019, 158, 75.	1.9	112
364	Evolutionary Models for Ultracool Dwarfs. Astrophysical Journal, 2019, 879, 94.	1.6	19
365	Assessment of the probability of microbial contamination for sample return from Martian moons II: The fate of microbes on Martian moons. Life Sciences in Space Research, 2019, 23, 85-100.	1.2	21
366	The habitability of stagnant-lid Earths around dwarf stars. Astronomy and Astrophysics, 2019, 625, A12.	2.1	21
367	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2019, 627, A49.	2.1	95
368	Upper limits on protolunar disc masses using ALMA observations of directly imaged exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1005-1011.	1.6	18
369	Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. Astrobiology, 2019, 19, 811-824.	1.5	17
370	Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Science Advances, 2019, 5, eaav7848.	4.7	68
371	Planetary magnetic field control of ion escape from weakly magnetized planets. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2108-2120.	1.6	41
372	A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270. Nature Astronomy, 2019, 3, 1099-1108.	4.2	84

#	Article	IF	Citations
373	Recurrence network analysis of exoplanetary observables. Chaos, 2019, 29, 071105.	1.0	4
374	The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf. Astronomical Journal, 2019, 158, 32.	1.9	93
375	Planetesimal formation in an evolving protoplanetary disk with a dead zone. Astronomy and Astrophysics, 2019, 627, A50.	2.1	19
376	An Ultra-Stable Mid-Infrared Sensor for the Detection of Bio-Signatures by Means of Transit Spectroscopy. , 2019, , .		3
377	New metric to quantify the similarity between planetary systems: application to dimensionality reduction using T-SNE. Astronomy and Astrophysics, 2019, 624, A45.	2.1	17
378	Formation of exoplanetary satellites by pull-down capture. Science Advances, 2019, 5, eaaw8665.	4.7	9
379	WASP-169, WASP-171, WASP-175, and WASP-182: three hot Jupiters and one bloated sub-Saturn mass planet discovered by WASP-South. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2478-2487.	1.6	9
380	Constraining the Radio Emission of TRAPPIST-1. Astrophysical Journal, 2019, 881, 33.	1.6	5
381	Dynamical interactions in the planetary system GJ4276. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2732-2739.	1.6	0
382	Simulating radial velocity observations of trappist-1 with SPIRou. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5114-5126.	1.6	9
383	The influence of inclinations on the dynamical stability of multi-planet systems. Monthly Notices of the Royal Astronomical Society, 2019, 490, 359-370.	1.6	3
384	Optimizing Ground-based Observations of O ₂ in Earth Analogs. Astronomical Journal, 2019, 158, 24.	1.9	23
385	Mass–Radius Relationship for M Dwarf Exoplanets: Comparing Nonparametric and Parametric Methods. Astrophysical Journal, 2019, 882, 38.	1.6	42
386	The Climates of Other Worlds: A Review of the Emerging Field of Exoplanet Climatology ^{â^-} . Astrophysical Journal, Supplement Series, 2019, 243, 30.	3.0	27
387	A Super-Earth and Sub-Neptune Transiting the Late-type M Dwarf LP 791-18. Astrophysical Journal Letters, 2019, 883, L16.	3.0	42
388	The multiplicity distribution of Kepler's exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3162-3173.	1.6	31
390	Thermodynamic Impact of Mineral Surfaces on Amino Acid Polymerization: Aspartate Dimerization on Goethite. Astrobiology, 2019, 19, 1363-1376.	1.5	11
391	The rate of planet–star coalescences due to tides and stellar evolution. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2390-2404.	1.6	4

#	Article	IF	CITATIONS
392	Theoretical Reflectance Spectra of Earth-like Planets through Their Evolutions: Impact of Clouds on the Detectability of Oxygen, Water, and Methane with Future Direct Imaging Missions. Astronomical Journal, 2019, 157, 213.	1.9	17
393	Lyî \pm in the GJ 1132 System: Stellar Emission and Planetary Atmospheric Evolution. Astronomical Journal, 2019, 158, 50.	1.9	19
394	EvryFlare. I. Long-term Evryscope Monitoring of Flares from the Cool Stars across Half the Southern Sky. Astrophysical Journal, 2019, 881, 9.	1.6	54
395	Earth as an Exoplanet: A Two-dimensional Alien Map. Astrophysical Journal Letters, 2019, 882, L1.	3.0	27
396	GJÂ357: a low-mass planetary system uncovered by precision radial velocities and dynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5585-5595.	1.6	15
397	Design Considerations for a Ground-based Search for Transiting Planets around L and T Dwarfs. Publications of the Astronomical Society of the Pacific, 2019, 131, 114401.	1.0	9
398	An empirical infrared transit spectrum of Earth: opacity windows and biosignatures. Monthly Notices of the Royal Astronomical Society, 2019, 489, 196-204.	1.6	17
399	Venus as a Laboratory for Exoplanetary Science. Journal of Geophysical Research E: Planets, 2019, 124, 2015-2028.	1.5	59
400	Tidal dissipation in stars and giant planets: Jean-Paul Zahn's pioneering work and legacy. EAS Publications Series, 2019, 82, 5-33.	0.3	11
402	The EBLM Project. Astronomy and Astrophysics, 2019, 625, A150.	2.1	21
403	Exoplanet Habitability: Potential O2/O3 Biosignatures in the Ultraviolet. Solar System Research, 2019, 53, 322-331.	0.3	1
404	Prevalence of Fibonacci numbers in orbital period ratios in solar planetary and satellite systems and in exoplanetary systems. Astrophysics and Space Science, 2019, 364, 1.	0.5	2
405	Proxima Centauri b is not a transiting exoplanet. Monthly Notices of the Royal Astronomical Society, 2019, 487, 268-274.	1.6	21
406	How to Constrain Your M Dwarf. II. The Mass–Luminosity–Metallicity Relation from 0.075 to 0.70 Solar Masses. Astrophysical Journal, 2019, 871, 63.	1.6	229
407	The K Dwarf Advantage for Biosignatures on Directly Imaged Exoplanets. Astrophysical Journal Letters, 2019, 873, L7.	3.0	24
408	Host Star Driven Exoplanet Mass Loss and Possible Surface Water. Lecture Notes in Physics, 2019, , 179-210.	0.3	0
409	Predicting multiple planet stability and habitable zone companions in the TESS era. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4703-4725.	1.6	10
410	Endolithic microbial communities as model systems for ecology and astrobiology. , 2019, , 145-168.		17

#	Article	IF	Citations
411	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	2.1	62
412	Modeling the Protoplanetary Disks of Two Brown Dwarfs in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 878, 103.	1.6	9
413	Visual Binary Stars with Partially Missing Data: Introducing Multiple Imputation in Astrometric Analysis. Publications of the Astronomical Society of the Pacific, 2019, 131, 084502.	1.0	6
414	Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1634-1652.	1.6	13
415	A Limited Habitable Zone for Complex Life. Astrophysical Journal, 2019, 878, 19.	1.6	30
416	The unbiased frequency of planetary signatures around single and binary white dwarfs using Spitzer and Hubble. Monthly Notices of the Royal Astronomical Society, 2019, 487, 133-146.	1.6	62
417	Exoplanet spectroscopy and photometry with the Twinkle space telescope. Experimental Astronomy, 2019, 47, 29-63.	1.6	47
418	The composition and mineralogy of rocky exoplanets: A survey of >4000 stars from the Hypatia Catalog. American Mineralogist, 2019, 104, 817-829.	0.9	27
419	<i>Colloquium</i> : Physical constraints for the evolution of life on exoplanets. Reviews of Modern Physics, 2019, 91, .	16.4	39
420	The tidal parameters of TRAPPIST-1b and c. Monthly Notices of the Royal Astronomical Society, 2019, 487, 34-47.	1.6	13
421	Water delivery to the TRAPPIST-1 planets. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2191-2199.	1.6	14
422	2MASS J10274572+0629104: the very short period young M6 dwarf binary system identified in K2 data. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4144-4148.	1.6	3
423	Three hot-Jupiters on the upper edge of the mass–radius distribution: WASP-177, WASP-181, and WASP-183. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5790-5799.	1.6	14
424	A Search for Technosignatures from TRAPPIST-1, LHS 1140, and 10 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz. Astronomical Journal, 2019, 157, 122.	1.9	21
425	Preliminary Trigonometric Parallaxes of 184 Late-T and Y Dwarfs and an Analysis of the Field Substellar Mass Function into the "Planetary―Mass Regime. Astrophysical Journal, Supplement Series, 2019, 240, 19.	3.0	83
426	Tides Between the TRAPPIST-1 Planets. Astrophysical Journal, 2019, 875, 22.	1.6	17
427	Stellar influence on heavy ion escape from unmagnetized exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1283-1291.	1.6	12
428	Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs. Astronomy and Astrophysics, 2019, 624, A49.	2.1	84

#	Article	IF	Citations
429	An Integrated Approach for Delivering Current Astrobiology Research to the General Public. Astrobiology, 2019, 19, 696-708.	1.5	1
430	Dynamical Constraints on Mercury's Collisional Origin. Astronomical Journal, 2019, 157, 208.	1.9	23
431	Optimized transit detection algorithm to search for periodic transits of small planets. Astronomy and Astrophysics, 2019, 623, A39.	2.1	161
432	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2019, 622, A153.	2.1	18
433	HADES RV program with HARPS-N at the TNG. Astronomy and Astrophysics, 2019, 622, A193.	2.1	21
434	Growth after the streaming instability. Astronomy and Astrophysics, 2019, 624, A114.	2.1	44
435	TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune*. Astrophysical Journal Letters, 2019, 875, L7.	3.0	69
436	K2 Ultracool Dwarfs Survey – V. High superflare rates on rapidly rotating late-M dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1438-1447.	1.6	21
438	Exoplanets apsidal precession and analysis on their eccentricities. Astrophysics and Space Science, 2019, 364, 1.	0.5	1
439	Why planetary and exoplanetary protection differ: The case of long duration genesis missions to habitable but sterile M-dwarf oxygen planets. Acta Astronautica, 2019, 157, 263-267.	1.7	4
440	Predicted Number, Multiplicity, and Orbital Dynamics of TESS M-dwarf Exoplanets. Astronomical Journal, 2019, 157, 113.	1.9	48
441	Stellar Energetic Particles in the Magnetically Turbulent Habitable Zones of TRAPPIST-1-like Planetary Systems. Astrophysical Journal, 2019, 874, 21.	1.6	26
442	Rethinking CO Antibiosignatures in the Search for Life Beyond the Solar System. Astrophysical Journal, 2019, 874, 9.	1.6	23
443	Extrasolar Planetary Systems. , 2019, , 429-440.		0
444	Role of stellar physics in regulating the critical steps for life. International Journal of Astrobiology, 2019, 18, 527-546.	0.9	16
445	Searching for exoplanets with HEPS: I. detection probability of Earth-like planets in multiple systems. Research in Astronomy and Astrophysics, 2019, 19, 004.	0.7	5
446	Predicting the Extreme Ultraviolet Radiation Environment of Exoplanets around Low-mass Stars: The TRAPPIST-1 System. Astrophysical Journal, 2019, 871, 235.	1.6	57
447	Tidal heating and the habitability of the TRAPPIST-1 exoplanets. Astronomy and Astrophysics, 2019, 624, A2.	2.1	30

#	Article	IF	Citations
448	Truly eccentric – II. When can two circular planets mimic a single eccentric orbit?. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4230-4238.	1.6	14
449	Shadow Imaging of Transiting Objects. Astronomical Journal, 2019, 157, 42.	1.9	11
450	Ultra-wideband Detection of 22 Coherent Radio Bursts on M Dwarfs. Astrophysical Journal, 2019, 871, 214.	1.6	63
451	Time-variable Electromagnetic Star–Planet Interaction: The TRAPPIST-1 System as an Exemplary Case. Astrophysical Journal, 2019, 872, 113.	1.6	21
452	KELT-22Ab: A Massive, Short-Period Hot Jupiter Transiting a Near-solar Twin. Astrophysical Journal, Supplement Series, 2019, 240, 13.	3.0	9
453	Time-resolved image polarimetry of TRAPPIST-1 during planetary transits. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L38-L42.	1.2	6
454	Evolution of star–planet systems under magnetic braking and tidal interaction. Astronomy and Astrophysics, 2019, 621, A124.	2.1	33
455	Observability of hydrogen-rich exospheres in Earth-like exoplanets. Astronomy and Astrophysics, 2019, 622, A46.	2.1	9
456	Astrospheres and Cosmic Rays. Journal of Physics: Conference Series, 2019, 1181, 012002.	0.3	1
457	Terraforming: synthetic biology's final frontier. Archives of Microbiology, 2019, 201, 855-862.	1.0	9
458	Masses and radii for the three super-Earths orbiting GJ 9827, and implications for the composition of small exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3731-3745.	1.6	38
459	The Atmospheric Circulation and Climate of Terrestrial Planets Orbiting Sun-like and M Dwarf Stars over a Broad Range of Planetary Parameters. Astrophysical Journal, 2019, 871, 245.	1.6	55
460	Exoplanet transits with next-generation radio telescopes. Monthly Notices of the Royal Astronomical Society, 2019, 484, 648-658.	1.6	10
461	Diving into Exoplanets: Are Water Seas the Most Common?. Astrobiology, 2019, 19, 642-654.	1.5	29
462	The ability of significant tidal stress to initiate plate tectonics. Icarus, 2019, 325, 55-66.	1.1	14
463	Erosion of an exoplanetary atmosphere caused by stellar winds. Astronomy and Astrophysics, 2019, 630, A52.	2.1	15
464	The Ultracool SpeXtroscopic Survey. I. Volume-limited Spectroscopic Sample and Luminosity Function of M7â^²L5 Ultracool Dwarfs. Astrophysical Journal, 2019, 883, 205.	1.6	34
465	Generic frequency dependence for the atmospheric tidal torque of terrestrial planets. Astronomy and Astrophysics, 2019, 624, A17.	2.1	9

#	Article	IF	Citations
466	A Reanalysis of the Fundamental Parameters and Age of TRAPPIST-1*. Astrophysical Journal, 2019, 886, 131.	1.6	20
467	Gas versus dust sizes of protoplanetary discs: effects of dust evolution. Astronomy and Astrophysics, 2019, 629, A79.	2.1	71
468	Planet formation and migration near the silicate sublimation front in protoplanetary disks. Astronomy and Astrophysics, 2019, 630, A147.	2.1	43
469	J-PLUS: Discovery and characterisation of ultracool dwarfs using Virtual Observatory tools. Astronomy and Astrophysics, 2019, 627, A29.	2.1	6
470	The SOPHIE search for northern extrasolar planets. Astronomy and Astrophysics, 2019, 625, A18.	2.1	11
471	Final spin states of eccentric ocean planets. Astronomy and Astrophysics, 2019, 629, A132.	2.1	11
472	Flaring Activity of Proxima Centauri from TESS Observations: Quasiperiodic Oscillations during Flare Decay and Inferences on the Habitability of Proxima b. Astrophysical Journal, 2019, 884, 160.	1.6	46
473	Analyzing Atmospheric Temperature Profiles and Spectra of M Dwarf Rocky Planets. Astrophysical Journal, 2019, 886, 142.	1.6	30
474	Exomoons in the Habitable Zones of M Dwarfs. Astrophysical Journal, 2019, 887, 261.	1.6	29
475	The role of dissipative evolution for three-planet, near-resonant extrasolar systems. Astronomy and Astrophysics, 2019, 625, A7.	2.1	21
476	Complexity of magnetic fields on red dwarfs. Astronomy and Astrophysics, 2019, 629, A83.	2.1	19
477	Radial drift and concurrent ablation of boulder-sized objects. Astronomy and Astrophysics, 2019, 629, A64.	2.1	6
478	A new model suite to determine the influence of cosmic rays on (exo)planetary atmospheric biosignatures. Astronomy and Astrophysics, 2019, 631, A101.	2.1	23
479	Identifying Atmospheres on Rocky Exoplanets through Inferred High Albedo. Astrophysical Journal, 2019, 886, 141.	1.6	37
480	The Habitability of GJ 357D: Possible Climate and Observability. Astrophysical Journal Letters, 2019, 883, L40.	3.0	4
481	Ross 128 – GL 447. Astronomy and Astrophysics, 2019, 628, L1.	2.1	5
482	Susceptibility of planetary atmospheres to mass loss and growth by planetesimal impacts: the impact shoreline. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	22
483	Habitability and Spectroscopic Observability of Warm M-dwarf Exoplanets Evaluated with a 3D Chemistry-Climate Model. Astrophysical Journal, 2019, 886, 16.	1.6	40

#	Article	IF	CITATIONS
484	Nobel Prize in Physics 2019. Resonance, 2019, 24, 1397-1411.	0.2	0
485	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. Astrophysical Journal, 2019, 884, 75.	1.6	18
486	No Snowball on Habitable Tidally Locked Planets with a Dynamic Ocean. Astrophysical Journal Letters, 2019, 884, L46.	3.0	26
487	Predicting the Extreme Ultraviolet Radiation Environment of Exoplanets around Low-mass Stars: GJ 832, GJ 176, and GJ 436. Astrophysical Journal, 2019, 886, 77.	1.6	32
488	Super-Earth masses sculpted by pebble isolation around stars of different masses. Astronomy and Astrophysics, 2019, 632, A7.	2.1	59
489	An Integrable Model for the Dynamics of Planetary Mean-motion Resonances. Astronomical Journal, 2019, 158, 238.	1.9	27
490	The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler. Astrophysical Journal, 2019, 887, 157.	1.6	39
491	Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System. Astrophysical Journal, 2019, 887, 194.	1.6	92
492	Planet and star synergy at high-spectral resolution. A rationale for the characterization of exoplanet atmospheres. Astronomy and Astrophysics, 2019, 631, A100.	2.1	17
493	High-resolution reflection spectra for Proxima b and Trappist-1e models for ELT observations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	8
494	No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets. Astrophysical Journal Letters, 2019, 887, L3.	3.0	7
495	Pebbles versus planetesimals: the case of Trappist-1. Astronomy and Astrophysics, 2019, 631, A7.	2.1	44
496	Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean. Astrobiology, 2019, 19, 99-125.	1.5	80
497	Disentangling the Planet from the Star in Late-Type M Dwarfs: A Case Study of TRAPPIST-1g. Astronomical Journal, 2019, 157, 11.	1.9	54
498	Relative Likelihood of Success in the Search for Primitive versus Intelligent Extraterrestrial Life. Astrobiology, 2019, 19, 28-39.	1.5	30
499	Radio Stars: From kHz to THz. Publications of the Astronomical Society of the Pacific, 2019, 131, 016001.	1.0	12
500	A Second Terrestrial Planet Orbiting the Nearby M Dwarf LHS 1140. Astronomical Journal, 2019, 157, 32.	1.9	83
501	Diagrams and alien ways of thinking. Studies in History and Philosophy of Science Part A, 2019, 75, 12-22.	0.6	3

#	ARTICLE	IF	CITATIONS
502	K2-288Bb: A Small Temperate Planet in a Low-mass Binary System Discovered by Citizen Scientists. Astronomical Journal, 2019, 157, 40.	1.9	16
503	Dependence of Biological Activity on the Surface Water Fraction of Planets. Astronomical Journal, 2019, 157, 25.	1.9	23
504	Discovery of Three New Transiting Hot Jupiters: WASP-161 b, WASP-163 b, and WASP-170 b. Astronomical Journal, 2019, 157, 43.	1.9	32
505	Networking in Interstellar Dimensions: Communicating With TRAPPIST-1. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 1656-1665.	2.6	4
506	<scp>pyaneti</scp> : a fast and powerful software suite for multiplanet radial velocity and transit fitting. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1017-1030.	1.6	55
507	Modeling Repeated M Dwarf Flaring at an Earth-like Planet in the Habitable Zone: Atmospheric Effects for an Unmagnetized Planet. Astrobiology, 2019, 19, 64-86.	1.5	138
508	Subsurface exolife. International Journal of Astrobiology, 2019, 18, 112-141.	0.9	33
509	Invasion percolation solves Fermi Paradox but challenges SETI projects. International Journal of Astrobiology, 2019, 18, 316-322.	0.9	7
510	Transition from eyeball to snowball driven by sea-ice drift on tidally locked terrestrial planets. Nature Astronomy, 2020, 4, 58-66.	4.2	22
511	Impact of space weather on climate and habitability of terrestrial-type exoplanets. International Journal of Astrobiology, 2020, 19, 136-194.	0.9	125
512	Life under another Sun: From Science Fiction to Science. European Review, 2020, 28, 18-39.	0.4	0
513	Photosynthesis on exoplanets and exomoons from reflected light. International Journal of Astrobiology, 2020, 19, 210-219.	0.9	10
514	VPLanet: The Virtual Planet Simulator. Publications of the Astronomical Society of the Pacific, 2020, 132, 024502.	1.0	28
515	Fundamental limits from chaos on instability time predictions in compact planetary systems. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5258-5267.	1.6	16
516	Sensitive probing of exoplanetary oxygen via mid-infrared collisional absorption. Nature Astronomy, 2020, 4, 372-376.	4.2	32
517	Analysis for Science Librarians of the 2019 Nobel Prize in Physics: From Cosmic Scales to Nearby Stars. Science and Technology Libraries, 2020, 39, 28-50.	0.8	1
518	Electric sails are potentially more effective than light sails near most stars. Acta Astronautica, 2020, 168, 146-154.	1.7	9
519	Natural laboratories as policy instruments for technological learning and institutional capacity building: The case of Chile's astronomy cluster. Research Policy, 2020, 49, 103899.	3.3	46

#	Article	IF	CITATIONS
520	Fourier series for eclipses on exoplanet binaries. Astronomy and Astrophysics, 2020, 633, A18.	2.1	0
521	Modal noise mitigation for high-precision spectroscopy using a photonic reformatter. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3713-3725.	1.6	4
522	SPIRou: NIR velocimetryÂand spectropolarimetry at the CFHT. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5684-5703.	1.6	84
523	Precision radial velocity measurements by the forward-modeling technique in the near-infrared. Publication of the Astronomical Society of Japan, 2020, 72, .	1.0	32
524	Nobel Lecture: 51 Pegasi b and the exoplanet revolution. Reviews of Modern Physics, 2020, 92, .	16.4	4
525	Mio—First Comprehensive Exploration of Mercury's Space Environment: Mission Overview. Space Science Reviews, 2020, 216, 1.	3.7	28
526	On the Temporal Habitability of Our Universe. , 2020, , 458-510.		0
527	Expecting the unexpected in the search for extraterrestrial life. International Journal of Astrobiology, 2020, 19, 482-491.	0.9	8
528	Tidal and general relativistic effects in rocky planet formation at the substellar mass limit using <i>N</i> -body simulations. Astronomy and Astrophysics, 2020, 637, A78.	2.1	4
529	Astrobiology and Planetary Sciences in Mexico. Cuatro Cielnegas Basin: an Endangered Hyperdiverse Oasis, 2020, , 31-74.	0.4	3
530	Predicting the long-term stability of compact multiplanet systems. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18194-18205.	3.3	53
531	Observability of ultraviolet Ni lines in the atmosphere of transiting Earthâ€like planets. Astronomische Nachrichten, 2020, 341, 879-886.	0.6	2
532	Ariel – a window to the origin of life on early earth?. Experimental Astronomy, 2020, , 1.	1.6	1
534	A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System. Space Science Reviews, 2020, 216, 100.	3.7	46
535	Peter Pan discs: finding Neverland's parameters. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L111-L115.	1.2	11
536	Atmospheric Characterization via Broadband Color Filters on the PLAnetary Transits and Oscillations of stars (PLATO) Mission. Experimental Astronomy, 2020, 50, 1-49.	1.6	6
537	Possible Atmospheric Diversity of Low Mass Exoplanets – Some Central Aspects. Space Science Reviews, 2020, 216, 1.	3.7	11
538	The origins of nearly coplanar, non-resonant systems of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2493-2500.	1.6	10

#	Article	IF	CITATIONS
539	Detection and characterization of two VLM binaries: LPÂ1033-31 and LPÂ877-72. Monthly Notices of the Royal Astronomical Society, 2020, 498, 737-749.	1.6	1
540	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2020, 642, A173.	2.1	47
541	The large-scale magnetic field of Proxima Centauri near activity maximum. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1844-1850.	1.6	23
542	Water transport throughout the TRAPPIST-1 system: the role of planetesimals. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4626-4637.	1.6	6
543	An eclipsing M-dwarf close to the hydrogen burning limit from NGTS. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3115-3124.	1.6	10
544	Massive discs around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4130-4148.	1.6	26
545	Planetary candidates transiting cool dwarf stars from campaigns 12 to 15 of K2. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5416-5441.	1.6	10
546	Discovery of a hot, transiting, Earth-sized planet and a second temperate, non-transiting planet around the M4 dwarf GJ 3473 (TOI-488). Astronomy and Astrophysics, 2020, 642, A236.	2.1	27
547	Global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3790-3808.	1.6	15
548	Modelling the 3D climate of Venus with oasis. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3512-3530.	1.6	6
551	A Tree with Millions of Twigs. , 2020, , 3-21.		0
552	A Galaxy with Billions of Stars. , 2020, , 22-37.		0
553	The Likelihood of Other Trees. , 2020, , 38-52.		0
555	A Thin Sliver of Existence. , 2020, , 55-69.		0
556	Energy and Life. , 2020, , 70-83.		0
557	Habitats and Life. , 2020, , 84-100.		0
558	Skeletons and Life. , 2020, , 101-117.		0
559	Intelligence and Life. , 2020, , 118-134.		0

#	Article	IF	CITATIONS
561	Types of Planetary System., 2020, , 137-149.		0
562	Habitable Zones. , 2020, , 150-167.		0
563	Other Habitability Factors., 2020,, 168-185.		0
564	How Many Inhabited Planets?., 2020, , 186-202.		0
566	On the Repeatability of Evolution. , 2020, , 205-221.		0
567	Candidate Planets. , 2020, , 222-235.		0
568	Atmospheric Signatures., 2020,, 236-254.		0
569	Radio and Life. , 2020, , 255-267.		0
570	Sixty Years of SETI. , 2020, , 268-282.		0
572	The Physical Universe. , 2020, , 285-299.		0
573	The Biological Universe. , 2020, , 300-317.		0
574	The Intelligent Universe. , 2020, , 318-334.		0
577	TRAPPIST-1: Global results of the <i>Spitzer</i> Exploration Science Program Red Worlds. Astronomy and Astrophysics, 2020, 640, A112.	2.1	45
578	Photometry and performance of SPECULOOS-South. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2446-2457.	1.6	24
579	Near mean motion resonance of terrestrial planet pair induced by giant planet: application to Kepler-68 system. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4688-4699.	1.6	9
580	The onset of instability in resonant chains. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4950-4968.	1.6	20
581	Planetary Systems and the Hidden Symmetries of the Kepler Problem. Symmetry, 2020, 12, 2109.	1.1	2
582	Surface and Oceanic Habitability of Trappist-1 Planets under the Impact of Flares. Astrobiology, 2020, 20, 1465-1475.	1.5	7

#	Article	IF	CITATIONS
583	Sub-Neptune formation: the view from resonant planets. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4192-4209.	1.6	20
584	NGTS J214358.5â^380102 – NGTS discovery of the most eccentric known eclipsing M-dwarf binary system. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3950-3961.	1.6	6
585	California-Kepler Survey. IX. Revisiting the Minimum-mass Extrasolar Nebula with Precise Stellar Parameters. Astronomical Journal, 2020, 159, 247.	1.9	15
586	Joint Radial Velocity and Direct Imaging Planet Yield Calculations. I. Self-consistent Planet Populations. Astrophysical Journal, 2020, 893, 122.	1.6	17
587	Atmospheric Convection Plays a Key Role in the Climate of Tidally Locked Terrestrial Exoplanets: Insights from High-resolution Simulations. Astrophysical Journal, 2020, 894, 84.	1.6	45
588	Evidence for Spin–Orbit Alignment in the TRAPPIST-1 System. Astrophysical Journal Letters, 2020, 890, L27.	3.0	34
589	Highlights of exoplanetary science from Spitzer. Nature Astronomy, 2020, 4, 453-466.	4.2	16
590	Properties of sub-Neptune atmospheres: TOI-270 system. Monthly Notices of the Royal Astronomical Society, 2020, 495, 962-970.	1.6	12
591	Stability analysis of three exoplanet systems. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2280-2288.	1.6	3
592	On the XUV Luminosity Evolution of TRAPPIST-1. Astrophysical Journal, 2020, 891, 155.	1.6	20
593	The Impact of Planetary Rotation Rate on the Reflectance and Thermal Emission Spectrum of Terrestrial Exoplanets around Sunlike Stars. Astrophysical Journal, 2020, 893, 140.	1.6	5
594	EDEN: Sensitivity Analysis and Transiting Planet Detection Limits for Nearby Late Red Dwarfs. Astronomical Journal, 2020, 159, 169.	1.9	18
595	Breaking Resonant Chains: Destabilization of Resonant Planets Due to Long-term Mass Evolution. Astrophysical Journal, 2020, 893, 43.	1.6	21
596	Does gravitational radiation impact the stellar habitable zone?. International Journal of Modern Physics D, 2020, 29, 2041017.	0.9	0
597	Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds. Publications of the Astronomical Society of the Pacific, 2020, 132, 084402.	1.0	19
598	A Coupled Analysis of Atmospheric Mass Loss and Tidal Evolution in XUV Irradiated Exoplanets: The TRAPPIST-1 Case Study. Astronomical Journal, 2020, 159, 275.	1.9	14
599	Atmospheric Escape Processes and Planetary Atmospheric Evolution. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027639.	0.8	58
600	ISPY-NACO Imaging Survey for Planets around Young stars. Astronomy and Astrophysics, 2020, 635, A162.	2.1	28

#	ARTICLE	IF	CITATIONS
601	Atmospheric Escape From TOI-700 d: Venus versus Earth Analogs. Astrophysical Journal Letters, 2020, 896, L24.	3.0	28
602	An eclipsing substellar binary in a young triple system discovered by SPECULOOS. Nature Astronomy, 2020, 4, 650-657.	4.2	24
603	TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geoscientific Model Development, 2020, 13, 707-716.	1.3	52
604	It Takes Two Planets in Resonance to Tango around K2-146. Astronomical Journal, 2020, 159, 120.	1.9	14
605	Influence of sub- and super-solar metallicities on the composition of solid planetary building blocks. Astronomy and Astrophysics, 2020, 633, A10.	2.1	46
606	Ozone chemistry on tidally locked M dwarf planets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1691-1705.	1.6	20
607	Quantifying the Influence of Jupiter on the Earth's Orbital Cycles. Astronomical Journal, 2020, 159, 10.	1.9	13
608	The Influence of Stellar Contamination on the Interpretation of Near-infrared Transmission Spectra of Sub-Neptune Worlds around M-dwarfs. Astrophysical Journal, 2020, 889, 78.	1.6	20
609	Internal Structure and CO ₂ Reservoirs of Habitable Water Worlds. Astrophysical Journal, 2020, 890, 107.	1.6	10
610	Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H ₂ O Cross Sections. Astrophysical Journal, 2020, 896, 148.	1.6	45
611	The Effect of Substellar Continent Size on Ocean Dynamics of Proxima Centauri b. Astrophysical Journal Letters, 2020, 896, L16.	3.0	19
612	Testing Earthlike Atmospheric Evolution on Exo-Earths through Oxygen Absorption: Required Sample Sizes and the Advantage of Age-based Target Selection. Astrophysical Journal, 2020, 896, 131.	1.6	11
613	Revised mass-radius relationships for water-rich rocky planets more irradiated than the runaway greenhouse limit. Astronomy and Astrophysics, 2020, 638, A41.	2.1	62
614	A multiplanet system of super-Earths orbiting the brightest red dwarf star GJ 887. Science, 2020, 368, 1477-1481.	6.0	27
615	Multiple, quiet, and close by. Science, 2020, 368, 1432-1432.	6.0	0
616	A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780. Astronomical Journal, 2020, 160, 3.	1.9	62
617	The VISTA Variables in the VÃa Láctea infrared variability catalogue (VIVA-I). Monthly Notices of the Royal Astronomical Society, 2020, 496, 1730-1756.	1.6	10
618	Revisited mass-radius relations for exoplanets below 120 <i>M</i> _⊕ . Astronomy and Astrophysics, 2020, 634, A43.	2.1	126

#	ARTICLE	IF	CITATIONS
619	The Interior and Atmosphere of the Habitable-zone Exoplanet K2-18b. Astrophysical Journal Letters, 2020, 891, L7.	3.0	60
620	WISE 2150-7520AB: A Very Low-mass, Wide Comoving Brown Dwarf System Discovered through the Citizen Science Project Backyard Worlds: Planet 9*. Astrophysical Journal, 2020, 889, 176.	1.6	22
621	A New Remote Sensing-Based System for the Monitoring and Analysis of Growth and Gas Exchange Rates of Photosynthetic Microorganisms Under Simulated Non-Terrestrial Conditions. Frontiers in Plant Science, 2020, 11 , 182 .	1.7	6
622	Searching for a dusty cometary belt around TRAPPIST-1 with ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6067-6073.	1.6	4
623	O ₂ - and CO-rich Atmospheres for Potentially Habitable Environments on TRAPPIST-1 Planets. Astrophysical Journal, 2020, 888, 122.	1.6	29
624	A Flexible Bayesian Framework for Assessing Habitability with Joint Observational and Model Constraints. Astronomical Journal, 2020, 159, 55.	1.9	9
625	Do the TRAPPIST-1 Planets Have Hydrogen-rich Atmospheres?. Astrophysical Journal, 2020, 889, 77.	1.6	24
626	Observations of Planetary Systems. , 2020, , 1-48.		0
627	Terrestrial Planet Formation. , 2020, , 181-219.		0
629	Protoplanetary Disk Structure. , 2020, , 49-85.		0
630	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
631	Planetesimal Formation., 2020,, 141-180.		0
632	Giant Planet Formation. , 2020, , 220-246.		0
633	Early Evolution of Planetary Systems. , 2020, , 247-300.		0
638	Stellar Flares from the First TESS Data Release: Exploring a New Sample of M Dwarfs. Astronomical Journal, 2020, 159, 60.	1.9	184
639	Demographics of disks around young very low-mass stars and brown dwarfs in Lupus. Astronomy and Astrophysics, 2020, 633, A114.	2.1	29
640	Impact of tides on the transit-timing fits to the TRAPPIST-1 system. Astronomy and Astrophysics, 2020, 635, A117.	2.1	19
641	Creating the first interstellar interloper. Nature Astronomy, 2020, 4, 835-836.	4.2	0

#	Article	IF	CITATIONS
642	Utilizing Small Telescopes Operated by Citizen Scientists for Transiting Exoplanet Follow-up. Publications of the Astronomical Society of the Pacific, 2020, 132, 054401.	1.0	31
643	Dim Prospects for Transmission Spectra of Ocean Earths around M Stars. Astrophysical Journal, 2020, 891, 58.	1.6	38
644	A Habitable-zone Earth-sized Planet Rescued from False Positive Status. Astrophysical Journal Letters, 2020, 893, L27.	3.0	15
645	Robustness of Gaian feedbacks to climate perturbations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2572-2577.	1.6	5
646	The atmospheres of rocky exoplanets. Astronomy and Astrophysics, 2020, 636, A71.	2.1	26
647	Magnetic fields of M dwarfs. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	74
648	Identification and Mitigation of a Vibrational Telescope Systematic with Application to Spitzer. Planetary Science Journal, 2021, 2, 9.	1.5	5
649	SPECULOOS: Ultracool dwarf transit survey. Astronomy and Astrophysics, 2021, 645, A100.	2.1	46
650	The GAPS Programme at TNG. Astronomy and Astrophysics, 2021, 645, A71.	2.1	25
651	The Chemistry of Extrasolar Planets. , 2021, , 231-241.		0
652	Phase Modeling of the TRAPPIST-1 Planetary Atmospheres. Astronomical Journal, 2021, 161, 53.	1.9	6
653	Earth as a Proxy Exoplanet: Deconstructing and Reconstructing Spectrophotometric Light Curves. Astronomical Journal, 2021, 161, 122.	1.9	9
654	Probing the Capability of Future Direct-imaging Missions to Spectrally Constrain the Frequency of Earth-like Planets. Astronomical Journal, 2021, 161, 150.	1.9	17
655	Formation of Multiple-planet Systems in Resonant Chains around M Dwarfs. Astrophysical Journal, 2021, 907, 81.	1.6	5
656	Informational architecture across non-living and living collectives. Theory in Biosciences, 2021, 140, 325-341.	0.6	4
657	The Fundamental Connections between the Solar System and Exoplanetary Science. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006643.	1.5	15
658	Influence of Biomass Emissions on Habitability, Biosignatures, and Detectability in Earth-like Atmospheres. Astrophysical Journal, 2021, 909, 128.	1.6	2
659	The rotational and divergent components of atmospheric circulation on tidally locked planets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38

#	ARTICLE	IF	Citations
660	Rapid formation of super-Earths around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1390-1406.	1.6	9
661	Equation of State Measurements on Iron Near the Melting Curve at Planetary Core Conditions by Shock and Ramp Compressions. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020008.	1.4	9
662	Characteristics of aquatic biospheres on temperate planets around Sun-like stars and M dwarfs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3434-3448.	1.6	5
663	Characterisation of the hydrospheres of TRAPPIST-1 planets. Astronomy and Astrophysics, 2021, 647, A53.	2.1	30
664	Detecting Atmospheric Molecules of Nontransiting Temperate Terrestrial Exoplanets Using High-resolution Spectroscopy in the Mid-infrared Domain. Astronomical Journal, 2021, 161, 180.	1.9	2
665	Climate Change of over 20 °C Induced by Continental Movement on a Synchronously Rotating Exoplanet. Astrophysical Journal Letters, 2021, 910, L8.	3.0	4
666	Bioverse: A Simulation Framework to Assess the Statistical Power of Future Biosignature Surveys. Astronomical Journal, 2021, 161, 228.	1.9	9
667	The Mega-MUSCLES Spectral Energy Distribution of TRAPPIST-1. Astrophysical Journal, 2021, 911, 18.	1.6	22
668	Minimum Units of Habitability and Their Abundance in the Universe. Astrobiology, 2021, 21, 481-489.	1.5	6
669	Building the Galilean moons system via pebble accretion and migration: a primordial resonant chain. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1854-1872.	1.6	14
670	The GALAH Survey: using galactic archaeology to refine our knowledge of <i>TESS</i> target stars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4968-4989.	1.6	9
671	Revisiting high-order Taylor methods for astrodynamics and celestial mechanics. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2614-2628.	1.6	5
672	Color classification of Earth-like planets with machine learning. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6106-6116.	1.6	4
673	Water Ice Cloud Variability and Multi-epoch Transmission Spectra of TRAPPIST-1e. Astrophysical Journal Letters, 2021, 911, L30.	3.0	20
674	Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.	2.1	94
675	Monitoring precipitable water vapour in near real-time to correct near-infrared observations using satellite remote sensing. Astronomy and Astrophysics, 2021, 649, A132.	2.1	6
676	Terminus: A Versatile Simulator for Space-based Telescopes. Astronomical Journal, 2021, 161, 266.	1.9	7
677	3D Convection-resolving Model of Temperate, Tidally Locked Exoplanets. Astrophysical Journal, 2021, 913, 101.	1.6	16

#	Article	IF	CITATIONS
678	Mass and density of the transiting hot and rocky super-Earth LHS 1478 b (TOI-1640 b). Astronomy and Astrophysics, 2021, 649, A144.	2.1	19
679	Characterizing Atmospheres of Transiting Earth-like Exoplanets Orbiting M Dwarfs with James Webb Space Telescope. Publications of the Astronomical Society of the Pacific, 2021, 133, 054401.	1.0	25
680	Efficiency of the oxygenic photosynthesis on Earth-like planets in the habitable zone. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3329-3335.	1.6	13
681	Reconstructing the Extreme Ultraviolet Emission of Cool Dwarfs Using Differential Emission Measure Polynomials. Astrophysical Journal, 2021, 913, 40.	1.6	20
682	Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets. Nature Astronomy, 2021, 5, 815-821.	4.2	10
683	An upper limit for the growth of inner planets?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 869-888.	1.6	3
684	Exoplanets in physics classes. Journal of Physics: Conference Series, 2021, 1929, 012015.	0.3	0
685	Aurora: A Generalized Retrieval Framework for Exoplanetary Transmission Spectra. Astrophysical Journal, 2021, 913, 114.	1.6	25
686	Stellar Winds Drive Strong Variations in Exoplanet Evaporative Outflow Patterns and Transit Absorption Signatures. Astrophysical Journal, 2021, 913, 130.	1.6	13
687	The New Generation Planetary Population Synthesis (NGPPS). Astronomy and Astrophysics, 2021, 656, A72.	2.1	82
688	Differentiating modern and prebiotic Earth scenarios for TRAPPIST-1e: high-resolution transmission spectra and predictions for <i>JWST</i> . Monthly Notices of the Royal Astronomical Society, 2021, 505, 3562-3578.	1.6	24
689	Machine learning techniques in studies of the interior structure of rocky exoplanets. Astronomy and Astrophysics, 2021, 650, A177.	2.1	5
690	Homogeneous model for the TRAPPIST-1e planet with an icy layer. Astronomy and Astrophysics, 2021, 650, A141.	2.1	6
691	Multiband Transit Follow-up Observations of Five Hot Jupiters with Critical Noise Treatments: Improved Physical Properties. Astronomical Journal, 2021, 162, 18.	1.9	9
692	The EBLM project – VIII. First results for M-dwarf mass, radius, and effective temperature measurements using <i>CHEOPS</i> light curves. Monthly Notices of the Royal Astronomical Society, 2021, 506, 306-322.	1.6	15
693	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	2.1	85
694	A Tidal Origin for a Three-body Resonance in Kepler-221. Astronomical Journal, 2021, 162, 16.	1.9	11
695	Large closed-field corona of WX Ursae Majoris evidenced from radio observations. Astronomy and Astrophysics, 2021, 650, L20.	2.1	8

#	Article	IF	Citations
696	How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1. Astrophysical Journal, 2021, 913, 126.	1.6	2
697	Activity of TRAPPIST–1 analog stars observed with TESS. Astronomy and Astrophysics, 2021, 650, A138.	2.1	12
698	Dynamical Avenues for Mercury's Origin. II. In Situ Formation in the Inner Terrestrial Disk. Astronomical Journal, 2021, 162, 3.	1.9	10
699	Magma Ocean Evolution of the TRAPPIST-1 Planets. Astrobiology, 2021, 21, 1325-1349.	1.5	24
700	Influence of equilibrium tides on transit-timing variations of close-in super-Earths. Astronomy and Astrophysics, 2021, 651, A23.	2.1	3
701	A new photometric and dynamical study of the eclipsing binary star HW Virginis. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2122-2135.	1.6	7
702	From dust to planets – I. Planetesimal and embryo formation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3596-3614.	1.6	15
703	Avoiding the "Great Filter― A Projected Timeframe for Human Expansion Off-World. Galaxies, 2021, 9, 53.	1.1	3
704	Transmission Spectroscopy of the Earth–Sun System to Inform the Search for Extrasolar Life. Planetary Science Journal, 2021, 2, 140.	1.5	8
705	TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley. Astronomical Journal, 2021, 162, 79.	1.9	25
706	Introduction—First Billion Years: Habitability. Astrobiology, 2021, 21, 893-905.	1.5	2
707	An integrable model for first-order three-planet mean motion resonances. Celestial Mechanics and Dynamical Astronomy, 2021, 133, 1.	0.5	8
708	Nondetection of Helium in the Upper Atmospheres of TRAPPIST-1b, e, and f*. Astronomical Journal, 2021, 162, 82.	1.9	18
709	Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	41
710	Approximating annual mean incoming solar radiation. Journal of Mathematical Analysis and Applications, 2021, 500, 125129.	0.5	2
711	Absorption in exoplanet atmospheres: Combining experimental and theoretical databases to facilitate calculations of the molecular opacities of water. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 270, 107708.	1.1	5
712	Orbital stability of compact three-planet systems, I: Dependence of system lifetimes on initial orbital separations and longitudes. Icarus, 2021, 364, 114470.	1.1	8
713	Habitability and Biosignatures of Hycean Worlds. Astrophysical Journal, 2021, 918, 1.	1.6	46

#	Article	IF	CITATIONS
714	Occulter to earth: prospects for studying earth-like planets with the E-ELT and a space-based occulter. Experimental Astronomy, 2022, 54, 1223-1236.	1.6	0
715	Transit origami: a method to coherently fold exomoon transits in time series photometry. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4120-4131.	1.6	8
716	TOI-674b: An oasis in the desert of exo-Neptunes transiting a nearby M dwarf. Astronomy and Astrophysics, 2021, 653, A60.	2.1	23
717	Confirmation of a Dynamical Model for the TRAPPIST-1 Exoplanetary System. Research Notes of the AAS, 2021, 5, 219.	0.3	0
718	Laboratory exploration of mineral precipitates from Europa's subsurface ocean. Journal of Applied Crystallography, 2021, 54, 1455-1479.	1.9	1
719	Warm terrestrial planet with half the mass of Venus transiting a nearby star. Astronomy and Astrophysics, 2021, 653, A41.	2.1	46
720	Timescales for Prebiotic Photochemistry Under Realistic Surface Ultraviolet Conditions. Astrobiology, 2021, 21, 1099-1120.	1.5	17
721	Visible-light photoionization of aromatic molecules in water-ice: Organic chemistry across the universe with less energy. Chemical Physics Letters, 2021, 778, 138814.	1.2	6
722	The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star. Astrophysical Journal Letters, 2021, 919, L9.	3.0	8
723	L 98-59: A Benchmark System of Small Planets for Future Atmospheric Characterization. Astronomical Journal, 2021, 162, 169.	1.9	14
724	TOI–1278 B: SPIRou Unveils a Rare Brown Dwarf Companion in Close-in Orbit around an M Dwarf. Astronomical Journal, 2021, 162, 144.	1.9	16
725	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2021, 653, A114.	2.1	67
726	Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems. Applied Sciences (Switzerland), 2021, 11, 8624.	1.3	1
727	Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability, and diversity. Experimental Astronomy, 2022, 54, 1197-1221.	1.6	21
728	Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto–Charon and the Exoplanet TRAPPIST-1e. Planetary Science Journal, 2021, 2, 4.	1.5	13
729	Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides. Planetary Science Journal, 2021, 2, 1.	1.5	161
731	UV astronomy and the investigation of the origin of life. , 2021, , 15-73.		2
732	The Nature and Origins of Subâ€Neptune Size Planets. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006639.	1.5	65

#	Article	IF	Citations
733	TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-like Star HD 108236. Astronomical Journal, 2021, 161, 85.	1.9	13
734	Tightly Packed Planetary Systems. , 2017, , 1-18.		1
735	The Rossiter–McLaughlin Effect in Exoplanet Research. , 2017, , 1-27.		9
736	CHEOPS: CHaracterizing ExOPlanets Satellite. , 2017, , 1-25.		5
739	Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. Astronomy and Astrophysics, 2017, 605, L4.	2.1	22
740	CARMENES input catalogue of M dwarfs. Astronomy and Astrophysics, 2019, 621, A126.	2.1	73
741	Tidal response of rocky and ice-rich exoplanets. Astronomy and Astrophysics, 2019, 630, A70.	2.1	21
742	Pebble-driven planet formation for TRAPPIST-1 and other compact systems. Astronomy and Astrophysics, 2019, 627, A149.	2.1	59
743	Normalized angular momentum deficit: a tool for comparing the violence of the dynamical histories of planetary systems. Astronomy and Astrophysics, 2020, 636, A53.	2.1	18
744	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2020, 638, A16.	2.1	16
745	A hot terrestrial planet orbiting the bright M dwarf L $168-9$ unveiled by TESS. Astronomy and Astrophysics, $2020,636,A58.$	2.1	35
746	Measuring and characterizing the line profile of HARPS with a laser frequency comb. Astronomy and Astrophysics, 2021, 645, A23.	2.1	9
747	New ultracool dwarf neighbours within 20 pc from <i>Gaia</i> DR2. Astronomy and Astrophysics, 2020, 637, A45.	2.1	10
748	Atmospheric stability and collapse on tidally locked rocky planets. Astronomy and Astrophysics, 2020, 638, A77.	2.1	6
749	Correcting for chromatic stellar activity effects in transits with multiband photometric monitoring: application to WASP-52. Astronomy and Astrophysics, 2020, 641, A82.	2.1	16
750	Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2020, 638, A88.	2.1	42
751	Occurrence rate of exoplanets orbiting ultracool dwarfs as probed by K2. Astronomy and Astrophysics, 2020, 641, A170.	2.1	13
752	Repeating fast radio bursts caused by small bodies orbiting a pulsar or a magnetar. Astronomy and Astrophysics, 2020, 644, A145.	2.1	12

#	ARTICLE	IF	Citations
753	Exploiting periodic orbits as dynamical clues for <i>Kepler</i> and K2 systems. Astronomy and Astrophysics, 2020, 640, A55.	2.1	4
754	GJ 273: on the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec. Astronomy and Astrophysics, 2020, 641, A23.	2.1	25
755	Implications of different stellar spectra for the climate of tidally locked Earth-like exoplanets. Astronomy and Astrophysics, 2020, 639, A99.	2.1	16
756	KMT-2018-BLG-0748Lb: sub-Saturn microlensing planet orbiting an ultracool host. Astronomy and Astrophysics, 2020, 641, A105.	2.1	18
757	Solid tidal friction in multi-layer planets: Application to Earth, Venus, a Super Earth and the TRAPPIST-1 planets. Astronomy and Astrophysics, 2020, 644, A165.	2.1	24
758	CARMENES input catalogue of M dwarfs. Astronomy and Astrophysics, 2020, 642, A115.	2.1	93
759	Discovery and characterization of the exoplanets WASP-148b and c. Astronomy and Astrophysics, 2020, 640, A32.	2.1	14
760	Ejection of close-in super-Earths around low-mass stars in the giant impact stage. Astronomy and Astrophysics, 2020, 642, A23.	2.1	9
761	Synergies between exoplanet surveys and variable star research. EPJ Web of Conferences, 2017, 152, 01005.	0.1	2
762	All eyes on Proxima Centauri b. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6646-6648.	3.3	2
763	Solar System Physics for Exoplanet Research. Publications of the Astronomical Society of the Pacific, 2020, 132, 102001.	1.0	29
764	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
765	Fragmentation favoured in discs around higher mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5041-5051.	1.6	14
766	RedDots: a temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061. Monthly Notices of the Royal Astronomical Society, 2020, 493, 536-550.	1.6	34
767	Planet formation and disc mass dependence in a pebble-driven scenario for low-mass stars. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3510-3521.	1.6	5
768	Increasing the census of ultracool dwarfs in wide binary and multiple systems using Dark Energy Survey DR1 and Gaia DR2 data. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5302-5317.	1.6	3
769	Stability constrained characterization of multiplanet systems. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4798-4811.	1.6	13
770	Ground-based adaptive optics coronagraphic performance under closed-loop predictive control. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4, 1.	1.0	46

#	Article	IF	Citations
771	Performance tests of Subaru/IRD for very precise and stable infrared radial velocity observations. , 2018, , .		8
772	SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs. , 2018, , .		38
773	The Habitable Exoplanet Observatory (HabEx). , 2019, , .		18
774	Super-Earths, M Dwarfs, and Photosynthetic Organisms: Habitability in the Lab. Life, 2021, 11, 10.	1.1	20
775	Predicting the Yield of Potential Venus Analogs from TESS and Their Potential for Atmospheric Characterization. Astronomical Journal, 2019, 158, 195.	1.9	23
776	OGLE-2015-BLG-1771Lb: A Microlens Planet Orbiting an Ultracool Dwarf?. Astronomical Journal, 2020, 159, 116.	1.9	15
777	Two Transiting Hot Jupiters from the WASP Survey: WASP-150b and WASP-176b. Astronomical Journal, 2020, 159, 255.	1.9	4
778	High-resolution Spectral Discriminants of Ocean Loss for M-dwarf Terrestrial Exoplanets. Astronomical Journal, 2020, 160, 11.	1.9	8
779	Upper Limits on Planet Occurrence around Ultracool Dwarfs with K2. Astronomical Journal, 2020, 160, 19.	1.9	12
780	Simultaneous Optical Transmission Spectroscopy of a Terrestrial, Habitable-zone Exoplanet with Two Ground-based Multiobject Spectrographs. Astronomical Journal, 2020, 160, 27.	1.9	16
781	An Astrometric Planetary Companion Candidate to the M9 Dwarf TVLM 513–46546. Astronomical Journal, 2020, 160, 97.	1.9	12
782	KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS*. Astronomical Journal, 2020, 160, 111.	1.9	26
783	Dynamical Packing in the Habitable Zone: The Case of Beta CVn. Astronomical Journal, 2020, 160, 81.	1.9	12
784	The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System. Astronomical Journal, 2020, 160, 116.	1.9	67
785	The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d. Astronomical Journal, 2020, 160, 117.	1.9	29
786	The First Habitable-zone Earth-sized Planet from TESS. III. Climate States and Characterization Prospects for TOI-700 d. Astronomical Journal, 2020, 160, 118.	1.9	20
787	Predictions of the Nancy Grace Roman Space Telescope Galactic Exoplanet Survey. II. Free-floating Planet Detection Rates*. Astronomical Journal, 2020, 160, 123.	1.9	64
788	Transits of Known Planets Orbiting a Naked-eye Star. Astronomical Journal, 2020, 160, 129.	1.9	22

#	Article	IF	CITATIONS
789	Flare Statistics for Young Stars from a Convolutional Neural Network Analysis of TESS Data. Astronomical Journal, 2020, 160, 219.	1.9	66
790	Optical Transmission Spectroscopy of the Terrestrial Exoplanet LHS 3844b from 13 Ground-based Transit Observations. Astronomical Journal, 2020, 160, 188.	1.9	18
791	The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?. Astronomical Journal, 2020, 160, 237.	1.9	39
792	Utilizing a Database of Simulated Geometric Albedo Spectra for Photometric Characterization of Rocky Exoplanet Atmospheres. Astronomical Journal, 2020, 160, 204.	1.9	4
793	JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series. Astronomical Journal, 2020, 160, 231.	1.9	48
794	Earth as an Exoplanet. I. Time Variable Thermal Emission Using Spatially Resolved Moderate Imaging Spectroradiometer Data. Astronomical Journal, 2020, 160, 246.	1.9	8
795	A Fast, Two-dimensional Gaussian Process Method Based on Celerite: Applications to Transiting Exoplanet Discovery and Characterization. Astronomical Journal, 2020, 160, 240.	1.9	14
796	TOI 540 b: A Planet Smaller than Earth Orbiting a Nearby Rapidly Rotating Low-mass Star. Astronomical Journal, 2021, 161, 23.	1.9	16
797	A Mini-Neptune and a Radius Valley Planet Orbiting the Nearby M2 Dwarf TOI-1266 in Its Venus Zone: Validation with the Habitable-zone Planet Finder. Astronomical Journal, 2020, 160, 259.	1.9	16
798	Hubble WFC3 Spectroscopy of the Habitable-zone Super-Earth LHS 1140 b. Astronomical Journal, 2021, 161, 44.	1.9	45
799	Mutual Detectability: A Targeted SETI Strategy That Avoids the SETI Paradox. Astronomical Journal, 2021, 161, 39.	1.9	4
800	Effective Temperatures of Low-mass Stars from High-resolution H-band Spectroscopy. Astrophysical Journal, 2019, 879, 105.	1.6	18
801	Identifying Candidate Atmospheres on Rocky M Dwarf Planets via Eclipse Photometry. Astrophysical Journal, 2019, 886, 140.	1.6	46
802	Effect of Vegetation on the Temperatures of TRAPPIST-1 Planets. Astrophysical Journal, 2020, 891, 24.	1.6	4
803	Pointing Chandra toward the Extreme Ultraviolet Fluxes of Very Low Mass Stars. Astrophysical Journal, 2020, 893, 137.	1.6	8
804	The MESAS Project: ALMA Observations of the F-type Stars Î ³ Lep, Î ³ Vir A, and Î ³ Vir B. Astrophysical Journal, 2020, 894, 76.	1.6	9
805	Consistently Simulating a Wide Range of Atmospheric Scenarios for K2-18b with a Flexible Radiative Transfer Module. Astrophysical Journal, 2020, 898, 44.	1.6	30
806	The Preservation of Super-Earths and the Emergence of Gas Giants after Their Progenitor Cores Have Entered the Pebble-isolation Phase. Astrophysical Journal, 2020, 896, 135.	1.6	23

#	Article	IF	Citations
807	Evryscope and K2 Constraints on TRAPPIST-1 Superflare Occurrence and Planetary Habitability. Astrophysical Journal, 2020, 900, 27.	1.6	14
808	Distinguishing between Wet and Dry Atmospheres of TRAPPIST-1 e and f. Astrophysical Journal, 2020, 901, 126.	1.6	33
809	The Equatorial Jet Speed on Tidally Locked Planets. I. Terrestrial Planets. Astrophysical Journal, 2020, 901, 78.	1.6	16
810	Finding Signs of Life on Transiting Earthlike Planets: High-resolution Transmission Spectra of Earth through Time around FGKM Host Stars. Astrophysical Journal, 2020, 904, 10.	1.6	7
811	The Effect of Land Albedo on the Climate of Land-dominated Planets in the TRAPPIST-1 System. Astrophysical Journal, 2020, 904, 124.	1.6	12
812	Chains of Planets in Mean Motion Resonances Arising from Oligarchic Growth. Astrophysical Journal, 2020, 904, 157.	1.6	14
813	Search for Nearby Earth Analogs .III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs. Astrophysical Journal, Supplement Series, 2020, 250, 29.	3.0	18
814	LAMOST Observations in 15 K2 Campaigns. I. Low-resolution Spectra from LAMOST DR6. Astrophysical Journal, Supplement Series, 2020, 251, 27.	3.0	15
815	A Geologically Robust Procedure for Observing Rocky Exoplanets to Ensure that Detection of Atmospheric Oxygen Is a Modern Earth-like Biosignature. Astrophysical Journal Letters, 2020, 898, L17.	3.0	5
816	NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event. Astrophysical Journal Letters, 2020, 898, L11.	3.0	30
817	How Jupiters Save or Destroy Inner Neptunes around Evolved Stars. Astrophysical Journal Letters, 2020, 898, L23.	3.0	24
818	Detectability of Molecular Signatures on TRAPPIST-1e through Transmission Spectroscopy Simulated for Future Space-based Observatories. Astrophysical Journal Letters, 2020, 898, L33.	3.0	35
819	The White Dwarf Opportunity: Robust Detections of Molecules in Earth-like Exoplanet Atmospheres with the James Webb Space Telescope. Astrophysical Journal Letters, 2020, 901, L1.	3.0	28
820	Infrared Flares from M Dwarfs: A Hinderance to Future Transiting Exoplanet Studies. Research Notes of the AAS, 2017, 1, 2.	0.3	6
821	Predicting The Orbit of TRAPPIST-1i. Research Notes of the AAS, 2018, 2, 136.	0.3	5
822	Planet–Planet Tides in the TRAPPIST-1 System. Research Notes of the AAS, 2018, 2, 175.	0.3	7
823	A Volatile-poor Formation of LHS 3844b Based on Its Lack of Significant Atmosphere. Planetary Science Journal, 2020, 1, 36.	1.5	18
824	The search for living worlds and the connection to our cosmic origins. Experimental Astronomy, 2022, 54, 1275-1306.	1.6	1

#	Article	IF	CITATIONS
825	Why Do M Dwarfs Have More Transiting Planets?. Astrophysical Journal Letters, 2021, 920, L1.	3.0	29
826	Detecting life outside our solar system with a large high-contrast-imaging mission. Experimental Astronomy, 0 , 1 .	1.6	2
829	Earth as an Exoplanet. , 2005, , 1-1.		2
830	Life Jim, But Not as We Know It. Astronomers' Universe, 2017, , 193-236.	0.0	0
831	Auf der Suche nach Signaturen des Lebens. , 2017, , 1-81.		0
832	Space Missions for Exoplanet Science: PLATO. , 2017, , 1-22.		0
833	Planet Formation, Migration, and Habitability., 2018, , 1-17.		0
834	Space Missions for Extrasolar Planets: Overview and Introduction. , 2018, , 1-12.		0
835	ESPRESSO on VLT: An Instrument for Exoplanet Research. , 2018, , 1-19.		0
836	The Habitable Zone: The Climatic Limits of Habitability. , 2018, , 1-13.		0
837	Water Loss from Young Planets. Space Sciences Series of ISSI, 2018, , 377-395.	0.0	0
838	Photometric Analysis and Transit Times of TRAPPIST-1 B and C. Research Notes of the AAS, 2018, 2, 10.	0.3	24
839	Lessons learned in extended-extended Spitzer Space Telescope operations., 2018,,.		0
840	The current state of speckle imaging. , 2018, , .		0
841	Recent developments at the OAN-SPM. , 2018, , .		0
842	Exoplanetary Discovery. , 2019, , 53-97.		0
843	Signaturen des Lebens. , 2019, , 1-114.		0
844	A New Hope. , 2019, , 313-352.		0

#	Article	IF	Citations
845	Predicting Additional Planets in TRAPPIST-1. Research Notes of the AAS, 2019, 3, 50.	0.3	O
846	TRAPPIST-1: A Dark Star With a Bright Future. Frontiers for Young Minds, 0, 7, .	0.8	0
847	Characterization of Low-mass K2 Planet Hosts Using Near-infrared Spectroscopy. Astronomical Journal, 2019, 158, 135.	1.9	4
848	Critical Analysis of Tess Transit Photometric Data: Improved Physical Properties for Five Exoplanets. Astronomical Journal, 2021, 162, 221.	1.9	8
849	Eccentricity Driven Climate Effects in the Kepler-1649 System. Astronomical Journal, 2021, 161, 31.	1.9	15
850	Evolução Orbital dos Exoplanetas (TRAPPIST-1e e TRAPPIST-1g) que estão na Zona Habitável da Estrela TRAPPIST-1. Sitientibus Série Ciências FÃsicas, 0, 16, 1.	0.0	0
851	The TRAPPIST-1 JWST Community Initiative. , 2020, 52, .		12
852	Ultracool dwarfs in deep extragalactic surveys using the virtual observatory: ALHAMBRA and COSMOS. Monthly Notices of the Royal Astronomical Society, 2020, 501, 281-290.	1.6	5
853	Development of the SPECULOOS exoplanet search project., 2020,,.		1
854	Rossby waves in the ocean covered by compressed ice. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 306-316.	0.4	1
856	Social and Ethical Impact of Advanced Artificial and Biological Enhancements. Open Public Health Journal, 2020, 13, 62-68.	0.1	2
857	Kepler-223 resonance holds information about turbulence during the gas-disk phase. Astronomy and Astrophysics, 2021, 656, A115.	2.1	10
858	Let Arab space programmes create more space for Arab scientists and students. Nature, 2020, , .	13.7	0
859	The milliarcsecond-scale radio structure of AB Doradus A. Astronomy and Astrophysics, 2020, 641, A90.	2.1	3
861	Ï€ Earth: A 3.14 day Earth-sized Planet from K2's Kitchen Served Warm by the SPECULOOS Team. Astronomical Journal, 2020, 160, 172.	1.9	8
862	Reflected Light Observations of the Galilean Satellites from Cassini: A Test Bed for Cold Terrestrial Exoplanets. Astronomical Journal, 2020, 160, 238.	1.9	4
863	An Increase in Small-planet Occurrence with Metallicity for Late-type Dwarf Stars in the Kepler Field and Its Implications for Planet Formation. Astronomical Journal, 2020, 160, 253.	1.9	18
864	A numerical method for computing optimum radii of host stars and orbits of planets, with application to Kepler-11, Kepler-90, Kepler-215, HDÂ10180, HDÂ34445 and TRAPPIST-1. International Journal of Modern Physics C, 2021, 32, 2150028.	0.8	0

#	Article	IF	Citations
865	Transiting Exoplanet Survey Satellite (TESS) Observations of Flares and Quasi-Periodic Pulsations from Low-Mass Stars and Potential Impact on Exoplanets. Solar Physics, 2021, 296, 1.	1.0	12
866	Detection of the tidal deformation of WASP-103b at 3 <i>i; f</i> i) with CHEOPS. Astronomy and Astrophysics, 2022, 657, A52.	2.1	22
867	An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system. Nature Astronomy, 2022, 6, 80-88.	4.2	25
868	Hidden Water in Magma Ocean Exoplanets. Astrophysical Journal Letters, 2021, 922, L4.	3.0	45
869	One of Everything: The Breakthrough Listen Exotica Catalog. Astrophysical Journal, Supplement Series, 2021, 257, 42.	3.0	8
870	Water delivery to a delicate system. Nature Astronomy, 0, , .	4.2	0
871	GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star. Science, 2021, 374, 1271-1275.	6.0	30
872	Who will rise to Fritz Zwicky's challenge?. Astronomy and Geophysics, 2021, 62, 6.34-6.37.	0.1	0
873	The atmospheres of rocky exoplanets. Astronomy and Astrophysics, 2022, 658, A180.	2.1	7
874	Evolução Orbital dos Exoplanetas (TRAPPIST-1e e TRAPPIST-1g) que estão na Zona Habitável da Estrela TRAPPIST-1. Sitientibus Série Ciências FÃsicas, 0, 16, 1-13.	0.0	0
875	The Activity of Stars with Planetary Systems and Its Impact on the Loss of Atmosphere by Hot Exoplanets. Astrophysical Bulletin, 2021, 76, 450-471.	0.3	5
876	HyDRo: atmospheric retrieval of rocky exoplanets in thermal emission. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2565-2584.	1.6	7
877	Relativistic Dynamical Stability Criterion of Multiplanet Systems with a Distant Companion. Astrophysical Journal, 2021, 923, 118.	1.6	6
878	Validation of 13 Hot and Potentially Terrestrial TESS Planets. Astronomical Journal, 2022, 163, 99.	1.9	8
879	An Integrative Analysis of the HD 219134 Planetary System and the Inner solar system: Extending DYNAMITE with Enhanced Orbital Dynamical Stability Criteria. Astronomical Journal, 2022, 163, 88.	1.9	3
880	TRAPPIST-1: Dynamical analysis of the transit-timing variations and origin of the resonant chain. Astronomy and Astrophysics, 2022, 658, A170.	2.1	8
881	Scaling, Mirror Symmetries and Musical Consonances Among the Distances of the Planets of the Solar System. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	7
882	TOI-216: Resonant Constraints on Planet Migration. Astrophysical Journal, 2022, 925, 38.	1.6	12

#	Article	IF	CITATIONS
883	Rapid-then-slow migration reproduces mass distribution of TRAPPIST-1 system. Astronomy and Astrophysics, 2022, 658, A184.	2.1	4
884	An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. Nature Astronomy, 2022, 6, 367-380.	4.2	32
885	Elemental Abundances of nearby M Dwarfs Based on High-resolution Near-infrared Spectra Obtained by the Subaru/IRD Survey: Proof of Concept. Astronomical Journal, 2022, 163, 72.	1.9	12
886	ExoPlaSim: Extending the Planet Simulator for exoplanets. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3272-3303.	1.6	11
887	The Demographics of Close-In Planets. Astrophysics and Space Science Library, 2022, , 143-234.	1.0	2
888	Trajectory-based Simulation of Far-infrared Collision-induced Absorption Profiles of CH ₄ –N ₂ for Modeling Titan's Atmosphere. Astrophysical Journal, Supplement Series, 2022, 258, 33.	3.0	4
889	The dynamics of the TRAPPIST-1 system in the context of its formation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3814-3831.	1.6	15
890	Planet Formation: Key Mechanisms and Global Models. Astrophysics and Space Science Library, 2022, , 3-82.	1.0	16
891	Near-infrared transmission spectrum of TRAPPIST-1 h using <i>Hubble </i> WFC3 G141 observations. Astronomy and Astrophysics, 2022, 658, A133.	2.1	13
892	The GAPS Programme at TNG. Astronomy and Astrophysics, 2022, 658, A136.	2.1	20
893	Discovery of 16 New Members of the Solar Neighborhood Using Proper Motions from CatWISE2020. Astronomical Journal, 2022, 163, 116.	1.9	4
894	A Snowball in Hell: The Potential Steam Atmosphere of TOI-1266c. Planetary Science Journal, 2022, 3, 45.	1.5	4
895	Understanding planetary context to enable life detection on exoplanets and test the Copernican principle. Nature Astronomy, 2022, 6, 189-198.	4.2	13
896	Partitioning of Atmospheric O ₂ into High-pressure Ice in Ocean Worlds. Astrophysical Journal, 2022, 926, 72.	1.6	0
897	On possible life-dispersal patterns beyond the Earth. International Journal of Astrobiology, 0, , 1-18.	0.9	1
898	Hierarchical Bayesian Atmospheric Retrieval Modeling for Population Studies of Exoplanet Atmospheres: A Case Study on the Habitable Zone. Astronomical Journal, 2022, 163, 140.	1.9	9
899	Detectability of Chlorofluorocarbons in the Atmospheres of Habitable M-dwarf Planets. Planetary Science Journal, 2022, 3, 60.	1.5	9
900	The LHS 1678 System: Two Earth-sized Transiting Planets and an Astrometric Companion Orbiting an M Dwarf Near the Convective Boundary at 20 pc. Astronomical Journal, 2022, 163, 151.	1.9	6

#	Article	IF	Citations
901	The case and context for atmospheric methane as an exoplanet biosignature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117933119.	3.3	35
902	Periodic orbits in the 1:2:3 resonant chain and their impact on the orbital dynamics of the Kepler-51 planetary system. Astronomy and Astrophysics, 2022, 661, A62.	2.1	3
903	The evolution of protoplanetary discs in star formation and feedback simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3788-3805.	1.6	17
904	TIC-320687387 B: a long-period eclipsing M-dwarf close to the hydrogen burning limit. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1785-1793.	1.6	4
905	Inefficient Water Degassing Inhibits Ocean Formation on Rocky Planets: An Insight from Self-Consistent Mantle Degassing Models. Astrobiology, 2022, 22, 713-734.	1.5	8
906	The Role of Atmospheric Exchange in Falseâ€Positive Biosignature Detection. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	4
907	The CARMENES search for exoplanets around M dwarfs. Astronomy and Astrophysics, 2022, 663, A48.	2.1	12
908	Meta-modelling the climate of dry tide-locked rocky planets. Astronomy and Astrophysics, 0, , .	2.1	0
909	HST/WFC3 transmission spectroscopy of the cold rocky planet TRAPPIST-1h. Astronomy and Astrophysics, 2022, 665, A19.	2.1	12
910	Atmosphere loss in oblique Super-Earth collisions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1680-1700.	1.6	6
911	Gas disk interactions, tides, and relativistic effects in the rocky planet formation at the substellar mass limit. Astronomy and Astrophysics, 0, , .	2.1	0
912	Final Targeting Strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey. Astronomical Journal, 2021, 162, 302.	1.9	44
913	TRAPPIST-1 System., 2022, , 1-8.		0
914	Onboard dynamic image exposure control for the <i>Star–Planet Activity Research CubeSat</i> (<i>SPARCS</i>). Monthly Notices of the Royal Astronomical Society, 2021, 509, 5702-5712.	1.6	1
915	Transiting Planets., 2022,, 1-10.		0
916	Habitable Planet Formation around Low-mass Stars: Rapid Accretion, Rapid Debris Removal, and the Essential Contribution of External Giants. Astrophysical Journal, 2022, 928, 91.	1.6	7
917	Large Interferometer For Exoplanets (LIFE). Astronomy and Astrophysics, 2022, 664, A21.	2.1	51
918	Serendipitous discovery of radio flaring behaviour from a nearby M dwarf with MeerKAT. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3482-3492.	1.6	9

#	ARTICLE	IF	Citations
919	Applying Random Forest Classification to Ultracool Dwarf Discovery in Deep Surveys. II. Color Classification with PanSTARRS, 2MASS, UKIDSS, and WISE Photometry. Research Notes of the AAS, 2022, 6, 75.	0.3	2
920	Photodynamical analysis of the nearly resonant planetary system WASP-148. Astronomy and Astrophysics, 2022, 663, A134.	2.1	3
921	Climate uncertainties caused by unknown land distribution on habitable M-Earths. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2761-2769.	1.6	6
923	Dynamics of Colombo's Top: non-trivial oblique spin equilibria of super-Earths in multiplanetary systems. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3302-3316.	1.6	7
924	MAGRATHEA: an open-source spherical symmetric planet interior structure code. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5256-5269.	1.6	6
925	Continuous Habitable Zones: Using Bayesian Methods to Prioritize Characterization of Potentially Habitable Worlds. Astrophysical Journal, 2022, 929, 143.	1.6	2
926	On the Effect of Stellar Activity on Low-resolution Transit Spectroscopy and the use of High Resolution as Mitigation. Astronomical Journal, 2022, 163, 231.	1.9	4
927	Astrospheres of Planet-Hosting Cool Stars and Beyond â« When Modeling Meets Observations. Space Science Reviews, 2022, 218, 1.	3.7	12
928	Scaling K2. V. Statistical Validation of 60 New Exoplanets From K2 Campaigns 2–18. Astronomical Journal, 2022, 163, 244.	1.9	8
929	The number of transits per epoch for transiting misaligned circumbinary planets. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5162-5173.	1.6	1
930	TRAPPIST-1h as an Exo-Titan. I. The Role of Assumptions about Atmospheric Parameters in Understanding an Exoplanet Atmosphere. Astrophysical Journal, 2022, 930, 73.	1.6	0
931	Integral Field Spectroscopy with the Solar Gravitational Lens. Astrophysical Journal, 2022, 930, 19.	1.6	3
932	Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.	1.6	3
933	Organic Carbonyls Are Poor Biosignature Gases in Exoplanet Atmospheres but May Generate Significant CO. Astrophysical Journal, 2022, 930, 133.	1.6	4
934	The Perkins INfrared Exosatellite Survey (PINES) I. Survey Overview, Reduction Pipeline, and Early Results. Astronomical Journal, 2022, 163, 253.	1.9	7
935	Activity and Rotation of Nearby Field M Dwarfs in the TESS Southern Continuous Viewing Zone. Astronomical Journal, 2022, 163, 257.	1.9	8
936	A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514. Astronomy and Astrophysics, 2022, 666, A187.	2.1	7
937	Atmospheres of Rocky Exoplanets. Annual Review of Astronomy and Astrophysics, 2022, 60, 159-201.	8.1	29

#	Article	IF	CITATIONS
938	Earth as a Proxy Exoplanet: Simulating DSCOVR/EPIC Observations Using the Earth Spectrum Simulator. Astronomical Journal, 2022, 163, 285.	1.9	1
939	Revealing the Mysteries of Venus: The DAVINCI Mission. Planetary Science Journal, 2022, 3, 117.	1.5	62
940	Habitable exoplanets., 2022,, 179-192.		0
941	CHES: A Space-borne Astrometric Mission for the Detection of Habitable Planets of the Nearby Solar-type Stars. Research in Astronomy and Astrophysics, 2022, 22, 072003.	0.7	15
942	A giant planet shaping the disk around the very low-mass star CIDA 1. Astronomy and Astrophysics, 2022, 665, A25.	2.1	6
943	Cryovolcanism in the Solar System and Beyond: Considerations on Energy Sources, Geological Aspects, and Astrobiological Perspectives. , 0, , .		0
944	Architecture of Planetary Systems Predicted from Protoplanetary Disks Observed with ALMA. II. Evolution Outcomes and Dynamical Stability. Astrophysical Journal, 2022, 932, 31.	1.6	1
946	Transit Timing Variations for AU Microscopii b and c. Astronomical Journal, 2022, 164, 27.	1.9	10
947	A super-Earth orbiting near the inner edge of the habitable zone around the M4.5Âdwarf Ross 508. Publication of the Astronomical Society of Japan, 2022, 74, 904-922.	1.0	8
948	Law of Gravity Blurred by Perturbed Planetary Orbits for Alien Observers. Journal of Physics: Conference Series, 2022, 2287, 012039.	0.3	0
949	Atmospheric Gravitational Tides of Earth-like Planets Orbiting Low-mass Stars. Planetary Science Journal, 2022, 3, 162.	1.5	0
950	A detailed analysis of the Gl 486 planetary system. Astronomy and Astrophysics, 2022, 665, A120.	2.1	15
951	Predictions for Observable Atmospheres of Trappist-1 Planets from a Fully Coupled Atmosphere–Interior Evolution Model. Astrophysical Journal, 2022, 933, 115.	1.6	15
952	Tidal excitation of the obliquity of Earth-like planets in the habitable zone of M-dwarf stars. Astronomy and Astrophysics, 2022, 665, A130.	2.1	3
953	Long-term tidal evolution of the TRAPPIST-1 system. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2373-2385.	1.6	5
954	The segmented pupil experiment for exoplanet detection: 6 from early design to first lights. , 2022, , .		0
955	The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II. Moist Casesâ€"The Two Waterworlds. Planetary Science Journal, 2022, 3, 212.	1.5	34
956	Stratospheric clouds do not impede <i>JWST</i> transit spectroscopy for exoplanets with Earth-like atmospheres. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1982-1992.	1.6	3

#	Article	IF	CITATIONS
957	J-PLUS: Discovery and characterisation of ultracool dwarfs using Virtual Observatory tools. II. Second data release and machine learning methodology. Astronomy and Astrophysics, 0, , .	2.1	0
958	Chandra Observations of Six Peter Pan Disks: Diversity of X-Ray-driven Internal Photoevaporation Rates Does Not Explain Their Rare Longevity. Astrophysical Journal, 2022, 935, 111.	1.6	0
959	HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries,. Astronomy and Astrophysics, 2022, 665, A154.	2.1	10
960	The stable climate of KELT-9b. Astronomy and Astrophysics, 2022, 666, A118.	2.1	6
961	Edge-of-the-Multis: Evidence for a Transition in the Outer Architectures of Compact Multiplanet Systems. Astronomical Journal, 2022, 164, 72.	1.9	6
962	Astronomical Triggers as a Cause of Strong Earthquakes. International Journal of Geosciences, 2022, 13, 793-829.	0.2	2
963	Planetary core radii: from Plato towards PLATO. Advances in Geophysics, 2022, , 65-178.	1.1	2
964	Two temperate super-Earths transiting a nearby late-type M dwarf. Astronomy and Astrophysics, 2022, 667, A59.	2.1	23
965	The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). I. Dry Casesâ€"The Fellowship of the GCMs. Planetary Science Journal, 2022, 3, 211.	1.5	25
966	Survival of Terrestrial N ₂ –O ₂ Atmospheres in Violent XUV Environments through Efficient Atomic Line Radiative Cooling. Astrophysical Journal, 2022, 937, 72.	1.6	16
967	High-resolution spectral models of TRAPPIST-1e seen as a <i>Pale Blue Dot</i> for ELT and <i>JWST</i> observations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3167-3174.	1.6	2
968	Mass Upper Bounds for Over 50 Kepler Planets Using Low-S/N Transit Timing Variations. Astronomical Journal, 2022, 164, 139.	1.9	0
969	The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). III. Simulated Observablesâ€"the Return of the Spectrum. Planetary Science Journal, 2022, 3, 213.	1.5	27
970	Properties of the radius valley around low mass stars: predictions from the core-powered mass-loss mechanism. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4585-4593.	1.6	9
971	Cleaning Our Hazy Lens: Exploring Trends in Transmission Spectra of Warm Exoplanets. Astrophysical Journal, 2022, 937, 90.	1.6	13
972	Star–planet interaction. Astronomy and Astrophysics, 2022, 668, A10.	2.1	1
973	Astrobiologia: descrobrindo novos planetas., 0,,.		0
974	TESS discovery of a super-Earth and two sub-Neptunes orbiting the bright, nearby, Sun-like star HD 22946. Astronomy and Astrophysics, 2022, 668, A85.	2.1	3

#	Article	IF	Citations
975	New Dynamical State and Habitability of the HD 45364 Planetary System. Astronomical Journal, 2022, 164, 163.	1.9	2
976	On the Unusual Variability of 2MASS J06195260–2903592: A Long-lived Disk around a Young Ultracool Dwarf. Astronomical Journal, 2022, 164, 165.	1.9	0
977	Inferred Properties of Planets in Mean-motion Resonances are Biased by Measurement Noise. Astronomical Journal, 2022, 164, 144.	1.9	3
978	Lower-than-expected flare temperatures for TRAPPIST-1. Astronomy and Astrophysics, 2022, 668, A111.	2.1	1
979	Drift Rates of Narrowband Signals in Long-term SETI Observations for Exoplanets. Astrophysical Journal, 2022, 938, 1.	1.6	8
980	Evaluating the Plausible Range of N ₂ O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach. Astrophysical Journal, 2022, 937, 109.	1.6	5
981	Life on Exoplanets in the Habitable Zone of M Dwarfs?. Astrophysical Journal Letters, 2022, 937, L41.	3.0	7
983	TFAW survey II: 6 newly validated planets and 13 planet candidates from $\langle i \rangle K2 \langle i \rangle$. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	O
984	SPECULOOS Northern Observatory: Searching for Red Worlds in the Northern Skies. Publications of the Astronomical Society of the Pacific, 2022, 134, 105001.	1.0	7
985	Reduced Late Bombardment on Rocky Exoplanets around M Dwarfs. Astrophysical Journal Letters, 2022, 938, L3.	3.0	8
986	Large Interferometer For Exoplanets (LIFE). Astronomy and Astrophysics, 2022, 668, A52.	2.1	7
987	Prediction of an Earth-sized Planet Formed in the Habitable Zone of the SPECULOOS-2 System. Research Notes of the AAS, 2022, 6, 213.	0.3	O
988	Correcting Stellar Flare Frequency Distributions Detected by TESS and Kepler. Astronomical Journal, 2022, 164, 213.	1.9	4
989	Alternative Methylated Biosignatures. I. Methyl Bromide, a Capstone Biosignature. Astrophysical Journal, 2022, 938, 6.	1.6	7
990	Characterization of the HD 108236 system with CHEOPS and TESS Confirmation of a fifth transiting planet. Astronomy and Astrophysics, 2022, 668, A117.	2.1	5
991	3D modelling of the impact of stellar activity on tidally locked terrestrial exoplanets: atmospheric composition and habitability. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2472-2496.	1.6	12
992	NGTS-21b: an inflated Super-Jupiter orbiting a metal-poor K dwarf. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4447-4457.	1.6	0
993	Beyond Hubble. Nature Chemistry, 2022, 14, 1207-1209.	6.6	0

#	Article	IF	CITATIONS
995	Solar System/Exoplanet Science Synergies in a multidecadal perspective., 2023,, 17-64.		0
996	The Exoplanet Radius Valley from Gas-driven Planet Migration and Breaking of Resonant Chains. Astrophysical Journal Letters, 2022, 939, L19.	3.0	14
997	Precise near-infrared photometry, accounting for precipitable water vapour at SPECULOOS Southern Observatory. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2661-2670.	1.6	1
998	The Detectability of Rocky Planet Surface and Atmosphere Composition with the JWST: The Case of LHS 3844b. Astronomical Journal, 2022, 164, 258.	1.9	10
999	Other Worlds in the Cosmos: From Philosophy to Scientific Reality. , 2022, , 299-330.		0
1000	ExoPhot: The Photon Absorption Rate as a New Metric for Quantifying the Exoplanetary Photosynthetic Activity Fitness. Universe, 2022, 8, 624.	0.9	1
1001	Conditions for Convergent Migration of N-Planet Systems. Celestial Mechanics and Dynamical Astronomy, 2022, 134, .	0.5	1
1002	Numerical Investigations of Non-equal Mass and Non-equal Spacing Packing of Planetary Bodies. Journal of Physics: Conference Series, 2022, 2386, 012072.	0.3	0
1003	TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain. Astronomical Journal, 2023, 165, 33.	1.9	16
1004	Framework for the architecture of exoplanetary systems. Astronomy and Astrophysics, 2023, 670, A68.	2.1	14
1005	Anatomy of rocky planets formed by rapid pebble accretion. Astronomy and Astrophysics, 2023, 671, A74.	2.1	8
1006	General Circulation Model Constraints on the Detectability of the CO ₂ -CH ₄ Biosignature Pair on TRAPPIST-1e with JWST. Astrophysical Journal Letters, 2023, 942, L4.	3.0	3
1007	Planet Detection: Transit Timing Variation. , 2022, , 1-5.		0
1008	Hunting for environments favorable to life on planets, moons, dwarf planets, and meteorites. , 2023, , 737-772.		0
1009	Activity of TRAPPIST-1 Analogs. Astronomy Letters, 2022, 48, 676-681.	0.1	1
1010	An Earth-sized Planet around an M5 Dwarf Star at 22 pc. Astronomical Journal, 2023, 165, 131.	1.9	1
1011	Kepler-80 Revisited: Assessing the Participation of a Newly Discovered Planet in the Resonant Chain. Astronomical Journal, 2023, 165, 89.	1.9	2
1012	Possible origin of the non-detection of metastable Heâ€l in the upper atmosphere of the hot Jupiter WASP-80b. Astronomy and Astrophysics, 2023, 673, A37.	2.1	3

#	Article	IF	Citations
1013	When, where, and how many planets end up in first-order resonances?. Monthly Notices of the Royal Astronomical Society, 2023, 522, 828-846.	1.6	3
1014	Discovering planets with PLATO: Comparison of algorithms for stellar activity filtering. Astronomy and Astrophysics, 2023, 672, A144.	2.1	0
1015	Planetary Parameters, XUV Environments, and Mass-loss Rates for Nearby Gaseous Planets with X-Ray-detected Host Stars. Astronomical Journal, 2023, 165, 200.	1.9	0
1016	New models of reflection spectra for terrestrial exoplanets: Present and prebiotic Earth orbiting around stars of different spectral types. New Astronomy, 2023, 102, 102024.	0.8	0
1017	Life on Mars (LoMars): History, advances, current research, and perspectives. Earth Sciences Research Journal, 2022, 26, 221-230.	0.4	0
1018	The Multi-band Survey Telescope at Zhongshan Station, Antarctica. Monthly Notices of the Royal Astronomical Society, 2023, 520, 4601-4608.	1.6	1
1019	Impact of Correlated Noise on the Mass Precision of Earth-analog Planets in Radial Velocity Surveys. Astronomical Journal, 2023, 165, 98.	1.9	6
1020	The Nominal Ranges of Rocky Planet Masses, Radii, Surface Gravities, and Bulk Densities. Astrophysical Journal, 2023, 944, 42.	1.6	8
1021	The SPHINX M-dwarf Spectral Grid. I. Benchmarking New Model Atmospheres to Derive Fundamental M-dwarf Properties. Astrophysical Journal, 2023, 944, 41.	1.6	13
1022	A super-Earth and a mini-Neptune near the 2:1 MMR straddling the radius valley around the nearby mid-M dwarf TOI-2096. Astronomy and Astrophysics, 2023, 672, A70.	2.1	7
1023	A Second Earth-sized Planet in the Habitable Zone of the M Dwarf, TOI-700. Astrophysical Journal Letters, 2023, 944, L35.	3.0	8
1025	The EBLM project X. Benchmark masses, radii, and temperatures for two fully convective M-dwarfs using K2. Monthly Notices of the Royal Astronomical Society, 2023, 521, 6305-6317.	1.6	3
1026	Measuring the Obliquities of the TRAPPIST-1 Planets with MAROON-X. Astronomical Journal, 2023, 165, 129.	1.9	2
1027	Improving circumbinary planet detections by fitting their binary's apsidal precession. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1871-1879.	1.6	5
1028	A High-pressure Filled Ice in the H ₂ 0–CO ₂ –CH ₄ System, with Possible Consequences for the CO ₂ –CH ₄ Biosignature Pair. Astrophysical Journal, 2023, 944, 209.	1.6	0
1029	Heating and ionization by non-thermal electrons in the upper atmospheres of water-rich exoplanets. Astronomy and Astrophysics, 2023, 672, A77.	2.1	1
1030	The Dynamical Consequences of a Super-Earth in the Solar System. Planetary Science Journal, 2023, 4, 38.	1.5	3
1031	Exoplanet science with SPIRou: near-infrared precision velocimetry and spectropolarimetry. Comptes Rendus Physique, 2023, 24, 1-8.	0.3	2

#	Article	IF	CITATIONS
1032	A Bayesian Analysis of Technological Intelligence in Land and Oceans. Astrophysical Journal, 2023, 945, 23.	1.6	5
1033	EDEN Survey: Small Transiting Planet Detection Limits and Constraints on the Occurrence Rates of Planets around Late-M Dwarfs within 15 pc. Astronomical Journal, 2023, 165, 149.	1.9	4
1034	The Influence of Tidal Heating on the Habitability of Planets Orbiting White Dwarfs. Astrophysical Journal Letters, 2023, 945, L24.	3.0	4
1035	Terminator Habitability: The Case for Limited Water Availability on M-dwarf Planets. Astrophysical Journal, 2023, 945, 161.	1.6	4
1036	Impact of stellar variability on exoplanet detectability and characterisation. Comptes Rendus Physique, 2023, 24, 1-15.	0.3	0
1037	Global <i>N</i> -body simulations of circumbinary planet formation around Kepler-16 and -34 analogues I: Exploring the pebble accretion scenario. Monthly Notices of the Royal Astronomical Society, 2023, 522, 4352-4373.	1.6	5
1038	Large Interferometer For Exoplanets (LIFE). Astronomy and Astrophysics, 2023, 673, A94.	2.1	3
1039	Dynamical Evolution of Closely Packed Multiple Planetary Systems Subject to Atmospheric Mass Loss. Astronomical Journal, 2023, 165, 174.	1.9	1
1040	Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST. Nature, 2023, 618, 39-42.	13.7	40
1041	The ultraviolet habitable zone of exoplanets. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1411-1418.	1.6	0
1042	Linking Methanogenesis in Low-Temperature Hydrothermal Vent Systems to Planetary Spectra: Methane Biosignatures on an Archean-Earth-like Exoplanet. Astrobiology, 2023, 23, 415-430.	1.5	0
1043	Exoplanets: Where shall we go?., 2023, , 1-28.		0
1044	Rational ignorance in the search for extra-terrestrial life. New Astronomy Reviews, 2023, 96, 101675.	5. 2	0
1045	Traveling Planetary-scale Waves Cause Cloud Variability on Tidally Locked Aquaplanets. Planetary Science Journal, 2023, 4, 68.	1.5	2
1065	Symbolic-Numeric Computation inÂModeling theÂDynamics ofÂtheÂMany-Body System TRAPPIST. Lecture Notes in Computer Science, 2023, , 469-482.	1.0	0
1069	Io as an Analog for Tidally Heated Exoplanets. Astrophysics and Space Science Library, 2023, , 323-348.	1.0	0
1079	Transiting Planets., 2023,, 3094-3103.		0
1080	TRAPPIST-1 System. , 2023, , 3105-3113.		O

#	Article	IF	CITATIONS
1081	Planet Detection: Transit Timing Variation. , 2023, , 2348-2352.		0
1082	Brown Dwarf. , 2023, , 435-440.		O
1083	SPECULOOS., 2023,, 2826-2827.		0
1105	OPA! The Original PolyOculus Array: a status update. , 2023, , .		0
1113	Dynamics and clouds in planetary atmospheres from telescopic observations. Astronomy and Astrophysics Review, 2023, 31 , .	9.1	0
1124	Atmospheric carbon depletion as a tracer of water oceans and biomass on temperate terrestrial exoplanets. Nature Astronomy, 0 , , .	4.2	O