Microbiota Transfer Therapy alters gut ecosystem and i autism symptoms: an open-label study

Microbiome 5, 10 DOI: 10.1186/s40168-016-0225-7

Citation Report

#	Article	IF	CITATIONS
1	Probabilistic Invasion Underlies Natural Gut Microbiome Stability. Current Biology, 2017, 27, 1999-2006.e8.	1.8	144
2	Brief Report: Association Between Autism Spectrum Disorder, Gastrointestinal Problems and Perinatal Risk Factors Within Sibling Pairs. Journal of Autism and Developmental Disorders, 2017, 47, 2621-2627.	1.7	27
3	Tryptophan status in autism spectrum disorder and the influence of supplementation on its level. Metabolic Brain Disease, 2017, 32, 1585-1593.	1.4	45
4	Smog induces oxidative stress and microbiota disruption. Journal of Food and Drug Analysis, 2017, 25, 235-244.	0.9	28
5	Gut-Brain Axis and Behavior. Nestle Nutrition Institute Workshop Series, 2017, 88, 45-54.	1.5	47
6	Microbiota-related Changes in Bile Acid & Tryptophan Metabolism are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism. EBioMedicine, 2017, 24, 166-178.	2.7	261
7	Biological plausibility of the gut–brain axis in autism. Annals of the New York Academy of Sciences, 2017, 1408, 5-6.	1.8	19
8	Food and the gut: relevance to some of the autisms. Proceedings of the Nutrition Society, 2017, 76, 478-483.	0.4	3
9	Association Among Gut Microbes, Intestinal Physiology, and Autism. EBioMedicine, 2017, 25, 11-12.	2.7	11
10	Reply. Hepatology, 2017, 66, 1355-1356.	3.6	0
11	Pay dirt! human health depends on soil health. Complementary Therapies in Medicine, 2017, 32, A1-A2.	1.3	12
12	Fecal Microbiota Transplantation: Beyond Clostridium difficile. Current Infectious Disease Reports, 2017, 19, 31.	1.3	23
13	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.7	36
14	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. Archives of Medical Research, 2017, 48, 766-773.	1.5	37
15	The potential role of fecal microbiota transplantation in the treatment of inflammatory Bowel disease. Scandinavian Journal of Gastroenterology, 2017, 52, 1172-1184.	0.6	7
16	Using Animal Models to Study the Role of the Gut–Brain Axis in Autism. Current Developmental Disorders Reports, 2017, 4, 28-36.	0.9	24
17	Probiotic, Prebiotic, and Brain Development. Nutrients, 2017, 9, 1247.	1.7	64
18	The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 120.	1.8	311

		Citation R	EPORT	
#	Article		IF	CITATIONS
19	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017	, 8, 267.	1.5	20
20	Cross Talk: The Microbiota and Neurodevelopmental Disorders. Frontiers in Neuroscien 490.	ce, 2017, 11,	1.4	194
21	The Effect of Fecal Microbiota Transplantation on a Child with Tourette Syndrome. Cas Medicine, 2017, 2017, 1-3.	e Reports in	0.3	42
22	Rapid Assessment of Microbiota Changes in Individuals with Autism Spectrum Disorder Bacteria-derived Membrane Vesicles in Urine. Experimental Neurobiology, 2017, 26, 30	[•] Using 7-317.	0.7	51
23	Can fecal microbiota transplantation cure irritable bowel syndrome?. World Journal of Gastroenterology, 2017, 23, 4112.		1.4	51
24	Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain, Behavior 2018, 70, 48-60.	n's disease , and Immunity,	2.0	448
25	Intestinal microbiota, metabolome and gender dimorphism in autism spectrum disorde Autism Spectrum Disorders, 2018, 49, 65-74.	rs. Research in	0.8	10
26	Nutritional modulation of the intestinal microbiota; future opportunities for the prevent treatment of neuroimmune and neuroinflammatory disease. Journal of Nutritional Bioc 61, 1-16.	tion and hemistry, 2018,	1.9	58
27	Gut microbiota, metabolism and psychopathology: A critical review and novel perspect Reviews in Clinical Laboratory Sciences, 2018, 55, 283-293.	ives. Critical	2.7	31
28	Microbiota transplantation: concept, methodology and strategy for its modernization. Cell, 2018, 9, 462-473.	Protein and	4.8	201
29	Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics. M 53-63.	aturitas, 2018, 112,	1.0	71
30	The effect of fecal microbiota transplantation on psychiatric symptoms among patient bowel syndrome, functional diarrhea and functional constipation: An open-label observ Journal of Affective Disorders, 2018, 235, 506-512.	s with irritable ational study.	2.0	134
31	Current understanding of the human microbiome. Nature Medicine, 2018, 24, 392-400).	15.2	1,593
32	The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatolo 133-148.	gy, 2018, 6,	2.3	735
33	Comparison of Different Strategies for Providing Fecal Microbiota Transplantation to T with Recurrent Clostridium difficile Infection in Two English Hospitals: A Review. Infecti and Therapy, 2018, 7, 71-86.	reat Patients ous Diseases	1.8	45
34	The role of the gut microbiota in schizophrenia: Current and future perspectives. World Biological Psychiatry, 2018, 19, 571-585.	l Journal of	1.3	39
35	Microbial treatment in chronic constipation. Science China Life Sciences, 2018, 61, 74	4-752.	2.3	48
36	Searching for the gut microbial contributing factors to social behavior in rodent models spectrum disorder. Developmental Neurobiology, 2018, 78, 474-499.	s of autism	1.5	45

		CITATION R	EPORT	
#	Article		IF	CITATIONS
37	Causal effects of the microbiota on immune-mediated diseases. Science Immunology, 20)18, 3, .	5.6	103
38	Gut Microbiota, Inflammation, and Probiotics on Neural Development in Autism Spectru Neuroscience, 2018, 374, 271-286.	m Disorder.	1.1	77
39	Differences in fecal microbial metabolites and microbiota of children with autism spectru disorders. Anaerobe, 2018, 49, 121-131.	ım	1.0	249
40	Targeting gut microbiome: A novel and potential therapy for autism. Life Sciences, 2018	, 194, 111-119.	2.0	96
41	Microbiome in psychiatry: where will we go?. European Archives of Psychiatry and Clinica Neuroscience, 2018, 268, 1-2.	ıl	1.8	1
42	Gut-Microbiota-Brain Axis and Depression. , 2018, , 197-207.			6
43	Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbio	me, 2018, 6, 68.	4.9	162
44	Gut-immune-brain dysfunction in Autism: Importance of sex. Brain Research, 2018, 1693	, 214-217.	1.1	14
45	Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacological Research, 2018, 132, 1-6.		3.1	77
46	Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut comn Digestive and Liver Disease, 2018, 50, 635-639.	nensals.	0.4	137
47	Host-Microbe Interactions in Airway Disease: toward Disease Mechanisms and Novel The Strategies. MSystems, 2018, 3, .	rapeutic	1.7	3
48	Association between the gut microbiota and mineral metabolism. Journal of the Science Agriculture, 2018, 98, 2449-2460.	of Food and	1.7	110
49	Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annual Review o Pharmacology and Toxicology, 2018, 58, 411-428.	f	4.2	82
50	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psych 83, 214-223.	hiatry, 2018,	0.7	129
51	To engraft or not to engraft: an ecological framework for gut microbiome modulation wi microbes. Current Opinion in Biotechnology, 2018, 49, 129-139.	th live	3.3	131
52	Increased stool immunoglobulin A level in children with autism spectrum disorders. Rese Developmental Disabilities, 2018, 82, 90-94.	arch in	1.2	23
53	Gutsy Moves: The Amygdala as a Critical Node in Microbiota to Brain Signaling. BioEssay 1700172.	s, 2018, 40,	1.2	80
54	Gut Brain Axis and Its Microbiota Regulation in Mammals and Birds. Veterinary Clinics of America - Exotic Animal Practice, 2018, 21, 159-167.	North	0.4	3

#	Article	IF	CITATIONS
55	Recent developments in understanding the role of the gut microbiota in brain health and disease. Annals of the New York Academy of Sciences, 2018, 1420, 5-25.	1.8	227
56	Hydrogen breath test to detect small intestinal bacterial overgrowth: a prevalence case–control study in autism. European Child and Adolescent Psychiatry, 2018, 27, 233-240.	2.8	27
57	Effects of Early Intervention with Maternal Fecal Microbiota and Antibiotics on the Gut Microbiota and Metabolite Profiles of Piglets. Metabolites, 2018, 8, 89.	1.3	25
58	Challenges in the Healthcare Systems and Formative Needs of Family Doctors. Challenges, 2018, 9, 34.	0.9	0
59	Gut feelings: The microbiome and children's mental health. The Brown University Child and Adolescent Behavior Letter, 2018, 34, 1-5.	0.0	0
60	Gut Microbiota and its Role in Human Health. Psihologijske Teme, 2018, 27, 17-32.	0.1	1
61	Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics, 2018, 8, 5945-5959.	4.6	85
62	Gut Microbiota Features in Young Children With Autism Spectrum Disorders. Frontiers in Microbiology, 2018, 9, 3146.	1.5	154
63	q2-longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data. MSystems, 2018, 3, .	1.7	210
64	Development of the Gut Microbiome in Children, and Lifetime Implications for Obesity and Cardiometabolic Disease. Children, 2018, 5, 160.	0.6	53
65	What Is Your Gut Telling You? Exploring the Role of the Microbiome in Gut–Brain Signaling. Environmental Health Perspectives, 2018, 126, 062001.	2.8	1
66	Fusobacterium and Colorectal Cancer. Frontiers in Oncology, 2018, 8, 371.	1.3	89
67	The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Frontiers in Immunology, 2018, 9, 2325.	2.2	89
68	The Microbiome: A New Target for Research and Treatment of Schizophrenia and its Resistant Presentations? A Systematic Literature Search and Review. Frontiers in Pharmacology, 2018, 9, 1040.	1.6	33
69	Air Pollution, Early Life Microbiome, and Development. Current Environmental Health Reports, 2018, 5, 512-521.	3.2	59
70	Gut–brain axis in the executive function of austism spectrum disorder. Behavioural Pharmacology, 2018, 29, 654-663.	0.8	29
71	The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Current Neurology and Neuroscience Reports, 2018, 18, 81.	2.0	155
72	Microbiota and Phage Therapy: Future Challenges in Medicine. Medical Sciences (Basel, Switzerland), 2018, 6, 86.	1.3	43

#	Article	IF	CITATIONS
73	Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. Journal of Molecular Neuroscience, 2018, 66, 492-511.	1.1	30
74	Selenium and Autism Spectrum Disorder. Molecular and Integrative Toxicology, 2018, , 193-210.	0.5	3
75	Current Evidence in Delivery and Therapeutic Uses of Fecal Microbiota Transplantation in Human Diseases—Clostridium difficile Disease and Beyond. American Journal of the Medical Sciences, 2018, 356, 424-432.	0.4	24
76	The gut microbiome participates in transgenerational inheritance of lowâ€temperature responses in <i>Drosophila melanogaster</i> . FEBS Letters, 2018, 592, 4078-4086.	1.3	23
77	Smoking is associated with quantifiable differences in the human lung DNA virome and metabolome. Respiratory Research, 2018, 19, 174.	1.4	28
78	Immunological Dysfunction in Autism Spectrum Disorder: A Potential Target for Therapy. NeuroImmunoModulation, 2018, 25, 300-319.	0.9	50
79	Phylogenetic Diversity and Conservation Evaluation: Perspectives on Multiple Values, Indices, and Scales of Application. , 2018, , 1-26.		32
80	Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert Opinion on Biological Therapy, 2018, 18, 1061-1071.	1.4	27
81	Next-Generation Sequencing Library Preparation for 16S rRNA Microbiome Analysis After Serpin Treatment. Methods in Molecular Biology, 2018, 1826, 213-221.	0.4	2
82	Microbial exposure and human health. Current Opinion in Microbiology, 2018, 44, 79-87.	2.3	32
83	Role of Probiotics in Managing Gastrointestinal Dysfunction in Children with Autism Spectrum Disorder: An Update for Practitioners. Advances in Nutrition, 2018, 9, 637-650.	2.9	48
84	Microbiotaâ€gutâ€brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterology and Motility, 2018, 30, e13366.	1.6	43
85	Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders. Cellular and Molecular Neurobiology, 2018, 38, 1197-1206.	1.7	50
86	Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain, Behavior, and Immunity, 2018, 73, 310-319.	2.0	130
87	Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. ELife, 2018, 7, .	2.8	73
89	Interplay Between Peripheral and Central Inflammation in Autism Spectrum Disorders: Possible Nutritional and Therapeutic Strategies. Frontiers in Physiology, 2018, 9, 184.	1.3	48
90	Murine colitis reveals a disease-associated bacteriophage community. Nature Microbiology, 2018, 3, 1023-1031.	5.9	132
91	Gut-Brain Psychology: Rethinking Psychology From the Microbiota–Gut–Brain Axis. Frontiers in Integrative Neuroscience, 2018, 12, 33.	1.0	169

#	Article	IF	CITATIONS
92	Microbiome and Diseases: Neurological Disorders. , 2018, , 295-310.		3
93	The Perturbance of Microbiome and Gut-Brain Axis in Autism Spectrum Disorders. International Journal of Molecular Sciences, 2018, 19, 2251.	1.8	63
94	Reciprocal Interactions Between Gut Microbiota and Host Social Behavior. Frontiers in Integrative Neuroscience, 2018, 12, 21.	1.0	59
95	Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder—A Randomized, Controlled 12-Month Trial. Nutrients, 2018, 10, 369.	1.7	126
96	Dietary interventions for autism spectrum disorder: New perspectives from the gut-brain axis. Physiology and Behavior, 2018, 194, 577-582.	1.0	29
97	Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Frontiers in Microbiology, 2018, 9, 432.	1.5	137
98	Human microbiome restoration and safety. International Journal of Medical Microbiology, 2018, 308, 487-497.	1.5	46
99	Melatonin and Comorbidities in Children with Autism Spectrum Disorder. Current Developmental Disorders Reports, 2018, 5, 197-206.	0.9	36
100	Oral microbiome activity in children with autism spectrum disorder. Autism Research, 2018, 11, 1286-1299.	2.1	49
101	Early childhood antibiotics use and autism spectrum disorders: a population-based cohort study. International Journal of Epidemiology, 2018, 47, 1497-1506.	0.9	26
102	Social Skills Deficits in Autism Spectrum Disorder: Potential Biological Origins and Progress in Developing Therapeutic Agents. CNS Drugs, 2018, 32, 713-734.	2.7	84
103	Emerging Developments in Microbiome and Microglia Research: Implications for Neurodevelopmental Disorders. Frontiers in Immunology, 2018, 9, 1993.	2.2	16
104	Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity, 2018, 92, 12-34.	3.0	232
105	The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 611-636.	4.0	148
106	Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Critical Reviews in Food Science and Nutrition, 2019, 59, 3102-3116.	5.4	68
107	Making Sense of $\hat{a} \in \$ the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	1.0	142
108	Common Genetic Variants Link the Abnormalities in the Gut-Brain Axis in Prematurity and Autism. Cerebellum, 2019, 18, 255-265.	1.4	15
109	Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Translational Psychiatry, 2019, 9, 189.	2.4	287

	CITATION	Report	
# 110	ARTICLE Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacological Research, 2019, 148, 104403.	lF 3.1	Citations 228
111	Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Frontiers in Microbiology, 2019, 10, 1704.	1.5	54
112	A Systematic Review of the Microbiome in Children With Neurodevelopmental Disorders. Frontiers in Neurology, 2019, 10, 727.	1.1	25
113	The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet, The, 2019, 394, 420-431.	6.3	234
114	Investigational drugs in early-stage clinical trials for autism spectrum disorder. Expert Opinion on Investigational Drugs, 2019, 28, 709-718.	1.9	19
115	<p>Recent advances in the treatment of C. difficile using biotherapeutic agents</p> . Infection and Drug Resistance, 2019, Volume 12, 1597-1615.	1.1	11
116	Gut Microbiome: Profound Implications for Diet and Disease. Nutrients, 2019, 11, 1613.	1.7	615
117	Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism. Frontiers in Genetics, 2019, 10, 638.	1.1	116
118	Maternal Immune Activation and Related Factors in the Risk of Offspring Psychiatric Disorders. Frontiers in Psychiatry, 2019, 10, 430.	1.3	55
119	Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. Journal of Neurogastroenterology and Motility, 2019, 25, 363-376.	0.8	105
120	The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. Medicina (Lithuania), 2019, 55, 408.	0.8	36
121	Fecal Microbial Transplantation for Diseases Beyond Recurrent Clostridium Difficile Infection. Gastroenterology, 2019, 157, 624-636.	0.6	76
122	The gut microbiome in psychiatry: A primer for clinicians. Depression and Anxiety, 2019, 36, 1004-1025.	2.0	27
123	Implications of Diet and The Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 3109.	1.8	75
124	Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics, 2019, 19, 1037-1050.	1.4	116
125	Microglia as possible therapeutic targets for autism spectrum disorders. Progress in Molecular Biology and Translational Science, 2019, 167, 223-245.	0.9	18
126	Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduction and Targeted Therapy, 2019, 4, 41.	7.1	150
127	The microbiota and infectious diseases. , 2019, , 445-457.		0

	CHAHON R	EPORT	
#	Article	IF	CITATIONS
128	Studying the gut virome in the metagenomic era: challenges and perspectives. BMC Biology, 2019, 17, 84.	1.7	113
129	Minor Effect of Antibiotic Pre-treatment on the Engraftment of Donor Microbiota in Fecal Transplantation in Mice. Frontiers in Microbiology, 2019, 10, 2685.	1.5	41
130	Microbiota transplant therapy and autism: lessons for the clinic. Expert Review of Gastroenterology and Hepatology, 2019, 13, 1033-1037.	1.4	24
131	Microbiota and the social brain. Science, 2019, 366, .	6.0	279
132	The psychopharmacology of autism spectrum disorder and Rett syndrome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 165, 391-414.	1.0	17
133	Inflammation in Renal Diseases: New and Old Players. Frontiers in Pharmacology, 2019, 10, 1192.	1.6	203
134	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
135	Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?. BioMed Research International, 2019, 2019, 1-11.	0.9	21
136	The recognition and attitudes of postgraduate medical students toward fecal microbiota transplantation: a questionnaire study. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481986914.	1.4	13
137	The Gut Microbiome and Mental Health: What Should We Tell Our Patients?: Le microbiote Intestinal et la Santé Mentale : que Devrions-Nous dire à nos Patients?. Canadian Journal of Psychiatry, 2019, 64, 747-760.	0.9	58
138	Abnormal composition of gut microbiota contributes to deliriumâ€ i ke behaviors after abdominal surgery in mice. CNS Neuroscience and Therapeutics, 2019, 25, 685-696.	1.9	54
139	Melatonin Treatment Alleviates Spinal Cord Injury-Induced Gut Dysbiosis in Mice. Journal of Neurotrauma, 2019, 36, 2646-2664.	1.7	49
140	Alterations in Gut Glutamate Metabolism Associated with Changes in Gut Microbiota Composition in Children with Autism Spectrum Disorder. MSystems, 2019, 4, .	1.7	113
141	Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Translational Psychiatry, 2019, 9, 43.	2.4	194
142	Social dynamics modeling of chrono-nutrition. PLoS Computational Biology, 2019, 15, e1006714.	1.5	9
143	The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 2.	1.8	262
144	Relation Between Infant Microbiota and Autism?. Epidemiology, 2019, 30, 52-60.	1.2	27
145	The Impact of Starvation on the Microbiome and Gut-Brain Interaction in Anorexia Nervosa. Frontiers in Endocrinology, 2019, 10, 41.	1.5	46

#	Article	IF	CITATIONS
146	Impact of Diet and the Gut Microbiome on Neurodegeneration and Regeneration in Neurological Disorders. Neuroforum, 2019, 25, 39-47.	0.2	1
147	Therapeutic Potential of the Microbiome in the Treatment of Neuropsychiatric Disorders. Medical Sciences (Basel, Switzerland), 2019, 7, 21.	1.3	9
148	Is adolescence the missing developmental link in Microbiome–Gut–Brain axis communication?. Developmental Psychobiology, 2019, 61, 783-795.	0.9	24
149	Reprint of: Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders. Pharmacological Research, 2019, 140, 115-120.	3.1	38
150	Community ecology as a framework for human microbiome research. Nature Medicine, 2019, 25, 884-889.	15.2	96
151	Roles of Chinese Medicine and Gut Microbiota in Chronic Constipation. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	0.5	17
152	Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine, 2019, 44, 716-729.	2.7	95
153	Fecal Microbial Transplantation and Its Potential Application in Cardiometabolic Syndrome. Frontiers in Immunology, 2019, 10, 1341.	2.2	63
154	Propionic Acid Induces Gliosis and Neuro-inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Scientific Reports, 2019, 9, 8824.	1.6	88
155	Association Between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Frontiers in Psychiatry, 2019, 10, 473.	1.3	191
156	Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 2019, 177, 1600-1618.e17.	13.5	701
157	Fecal microbiota transplantation: great potential with many challenges. Translational Gastroenterology and Hepatology, 2019, 4, 40-40.	1.5	32
158	Gut Microbiota Disorder, Gut Epithelial and Blood–Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. NeuroMolecular Medicine, 2019, 21, 205-226.	1.8	41
160	Polyphenols as food bioactive compounds in the context of Autism Spectrum Disorders: A critical mini-review. Neuroscience and Biobehavioral Reviews, 2019, 102, 290-298.	2.9	15
161	Current applications of fecal microbiota transplantation in intestinal disorders. Kaohsiung Journal of Medical Sciences, 2019, 35, 327-331.	0.8	6
162	The efficacy of fecal microbiota transplantation for patients with chronic pouchitis: A case series. Clinical Case Reports (discontinued), 2019, 7, 782-788.	0.2	16
163	Evolution of fecal microbiota transplantation in methodology and ethical issues. Current Opinion in Pharmacology, 2019, 49, 11-16.	1.7	40
164	The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International Journal of Molecular Sciences, 2019, 20, 2115.	1.8	235

		CITATION RE	PORT	
#	Article		IF	CITATIONS
165	Rapidly Processed Stool Swabs Approximate Stool Microbiota Profiles. MSphere, 2019	, 4, .	1.3	19
166	Towards a rational design of faecal transplant analogues. Scientific Reports, 2019, 9, 5	558.	1.6	3
167	Probiotic Therapy for Treating Behavioral and Gastrointestinal Symptoms in Autism Sp Disorder: A Systematic Review of Clinical Trials. Current Medical Science, 2019, 39, 17	ectrum 3-184.	0.7	27
168	Correlation of Gut Microbiome Between ASD Children and Mothers and Potential Biom Assessment. Genomics, Proteomics and Bioinformatics, 2019, 17, 26-38.	arkers for Risk	3.0	72
169	The influence of neuroinflammation in Autism Spectrum Disorder. Brain, Behavior, and 79, 75-90.	Immunity, 2019,	2.0	214
170	Microbiota transplantation: Targeting cancer treatment. Cancer Letters, 2019, 452, 14	4-151.	3.2	34
171	From isoniazid to psychobiotics: the gut microbiome as a new antidepressant target. B Hospital Medicine (London, England: 2005), 2019, 80, 139-145.	ritish Journal of	0.2	20
172	Mapping the microbial interactome: Statistical and experimental approaches for microl inference. Experimental Biology and Medicine, 2019, 244, 445-458.	biome network	1.1	34
173	The human microbiome in health and disease: hype or hope. Acta Clinica Belgica, 2019	, 74, 53-64.	0.5	34
174	Autism Spectrum Disorders and the Gut Microbiota. Nutrients, 2019, 11, 521.		1.7	258
175	Steady-state reduction of generalized Lotka-Volterra systems in the microbiome. Physic 2019, 99, 032403.	cal Review E,	0.8	5
176	Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms, 2019, 7, 68.		1.6	51
177	Gut microbiota dysbiosis in a cohort of patients with psoriasis. British Journal of Derma 181, 1287-1295.	ıtology, 2019,	1.4	128
178	Mining the microbiota for microbial and metabolite-based immunotherapies. Nature Re Immunology, 2019, 19, 305-323.	eviews	10.6	211
179	Microbiome programming of brain development: implications for neurodevelopmental Developmental Medicine and Child Neurology, 2019, 61, 744-749.	disorders.	1.1	25
180	Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microb Reports, 2019, 9, 5821.	viota. Scientific	1.6	414
181	Faecal microbiota transplants for depression – Who gives a crapsule?. Australian and Journal of Psychiatry, 2019, 53, 732-734.	l New Zealand	1.3	13
182	Anti-inflammatory Effect of Ghrelin in Lymphoblastoid Cell Lines From Children With Au Spectrum Disorder. Frontiers in Psychiatry, 2019, 10, 152.	utism	1.3	10

(ITATION REPORT	~		<u> </u>	
	(ITA	TION	REPO	RT

#	Article	IF	CITATIONS
183	Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 2019, 11, 820.	1.7	128
184	Intestinal Microbiota in Early Life and Its Implications on Childhood Health. Genomics, Proteomics and Bioinformatics, 2019, 17, 13-25.	3.0	159
185	A Fruitful Discovery: Can Gut Bacteria Control Hyperactive Behavior?. Molecular Cell, 2019, 73, 395-397.	4.5	2
186	The Gut Microbiome Beyond the Bacteriome—The Neglected Role of Virome and Mycobiome in Health and Disease. , 2019, , 27-32.		2
187	Fecal Microbiota Transplantation for Recurrent <i>Clostridium difficile</i> Infection and Other Conditions in Children. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 130-143.	0.9	92
188	Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. Journal of Clinical Medicine, 2019, 8, 217.	1.0	71
189	A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clinical Microbiology and Infection, 2019, 25, 830-838.	2.8	106
190	Engineering the microbiome for animal health and conservation. Experimental Biology and Medicine, 2019, 244, 494-504.	1.1	65
191	Stercobilin: A Putative Link between Autism and Gastrointestinal Distress?. , 2019, , .		0
192	What does immunology have to do with brain development and neuropsychiatric disorders?. , 2019, 98, 241-253.	0.0	0
193	Effects of Probiotics on Gut Beneficial Microbes in Autistic Children. , 2019, , .		0
194	Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clinical and Translational Medicine, 2019, 8, 31.	1.7	50
195	Multivariate Analysis of Plasma Metabolites in Children with Autism Spectrum Disorder and Gastrointestinal Symptoms Before and After Microbiota Transfer Therapy. Processes, 2019, 7, 806.	1.3	11
196	Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of <i>Bifidobacterium</i> spp., <i>Lactobacillus</i> spp. and <i>Faecalibaculum</i> spp Food and Function 2019 10 7828-7843	2.1	115
197	Fluoxetine ameliorates dysbiosis in a depression model induced by chronic unpredicted mild stress in mice. International Journal of Medical Sciences, 2019, 16, 1260-1270.	1.1	75
198	The gut microbiome and heart failure. Current Opinion in Cardiology, 2019, 34, 225-232.	0.8	23
199	Fecal microbiota transplantation in children: current concepts. Current Opinion in Pediatrics, 2019, 31, 623-629.	1.0	14
200	Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chinese Medical Journal, 2019, 132, 1843-1855.	0.9	40

ARTICLE IF CITATIONS # International consensus conference on stool banking for faecal microbiota transplantation in 201 6.1 290 clinical practice. Gut, 2019, 68, 2111-2121. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiology, 2019, 19, 312. 1.3 Do Alarmins Have a Potential Role in Autism Spectrum Disorders Pathogenesis and Progression?. 203 1.8 17 Biomolecules, 2019, 9, 2. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An 204 94 Integrative Review. Frontiers in Psychiatry, 2018, 9, 751. Impact of gut microbiota on gutâ€distal autoimmunity: a focus on T cells. Immunology, 2019, 156, 305-318. 205 2.0 38 Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 92, 83-108. 2.5 Clinical Application and Potential of Fecal Microbiota Transplantation. Annual Review of Medicine, 207 5.0 184 2019, 70, 335-351. The role of the gut microbiota in development, function and disorders of the central nervous system 208 1.2 172 and the enteric nervous system. Journal of Neuroendocrinology, 2019, 31, e12684. The microbiota–gut–brain axis: A promising avenue to foster healthy developmental outcomes. 209 0.9 21 Developmental Psychobiology, 2019, 61, 772-782. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and 1.1 gastrointestinal symptoms. PLoS ONE, 2019, 14, e0210064. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and 211 0.6 11 Dementia: A Review. Dementia and Geriatric Cognitive Disorders Extra, 2019, 8, 360-381. Alteration of gut microbiota-associated epitopes in children with autism spectrum disorders. Brain, 54 Behavior, and Immunity, 2019, 75, 192-199. Fisher discriminant analysis for classification of autism spectrum disorders based on folate-related 213 1.9 25 metabolism markers. Journal of Nutritional Biochemistry, 2019, 64, 25-31. The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental 214 4.2 547 Medicine, 2019, 216, 20-40. A systematic review of gutâ€immuneâ€brain mechanisms in Autism Spectrum Disorder. Developmental 215 0.9 29 Psychobiology, 2019, 61, 752-771. The microbiome in threatened species conservation. Biological Conservation, 2019, 229, 85-98. 1.9 185 The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. 217 1.1 104 Pediatric Research, 2019, 85, 216-224. Computational profiling of the gut–brain axis: microflora dysbiosis insights to neurological 3.2

CITATION REPORT

disorders. Briefings in Bioinformatics, 2019, 20, 825-841.

#	Article	IF	CITATIONS
219	In search of stool donors: a multicenter study of prior knowledge, perceptions, motivators, and deterrents among potential donors for fecal microbiota transplantation. Gut Microbes, 2020, 11, 51-62.	4.3	22
220	Neuroinflammation in Murine Cirrhosis Is Dependent on the Gut Microbiome and Is Attenuated by Fecal Transplant. Hepatology, 2020, 71, 611-626.	3.6	76
221	Anorexia nervosa: Gut microbiota-immune-brain interactions. Clinical Nutrition, 2020, 39, 676-684.	2.3	66
222	Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 2020, 726, 133664.	1.0	178
223	Analysis of gut microbiome, nutrition and immune status in autism spectrum disorder: a case-control study in Ecuador. Gut Microbes, 2020, 11, 453-464.	4.3	41
224	Fecal Microbiota Transplant via Endoscopic Delivering Through Small Intestine and Colon: No Difference for Crohn's Disease. Digestive Diseases and Sciences, 2020, 65, 150-157.	1.1	33
225	Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metabolic Brain Disease, 2020, 35, 95-110.	1.4	6
226	Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020, 60, 477-502.	4.2	227
227	Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model. Gut, 2020, 69, 283-294.	6.1	336
228	Plasma trimethylamine N-oxide, a gut microbe–generated phosphatidylcholine metabolite, is associated with autism spectrum disorders. NeuroToxicology, 2020, 76, 93-98.	1.4	26
229	An approach to gut microbiota profile in children with autism spectrum disorder. Environmental Microbiology Reports, 2020, 12, 115-135.	1.0	36
230	The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Experimental Neurology, 2020, 323, 113085.	2.0	46
231	Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein and Cell, 2020, 11, 251-266.	4.8	144
232	Oral microbiota and autism spectrum disorder (ASD). Journal of Oral Microbiology, 2020, 12, 1702806.	1.2	40
233	A Descriptive Review on the Prevalence of Gastrointestinal Disturbances and Their Multiple Associations in Autism Spectrum Disorder. Medicina (Lithuania), 2020, 56, 11.	0.8	65
234	Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology, 2020, 79, 50-62.	0.9	87
235	The gut microbiome in neurological disorders. Lancet Neurology, The, 2020, 19, 179-194.	4.9	669
236	Gut microbiome composition and diversity are related to human personality traits. Human Microbiome	3.8	119

#	Article	IF	Citations
237	Biomarkers in autism spectrum disorders: Current progress. Clinica Chimica Acta, 2020, 502, 41-54.	0.5	71
238	Microbiome modulation to correct uremic toxins and to preserve kidney functions. Current Opinion in Nephrology and Hypertension, 2020, 29, 49-56.	1.0	29
239	Children with autism spectrum disorder: Pilot studies examining the salivary microbiome and implications for gut metabolism and social behavior. Human Microbiome Journal, 2020, 15, 100066.	3.8	12
240	Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Advances in Nutrition, 2020, 11, 709-723.	2.9	319
241	Neonate gut colonization: The rise of a social brain. Neurogastroenterology and Motility, 2020, 32, e13767.	1.6	2
242	Annual Research Review: Critical windows – the microbiota–gut–brain axis in neurocognitive development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 353-371.	3.1	103
243	Ethical implications of recruiting universal stool donors for faecal microbiota transplantation. Lancet Infectious Diseases, The, 2020, 20, e44-e49.	4.6	9
244	You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Frontiers in Neuroendocrinology, 2020, 56, 100815.	2.5	128
245	Exercise immunology: Future directions. Journal of Sport and Health Science, 2020, 9, 432-445.	3.3	73
246	The Intestinal Microbiome in Canine Chronic Enteropathy and Implications for Extraintestinal Disorders. Advances in Small Animal Care, 2020, 1, 101-110.	0.3	0
247	Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience, 2020, 21, 717-731.	4.9	167
248	The microbiota–microglia axis in central nervous system disorders. Brain Pathology, 2020, 30, 1159-1177.	2.1	52
249	The Gut Microbiota and Oxidative Stress in Autism Spectrum Disorders (ASD). Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	1.9	29
250	Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. International Journal of Molecular Sciences, 2020, 21, 7551.	1.8	131
251	The Gut Virome Database Reveals Age-Dependent Patterns of Virome Diversity in the Human Gut. Cell Host and Microbe, 2020, 28, 724-740.e8.	5.1	352
252	Integrative Review of Gut Microbiota and Expression of Symptoms Associated With Neonatal Abstinence Syndrome. Nursing Research, 2020, 69, S66-S78.	0.8	2
253	Effects of gut microbial-based treatments on gut microbiota, behavioral symptoms, and gastrointestinal symptoms in children with autism spectrum disorder: A systematic review. Psychiatry Research, 2020, 293, 113471.	1.7	34
254	Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Frontiers in Neuroscience, 2020, 14, 578666.	1.4	68

#	Article	IF	CITATIONS
255	Fecal Microbiota Transplant in Two Ulcerative Colitis Pediatric Cases: Gut Microbiota and Clinical Course Correlations. Microorganisms, 2020, 8, 1486.	1.6	18
256	The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sciences, 2020, 262, 118497.	2.0	27
257	Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review. Revista De PsiquiatrÃa Y Salud Mental (English Edition), 2020, 13, 150-164.	0.2	9
258	Recent Advances in the Pharmacological Management of Behavioral Disturbances Associated with Autism Spectrum Disorder in Children and Adolescents. Paediatric Drugs, 2020, 22, 473-483.	1.3	20
259	Microglia Require CD4ÂT Cells to Complete the Fetal-to-Adult Transition. Cell, 2020, 182, 625-640.e24.	13.5	191
260	Autism spectrum disorder (ASD): Disturbance of the melatonin system and its implications. Biomedicine and Pharmacotherapy, 2020, 130, 110496.	2.5	35
261	The role of the gut microbiota in the pathophysiology of mental and neurological disorders. Psychiatric Genetics, 2020, 30, 87-100.	0.6	7
262	Living Therapeutics: The Next Frontier of Precision Medicine. ACS Synthetic Biology, 2020, 9, 3184-3201.	1.9	15
263	Classification of Changes in the Fecal Microbiota Associated with Colonic Adenomatous Polyps Using a Long-Read Sequencing Platform. Genes, 2020, 11, 1374.	1.0	10
264	Shotgun Metagenomic Sequencing Identifies Dysbiosis in Triplet Sibling with Gastrointestinal Symptoms and ASD. Children, 2020, 7, 255.	0.6	4
265	The Efficacy of Fecal Microbiota Transplantation for Children With Tourette Syndrome: A Preliminary Study. Frontiers in Psychiatry, 2020, 11, 554441.	1.3	23
266	Protection of Fecal Microbiota Transplantation in a Mouse Model of Multiple Sclerosis. Mediators of Inflammation, 2020, 2020, 1-13.	1.4	50
267	Health Impact and Therapeutic Manipulation of the Gut Microbiome. High-Throughput, 2020, 9, 17.	4.4	14
268	Gut microbiota changes in patients with autism spectrum disorders. Journal of Psychiatric Research, 2020, 129, 149-159.	1.5	78
269	Neuroimmunogastroenterology: At the Interface of Neuroimmunology and Gastroenterology. Frontiers in Neurology, 2020, 11, 787.	1.1	7
270	Liver Cirrhosis and Sarcopenia from the Viewpoint of Dysbiosis. International Journal of Molecular Sciences, 2020, 21, 5254.	1.8	28
271	Impact of time and temperature on gut microbiota and SCFA composition in stool samples. PLoS ONE, 2020, 15, e0236944.	1.1	12
272	Evolving Technologies in Gastrointestinal Microbiome Era and Their Potential Clinical Applications. Journal of Clinical Medicine, 2020, 9, 2565.	1.0	7

#	Article	IF	CITATIONS
273	Effects of microbiota transplantation and the role of the vagus nerve in gut–brain axis in animals subjected to chronic mild stress. Journal of Affective Disorders, 2020, 277, 410-416.	2.0	30
274	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	0.7	473
275	Genome, Environment, Microbiome and Metabolome in Autism (GEMMA) Study Design: Biomarkers Identification for Precision Treatment and Primary Prevention of Autism Spectrum Disorders by an Integrated Multi-Omics Systems Biology Approach. Brain Sciences, 2020, 10, 743.	1.1	17
276	Multivariate Analysis of Fecal Metabolites from Children with Autism Spectrum Disorder and Gastrointestinal Symptoms before and after Microbiota Transfer Therapy. Journal of Personalized Medicine, 2020, 10, 152.	1.1	21
277	The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome. Scientific Reports, 2020, 10, 18349.	1.6	25
278	Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy. MSphere, 2020, 5, .	1.3	67
279	Fecal microbiota transplantation in gastrointestinal and extraintestinal disorders. Future Microbiology, 2020, 15, 1173-1183.	1.0	18
280	Evaluation of the Prebiotic Potential of a Commercial Synbiotic Food Ingredient on Gut Microbiota in an Ex Vivo Model of the Human Colon. Nutrients, 2020, 12, 2669.	1.7	9
281	Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396.	3.2	87
282	Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorder: Clinical and Preclinical Evidence. Microorganisms, 2020, 8, 1369.	1.6	33
283	Gut instincts: vitamin D/vitamin D receptor and microbiome in neurodevelopment disorders. Open Biology, 2020, 10, 200063.	1.5	22
284	The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice. Microbiome, 2020, 8, 120.	4.9	67
285	Beyond Fecal Microbiota Transplantation: Developing Drugs from the Microbiome. Journal of Infectious Diseases, 2021, 223, S276-S282.	1.9	12
286	Efficacy and safety of fecal microbiota transplantation for the treatment of diseases other than <i>Clostridium difficile</i> infection: a systematic review and meta-analysis. Gut Microbes, 2020, 12, 1854640.	4.3	81
287	Paradoxical Effects of a Cytokine and an Anticonvulsant Strengthen the Epigenetic/Enzymatic Avenue for Autism Research. Frontiers in Cellular Neuroscience, 2020, 14, 585395.	1.8	3
288	Antibiotic-induced disruption of commensal microbiome linked to increases in binge-like ethanol consumption behavior. Brain Research, 2020, 1747, 147067.	1.1	18
289	Gut microbiome-derived lactate promotes to anxiety-like behaviors through GPR81 receptor-mediated lipid metabolism pathway. Psychoneuroendocrinology, 2020, 117, 104699.	1.3	52
290	Is there a dysbiosis in individuals with a neurodevelopmental disorder compared to controls over the course of development? A systematic review. European Child and Adolescent Psychiatry, 2020, 30, 1671-1694.	2.8	13

#	Article	IF	CITATIONS
291	The role of the microbiome in the neurobiology of social behaviour. Biological Reviews, 2020, 95, 1131-1166.	4.7	72
292	A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression. Journal of Clinical Medicine, 2020, 9, 1369.	1.0	22
293	Gastrointestinal Issues and Autism Spectrum Disorder. Child and Adolescent Psychiatric Clinics of North America, 2020, 29, 501-513.	1.0	52
294	Could Gut Modulation through Probiotic Supplementation Be Beneficial in Autism Spectrum Disorder?. , 2020, , .		1
295	Microbes and mental health: Can the microbiome help explain clinical heterogeneity in psychiatry?. Frontiers in Neuroendocrinology, 2020, 58, 100849.	2.5	12
296	Effects of a synbiotic on symptoms, and daily functioning in attention deficit hyperactivity disorder – A double-blind randomized controlled trial. Brain, Behavior, and Immunity, 2020, 89, 9-19.	2.0	29
297	Relationship between T cells and microbiota in health and disease. Progress in Molecular Biology and Translational Science, 2020, 171, 95-129.	0.9	4
298	Effect of fecal microbiota transplant on symptoms of psychiatric disorders: a systematic review. BMC Psychiatry, 2020, 20, 299.	1.1	120
299	Effects of Dietary Fat Profile on Gut Microbiota in Valproate Animal Model of Autism. Frontiers in Medicine, 2020, 7, 151.	1.2	9
300	Fecal Microbiota Transplantation: Screening and Selection to Choose the Optimal Donor. Journal of Clinical Medicine, 2020, 9, 1757.	1.0	65
301	Targeting Gut Microbiota Dysbiosis: Potential Intervention Strategies for Neurological Disorders. Engineering, 2020, 6, 415-423.	3.2	26
302	Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients, 2020, 12, 792.	1.7	174
303	Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota. Journal of Proteomics, 2020, 219, 103737.	1.2	51
304	Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology, 2020, 45, 1086-1096.	2.8	39
305	Reply to: " †You know my name, but not my story' – Deciding on an accurate nomenclature for faecal microbiota transplantation― Journal of Hepatology, 2020, 72, 1213-1214.	1.8	2
306	Fecal Microbiota Transplantation in Neurological Disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 98.	1.8	221
307	Metagenome-wide association of gut microbiomeÂfeatures for schizophrenia. Nature Communications, 2020, 11, 1612.	5.8	204
308	The role of the gut microbiome in opioid use. Behavioural Pharmacology, 2020, 31, 113-121.	0.8	38

#	Article	IF	CITATIONS
309	Ameliorative Effect of Heat-Killed Lactobacillus plantarum L.137 and/or Aloe vera against Colitis in Mice. Processes, 2020, 8, 225.	1.3	11
310	Impact of Clostridium Bacteria in Children with Autism Spectrum Disorder and Their Anthropometric Measurements. Journal of Molecular Neuroscience, 2020, 70, 897-907.	1.1	37
311	Immune Modulatory Treatments for Autism Spectrum Disorder. Seminars in Pediatric Neurology, 2020, 35, 100836.	1.0	6
312	Isolation, identification and characterization of propionic acid bacteria associated with autistic spectrum disorder. Microbial Pathogenesis, 2020, 147, 104371.	1.3	9
313	A Revolutionizing Approach to Autism Spectrum Disorder Using the Microbiome. Nutrients, 2020, 12, 1983.	1.7	30
314	Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of Phage Therapy against Pathobionts. Cell Host and Microbe, 2020, 28, 380-389.e9.	5.1	51
315	Gastrointestinal alterations in autism spectrum disorder: What do we know?. Neuroscience and Biobehavioral Reviews, 2020, 118, 111-120.	2.9	34
316	Therapeutic Effects of the In Vitro Cultured Human Gut Microbiota as Transplants on Altering Gut Microbiota and Improving Symptoms Associated with Autism Spectrum Disorder. Microbial Ecology, 2020, 80, 475-486.	1.4	30
317	Treatment of childhood constipation: a synthesis of systematic reviews and meta-analyses. Expert Review of Gastroenterology and Hepatology, 2020, 14, 163-174.	1.4	20
318	Gut Microbiota Is the Key to the Antidepressant Effect of Chaihu-Shu-Gan-San. Metabolites, 2020, 10, 63.	1.3	11
319	Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder. Digestive Diseases and Sciences, 2020, 65, 818-828.	1.1	71
320	Gut Microbiome and Sex Bias in Autism Spectrum Disorders. Current Behavioral Neuroscience Reports, 2020, 7, 22-31.	0.6	4
321	Small talk: chemical conversations with bacteria. ChemTexts, 2020, 6, 1.	1.0	0
322	Autism Spectrum Disorder and the Gut Microbiota in Children: A Systematic Review. Annals of Nutrition and Metabolism, 2020, 76, 16-29.	1.0	61
323	The gut microbiota — brain axis of insects. Current Opinion in Insect Science, 2020, 39, 6-13.	2.2	52
324	Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. Journal of Hepatology, 2020, 72, 1003-1027.	1.8	123
325	Fecal microbiota transplantation in disease therapy. Clinica Chimica Acta, 2020, 503, 90-98.	0.5	107
326	Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathogens, 2020, 12, 6.	1.6	83

#	Article	IF	CITATIONS
327	The link between autism spectrum disorder and gut microbiota: A scoping review. Autism, 2020, 24, 1328-1344.	2.4	28
328	Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. Journal of Neuroscience Research, 2020, 98, 1335-1369.	1.3	45
329	Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review Gut Microbes, 2020, 11, 1172-1187.	4.3	57
330	Fungal Trans-kingdom Dynamics Linked to Responsiveness to Fecal Microbiota Transplantation (FMT) Therapy in Ulcerative Colitis. Cell Host and Microbe, 2020, 27, 823-829.e3.	5.1	110
331	Targeting gut microbiota as a possible therapeutic intervention in autism. , 2020, , 301-327.		2
332	Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 2021, 130, 14-24.	1.4	49
333	Gut-brain axis: A matter of concern in neuropsychiatric disorders…!. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110051.	2.5	42
334	Effects of Psychotropics on the Microbiome in Patients With Depression and Anxiety: Considerations in a Naturalistic Clinical Setting. International Journal of Neuropsychopharmacology, 2021, 24, 97-107.	1.0	24
335	Gastrointestinal problems are associated with increased repetitive behaviors but not social communication difficulties in young children with autism spectrum disorders. Autism, 2021, 25, 405-415.	2.4	28
336	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.	13.6	864
336 337	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention. , 2021, , 179-203.	13.6	864
336 337 338	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention., 2021,, 179-203. Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865.	13.6 2.0	864 1 27
336337338339	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention., 2021,, 179-203. Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865. Childhood Development and the Microbiome—The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology, 2021, 160, 495-506.	13.6 2.0 0.6	864 1 27 84
336 337 338 339	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention., 2021,, 179-203. Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865. Childhood Development and the Microbiome—The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology, 2021, 160, 495-506. Phages to shape the gut microbiota?. Current Opinion in Biotechnology, 2021, 68, 89-95.	13.6 2.0 0.6 3.3	 864 1 27 84 34
 336 337 338 339 340 341 	The gut microbiotaâ€"brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.Perinatal nutritional intervention. , 2021, , 179-203.Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865.Childhood Development and the Microbiomeâ€"The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology, 2021, 160, 495-506.Phages to shape the gut microbiota?. Current Opinion in Biotechnology, 2021, 68, 89-95.Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders. Neurochemistry International, 2021, 143, 104934.	13.6 2.0 0.6 3.3 1.9	 864 1 27 84 34 5
 336 337 338 339 340 341 342 	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention., 2021,, 179-203. Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865. Childhood Development and the Microbiome—The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Castroenterology, 2021, 160, 495-506. Phages to shape the gut microbiota?. Current Opinion in Biotechnology, 2021, 68, 89-95. Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders. Neurochemistry International, 2021, 143, 104934. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology, 2021, 14, 547-554.	13.6 2.0 0.6 3.3 1.9 2.7	 864 1 27 84 34 5 95
 336 337 338 339 340 341 342 343 	The gut microbiotaâ€"brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255. Perinatal nutritional intervention., 2021,, 179-203. Spinal cord injury and gut microbiota: A review. Life Sciences, 2021, 266, 118865. Childhood Development and the Microbiomeâ€"The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology, 2021, 160, 495-506. Phages to shape the gut microbiota?. Current Opinion in Biotechnology, 2021, 68, 89-95. Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders. Neurochemistry International, 2021, 143, 104934. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunology, 2021, 14, 547-554. Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neuroscience and Biobehavioral Reviews, 2021, 121, 128-143.	 13.6 2.0 0.6 3.3 1.9 2.7 2.9 	 864 1 27 84 34 5 95 14

#	Article	IF	CITATIONS
345	Colonic Transendoscopic Enteral Tubing: Route for a Novel, Safe, and Convenient Delivery of Washed Microbiota Transplantation in Children. Gastroenterology Research and Practice, 2021, 2021, 1-7.	0.7	13
346	The Microbiome-Gut-Brain Axis in Neurocognitive Development and Decline. Modern Trends in Psychiatry, 2021, 32, 12-25.	2.1	6
347	Psychobiotics: Evolution of Novel Antidepressants. Modern Trends in Psychiatry, 2021, 32, 134-143.	2.1	10
348	Optimization of Conditions for Human Bacterial Preparation for Biological Correction of Intestinal Microflora. Biomedical Chemistry Research and Methods, 2021, 4, e00151.	0.1	0
349	Virulence factor-related gut microbiota genes and immunoglobulin A levels as novel markers for machine learning-based classification of autism spectrum disorder. Computational and Structural Biotechnology Journal, 2021, 19, 545-554.	1.9	19
350	The Effect of Microbiota on Behaviour. Modern Trends in Psychiatry, 2021, 32, 58-67.	2.1	1
351	Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. Journal of Applied Microbiology, 2021, 131, 1039-1055.	1.4	2
353	Safety of fecal microbiota transplantation for <i>Clostridioides difficile</i> infection focusing on pathobionts and SARS-CoV-2. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110096.	1.4	10
354	Gut Microbiota in Brain diseases. , 2021, , 253-253.		0
355	Targeting the gut microbiome: A brief report on the awareness, practice, and readiness to engage in clinical interventions in Qatar. Qatar Medical Journal, 2021, 2020, 47.	0.2	5
356	Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes, 2021, 13, 1941711.	4.3	59
357	Altered gut–brain signaling in autism spectrum disorders—from biomarkers to possible intervention strategies. , 2021, , 127-149.		0
358	Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Review of Gastroenterology and Hepatology, 2021, 15, 599-622.	1.4	41
360	Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Computational and Structural Biotechnology Journal, 2021, 19, 752-758.	1.9	6
361	Effects of <i>Limosilactobacillus fermentum</i> CCFM1139 on experimental periodontitis in rats. Food and Function, 2021, 12, 4670-4678.	2.1	5
362	Role of the Microbiome in Interstitial Lung Diseases. Frontiers in Medicine, 2021, 8, 595522.	1.2	29
363	Microbiotaâ€gutâ€brain axis as a regulator of reward processes. Journal of Neurochemistry, 2021, 157, 1495-1524.	2.1	60
365	Future Directions in Reducing Gastrointestinal Disorders in Children With ASD Using Fecal Microbiota Transplantation. Frontiers in Cellular and Infection Microbiology, 2021, <u>11, 630052</u> .	1.8	11

#	Article	IF	CITATIONS
366	Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. Advanced Science, 2021, 8, 2004831.	5.6	71
367	FECAL MICROBIOTES TRANSPLANTATION TECHNOLOGIES: MEDICAL, BIOTECHNOLOGICAL AND REGULATORY ASPECTS. Biotechnologia Acta, 2021, 14, 46-56.	0.3	Ο
368	Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	1.9	54
369	Fecal microbiota transplantation: donor selection criteria, storage and preparation of biomaterials (review of current recommendations). Terapevticheskii Arkhiv, 2021, 93, 215-221.	0.2	6
370	The Development of Early Life Microbiota in Human Health and Disease. Engineering, 2022, 12, 101-114.	3.2	6
371	Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovremennye Tehnologii V Medicine, 2021, 13, 78.	0.4	1
372	Fecal Microbiota Transplantation: The Evolving Risk Landscape. American Journal of Gastroenterology, 2021, 116, 647-656.	0.2	37
373	Effects of delivery mode on behavior in mouse offspring. Physiology and Behavior, 2021, 230, 113285.	1.0	6
374	Potential Effect of Probiotics on the Modulating of Gut Microbiota in Autism Spectrum Disorders (ASD). Journal of Pharmaceutical Research International, 0, , 26-38.	1.0	0
375	What Makes a Successful Donor? Fecal Transplant from Anxious-Like Rats Does Not Prevent Spinal Cord Injury-Induced Dysbiosis. Biology, 2021, 10, 254.	1.3	5
376	The Contribution of Gut Microbiota–Brain Axis in the Development of Brain Disorders. Frontiers in Neuroscience, 2021, 15, 616883.	1.4	65
377	Unravelling the potential of gut microbiota in sustaining brain health and their current prospective towards development of neurotherapeutics. Archives of Microbiology, 2021, 203, 2895-2910.	1.0	8
378	Genetic Approaches Using Zebrafish to Study the Microbiota–Gut–Brain Axis in Neurological Disorders. Cells, 2021, 10, 566.	1.8	26
379	Gastrointestinal Issues and Autism Spectrum Disorder. Psychiatric Clinics of North America, 2021, 44, 69-81.	0.7	23
380	A Novel and Reliable Rat Model of Autism. Frontiers in Psychiatry, 2021, 12, 549810.	1.3	13
381	Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9, 59.	4.9	97
382	Modulation of gut microbiota in autism spectrum disorders: a systematic review. European Journal of Psychiatry, 2021, 35, 107-121.	0.7	3
383	Fecal microbiota transplants: A review of emerging clinical data on applications, efficacy, and risks (2015–2020). Qatar Medical Journal, 2021, 2021, 5.	0.2	1

#	Article	IF	CITATIONS
384	Trends in Nutrient- and Non-Nutrient–Containing Dietary Supplement Use among US Children from 1999 to 2016. Journal of Pediatrics, 2021, 231, 131-140.e2.	0.9	10
385	A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Current Neuropharmacology, 2021, 19, 610-628.	1.4	15
386	Children with Autism and Their Typically Developing Siblings Differ in Amplicon Sequence Variants and Predicted Functions of Stool-Associated Microbes. MSystems, 2021, 6, .	1.7	16
387	Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 503-513.	8.2	74
388	The Gut Microbiome in Autism: Study-Site Effects and Longitudinal Analysis of Behavior Change. MSystems, 2021, 6, .	1.7	28
389	Abdominal Pain in Children and Adolescents with Autism Spectrum Disorder: a Systematic Review. Review Journal of Autism and Developmental Disorders, 0, , 1.	2.2	4
390	Evaluation of fecal microbiota transplantation in Parkinson's disease patients with constipation. Microbial Cell Factories, 2021, 20, 98.	1.9	79
391	Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host and Microbe, 2021, 29, 726-739.e5.	5.1	52
392	Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation. Gastroenterology, 2021, 160, 2089-2102.e12.	0.6	45
393	Stability of the human gut virome and effect of gluten-free diet. Cell Reports, 2021, 35, 109132.	2.9	34
394	Influence du microbiote sur la douleur. Douleur Et Analgesie, 2021, 34, 86-96.	0.2	0
395	Microbiota and Microglia Interactions in ASD. Frontiers in Immunology, 2021, 12, 676255.	2.2	31
396	Novel treatments for autism spectrum disorder based on genomics and systems biology. , 2022, 230, 107939.		19
397	Factors in an Auto-Brewery Syndrome group compared to an American Gut Project group: a case-control study. F1000Research, 2021, 10, 457.	0.8	2
398	The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Revista Brasileira De Psiquiatria, 2021, 43, 293-305.	0.9	87
399	Comparison of gut microbiota in autism spectrum disorders and neurotypical boys in China: A case-control study. Synthetic and Systems Biotechnology, 2021, 6, 120-126.	1.8	24
400	Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review. Autism Research, 2021, 14, 1820-1836.	2.1	57
401	L'axe intestin–cerveau : les pistes actuelles. Douleur Et Analgesie, 2021, 34, 70-85.	0.2	0

#	Article	IF	CITATIONS
402	Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 2021, 13, 2099.	1.7	230
403	Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus). Scientific Reports, 2021, 11, 13218.	1.6	16
404	Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. Microbiome, 2021, 9, 150.	4.9	67
405	Spinal Cord Injury Changes the Structure and Functional Potential of Gut Bacterial and Viral Communities. MSystems, 2021, 6, .	1.7	28
406	Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neuroscience and Biobehavioral Reviews, 2021, 125, 517-534.	2.9	5
407	The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643214.	1.8	43
408	Microbiota and epigenetics: promising therapeutic approaches?. Environmental Science and Pollution Research, 2021, 28, 49343-49361.	2.7	15
409	Gut microbiota alteration and modulation in psychiatric disorders: Current evidence on fecal microbiota transplantation. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 109, 110258.	2.5	52
410	The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes, 2021, 12, 1133.	1.0	22
411	Disturbances of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Dart 3. Dotential strategies of influence on gut-brain axis for correction of symptoms of autism spectrum disorders. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii. 2021, 98, 331-338.	0.3	1
412	Role of microbes in the pathogenesis of neuropsychiatric disorders. Frontiers in Neuroendocrinology, 2021, 62, 100917.	2.5	8
413	Advancing human disease research with fish evolutionary mutant models. Trends in Genetics, 2022, 38, 22-44.	2.9	23
414	Coupling mechanism of green building industry innovation ecosystem based on blockchain smart city. Journal of Cleaner Production, 2021, 307, 126766.	4.6	19
415	The Microbiota/Microbiome and the Gut–Brain Axis: How Much Do They Matter in Psychiatry?. Life, 2021, 11, 760.	1.1	12
416	Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neuroscience Research, 2021, 168, 3-19.	1.0	15
417	Autism Spectrum Disorders: Etiology and Pathology. , 0, , 1-16.		23
418	Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sciences, 2021, 11, 1038.	1.1	37
419	Potential roles of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Research Reviews, 2021, 69, 101347.	5.0	40

ARTICLE IF CITATIONS Gut Microbiota and Neuroplasticity. Cells, 2021, 10, 2084. 1.8 22 420 Prebiotic, Probiotic, and Synbiotic Consumption Alter Behavioral Variables and Intestinal Permeability 421 1.6 and Microbiota in BTBR Mice. Microorganisms, 2021, 9, 1833. The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' 422 2.9 3 function. Neuroscience and Biobehavioral Reviews, 2021, 127, 284-295. Fecal Microbiota Transplantation Exerts a Protective Role in MPTP-Induced Parkinson's Disease via the 423 TLR4/PI3K/AKT/NF-κB Pathway Stimulated by α-Synuclein. Neurochemical Research, 2021, 46, 3050-3058. Chemically and Biologically Engineered Bacteriaâ€Based Delivery Systems for Emerging Diagnosis and 425 11.1 93 Advanced Therapy. Advanced Materials, 2021, 33, e2102580. Maternal Immune Activation Causes Social Behavior Deficits and Hypomyelination in Male Rat Offspring with an Autism-Like Microbiota Profile. Brain Sciences, 2021, 11, 1085. 1.1 The effects of probiotics and prebiotics on gastrointestinal and behavioural symptoms in autism 427 0.4 1 spectrum disorder. Current Reviews in Clinical and Experimental Pharmacology, 2021, 16, . The Gut-Microbiota-Brain Axis in Autism Spectrum Disorder., 0,, 95-114. 428 Keystone microbes affect the evolution and ecological coexistence of the community via 429 1.4 6 spécies/strain specificity. Journal of Applied Microbiology, 2022, 132, 1227-1238. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Communications, 2021, 41, 937-967. Evolution of Intestinal Microbiota of Asphyxiated Neonates Within 1 Week and Its Relationship With 431 4 0.9 Neural Development at 6 Months. Frontiers in Pediatrics, 2021, 9, 690339. Effect of Anesthesia/Surgery on Gut Microbiota and Fecal Metabolites and Their Relationship With 1.2 Cognitive Dysfunction. Frontiers in Systems Neuroscience, 2021, 15, 655695. A pilot study to investigate the alteration of gut microbial profile in Dip2a knockout mice. 433 1.1 2 International Microbiology, 2022, 25, 267-274. Interactions between the intestinal microbiota and epigenome in individuals with autism spectrum 434 1.1 disorder. Developmental Medicine and Child Neurology, 2022, 64, 296-304. Microbiome-Gut-Brain Interactions in Neurodevelopmental Disorders: Focus on Autism and 435 0 Schizophrenia., 2021,, 258-291. The gut vascular barrier: a new player in the gut–liver–brain axis. Trends in Molecular Medicine, 2021, 27, 844-855. Fecal Microbiota Transplantation as a Tool for Therapeutic Modulation of Non-gastrointestinal 437 1.2 9 Disorders. Frontiers in Medicine, 2021, 8, 665520. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism 438 1.6 spectrum disorder: a systematic review. Gut Pathogens, 2021, 13, 54.

#	Article	IF	CITATIONS
439	Procedures for Fecal Microbiota Transplantation in Murine Microbiome Studies. Frontiers in Cellular and Infection Microbiology, 2021, 11, 711055.	1.8	39
440	The effect of probiotic, prebiotic and gut microbiota on ASD: A review and future perspectives. Critical Reviews in Food Science and Nutrition, 2023, 63, 2319-2330.	5.4	6
441	Integrating Viral Metagenomics into an Ecological Framework. Annual Review of Virology, 2021, 8, 133-158.	3.0	40
442	Impact of Zinc Oxide Nanoparticles on the Composition of Gut Microbiota in Healthy and Autism Spectrum Disorder Children. Materials, 2021, 14, 5488.	1.3	7
443	The Impact of Gut Microbiota-Derived Metabolites in Autism Spectrum Disorders. International Journal of Molecular Sciences, 2021, 22, 10052.	1.8	23
444	Chains of evidence from correlations to causal molecules in microbiome-linked diseases. Nature Chemical Biology, 2021, 17, 1046-1056.	3.9	40
445	Altering the gut microbiome to potentially modulate behavioral manifestations in autism spectrum disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 2021, 128, 549-557.	2.9	32
446	Surgical Menopause and Estrogen Therapy Modulate the Gut Microbiota, Obesity Markers, and Spatial Memory in Rats. Frontiers in Cellular and Infection Microbiology, 2021, 11, 702628.	1.8	18
447	Effect of Microgravity Environment on Gut Microbiome and Angiogenesis. Life, 2021, 11, 1008.	1.1	15
448	The microbiome, guard or threat to infant health. Trends in Molecular Medicine, 2021, 27, 1175-1186.	3.5	10
449	Altered Gut Microbiota in Korean Children with Autism Spectrum Disorders. Nutrients, 2021, 13, 3300.	1.7	12
450	Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197, 108721.	2.0	27
451	Emerging roles for microglia and microbiota in the development of social circuits. Brain, Behavior, & Immunity - Health, 2021, 16, 100296.	1.3	5
452	The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacological Research, 2021, 172, 105840.	3.1	201
453	Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain, Behavior, and Immunity, 2021, 97, 119-134.	2.0	19
454	Transplantation of gut microbiota derived from Alzheimer's disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain, Behavior, and Immunity, 2021, 98, 357-365.	2.0	93
455	Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacological Research, 2021, 173, 105909.	3.1	16
456	Microbiome Based Diseases Diagnostics. , 2022, , 390-401.		1

ARTICLE IF CITATIONS Gut Dysbiosis and Neurological Disordersâ€"An Eclectic Perspective. , 2022, , 489-500. 0 457 Microbiome Management of Neurological Disorders., 2022, , 342-357. Adverse events of fecal microbiota transplantation: a metaanalysis of high-quality studies. Annals of 459 0.4 8 Gastroenterology, 2021, 34, 802-814. Daily intake of <i>Lactobacillus</i> alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. 460 Food and Function, 2021, 12, 2591-2604. Microbiota-Gut-Brain Axis., 2021, , 423-423. 461 0 The Impacts of Probiotics on Microbiota in Patients With Autism Spectrum Disorder., 2022, , 296-319. Our Microbiome: On the Challenges, Promises, and Hype. Results and Problems in Cell Differentiation, 463 0.2 4 2020, 69, 539-557. PrebiÃ³ticos, probiÃ³ticos y trasplante de microbiota fecal en el autismo: una revisiÃ³n sistemÃ_itica. 464 1.0 Revista De PsiquiatrÃa Y Salud Mental, 2020, 13, 150-164. The gut microbiome and neuropsychiatric disorders: implications for attention deficit hyperactivity 465 0.7 40 disorder (ADHD). Journal of Medical Microbiology, 2020, 69, 14-24. Systematic review: the global incidence of faecal microbiota transplantation $\hat{\mathbf{e}}_{\mathbf{f}}$ elated adverse events 471 from 2000 to 2020. Alimentary Pharmacology and Therapeutics, 2021, 53, 33-42. Gut Bacteria Shared by Children and Their Mothers Associate with Developmental Level and Social 472 1.3 11 Deficits in Autism Spectrum Disorder. MSphere, 2020, 5, . The gut microbiome: what every gastroenterologist needs to know. Frontline Gastroenterology, 2021, 12, 118-127. Gut Microbiota and Disorders of the Central Nervous System. Neuroscientist, 2020, 26, 487-502. 474 2.6 20 Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms?. Microbes and Environments, 2020, 35, n/a. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded 476 1.1 58 case-control study. PLoS ONE, 2017, 12, e0186377. Comparison of the human microbiome in adults and children with chronic rhinosinusitis. PLoS ONE, 1.1 2020, 15, e0242770. Intestinal microbiota and nutrients as determinants of nervous system function. Part I. 478 0.1 4 Gastrointestinal microbiota. Aktualnosci Neurologiczne, 2017, 17, 181-188. Faecal microbiota transplantation: indications, evidence and safety. Australian Prescriber, 2020, 43, 36-38.

#	Article	IF	CITATIONS
481	New insights into irritable bowel syndrome: from pathophysiology to treatment. Annals of Gastroenterology, 2019, 32, 554-564.	0.4	25
482	Microbiota, Immune System and Autism Spectrum Disorders: An Integrative Model towards Novel Treatment Options. Current Medicinal Chemistry, 2020, 27, 5119-5136.	1.2	25
483	Specialized Diet Therapies: Exploration for Improving Behavior in Autism Spectrum Disorder (ASD). Current Medicinal Chemistry, 2020, 27, 6771-6786.	1.2	6
484	Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Current Pharmaceutical Design, 2020, 25, 4331-4343.	0.9	24
485	Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Current Drug Targets, 2018, 20, 232-240.	1.0	14
486	The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Current Neuropharmacology, 2018, 16, 559-573.	1.4	147
487	Harnessing the microbiota to treat neurological diseases. Dialogues in Clinical Neuroscience, 2019, 21, 159-165.	1.8	4
488	A Gut Feeling: The Importance of the Intestinal Microbiota in Psychiatric Disorders. Frontiers in Immunology, 2020, 11, 510113.	2.2	10
489	The Brain–Gut–Microbiome Axis in Psychiatry. International Journal of Molecular Sciences, 2020, 21, 7122.	1.8	28
490	Gut Bacterial Dysbiosis in Children with Intractable Epilepsy. Journal of Clinical Medicine, 2021, 10, 5.	1.0	29
491	Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. Journal of Clinical Medicine, 2021, 10, 27.	1.0	26
492	Altered Gut Microbiome in Autism Spectrum Disorder: Potential Mechanism and Implications for Clinical Intervention. Global Clinical and Translational Research, 2019, , 45-52.	0.4	6
493	Faecal microbiota transplantation in patients with <i>Clostridium difficile</i> and significant comorbidities as well as in patients with new indications: A case series. World Journal of Gastroenterology, 2017, 23, 7174-7184.	1.4	37
494	Therapies to modulate gut microbiota: Past, present and future. World Journal of Gastroenterology, 2020, 26, 777-788.	1.4	52
495	Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation. Journal of Microbiology and Biotechnology, 2020, 30, 1132-1141.	0.9	89
496	Gluten-Free Casein-Free Diet for Autism Spectrum Disorders: Can It Be Effective in Solving Behavioural and Gastrointestinal Problems?. Eurasian Journal of Medicine, 2020, 52, 292-297.	0.2	18
497	Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa¡\$ceongso'nyeon Jeongsin Yihag, 2020, 31, 131-145.	0.3	20
498	Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.	0.9	360

		CITATION REPORT		
#	Article		IF	CITATIONS
499	Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Imp Microbiota in an Open-Label Study. Frontiers in Cellular and Infection Microbiology, 202	proving the Gut 1, 11, 759435.	1.8	61
501	Gut Reactions: How Far Are We from Understanding and Manipulating the Microbiota C the Interaction with Its Host? Lessons from Autism Spectrum Disorder Studies. Nutrients 3492.	omplexity and s, 2021, 13,	1.7	6
502	Irritable bowel syndrome and transplantation of fecal microbiota. Review. Modern Gastro 2021, , .	centerology,	0.1	0
503	Role of Gastrointestinal Dysbiosis and Fecal Transplantation in Parkinson's Disease. e19035.	Cureus, 2021, 13,	0.2	0
504	Pre- and probiotics in the management of children with autism and gut issues: a review of evidence. European Journal of Clinical Nutrition, 2022, 76, 913-921.	of the current	1.3	11
505	Abnormal interhemispheric homotopic functional connectivity is correlated with gastroin symptoms in patients with major depressive disorder. Journal of Psychiatric Research, 20 234-240.	ntestinal 121, 144,	1.5	8
506	Quale diagnosi precoce per quale intervento precoce?. Pnei Review, 2017, , 47-57.		0.1	0
507	Autism and Cancer. , 2018, , 1-5.			0
510	From neurology to oncology: what have in common autism and cancer? the role of onco immune system and microbiota. Journal of Neurology & Stroke, 2018, 8, .	genes,	0.0	1
512	Đžverlap syndrome of celiac disease with atypical autism in a child: case report. ZdorovÊ 13, 107-111.	¹ e Rebenka, 2018,	0.0	0
513	Le microbiote, l'intestin et le cerveau. Phytotherapie, 2018, 16, 315-319.		0.1	0
515	Altered Gut Microbiome in Autism Spectrum Disorder: Potential Mechanism and Implicat Clinical Intervention. , 2019, , .	tions for		2
520	Gastrointestinal Symptoms in Autism Spectrum Disorders. Journal of Undergraduate Res (Gainesville, Fla), 2019, 21, .	earch	0.0	0
521	New Progress in the Etiology and Treatment of Autism. Advances in Psychology, 2020, 1	0, 580-588.	0.0	0
522	Efficacy and safety of microbiota transfer therapy for the management of autism spectruchildren: a systematic review. F1000Research, 0, 9, 48.	um disorder in	0.8	0
524	Otizm Spektrum Bozukluğuna Moleküler Bakış: Genetik ve İmmünolojik Etm üzerine Bulgular. Arsiv Kaynak Tarama Dergisi, 2020, 29, 8-23.	enler ile Bağırsak Mil	robiyotas. 0.1	ı 0
528	Donor Screening for Fecal Microbiota Transplantation. Korean Journal of Medicine, 2020	, 95, 181-187.	0.1	0
529	Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointest Disorders in Children with Autism Spectrum Disorder. Nutrients, 2021, 13, 3818.	inal	1.7	6

#	Article	IF	CITATIONS
530	Effects of Diet, Nutrition, and Exercise in Children With Autism and Autism Spectrum Disorder: A Literature Review. Cureus, 2020, 12, e12222.	0.2	16
531	The role of intestinal flora in autism and nutritional approaches. Demiroğlu Bilim Üniversitesi Florence Nightingale Transplantasyon Dergisi, 2020, 5, 61-69.	0.2	0
533	Trends in Web Searches About the Causes and Treatments of Autism Over the Past 15 Years: Exploratory Infodemiology Study. JMIR Pediatrics and Parenting, 2020, 3, e20913.	0.8	9
534	Mental Disorders Linked to Crosstalk between The Gut Microbiome and The Brain. Experimental Neurobiology, 2020, 29, 403-416.	0.7	7
535	Understanding autism spectrum disorders with animal models: applications, insights, and perspectives. Zoological Research, 2021, 42, 800-823.	0.9	9
536	Gastrointestinal Tract Symptomatology in Adults with Pica and Autism. Autism and Developmental Disorders, 2020, 18, 3-12.	0.6	1
537	Manipulating the gut microbiota. , 2020, , 195-215.		0
540	Autism Spectrum Disorder and Transplantation of Intestinal Microbiota. Gastroenterology ÂMedicineÂ&ÂResearch, 2020, 4, .	0.0	0
542	An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 246-255.	1.4	22
543	Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa¡\$ceongso'nyeon Jeongsin Yihag, 2020, 31, 146-153.	0.3	3
544	Trasplante de microbiota fecal: una revisión. Revista Colombiana De Gastroenterologia, 2020, 35, 229-337.	0.1	0
545	Evaluation of the Levels of Metabolites in Feces of Patients with Inflammatory Bowel Diseases. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 312-319.	0.2	1
546	Oral microbiota transplant: a potential new therapy for oral diseases. Journal of the California Dental Association, 2017, 45, 565-568.	0.0	6
547	Gut mobilization improves behavioral symptoms and modulates urinary pâ€cresol in chronically constipated autistic children: A prospective study. Autism Research, 2021, , .	2.1	6
548	Application of Clustering Method to Explore the Correlation Between Dominant Flora and the Autism Spectrum Disorder Clinical Phenotype in Chinese Children. Frontiers in Neuroscience, 2021, 15, 760779.	1.4	1
549	Current and future applications of fecal microbiota transplantation for children. Biomedical Journal, 2022, 45, 11-18.	1.4	11
550	Fecal Microbiota Transplantation in Children. , 2022, , 709-712.		0
551	Gut and Cutaneous Microbiome Featuring Abundance of Lactobacillus reuteri Protected Against Psoriasis-Like Inflammation in Mice. Journal of Inflammation Research, 2021, Volume 14, 6175-6190.	1.6	7

ARTICLE IF CITATIONS # Autism-related dietary preferences mediate autism-gut microbiome associations. Cell, 2021, 184, 552 13.5 172 5916-5931.e17. Akkermansia muciniphila – obiecujÄ…cy kandydat na probiotyk nowej generacji. Postepy Higieny I Medycyny 0.1 Doswiadczalnej, 2021, 75, 724-748. Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes, 554 4.3 24 2021, 13, 1996848. The Gut Microbiota and Immunopathophysiology., 2021,,. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. 556 5.7 138 Clinical Microbiology Reviews, 2022, 35, e0033820. Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. Medicina 0.8 (Lithuania), 2022, 58, 84. 558 Microbial Therapeutics in Liver Disease., 2022, , 271-285. 1 Using Extract From the Stems and Leaves of Yizhi (Alpiniae oxyphyllae) as Feed Additive Increases Meat Quality and Intestinal Health in Ducks. Frontiers in Veterinary Science, 2021, 8, 793698. 561 Immunomodulatory effects of parasites on autoimmunity., 2022, , 395-424. 2 Interventions on Microbiota: Where Do We Stand on a Gut–Brain Link in Autism? A Systematic Review. 1.7 Nutrients, 2022, 14, 462. Gut Microbiome in Stress-related Disorders: The New Approaches to Neuroinflamation syndrome. 563 0 0.1 Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2022, , 74-82. Could Candida Overgrowth Be Involved in the Pathophysiology of Autism?. Journal of Clinical 564 1.0 Medicine, 2022, 11, 442. Probiotics and the gut-brain axis., 2022, , 451-466. 565 0 FTACMT study protocol: a multicentre, double-blind, randomised, placebo-controlled trial of faecal 0.8 microbiota transplantation for autism spectrum disorder. BMJ Open, 2022, 12, e051613. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. International Journal 568 1.8 32 of Molecular Sciences, 2022, 23, 1363. Saliva RNA Biomarkers of Gastrointestinal Dysfunction in Children With Autism and Neurodevelopmental Disorders: Potential Implications for Precision Medicine. Frontiers in Psychiatry, 2021, 12, 824933. Different Alterations in Gut Microbiota between Bifidobacterium longum and Fecal Microbiota 570 1.7 14 Transplantation Treatments in Propionic Acid Rat Model of Autism. Nutrients, 2022, 14, 608. Fecal Microbiota Transplant for Hematologic and Oncologic Diseases: Principle and Practice. Cancers, 571 2022, 14, 691.

#	Article	IF	Citations
573	Gut microbiome–immune system interaction in reptiles. Journal of Applied Microbiology, 2022, 132, 2558-2571.	1.4	11
574	Novel treatments in autism spectrum disorder. Current Opinion in Psychiatry, 2022, 35, 101-110.	3.1	23
576	Diet, microbe, and autism: Cause or consequence?. Cell Host and Microbe, 2022, 30, 5-7.	5.1	4
577	Inflammation, stress, and gut-brain axis as therapeutic targets in bipolar disorder. , 2022, , 403-437.		1
578	The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Frontiers in Psychiatry, 2021, 12, 755171.	1.3	14
579	Bacterial Translocation in Gastrointestinal Cancers and Cancer Treatment. Biomedicines, 2022, 10, 380.	1.4	17
580	Dietary Intake Mediates Ethnic Differences in Gut Microbial Composition. Nutrients, 2022, 14, 660.	1.7	17
581	Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 2022, 12, 93.	1.0	30
582	The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients, 2021, 13, 4497.	1.7	29
583	Immunotherapy: An Approach to Treat Alzheimer's Disease and Autism Spectrum Disorder. , 2021, , 191-214.		1
584	è,é"èŒç¾⊄‡å»ºçš"å±,æ¬jåŠå¶æ,åįƒä»‹å¥é€"径. Scientia Sinica Vitae, 2022, , .	0.1	1
585	Gut Microbiome and the Role of Metabolites in the Study of Graves' Disease. Frontiers in Molecular Biosciences, 2022, 9, 841223.	1.6	8
586	Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nature Medicine, 2022, 28, 528-534.	15.2	45
587	Gastrointestinal disorders in children with autism: Could artificial intelligence help?. Artificial Intelligence in Gastroenterology, 2022, 3, 1-12.	0.2	3
589	Hematopoietic stem cell transplantation ameliorates maternal diabetes–mediated gastrointestinal symptoms and autismâ€like behavior in mouse offspring. Annals of the New York Academy of Sciences, 2022, , .	1.8	7
590	Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients, 2022, 14, 917.	1.7	24
591	Alteration of Gut Microbiota: New Strategy for Treating Autism Spectrum Disorder. Frontiers in Cell and Developmental Biology, 2022, 10, 792490.	1.8	16
592	A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. International Journal of Neuroscience, 2023, 133, 1071-1089.	0.8	3

#	Article	IF	Citations
593	Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives. Journal of Traditional and Complementary Medicine, 2023, 13, 135-149.	1.5	22
594	Encapsulated Fecal Microbiota Transplantation: Development, Efficacy, and Clinical Application. Frontiers in Cellular and Infection Microbiology, 2022, 12, 826114.	1.8	21
595	Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine, 2022, 77, 103908.	2.7	80
596	Exogenous lipase administration alters gut microbiota composition and ameliorates Alzheimer's disease-like pathology in APP/PS1 mice. Scientific Reports, 2022, 12, 4797.	1.6	6
597	Impact of Early Feeding: Metagenomics Analysis of the Infant Gut Microbiome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 816601.	1.8	7
599	Shedding light on biological sex differences and microbiota–gut–brain axis: a comprehensive review of its roles in neuropsychiatric disorders. Biology of Sex Differences, 2022, 13, 12.	1.8	34
600	The metabolite <scp><i>p</i></scp> â€cresol impairs dendritic development, synaptogenesis, and synapse function in hippocampal neurons: Implications for autism spectrum disorder. Journal of Neurochemistry, 2022, 161, 335-349.	2.1	9
601	MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations. Microbiome, 2022, 10, 49.	4.9	24
602	Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life, 2022, 12, 495.	1.1	18
603	Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice. Sleep Medicine, 2022, 91, 84-92.	0.8	10
604	The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Frontiers in Pediatrics, 2022, 10, 815885.	0.9	35
605	A Computational Framework for Studying Gut-Brain Axis in Autism Spectrum Disorder. Frontiers in Physiology, 2022, 13, 760753.	1.3	7
606	A Gut Feeling in Amyotrophic Lateral Sclerosis: Microbiome of Mice and Men. Frontiers in Cellular and Infection Microbiology, 2022, 12, 839526.	1.8	21
607	Gut barrier dysfunction and type 2 immunity: Implications for compulsive behavior. Medical Hypotheses, 2022, 161, 110799.	0.8	2
608	Gastrointestinal Symptoms in Autism Spectrum Disorder: A Systematic Review. Nutrients, 2022, 14, 1471.	1.7	35
609	The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infection and Immunity, 2022, 90, e0058921.	1.0	10
610	Gut Microbiome: Profound Implications for Diet and Disease. Kompass Nutrition & Dietetics, 0, , 1-16.	1.0	2
611	Gastrointestinal disorder biomarkers. Clinica Chimica Acta, 2022, 530, 13-26.	0.5	1

#	Article	IF	CITATIONS
612	Effect of metformin in autistic BTBR TÂ+Âltpr3tf/J mice administered a high-fat diet. Brain Research Bulletin, 2022, 183, 172-183.	1.4	10
613	Treating autism spectrum disorder by intervening with gut microbiota. Journal of Medical Microbiology, 2021, 70, .	0.7	5
614	Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome–Host Interaction Mechanistic Hypothesis. Nutrients, 2022, 14, 65.	1.7	13
615	Longitudinal study of stool-associated microbial taxa in sibling pairs with and without autism spectrum disorder. ISME Communications, 2021, 1, .	1.7	3
616	Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules. Bioengineered, 2021, 12, 11885-11897.	1.4	18
617	Gut Microbial Profile Is Associated With the Severity of Social Impairment and IQ Performance in Children With Autism Spectrum Disorder. Frontiers in Psychiatry, 2021, 12, 789864.	1.3	11
618	CUMS and dexamethasone induce depression-like phenotypes in mice by differentially altering gut microbiota and triggering macroglia activation. Annals of General Psychiatry, 2021, 34, e100529.	1.1	19
619	Potential Associations Between Microbiome and COVID-19. Frontiers in Medicine, 2021, 8, 785496.	1.2	23
620	Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Frontiers in Cell and Developmental Biology, 2022, 10, 880544.	1.8	39
621	Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Translational Psychiatry, 2022, 12, 164.	2.4	55
632	Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022, 7, 135.	7.1	494
633	Fecal Microbiota Transplantation Exerts Neuroprotective Effects in a Mouse Spinal Cord Injury Model by Modulating the Microenvironment at the Lesion Site. Microbiology Spectrum, 2022, 10, e0017722.	1.2	20
637	Features of Gastrointestinal Malformations in Children with Autism Spectrum Disorders: Literature Review. PediatriÄeskaâ Farmakologiâ, 2022, 19, 99-104.	0.1	2
638	Role of the gut microbiome in three major psychiatric disorders. Psychological Medicine, 2022, 52, 1222-1242.	2.7	37
639	Food Allergy-Induced Autism-Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. Journal of Asthma and Allergy, 0, Volume 15, 645-664.	1.5	4
640	Novel Mechanisms and Therapeutic Targets for Ischemic Stroke: A Focus on Gut Microbiota. Frontiers in Cellular Neuroscience, 2022, 16, .	1.8	5
641	The Microbiota–Gut–Brain Axis in Depression: The Potential Pathophysiological Mechanisms and Microbiota Combined Antidepression Effect. Nutrients, 2022, 14, 2081.	1.7	21
642	Washed preparation of faecal microbiota changes the transplantation related safety, quantitative method and delivery. Microbial Biotechnology, 2022, 15, 2439-2449.	2.0	23

#	Article	IF	CITATIONS
643	Review article: the future of microbiomeâ€based therapeutics. Alimentary Pharmacology and Therapeutics, 2022, 56, 192-208.	1.9	21
644	Overall Rebalancing of Gut Microbiota Is Key to Autism Intervention. Frontiers in Psychology, 2022, 13,	1.1	5
645	Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. International Journal of Molecular Sciences, 2022, 23, 6082.	1.8	9
646	Obesity and the Brain. International Journal of Molecular Sciences, 2022, 23, 6145.	1.8	8
647	Fecal Microbiota and Human Intestinal Fluid Transplantation: Methodologies and Outlook. Frontiers in Medicine, 2022, 9, .	1.2	0
648	The Role of Microbiome in Brain Development and Neurodegenerative Diseases. Molecules, 2022, 27, 3402.	1.7	34
649	USO DE PROBIÓTICOS NA PRÃTICA CLÃNICA DO TRANSTORNO DO ESPECTRO AUTISTA. Recima21: Revista CientÃfica Multidisciplinar, 2022, 3, e361553.	0.0	0
650	Longitudinal Evaluation of Gut Bacteriomes and Viromes after Fecal Microbiota Transplantation for Eradication of Carbapenem-Resistant <i>Enterobacteriaceae</i> . MSystems, 2022, 7, .	1.7	5
651	Multivariate Analysis of Metabolomic and Nutritional Profiles among Children with Autism Spectrum Disorder. Journal of Personalized Medicine, 2022, 12, 923.	1.1	2
652	Probiotics in Pediatrics. , 2022, , 305-328.		0
652 653	Probiotics in Pediatrics. , 2022, , 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, , 141-161.	0.8	0
652 653 654	Probiotics in Pediatrics., 2022, , 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, , 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75.	0.8	0 2 0
652 653 654 655	Probiotics in Pediatrics., 2022,, 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022,, 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites, 2022, 12, 562.	0.8	0 2 0 8
652 653 654 655	Probiotics in Pediatrics., 2022,, 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and CI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites, 2022, 12, 562. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children With Autism. Frontiers in Pediatrics, 0, 10.	0.8 0.0 1.3 0.9	0 2 0 8 31
 652 653 654 655 656 657 	Probiotics in Pediatrics. , 2022, , 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, , 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites, 2022, 12, 562. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children With Autism. Frontiers in Pediatrics, 0, 10, . GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	0.8 0.0 1.3 0.9 1.8	0 2 0 8 31
 652 653 654 655 657 658 	Probiotics in Pediatrics., 2022, , 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and CI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, , 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites, 2022, 12, 562. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children With Autism. Frontiers in Pediatrics, 0, 10, . GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, . Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 0, 12, .	0.8 0.0 1.3 0.9 1.8	0 2 0 8 31 3
 652 653 654 655 657 658 659 	Probiotics in Pediatrics., 2022, , 305-328. Influences of the Immune System and Microbiome on the Etiology of ASD and GI Symptomology of Autistic Individuals. Current Topics in Behavioral Neurosciences, 2022, , 141-161. Does pica potentiate autism?: developing a research agenda. Journal of Pediatrics & Neonatal Care, 2022, 12, 72-75. Bee Pollen and Probiotics May Alter Brain Neuropeptide Levels in a Rodent Model of Autism Spectrum Disorders. Metabolites, 2022, 12, 562. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children With Autism. Frontiers in Pediatrics, 0, 10, . GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR 1+tfl) Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, . Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology 0, 12, . Role of the gut microbiome in multiple sclerosis: From etiology to therapeutics. International Review of Neurobiology, 2022,	0.8 0.0 1.3 0.9 1.8 1.8	0 2 0 8 31 3 3 3

	_
CHAD	REPORT

#	Article	IF	CITATIONS
661	The interaction of gut microbiota, genetic variation, and diet in autism spectrum disorder. , 2022, 1, 241-244.		2
662	Effects of Washed Fecal Bacteria Transplantation in Sleep Quality, Stool Features and Autism Symptomatology: A Chinese Preliminary Observational Study. Neuropsychiatric Disease and Treatment, O, Volume 18, 1165-1173.	1.0	3
663	Gut microbiome and neurocritically ill patients. Journal of Neurocritical Care, 2022, 15, 1-11.	0.4	0
664	Interactions between central nervous system and peripheral metabolic organs. Science China Life Sciences, 2022, 65, 1929-1958.	2.3	18
665	Congenital Infection Influence on Early Brain Development Through the Gut-Brain Axis. Frontiers in Neuroscience, 0, 16, .	1.4	2
666	Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. Journal of Clinical Medicine, 2022, 11, 4119.	1.0	28
667	Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells, 2022, 11, 2211.	1.8	6
668	Fecal microbiota transplantation: a review on current formulations in <i>Clostridioides difficile</i> infection and future outlooks. Expert Opinion on Biological Therapy, 2022, 22, 929-944.	1.4	6
669	Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	45
670	Modifications of Behavior and Inflammation in Mice Following Transplant with Fecal Microbiota from Children with Autism. Neuroscience, 2022, 498, 174-189.	1.1	6
671	Role of the gut microbiome in the pathophysiology of brain disorders. , 2023, , 913-928.		0
673	Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes, 2022, 14, .	4.3	74
674	Gut microbiota alteration and modulation in hepatitis B virus-related fibrosis and complications: Molecular mechanisms and therapeutic inventions. World Journal of Gastroenterology, 2022, 28, 3555-3572.	1.4	5
675	Material Engineering in Gut Microbiome and Human Health. Research, 2022, 2022, .	2.8	3
676	Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	44
677	Faecal microbiota transplant ameliorates gut dysbiosis and cognitive deficits in Huntington's disease mice. Brain Communications, 2022, 4, .	1.5	16
678	Changes to the Gut Microbiome in Young Children Showing Early Behavioral Signs of Autism. Frontiers in Microbiology, 0, 13, .	1.5	7
679	Attenuation of Autism-like Behaviors by an Anthocyanin-Rich Extract from Portuguese Blueberries via Microbiota–Gut–Brain Axis Modulation in a Valproic Acid Mouse Model. International Journal of Molecular Sciences, 2022, 23, 9259.	1.8	5

#	Article	IF	CITATIONS
680	Extremely small and incredibly close: Gut microbes as modulators of inflammation and targets for therapeutic intervention. Frontiers in Microbiology, 0, 13, .	1.5	3
681	Microbiota and COVID-19: Long-term and complex influencing factors. Frontiers in Microbiology, 0, 13,	1.5	25
683	KI Essence extract (a spleen-tonifying formula) promotes neurite outgrowth, alleviates oxidative stress and hypomyelination, and modulates microbiome in maternal immune activation offspring. Frontiers in Pharmacology, 0, 13, .	1.6	2
684	Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods, 2022, 11, 2575.	1.9	14
685	Will fecal microbiota transplantation eventually be an effective therapeutic strategy for systemic lupus erythematosus?. Clinical Immunology, 2022, 242, 109096.	1.4	3
686	Lactobacillus plantarum ST-III modulates abnormal behavior and gut microbiota in a mouse model of autism spectrum disorder. Physiology and Behavior, 2022, 257, 113965.	1.0	8
687	Instant messaging client gives the opportunity to recognize gut microbiota and dysbiosis-related disease: An investigation study on WeChat APP. Digital Health, 2022, 8, 205520762211150.	0.9	0
688	A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Experimental Brain Research, 0, , .	0.7	3
689	The role of microbiota in autism spectrum disorder: A bibliometric analysis based on original articles. Frontiers in Psychiatry, 0, 13, .	1.3	5
690	Relationship between mental disorders, psychotropic drugs, and constipation in psychiatric outpatients. Medicine (United States), 2022, 101, e30369.	0.4	2
691	Is fecal microbiota transplantation a useful therapeutic intervention for psychiatric disorders? A narrative review of clinical and preclinical evidence. Current Medical Research and Opinion, 2023, 39, 161-177.	0.9	10
692	Machine Learning and Canine Chronic Enteropathies: A New Approach to Investigate FMT Effects. Veterinary Sciences, 2022, 9, 502.	0.6	5
693	Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases. Chinese Medical Journal, 2022, 135, 1927-1939.	0.9	27
694	Small molecule modulation of microbiota: a systems pharmacology perspective. BMC Bioinformatics, 2022, 23, .	1.2	0
695	Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nature Reviews Urology, 2022, 19, 695-707.	1.9	14
696	Anti-Obesity Effect of Theabrownin from Dark Tea in C57BL/6J Mice Fed a High-Fat Diet by Metabolic Profiles through Gut Microbiota Using Untargeted Metabolomics. Foods, 2022, 11, 3000.	1.9	7
697	Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children. Journal of Clinical Medicine, 2022, 11, 5263.	1.0	8
698	Regulation of microglial physiology by the microbiota. Gut Microbes, 2022, 14, .	4.3	14

ARTICLE IF CITATIONS # Clostridioides difficile and neurological disorders: New perspectives. Frontiers in Neuroscience, 0, 699 1.4 3 16. The Human Gut Microbiome in Health, Disease, and Therapeutics., 2022, 249-260. 702 The microbiome-gut-brain axis in nutritional neuroscience. Nutritional Neuroscience, 0, , 1-13. 1.5 4 Comprehensive bibliometric and visualized analysis of research on fecal microbial transplantation published from 2000 to 2021. BioMedical Engineering OnLine, 2022, 21, . The Effect of <i>Limosilactobacillus reuteri</i> on Social Behavior Is Independent of the Adaptive 704 1.7 3 Immune System. MSystems, 2022, 7, . The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. International Journal of Molecular Sciences, 2022, 23, 12289. 1.8 The interplay between the gut-brain axis and the microbiome: A perspective on psychiatric and 706 1.4 5 neurodegenerative disorders. Frontiers in Neuroscience, 0, 16, . Long-term safety and efficacy of fecal microbiota transplantation in 74 children: A single-center retrospective study. Frontiers in Pediatrics, 0, 10, . Characterization of the human gut virome in metabolic and autoimmune diseases. Inflammation and 708 1.5 4 Regeneration, 2022, 42, . Acupuncture alters the intestinal microbiota in mice with valproic acid (VPA)-induced autism-like behavior. Medicine in Microecology, 2022, 14, 100066. Maternal treatment with sodium butyrate reduces the development of autism-like traits in mice 710 2.5 8 offspring. Biomedicine and Pharmacotherapy, 2022, 156, 113870. Brain Food: The Impact of Diet, Nutrition, and Nutraceuticals on the Brain and the Microbiota-Gut-Brain Axis., 2022, , 303-357. Effect of stigma maydis polysaccharide on the gut microbiota and transcriptome of VPA induced 712 1.5 3 autism model rats. Frontiers in Microbiology, 0, 13, . Gut Microbiota Alternation in Disease Progression of Neurosyphilis. Infection and Drug Resistance, 0, 1.1 Volume 15, 6603-6612. Analysis of Neurodevelopment in Children Born Extremely Preterm Treated With Acid Suppressants 714 2.8 3 Before Age 2 Years. JAMA Network Open, 2022, 5, e2241943. Shotgun Metagenomics Study Suggests Alteration in Sulfur Metabolism and Oxidative Stress in Children with Autism and Improvement after Microbiota Transfer Therapy. International Journal of 1.8 Molecular Sciences, 2022, 23, 13481. Microbiomeâ€"Gut Dissociation in the Neonate: Autism-Related Developmental Brain Disease and the 716 0.4 1 Origin of the Placebo Effect. Gastrointestinal Disorders, 2022, 4, 291-311. Gut microbiota affects brain development and behavior. Clinical and Experimental Pediatrics, 2023, 66, 274-280.

#	Article	IF	CITATIONS
718	Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Frontiers in Microbiology, 0, 13, .	1.5	9
719	Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19 syndrome. Nature Communications, 2022, 13, .	5.8	30
720	Bibliometric and visual analysis of research on the links between the gut microbiota and pain from 2002 to 2021. Frontiers in Medicine, 0, 9, .	1.2	8
721	Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Critical Reviews in Microbiology, 2023, 49, 764-785.	2.7	4
722	Effect of Microgravity on the Gut Microbiota Bacterial Composition in a Hindlimb Unloading Model. Life, 2022, 12, 1865.	1.1	5
723	Bibliometric and visual analysis of fecal microbiota transplantation research from 2012 to 2021. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
724	Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine, 2022, 86, 104323.	2.7	6
725	The gut-brain axis in ischemic stroke: its relevance in pathology and as a therapeutic target. Neurological Research and Practice, 2022, 4, .	1.0	8
726	Faecal microbiota transplantations and the role of bacteriophages. Clinical Microbiology and Infection, 2023, 29, 689-694.	2.8	5
727	Gene × environment interactions in autism spectrum disorders. Current Topics in Developmental Biology, 2023, , 221-284.	1.0	6
728	Physical Activity, Gut Microbiota, and Genetic Background for Children and Adolescents with Autism Spectrum Disorder. Children, 2022, 9, 1834.	0.6	2
729	Gut microbiome alterations in ICU patients with enteral nutrition-related diarrhea. Frontiers in Microbiology, 0, 13, .	1.5	1
730	A systematic review of the effects of gut microbiota depletion on social and anxiety-related behaviours in adult rodents: Implications for translational research Neuroscience and Biobehavioral Reviews, 2023, 145, 105013.	2.9	2
731	Fecal Microbiota Transplantation in Autism Spectrum Disorder. Neuropsychiatric Disease and Treatment, 0, Volume 18, 2905-2915.	1.0	6
732	A Systematic Review of Mixed Studies Exploring the Effects of Probiotics on Gut-Microbiome to Modulate Therapy in Children With Autism Spectrum Disorder. Cureus, 2022, , .	0.2	0
733	Fecal microbiota transplantation in childhood: past, present, and future. World Journal of Pediatrics, 2023, 19, 813-822.	0.8	3
734	Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Frontiers in Medicine, 0, 9, .	1.2	11
735	Metabolic and Proteomic Profiles Reveal the Response of the ASD-Associated Resistant Strain 6-1 of Lactobacillus plantarum to Propionic Acid. International Journal of Environmental Research and Public Health 2022 19 17020	1.2	0

ARTICLE

736	ϴϯϴœĐ£ϴϿžϴ"ϴ•ϴϴ•ϴ¢ϴʹϴϛϴϴϯͺϴϿϳϴΫϴ•ϴϫϴ¢ϴʹͺϴΫϴϴ¢ϴžϴ"ϴ•ϴϴ•ϴͺϴΣͺϴ¥ϴ'ϴžϴϷϿϴͻϴʹϿͺϿϯϴ¢ϴ	•Й Ð ¢Ð — Ѐ)ž ⊕ –Ð>Ѐ
737	Gastrointestinal Disturbances in Autism Spectrum Disorder. , 2022, , 381-387.		0
739	Fecal Microbiota Transplantation Research over the Past Decade: Current Status and Trends. Canadian Journal of Infectious Diseases and Medical Microbiology, 2023, 2023, 1-18.	0.7	3
740	The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Frontiers in Nutrition, 0, 9, .	1.6	2
741	Feasibility, Acceptability, and Safety of Faecal Microbiota Transplantation in the Treatment of Major Depressive Disorder: A Pilot Randomized Controlled Trial. Canadian Journal of Psychiatry, 2023, 68, 315-326.	0.9	7
742	Associations between the human immune system and gut microbiome with neurodevelopment in the first 5Âyears of life: A systematic scoping review. Developmental Psychobiology, 2023, 65, .	0.9	4
743	Safety and feasibility of faecal microbiota transplant for major depressive disorder: study protocol for a pilot randomised controlled trial. Pilot and Feasibility Studies, 2023, 9, .	0.5	5
744	Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia. Nature Communications, 2023, 14, .	5.8	7
745	Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technology in Cancer Research and Treatment, 2023, 22, 153303382211497.	0.8	1
746	ABO-Incompatible Liver Transplantation under the Desensitization Protocol with Rituximab: Effect on Biliary Microbiota and Metabolites. Journal of Clinical Medicine, 2023, 12, 141.	1.0	1
747	Independent and Combined Effects of Probiotics and Prebiotics as Supplements or Food-Rich Diets on a Propionic-Acid-Induced Rodent Model of Autism Spectrum Disorder. Metabolites, 2023, 13, 50.	1.3	3
748	Investigating stagnant clinical outcomes after fecal microbiome transplant in autism spectrum disorder. , 2022, , .		0
749	Gut-brain axis: Mechanisms and potential therapeutic strategies for ischemic stroke through immune functions. Frontiers in Neuroscience, 0, 17, .	1.4	6
750	Exercise Changes Gut Microbiota: A New Idea to Explain that Exercise Improves Autism. International Journal of Sports Medicine, 2023, 44, 473-483.	0.8	2
751	Protective Effect of Anthocyanins against Neurodegenerative Diseases through the Microbial-Intestinal-Brain Axis: A Critical Review. Nutrients, 2023, 15, 496.	1.7	11
752	Communication of gut microbiota and brain via immune and neuroendocrine signaling. Frontiers in Microbiology, 0, 14, .	1.5	18
753	Laryngopharyngeal reflux and dysbiosis. , 2023, , 125-134.		0
754	Recent progress in gut microbiota. , 2023, 1, 27-31.		2

#	Article	IF	CITATIONS
755	Fecal microbiota transplantation improves VPA-induced ASD mice by modulating the serotonergic and glutamatergic synapse signaling pathways. Translational Psychiatry, 2023, 13, .	2.4	7
756	Oral Microbiota Transplant: A Potential New Therapy for Oral Diseases. Journal of the California Dental Association, 2017, 45, 565-568.	0.0	22
757	Microbiota–Gut–Brain Axis: Pathophysiological Mechanism in Neuropsychiatric Disorders. Advances in Experimental Medicine and Biology, 2023, , 17-37.	0.8	2
759	The interaction between intestinal bacterial metabolites and phosphatase and tensin homolog in autism spectrum disorder. Molecular and Cellular Neurosciences, 2023, 124, 103805.	1.0	3
760	Impact of Gut Microbiota on Host Aggression: Potential Applications for Therapeutic Interventions Early in Development. Microorganisms, 2023, 11, 1008.	1.6	3
761	Dietary fish oil improves autistic behaviors and gut homeostasis by altering the gut microbial composition in a mouse model of fragileÂXÂsyndrome. Brain, Behavior, and Immunity, 2023, 110, 140-151.	2.0	4
762	Alginate oligosaccharide structures differentially affect DSS-induced colitis in mice by modulating gut microbiota. Carbohydrate Polymers, 2023, 312, 120806.	5.1	10
763	Altered human gut virome in patients undergoing antibiotics therapy for Helicobacter pylori. Nature Communications, 2023, 14, .	5.8	3
764	Modeling Aggression in Animals. , 2023, , 1-20.		0
765	Disarm The Bacteria: What Temperate Phages Can Do. Current Issues in Molecular Biology, 2023, 45, 1149-1167.	1.0	4
766	The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Frontiers in Neurology, 0, 14, .	1.1	5
767	Fecal Microbiota Transplantation in Diseases Not Associated with Clostridium difficile: Current Status and Future Therapeutic Option. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 275-308.	0.6	0
768	Limosilactobacillus reuteri administration alters the gut-brain-behavior axis in a sex-dependent manner in socially monogamous prairie voles. Frontiers in Microbiology, 0, 14, .	1.5	2
769	The Evolving Landscape of Fecal Microbial Transplantation. Clinical Reviews in Allergy and Immunology, 2023, 65, 101-120.	2.9	5
770	Efficacy of Faecal Microbiota Transplantation for the Treatment of Autism in Children: Meta-Analysis of Randomised Controlled Trials. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-11.	0.5	2
771	Modeling Aggression in Animals. , 2023, , 1-20.		0
772	Gut Microbiome and Neurodevelopmental Disorders: A Link Yet to Be Disclosed. Microorganisms, 2023, 11, 487.	1.6	11
773	Fecal microbiota transplantation attenuates Escherichia coli infected outgrowth by modulating the intestinal microbiome. Microbial Cell Factories, 2023, 22, .	1.9	4

#	Article	IF	CITATIONS
774	A snapshot of gut microbiota data from murine models of Autism Spectrum Disorder: Still a blurred picture. Neuroscience and Biobehavioral Reviews, 2023, 147, 105105.	2.9	0
775	Beyond faecal microbiota transplantation, the non-negligible role of faecal virome or bacteriophage transplantation. Journal of Microbiology, Immunology and Infection, 2023, 56, 893-908.	1.5	4
776	Effect of fecal microbiota transplantation in children with autism spectrum disorder: A systematic review. Frontiers in Psychiatry, 0, 14, .	1.3	3
777	Microbiome analysis and fecal microbiota transfer in pediatric gastroenterology—Âa structured online survey in German-speaking countries. International Journal of Colorectal Disease, 2023, 38, .	1.0	0
778	Fecal microbiota transplantation: Applications and challenges in India. Gastroenterology, Hepatology and Endoscopy Practice, 2023, 3, 44.	0.1	0
780	Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Frontiers in Microbiology, 0, 14, .	1.5	2
781	The gut microbiome in social anxiety disorder: evidence of altered composition and function. Translational Psychiatry, 2023, 13, .	2.4	16
782	Efficacy of Fecal Microbiota Transplant on Behavioral and Gastrointestinal Symptoms in Pediatric Autism: A Systematic Review. Microorganisms, 2023, 11, 806.	1.6	0
783	Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine, 2023, 90, 104527.	2.7	53
784	Associations between dysbiosis gut microbiota and changes of neurotransmitters and short-chain fatty acids in valproic acid model rats. Frontiers in Physiology, 0, 14, .	1.3	5
785	Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients, 2023, 15, 1620.	1.7	6
786	Association of early childhood constipation with the risk of autism spectrum disorder in Taiwan: Real-world evidence from a nationwide population-based cohort study. Frontiers in Psychiatry, 0, 14, .	1.3	1
787	Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells, 2023, 12, 1087.	1.8	5
793	Gut Microbiome–Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chemical Neuroscience, 2023, 14, 1717-1763.	1.7	24
799	Human Microbiome and Autism-Spectrum Disorders. , 2023, , 347-360.		0
801	Interactions Between Microbial Therapeutics and the Endogenous Microbiome. , 2023, , 421-449.		0
803	Gastrointestinal health and therapeutic carbohydrate restriction. , 2023, , 383-413.		0
811	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		0

~			<u> </u>	
	ΙΤΔΤΙ	ON	RED	
<u> </u>				

#	Article	IF	CITATIONS
822	Propensity of ayurvedic herbs as potential modulators of gut microbiome (GM): implications in neurological disorders. , 2023, , 275-302.		0
837	Modeling Aggression in Animals. , 2023, , 2701-2720.		0
867	Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 142-163.	8.2	1
878	The role and impact of abnormal vitamin levels in autism spectrum disorders. Food and Function, 2024, 15, 1099-1115.	2.1	0
880	Correlating the Gut Microbiome to Health and Disease. , 2024, , 1-36.		0
881	Microbiota–Gut–Brain Axis in Neurodevelopmental Disorders. , 2024, , 201-216.		0
888	Gut Microbes: The Gut Brain Connection. , 2023, , 33-59.		0
892	Microbiota influence behavior—Work in animal models. , 2024, , 83-107.		0
893	Microbiota in neurodevelopmental disorders. , 2024, , 127-145.		0
894	The gut-brain axis. , 2024, , 1-15.		ο