Transition-Metal-Catalyzed C–H Alkylation Using All

Chemical Reviews 117, 9333-9403

DOI: 10.1021/acs.chemrev.6b00574

Citation Report

#	Article	IF	CITATIONS
1	Baseâ€Controlled Completely Selective Linear or Branched Rhodium(I)â€Catalyzed Câ^'H <i>ortho</i> â€Alkylation of Azines without Preactivation. Angewandte Chemie - International Edition, 2017, 56, 5899-5903.	7.2	50
2	Palladium(I) Dimer Enabled Extremely Rapid and Chemoselective Alkylation of Aryl Bromides over Triflates and Chlorides in Air. Angewandte Chemie - International Edition, 2017, 56, 7078-7082.	7.2	99
3	Palladium-Catalyzed C–H Trifluoroethoxylation of <i>N</i> -Sulfonylbenzamides. Organic Letters, 2017, 19, 2746-2749.	2.4	39
4	Murai Reaction on Furfural Derivatives Enabled by Removable <i>N</i> , <i>N</i> ′â€Bidentate Directing Groups. Chemistry - A European Journal, 2017, 23, 8385-8389.	1.7	30
5	Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I) atalyzed Câ^'H Alkylation of Azacycles. Angewandte Chemie, 2017, 129, 10666-10670.	1.6	27
6	Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catalysis, 2017, 7, 4999-5022.	5.5	334
7	Iridium(I) atalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2017, 56, 9541-9545.	7.2	59
8	C–H Alkylations of (Hetero)Arenes by Maleimides and Maleate Esters through Cobalt(III) Catalysis. Organic Letters, 2017, 19, 3315-3318.	2.4	116
9	Switchable C–H Functionalization of <i>N</i> -Tosyl Acrylamides with Acryloylsilanes. Organic Letters, 2017, 19, 2869-2872.	2.4	37
10	Sulfinyl isobutyramide as an auxiliary for palladium(ii)-catalyzed C–H arylation and iodination of benzylamine derivatives. Organic and Biomolecular Chemistry, 2017, 15, 4966-4970.	1.5	15
11	Manganese(I)-Catalyzed C–H 3,3-Difluoroallylation of Pyridones and Indoles. Organic Letters, 2017, 19, 3159-3162.	2.4	82
12	Mild C(sp3)â~'H Alkylation of 8â€Methylquinolines with α,βâ€Unsaturated Carbonyl Compounds by Rhodium(III) Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 1014-1018.	1.3	18
13	Pivalophenone imine as a benzonitrile surrogate for directed C–H bond functionalization. Chemical Science, 2017, 8, 5299-5304.	3.7	39
14	Manganeseâ€Mediated Homolytic Aromatic Substitution with Phosphinylidenes. Chemical Record, 2017, 17, 1203-1212.	2.9	13
15	Direct Reductive Quinolyl β-C–H Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. ACS Catalysis, 2017, 7, 4780-4785.	5.5	95
16	Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I) atalyzed Câ^'H Alkylation of Azacycles. Angewandte Chemie - International Edition, 2017, 56, 10530-10534.	7.2	87
17	Catalytic Coupling between Unactivated Aliphatic C–H Bonds and Alkynes via a Metal–Hydride Pathway. Journal of the American Chemical Society, 2017, 139, 5716-5719.	6.6	56
18	Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chemical Reviews, 2017, 117, 13810-13889.	23.0	915

#	Article	IF	CITATIONS
19	Photoredox-Catalyzed C–H Arylation of Internal Alkenes to Tetrasubstituted Alkenes: Synthesis of Tamoxifen. Organic Letters, 2017, 19, 6248-6251.	2.4	32
20	Asymmetric Cycloisomerization of <i>o</i> â€Alkenylâ€ <i>N</i> â€Methylanilines to Indolines by Iridiumâ€Catalyzed C(sp ³)â^H Addition to Carbon–Carbon Double Bonds. Angewandte Chemie, 2017, 129, 14460-14464.	1.6	9
21	Asymmetric Cycloisomerization of <i>o</i> â€Alkenylâ€ <i>N</i> â€Methylanilines to Indolines by Iridiumâ€Catalyzed C(sp ³)â^H Addition to Carbon–Carbon Double Bonds. Angewandte Chemie - International Edition, 2017, 56, 14272-14276.	7.2	41
22	Ketene Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-Catalyzed C–H Functionalizations. ACS Catalysis, 2017, 7, 7417-7420.	5.5	48
23	Iron-Catalyzed Regioselective Anti-Markovnikov Addition of C–H Bonds in Aromatic Ketones to Alkenes. Journal of the American Chemical Society, 2017, 139, 14849-14852.	6.6	72
24	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Reviews, 2017, 46, 7399-7420.	18.7	135
25	Bifurcated Nickelâ€Catalyzed Functionalizations: Heteroarene Câ^'H Activation with Allenes. Angewandte Chemie, 2017, 129, 16107-16111.	1.6	18
26	Bifurcated Nickelâ€Catalyzed Functionalizations: Heteroarene Câ^'H Activation with Allenes. Angewandte Chemie - International Edition, 2017, 56, 15891-15895.	7.2	63
27	Comparative investigation of the reactivities between catalysts [Cp*RhCl ₂] ₂ and [Cp*IrCl ₂] ₂ in the oxidative annulation of isoquinolones with alkynes: a combined experimental and computational study. Organic Chemistry Frontiers, 2017, 4, 2327-2335.	2.3	4
28	C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C–H Activation. Journal of Organic Chemistry, 2017, 82, 9243-9252.	1.7	22
29	Ligand Effects and Kinetic Investigations of Sterically Accessible 2-Pyridonate Tantalum Complexes for Hydroaminoalkylation. ACS Catalysis, 2017, 7, 6323-6330.	5.5	36
30	Enantioselective C–H Functionalization–Addition Sequence Delivers Densely Substituted 3-Azabicyclo[3.1.0]hexanes. Journal of the American Chemical Society, 2017, 139, 12398-12401.	6.6	75
31	Branched-Selective Intermolecular Ketone Î \pm -Alkylation with Unactivated Alkenes via an Enamide Directing Strategy. Journal of the American Chemical Society, 2017, 139, 13664-13667.	6.6	91
32	Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand <i>meta</i> â€Substitution. Angewandte Chemie - International Edition, 2017, 56, 14197-14201.	7.2	129
33	Asymmetric Ironâ€Catalyzed Câ^'H Alkylation Enabled by Remote Ligand <i>meta</i> â€Substitution. Angewandte Chemie, 2017, 129, 14385-14389.	1.6	104
34	Methylation of C(sp ³)–H/C(sp ²)–H Bonds with Methanol Catalyzed by Cobalt System. Organic Letters, 2017, 19, 5228-5231.	2.4	94
35	Pyridyl-Directed Cp*Rh(III)-Catalyzed B(3)–H Acyloxylation of <i>o</i> -Carborane. Organic Letters, 2017, 19, 5178-5181.	2.4	66
36		2.4	55

#	Article	IF	CITATIONS
37	Nickel-catalyzed C–H activation of purine bases with alkyl halides. Chemical Communications, 2017, 53, 9113-9116.	2.2	36
38	Rutheniumâ€Catalyzed Alkynylation of Benzoic Acids Mediated by a Weakly Coordinationâ€Directing Auxiliary. European Journal of Organic Chemistry, 2017, 2017, 4749-4752.	1.2	17
39	Linear Selective C–H Bond Alkylation with Activated Olefins Catalyzed by Cp*Co ^{III} . European Journal of Organic Chemistry, 2017, 2017, 4370-4374.	1.2	32
40	Asymmetric alkylation of remote C(sp ³)–H bonds by combining proton-coupled electron transfer with chiral Lewis acid catalysis. Chemical Communications, 2017, 53, 8964-8967.	2.2	106
41	Iridium(I) atalyzed Intramolecular Hydrocarbonation of Alkenes: Efficient Access to Cyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie, 2017, 129, 9669-9673.	1.6	18
42	Rhodium(<scp>iii</scp>)-catalyzed and MeOH-involved regioselective mono-alkenylation of N-arylureas with acrylates. Organic and Biomolecular Chemistry, 2017, 15, 7088-7092.	1.5	12
43	Quaternary Ammonium Salts as Alkylating Reagents in C–H Activation Chemistry. Organic Letters, 2017, 19, 4287-4290.	2.4	24
44	Rh(I)-Catalyzed Alkylation of <i>ortho</i> -C–H Bonds in Aromatic Amides with Maleimides. Organic Letters, 2017, 19, 4544-4547.	2.4	79
45	Palladium-Catalyzed Domino Alkenylation/Amination/Pyridination Reactions of 2-Vinylanilines with Alkynes: Access to Cyclopentaquinolines. Organic Letters, 2017, 19, 6498-6501.	2.4	28
46	Rhodium-catalyzed benzoisothiazole synthesis by tandem annulation reactions of sulfoximines and activated olefins. Organic and Biomolecular Chemistry, 2017, 15, 9983-9986.	1.5	23
47	Carbene-Catalyzed Indole 3-Methyl C(sp ³)–H Bond Functionalization. Journal of Organic Chemistry, 2017, 82, 13342-13347.	1.7	25
48	Introduction: CH Activation. Chemical Reviews, 2017, 117, 8481-8482.	23.0	264
49		(
	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092.	1.7	84
50	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092. Highly Efficient and Divergent Construction of Chiral Î ³ -Phosphono-α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated C(sp ³)–H Bonds. ACS Catalysis, 2017, 7, 5220-5224.	1.7	84
50 51	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092.Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated C(sp ³)â€"H Bonds. ACS Catalysis, 2017, 7, 5220-5224.Cobalt-Catalyzed, Nâ€"H Imine-Directed Hydroarylation of Styrenes. Organic Letters, 2018, 20, 1392-1395.	1.7 5.5 2.4	84 41 27
50 51 52	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092. Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated C(sp ³)â€"H Bonds. ACS Catalysis, 2017, 7, 5220-5224. Cobalt-Catalyzed, Nâ€"H Imine-Directed Hydroarylation of Styrenes. Organic Letters, 2018, 20, 1392-1395. Photocatalyzed <i>ortho</i> â€Alkylation of Pyridine <i>N</i> â€Oxides through Alkene Cleavage. Angewandte Chemie, 2018, 130, 5233-5236.	1.7 5.5 2.4 1.6	84 41 27 28
50 51 52 53	Coupling of Challenging Heteroaryl Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. Journal of Organic Chemistry, 2017, 82, 7085-7092.Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-Amino Acids via Paladium-Catalyzed Alkylation of Unactivated C(sp ³)â€"H Bonds. ACS Catalysis, 2017, 7, 5220-5224.Cobalt-Catalyzed, Nâ€"H Imine-Directed Hydroarylation of Styrenes. Organic Letters, 2018, 20, 1392-1395.Photocatalyzed <i>ortho</i> â €Alkylation of Pyridine <i>N</i> â €Oxides through Alkene Cleavage. Angewandte Chemie, 2018, 130, 5233-5236.Photocatalyzed <i>ortho</i> â €Alkylation of Pyridine <i>N</i> â €Oxides through Alkene Cleavage. Angewandte Chemie - International Edition, 2018, 57, 5139-5142.	1.7 5.5 2.4 1.6 7.2	 84 41 27 28 75

#	Article	IF	CITATIONS
55	Palladium(II)-Catalyzed Mono- and Bis-alkenylation of <i>N</i> -Acetyl-2-aminobiaryls through Regioselective C–H Bond Activation. Journal of Organic Chemistry, 2018, 83, 3840-3856.	1.7	19
56	Rh/Cu-Catalyzed Ketone β-Functionalization by Merging Ketone Dehydrogenation and Carboxyl-Directed C–H Alkylation. ACS Catalysis, 2018, 8, 4777-4782.	5.5	53
57	Iridium(III)â€Catalyzed Directed <i>ortho</i> â€C(sp ²)–H Amidation of Arenes with Sulfonamides. European Journal of Organic Chemistry, 2018, 2018, 2071-2077.	1.2	7
58	Hydroxyl Groupâ€Prompted and Iridium(III)â€Catalyzed Regioselective Câ^'H Annulation of <i>N</i> â€phenoxyacetamides with Propargyl Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 2470-2475.	2.1	48
59	Siteâ€Selective Î′â€C(sp ³)â^'H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie, 2018, 130, 5960-5964.	1.6	46
60	Oneâ€Pot S _N Ar/Direct Pdâ€Catalyzed CH Arylation Functionalization of Pyrazolo[1,5â€ <i>a</i>]pyrimidine at the C3 and C7 Positions. European Journal of Organic Chemistry, 2018, 2018, 3936-3942.	1.2	9
61	Siteâ€Selective Î′ (sp ³)â^'H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie - International Edition, 2018, 57, 5858-5862.	7.2	159
62	Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates <i>via</i> direct dehydrogenative C(sp ²)–O cross-coupling. Chemical Communications, 2018, 54, 4437-4440.	2.2	6
63	Rhodium(III)-catalyzed C H amination of 2-arylquinazolin-4(3H)-one with N-alkyl-O-benzoyl-hydroxylamines. Tetrahedron, 2018, 74, 2330-2337.	1.0	16
64	Manganese(II/III/I)-Catalyzed C–H Arylations in Continuous Flow. ACS Catalysis, 2018, 8, 4402-4407.	5.5	49
65	Enantioselective Ni–Al Bimetallic Catalyzed <i>exo</i> -Selective C–H Cyclization of Imidazoles with Alkenes. Journal of the American Chemical Society, 2018, 140, 5360-5364.	6.6	120
66	Iridium atalyzed Direct Asymmetric Alkylation of Aniline Derivatives using 2â€Norbornene. Asian Journal of Organic Chemistry, 2018, 7, 1054-1056.	1.3	16
67	Mechanism and origins of the directing group-controlled <i>endo</i> - <i>versus exo</i> -selectivity of iridium-catalysed intramolecular hydroalkenylation of 1,1-disubstituted alkenes. Chemical Communications, 2018, 54, 2678-2681.	2.2	18
68	Site-specific hydroxyalkylation of chromones via alcohol mediated Minisci-type radical conjugate addition. Organic and Biomolecular Chemistry, 2018, 16, 1823-1827.	1.5	19
69	Areneâ€Ligandâ€Free Ruthenium(II/III) Manifold for <i>meta</i> â€Câ^'H Alkylation: Remote Purine Diversification. Chemistry - A European Journal, 2018, 24, 3984-3988.	1.7	65
70	Mixing <i>O</i> -Containing and <i>N</i> -Containing Directing Groups for C–H Activation: A Strategy for the Synthesis of Highly Functionalized 2,2′-Biaryls. Journal of Organic Chemistry, 2018, 83, 2582-2591.	1.7	16
71	Rhodium-catalyzed C–H bond activation alkylation and cyclization of 2-arylquinazolin-4-ones. Organic and Biomolecular Chemistry, 2018, 16, 1851-1859.	1.5	27
72	Mechanism and Origins of Regio- and Enantioselectivities of Iridium-Catalyzed Hydroarylation of Alkenyl Ethers. Journal of Organic Chemistry, 2018, 83, 2937-2947.	1.7	42

#	Article	IF	CITATIONS
73	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie, 2018, 130, 564-568.	1.6	13
74	sp ³ C–H activation <i>via exo</i> -type directing groups. Chemical Science, 2018, 9, 1424-1432.	3.7	189
75	Regioselective Câ^'H Alkylation via Carboxylateâ€Directed Hydroarylation in Water. Chemistry - A European Journal, 2018, 24, 4537-4541.	1.7	38
76	Transient Directing Groups for Transformative C–H Activation by Synergistic Metal Catalysis. CheM, 2018, 4, 199-222.	5.8	519
77	α-C—H Alkylation of Methyl Sulfides with Alkenes by a Scandium Catalyst. Journal of the American Chemical Society, 2018, 140, 114-117.	6.6	59
78	Iridium-Catalyzed Hydroarylation of Conjugated Dienes via π-Allyliridium Intermediates. Organic Letters, 2018, 20, 828-831.	2.4	22
79	Catalytic and Atomâ€Economic Câ^'C Bond Formation: Alkyl Tantalum Ureates for Hydroaminoalkylation. Angewandte Chemie - International Edition, 2018, 57, 3469-3472.	7.2	38
80	Catalytic and Atomâ€Economic Câ^'C Bond Formation: Alkyl Tantalum Ureates for Hydroaminoalkylation. Angewandte Chemie, 2018, 130, 3527-3530.	1.6	13
81	Regioselective direct arylation of indoles on the benzenoid moiety. Chemical Communications, 2018, 54, 1676-1685.	2.2	132
82	Electrochemical Câ^'H/Nâ^'H Activation by Waterâ€Tolerant Cobalt Catalysis at Room Temperature. Angewandte Chemie, 2018, 130, 2407-2411.	1.6	68
83	Cobaltâ€Catalyzed Coupling of Benzoic Acid Câ°'H Bonds with Alkynes, Styrenes, and 1,3â€Đienes. Angewandte Chemie - International Edition, 2018, 57, 1688-1691.	7.2	108
84	Cobaltâ€Catalyzed Coupling of Benzoic Acid Câ^'H Bonds with Alkynes, Styrenes, and 1,3â€Đienes. Angewandte Chemie, 2018, 130, 1704-1707.	1.6	23
85	A tethering directing group strategy for ruthenium-catalyzed intramolecular alkene hydroarylation. Chemical Communications, 2018, 54, 924-927.	2.2	27
86	Synthesis of 7â€Azaindole Amidated Derivatives: An Efficient Usage of Acyl Azides as the Nitrogen Source. Advanced Synthesis and Catalysis, 2018, 360, 1104-1110.	2.1	34
87	Co(<scp>iii</scp>)-Catalyzed <i>N</i> -chloroamide-directed C–H activation for 3,4-dihydroisoquinolone synthesis. Organic Chemistry Frontiers, 2018, 5, 994-997.	2.3	32
88	Electrochemical Câ^'H/Nâ^'H Activation by Water‶olerant Cobalt Catalysis at Room Temperature. Angewandte Chemie - International Edition, 2018, 57, 2383-2387.	7.2	219
89	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215
90	Rhodium-Catalyzed, Remote Terminal Hydroarylation of Activated Olefins through a Long-Range Deconjugative Isomerization. Journal of the American Chemical Society, 2018, 140, 6062-6066.	6.6	163

#	Article	IF	CITATIONS
91	Rh-Catalyzed C–H bond alkylation of indoles with α,α-difluorovinyl tosylate <i>via</i> indolyl group migration. Chemical Communications, 2018, 54, 5618-5621.	2.2	32
92	Ru ^{II} â€Catalyzed Annulative Coupling of Benzoic Acids with Vinyl Sulfone via Weak Carboxylateâ€Assisted Câ^'H Bond Activation. Asian Journal of Organic Chemistry, 2018, 7, 1302-1306.	1.3	16
93	1,4â€iron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2018, 57, 7719-7723.	7.2	71
94	Iridium-catalyzed C–H phosphoramidation of <i>N</i> -aryl-7-azaindoles with phosphoryl azides. Organic and Biomolecular Chemistry, 2018, 16, 3711-3715.	1.5	15
95	1,4â€Iron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie, 2018, 130, 7845-7849.	1.6	10
96	Direct functionalization of benzylic and non-benzylic C(sp ³)–H bonds <i>via</i> keteniminium ion initiated cascade [1,5]-hydrogen transfer/cyclization. Organic Chemistry Frontiers, 2018, 5, 1854-1858.	2.3	10
97	DMF-Promoted Redox-Neutral Ni-Catalyzed Intramolecular Hydroarylation of Alkene with Simple Arene. ACS Catalysis, 2018, 8, 3913-3917.	5.5	25
98	Nickel-Catalyzed Enantioselective Pyridone C–H Functionalizations Enabled by a Bulky <i>N-</i> Heterocyclic Carbene Ligand. Journal of the American Chemical Society, 2018, 140, 4489-4493.	6.6	140
99	Mechanism, selectivity, and reactivity of iridium- and rhodium-catalyzed intermolecular ketone α-alkylation with unactivated olefins <i>via</i> an enamide directing strategy. Catalysis Science and Technology, 2018, 8, 2417-2426.	2.1	36
100	One-pot regioselective synthesis of 2,4-disubstituted quinolines <i>via</i> copper(<scp>ii</scp>)-catalyzed cascade annulation. Organic Chemistry Frontiers, 2018, 5, 1713-1718.	2.3	20
101	Asymmetric hydrofunctionalization of minimally functionalized alkenes <i>via</i> earth abundant transition metal catalysis. Organic Chemistry Frontiers, 2018, 5, 260-272.	2.3	201
102	Total synthesis of natural products <i>via</i> iridium catalysis. Organic Chemistry Frontiers, 2018, 5, 106-131.	2.3	33
103	Scandium-catalyzed C(sp ³)–H alkylation of <i>N</i> , <i>N</i> -dimethyl anilines with alkenes. Organic Chemistry Frontiers, 2018, 5, 59-63.	2.3	38
104	Intramolecular Acetyl Transfer to Olefins by Catalytic Câ^'C Bond Activation of Unstrained Ketones. Angewandte Chemie - International Edition, 2018, 57, 475-479.	7.2	45
105	Macrolide Synthesis through Intramolecular Oxidative Crossâ€Coupling of Alkenes. Angewandte Chemie - International Edition, 2018, 57, 555-559.	7.2	74
106	Isocanthine Synthesis via Rh(III)-Catalyzed Intramolecular C–H Functionalization. Journal of Organic Chemistry, 2018, 83, 330-337.	1.7	15
107	Palladium-Catalyzed Sequential Vinylic C–H Arylation/Amination of 2-Vinylanilines with Aryl boronic Acids: Access to 2-Arylindoles. Journal of Organic Chemistry, 2018, 83, 323-329.	1.7	26
108	Intramolecular Acetyl Transfer to Olefins by Catalytic Câ^'C Bond Activation of Unstrained Ketones. Angewandte Chemie, 2018, 130, 484-488.	1.6	9

#	Article	IF	CITATIONS
109	The Use of a Rhodium Catalyst/8-Aminoquinoline Directing Group in the C-H Alkylation of Aromatic Amides with Alkenes: Possible Generation of a Carbene Intermediate from an Alkene. Bulletin of the Chemical Society of Japan, 2018, 91, 211-222.	2.0	41
110	Rhodium atalyzed Alkenyl Câ^'H Activation and Oxidative Coupling with Allylic Alcohols. Asian Journal of Organic Chemistry, 2018, 7, 240-247.	1.3	16
111	Nickel(0) atalyzed Hydroarylation of Styrenes and 1,3â€Dienes with Organoboron Compounds. Angewandte Chemie, 2018, 130, 470-473.	1.6	39
112	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chemical Reviews, 2018, 118, 4592-4630.	23.0	139
113	Photoredox and cobalt co-catalyzed C(sp ²)–H functionalization/C–O bond formation for synthesis of lactones under oxidant- and acceptor-free conditions. Organic Chemistry Frontiers, 2018, 5, 749-752.	2.3	44
114	Hochselektive Mangan(I)/Lewisâ€5äreâ€cokatalysierte direkte Câ€Hâ€Propargylierung unter Verwendung von Bromallenen. Angewandte Chemie, 2018, 130, 445-449.	1.6	17
115	Nickel(0) atalyzed Hydroarylation of Styrenes and 1,3â€Dienes with Organoboron Compounds. Angewandte Chemie - International Edition, 2018, 57, 461-464.	7.2	153
116	Quantifying Structural Effects of Amino Acid Ligands in Pd(II)-Catalyzed Enantioselective C–H Functionalization Reactions. Organometallics, 2018, 37, 203-210.	1.1	32
117	Highly Selective Manganese(I)/Lewis Acid Cocatalyzed Direct Câ^'H Propargylation Using Bromoallenes. Angewandte Chemie - International Edition, 2018, 57, 437-441.	7.2	69
118	Palladiumâ€Catalyzed Intermolecular [4+1] Spiroannulation via C(sp3)–H Activation and Naphthol Dearomatization. Angewandte Chemie, 2018, 131, 1488.	1.6	27
119	Mechanism and origins of chemo- and regioselectivities of (NHC)NiH-catalyzed cross-hydroalkenylation of vinyl ethers with α-olefins: a computational study. Organic Chemistry Frontiers, 2018, 5, 3410-3420.	2.3	8
120	Origins of the enantioselectivity of a palladium catalyst with BINOL–phosphoric acid ligands. Organic and Biomolecular Chemistry, 2018, 16, 8064-8071.	1.5	14
121	Ruthenium-catalyzed C–H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. Chemical Communications, 2018, 54, 12840-12843.	2.2	48
122	Carboxylate Ligand-Exchanged Amination/C(<i>sp</i> ³)–H Arylation Reaction via Pd/Norbornene Cooperative Catalysis. ACS Catalysis, 2018, 8, 11827-11833.	5.5	64
123	A Highly Efficient Copperâ€Catalyzed C(sp ²)â^'H Alkoxylation of the Benzamide Enabled by A Bidendate Directing Group. Asian Journal of Organic Chemistry, 2019, 8, 171-178.	1.3	7
124	Chromium-catalyzed para-selective formation of quaternary carbon centers by alkylation of benzamide derivatives. Nature Communications, 2018, 9, 4637.	5.8	24
125	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie, 2018, 130, 17084-17088.	1.6	18
126	Metal-Free Synthesis of Functionalized Tetrasubstituted Alkenes by Three-Component Reaction of Alkynes, Iodine, and Sodium Sulfinates. ACS Omega, 2018, 3, 18002-18015.	1.6	22

#	Article	IF	CITATIONS
127	Rhodium(III)â€Catalyzed Direct Câ€H Alkylation of 2â€Arylâ€1,2,3â€triazole <i>N</i> â€Oxides with Maleimides. European Journal of Organic Chemistry, 2018, 2018, 6919-6923.	1.2	13
128	Cobaltâ€Catalyzed Hiyamaâ€Type Câ^'H Activation with Arylsiloxanes: Versatile Access to Highly <i>ortho</i> â€Decorated Biaryls. Chemistry - A European Journal, 2019, 25, 2213-2216.	1.7	27
129	Ir(<scp>iii</scp>)-catalyzed <i>ortho</i> C–H alkylations of (hetero)aromatic aldehydes using alkyl boron reagents. Chemical Science, 2018, 9, 8951-8956.	3.7	33
130	Ruthenium(IV) Intermediates in Câ^'H Activation/Annulation by Weak <i>O</i> oordination. Chemistry - A European Journal, 2018, 24, 16548-16552.	1.7	71
131	Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. Chinese Journal of Chemistry, 2018, 36, 1075-1109.	2.6	347
132	Iridium atalyzed Sequential <i>sp</i> ³ Câ^'H Alkylation of an <i>N</i> â€Methyl Group with Alkenes Towards the Synthesis of αâ€5ubstituted Amines. Advanced Synthesis and Catalysis, 2018, 360, 4827-4831.	2.1	21
133	A Synthesis of 3,4-Dihydroisoquinolin-1(2H)-one via the Rhodium-Catalyzed Alkylation of Aromatic Amides with N-Vinylphthalimide. Journal of Organic Chemistry, 2018, 83, 13587-13594.	1.7	29
134	Pd-Catalyzed Alkylation of (Iso)quinolines and Arenes: 2-Acylpyridine Compounds as Alkylation Reagents. Organic Letters, 2018, 20, 6345-6348.	2.4	15
135	Synthesis of Polysubstituted Pyridines and Indoles by a Palladium atalyzed Catellaniâ€ŧype Alkylationâ€Alkenylation Sequence. ChemistrySelect, 2018, 3, 10164-10168.	0.7	4
136	Regioselective indole C2-alkylation using β-CF ₃ -substituted enones under redox neutral Rh(<scp>iii</scp>) catalysis. Organic Chemistry Frontiers, 2018, 5, 3133-3137.	2.3	28
137	Amide Effects in Câ^'H Activation: Noncovalent Interactions with Lâ€Shaped Ligand for <i>meta</i> Borylation of Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 15762-15766.	7.2	123
138	Enantiodivergent Desymmetrization in the Rhodium(III) atalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie, 2018, 130, 15760-15764.	1.6	41
139	Enantiodivergent Desymmetrization in the Rhodium(III) atalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie - International Edition, 2018, 57, 15534-15538.	7.2	132
140	Cobalt-Catalyzed Secondary Alkylation of Arenes and Olefins with Alkyl Ethers through the Cleavage of C(sp ²)–H and C(sp ³)–O Bonds. Journal of Organic Chemistry, 2018, 83, 13402-13413.	1.7	13
141	Bimetallic Nickel Complexes for Aniline C–H Alkylations. ACS Catalysis, 2018, 8, 11657-11662.	5.5	32
142	Efficient Palladium atalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie - International Edition, 2018, 57, 16842-16846.	7.2	29
143	Amide Effects in Câ^'H Activation: Noncovalent Interactions with L‣haped Ligand for <i>meta</i> Borylation of Aromatic Amides. Angewandte Chemie, 2018, 130, 15988-15992.	1.6	34
144	Dimethylamine adducts of allylic triorganoboranes as effective reagents for Petasis-type homoallylation of primary amines with formaldehyde. Organic and Biomolecular Chemistry, 2018, 16, 7115-7119.	1.5	4

#	Article	IF	CITATIONS
145	Library of Fluorescent Polysulfonamides and Polyamide Synthesized by Iridium-Catalyzed Direct C–H Amidation Polymerization. Macromolecules, 2018, 51, 7476-7482.	2.2	4
146	Nickel(0)-Catalyzed Hydroalkylation of 1,3-Dienes with Simple Ketones. Journal of the American Chemical Society, 2018, 140, 11627-11630.	6.6	123
147	Alkylation–peroxidation of α-carbonyl imines or ketones catalyzed by a copper salt <i>via</i> radical-mediated C _{sp3} –H functionalization. Organic Chemistry Frontiers, 2018, 5, 3083-3087.	2.3	8
148	Ru(<scp>ii</scp>)-Catalyzed C6-selective C–H amidation of 2-pyridones. Organic Chemistry Frontiers, 2018, 5, 2969-2973.	2.3	44
149	TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions. Catalysts, 2018, 8, 355.	1.6	32
150	Enantioselective Access to 1 <i>H</i> â€Isoindoles with Quaternary Stereogenic Centers by Palladium(0) atalyzed Câ^'H Functionalization. Angewandte Chemie, 2018, 130, 13832-13835.	1.6	8
151	H-bonded reusable template assisted para-selective ketonisation using soft electrophilic vinyl ethers. Nature Communications, 2018, 9, 3582.	5.8	62
152	Hydroarylations by cobalt-catalyzed C–H activation. Beilstein Journal of Organic Chemistry, 2018, 14, 2266-2288.	1.3	39
153	Enantioselective Access to 1 <i>H</i> â€Isoindoles with Quaternary Stereogenic Centers by Palladium(0) atalyzed Câ^'H Functionalization. Angewandte Chemie - International Edition, 2018, 57, 13644-13647.	7.2	29
154	Divergent Annulative C–C Coupling of Indoles Initiated by Manganese-Catalyzed C–H Activation. ACS Catalysis, 2018, 8, 9463-9470.	5.5	52
155	Silica-supported silver nanoparticles as an efficient catalyst for aromatic C–H alkylation and fluoroalkylation. Dalton Transactions, 2018, 47, 9608-9616.	1.6	27
156	Rhodium– <i>N</i> -Heterocyclic Carbene Catalyzed Hydroalkenylation Reactions with 2-Vinylpyridine and 2-Vinylpyrazine: Preparation of Nitrogen-Bridgehead Heterocycles. Organometallics, 2018, 37, 1695-1707.	1.1	19
157	Merging " <i>Anti</i> -Baldwin―3- <i>Exo-Dig</i> Cyclization with 1,2-Alkynyl Migration for Radical Alkylalkynylation of Unactivated Olefins. Organic Letters, 2018, 20, 3596-3600.	2.4	39
158	Transitionâ€Metalâ€Catalyzed Câ^'H Functionalization for Construction of Quaternary Carbon Centers. Chemistry - A European Journal, 2018, 24, 16218-16245.	1.7	55
159	Synthesis of Azolo[1,3,5]triazines via Rhodium(III)-Catalyzed Annulation of <i>N</i> -Azolo Imines and Dioxazolones. Journal of Organic Chemistry, 2018, 83, 9522-9529.	1.7	29
160	Irâ€Catalyzed Enantioselective Intra―and Intermolecular Formal Câ^'H Conjugate Addition to βâ€Substituted α,βâ€Unsaturated Esters. Asian Journal of Organic Chemistry, 2018, 7, 1411-1418.	1.3	34
161	Synthesis of Heterocyclic Compounds Based on Transition-Metal-Catalyzed Carbene Coupling Reactions. , 2018, , 129-191.		1
162	Chiral Diaryliodonium Phosphate Enables Light Driven Diastereoselective α-C(sp ³)–H Acetalization. Journal of the American Chemical Society, 2018, 140, 8350-8356.	6.6	42

#	Article	IF	CITATIONS
163	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	4.6	21
164	Rhodium(III)-Catalyzed Redox-Neutral C–H Activation/Annulation of <i>N</i> -Aryloxyacetamides with Alkynyloxiranes: Synthesis of Highly Functionalized 2,3-Dihydrobenzofurans. Journal of Organic Chemistry, 2018, 83, 9464-9470.	1.7	27
165	Nickel-catalyzed direct C–H bond sulfenylation of acylhydrazines. Organic and Biomolecular Chemistry, 2018, 16, 6047-6056.	1.5	27
166	Ruthenium-Catalyzed C–H Functionalization of Benzoic Acids with Allyl Alcohols: A Controlled Reactivity Switch between C–H Alkenylation and C–H Alkylation Pathways. Organic Letters, 2018, 20, 4934-4937.	2.4	44
167	Rh(III)-Catalyzed C–C Coupling of Diverse Arenes and 4-Acyl-1-sulfonyltriazoles via C–H Activation. Organic Letters, 2018, 20, 4946-4949.	2.4	32
168	Pentamethylcyclopentadienyl rhodium(III)–chiral disulfonate hybrid catalysis for enantioselective C–H bond functionalization. Nature Catalysis, 2018, 1, 585-591.	16.1	127
169	A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chemical Society Reviews, 2018, 47, 6603-6743.	18.7	1,272
170	N-Heterocyclic carbene–chromium-catalyzed alkylative cross-coupling of benzamide derivatives with aliphatic bromides. Chemical Communications, 2018, 54, 9325-9328.	2.2	24
171	Transitionâ€Metalâ€Free Selective Câ^'H Benzylation of Tertiary Arylamines by a Dearomatizationâ€Aromatization Sequence. Chemistry - A European Journal, 2018, 24, 13778-13782.	1.7	15
172	Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catalysis, 2018, 8, 8115-8120.	5.5	113
173	Mechanisms of Rhodium(III)-Catalyzed C–H Functionalizations of Benzamides with α,α-Difluoromethylene Alkynes. Journal of Organic Chemistry, 2018, 83, 9220-9230.	1.7	34
174	Nickel(0)-catalyzed linear-selective hydroarylation of unactivated alkenes and styrenes with aryl boronic acids. Chemical Science, 2018, 9, 6839-6843.	3.7	90
175	Iridium(I)-Catalyzed Intramolecular Cycloisomerization of Enynes: Scope and Mechanistic Course. ACS Catalysis, 2018, 8, 7397-7402.	5.5	26
176	Conjugate Addition of Perfluoroarenes to α,β-Unsaturated Carbonyls Enabled by an Alkoxide-Hydrosilane System: Implication of a Radical Pathway. Journal of the American Chemical Society, 2018, 140, 9659-9668.	6.6	15
177	1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis. Chemical Communications, 2018, 54, 8745-8748.	2.2	60
178	Branch-Selective and Enantioselective Iridium-Catalyzed Alkene Hydroarylation via Anilide-Directed C–H Oxidative Addition. Journal of the American Chemical Society, 2018, 140, 9351-9356.	6.6	108
179	Weinreb Amide Directed Versatile Câ^'H Bond Functionalization under (Î∙ ⁵ â€Pentamethylcyclopentadienyl)cobalt(III) Catalysis. Chemistry - A European Journal, 2018, 24, 10231-10237.	1.7	46
180	Pd-Catalyzed reductive heck reaction of olefins with aryl bromides for Csp ² –Csp ³ bond formation. Chemical Communications, 2018, 54, 5752-5755.	2.2	52

#	Article	IF	CITATIONS
181	Hydroxoiridium atalyzed sp ³ Câ^'H Alkylation of Indoline Derivatives with Terminal Alkenes. Asian Journal of Organic Chemistry, 2018, 7, 1347-1350.	1.3	13
182	Rhodium(iii)-catalyzed directed amidation of unactivated C(sp3)–H bonds to afford 1,2-amino alcohol derivatives. Chemical Communications, 2018, 54, 11096-11099.	2.2	21
183	Rhodium(III)-Catalyzed <i>Meta</i> -Selective C–H Alkenylation of Phenol Derivatives. Organic Letters, 2018, 20, 5126-5129.	2.4	35
184	Synthesis of <i>o</i> -Arylenediamines through Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Arylamines. Organic Letters, 2018, 20, 5470-5473.	2.4	41
185	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie - International Edition, 2018, 57, 10625-10629.	7.2	83
186	Rhâ€Catalyzed Carboxylates Directed C–H Activation for the Synthesis of <i>ortho</i> â€Carboxylic 2â€Arylethenesulfonyl Fluorides: Access to Unique Electrophiles for SuFEx Click Chemistry. European Journal of Organic Chemistry, 2018, 2018, 4407-4410.	1.2	37
187	Alkaloid Synthesis via Goldâ€Catalyzed Carbonâ€Carbon Bond Formation Using Enamineâ€ŧype Nucleophile. Israel Journal of Chemistry, 2018, 58, 557-567.	1.0	6
188	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Câ^'H Arylation. Angewandte Chemie, 2018, 130, 10785-10789.	1.6	23
189	Rh ^{III} â€Catalyzed Synthesis of Isoquinolones and 2â€Pyridones by Annulation of <i>N</i> â€Methoxyamides and Nitroalkenes. European Journal of Organic Chemistry, 2018, 2018, 4381-4388.	1.2	24
190	Trifunctionalization of Allenes via Cobalt-Catalyzed MHP-Assisted C–H Bond Functionalization and Molecular Oxygen Activation. ACS Catalysis, 2018, 8, 6645-6649.	5.5	50
191	Electrochemical strategies for C–H functionalization and C–N bond formation. Chemical Society Reviews, 2018, 47, 5786-5865.	18.7	736
192	Beyond Friedel and Crafts: Directed Alkylation of Câ [~] 'H Bonds in Arenes. Angewandte Chemie - International Edition, 2019, 58, 7202-7236.	7.2	94
193	Recent Advances in Ruthenium(II) atalyzed Câ^'H Bond Activation and Alkyne Annulation Reactions. Advanced Synthesis and Catalysis, 2019, 361, 654-672.	2.1	183
194	Beyond Friedel and Crafts: Innate Alkylation of Câ~'H Bonds in Arenes. Angewandte Chemie - International Edition, 2019, 58, 7558-7598.	7.2	82
195	Palladium(II)/Lewis Acid Cocatalyzed Oxidative Annulation of 2-Alkenylanilines and Propargylic Esters: An Access to Benzo[<i>b</i>]azepines. Journal of Organic Chemistry, 2019, 84, 10843-10851.	1.7	18
196	Synthesis of Indole-Fused Polycyclics via Rhodium-Catalyzed Undirected C–H Activation/Alkene Insertion. Organic Letters, 2019, 21, 6320-6324.	2.4	14
197	Rhodium-catalysed direct hydroarylation of alkenes and alkynes with phosphines through phosphorous-assisted Câ [^] 'H activation. Nature Communications, 2019, 10, 3539.	5.8	58
198	Catalytic alkylation of unactivated C(sp ³)–H bonds for C(sp ³)–C(sp ³) bond formation. Chemical Society Reviews, 2019, 48, 4921-4942.	18.7	196

#	Article	IF	CITATIONS
199	Density Functional Theory Study of the Mechanisms of Ironâ€Catalyzed Regioselective Antiâ€Markovnikov Addition of Câ€H Bonds in Aromatic Ketones to Alkenes. Applied Organometallic Chemistry, 2019, 33, e5183.	1.7	9
200	Iridium atalyzed C(<i>sp</i> ³)â^'H Addition of Methyl Ethers across Intramolecular Carbon–Carbon Double Bonds Giving 2,3â€Dihydrobenzofurans. Advanced Synthesis and Catalysis, 2019, 361, 4448-4453.	2.1	15
201	Nickel-Catalyzed Electrochemical Phosphorylation of Aryl Bromides. Organic Letters, 2019, 21, 6835-6838.	2.4	66
202	Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Nonâ€Activated Aliphatic Câ°'H Bonds via Metallocarbene Intermediates. Angewandte Chemie, 2019, 131, 14042-14049.	1.6	2
203	Double-Fold Ortho and Remote C–H Bond Activation/Borylation of BINOL: A Unified Strategy for Arylation of BINOL. Organic Letters, 2019, 21, 6476-6480.	2.4	19
204	Thiocarbamateâ€Directed ortho Câ^H Bond Alkylation with Diazo Compounds. Advanced Synthesis and Catalysis, 2019, 361, 4674-4678.	2.1	18
205	Synthesis of 2-Arylbenzothiazole and 2-Arylthiazole Derivatives via a Ru-Catalyzed <i>meta</i> -Selective C–H Nitration Reaction. Journal of Organic Chemistry, 2019, 84, 12784-12791.	1.7	17
206	Ruthenium(II)-catalyzed Alkylation of C-H Bonds in Aromatic Amides with Vinylsilanes. Chemistry Letters, 2019, 48, 1185-1187.	0.7	6
207	Nickel/NHC atalyzed Asymmetric Câ^'H Alkylation of Fluoroarenes with Alkenes: Synthesis of Enantioenriched Fluorotetralins. Angewandte Chemie - International Edition, 2019, 58, 13433-13437.	7.2	74
208	Nickel-Catalyzed Regioselective Hydrobenzylation of 1,3-Dienes with Hydrazones. ACS Catalysis, 2019, 9, 9199-9205.	5.5	41
209	Nickel/NHC atalyzed Asymmetric Câ^'H Alkylation of Fluoroarenes with Alkenes: Synthesis of Enantioenriched Fluorotetralins. Angewandte Chemie, 2019, 131, 13567-13571.	1.6	26
210	Chelation-Assisted Nickel-Catalyzed Câ [~] 'H Functionalizations. Trends in Chemistry, 2019, 1, 524-539.	4.4	114
211	Rhodium(<scp>iii</scp>)-catalyzed indole synthesis at room temperature using the transient oxidizing directing group strategy. Chemical Communications, 2019, 55, 9547-9550.	2.2	25
212	The Pd-catalyzed C–H alkylation of <i>ortho</i> -methyl-substituted aromatic amides with maleimide occurs preferentially at the <i>ortho</i> -methyl C–H bond over the <i>ortho</i> -C–H bond. Chemical Communications, 2019, 55, 9983-9986.	2.2	34
213	Electrophilic Iron Catalyst Paired with a Lithium Cation Enables Selective Functionalization of Nonâ€Activated Aliphatic Câ^'H Bonds via Metallocarbene Intermediates. Angewandte Chemie - International Edition, 2019, 58, 13904-13911.	7.2	23
214	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	2.4	21
215	Recent Advances in the Functionalization of Hydrocarbons: Synthesis of Amides and its Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 1227-1262.	1.3	13
216	Rhodium(III)-Catalyzed C–H Activation: Ligand-Controlled Regioselective Synthesis of 4-Methyl-Substituted Dihydroisoquinolones. Organic Letters, 2019, 21, 5689-5693.	2.4	29

#	Article	IF	CITATIONS
217	Ruthenium(II)â€Catalyzed Homocoupling of Weakly Coordinating Sulfoxonium Ylides via Câ^'H Activation/Annulations: Synthesis of Functionalized Isocoumarins. Advanced Synthesis and Catalysis, 2019, 361, 5191-5197.	2.1	46
218	Rhodium atalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold Câ^'H Activation. Angewandte Chemie, 2019, 131, 17830-17834.	1.6	31
219	Rhodium atalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold Câ^'H Activation. Angewandte Chemie - International Edition, 2019, 58, 17666-17670.	7.2	85
220	Dual Benzophenone/Copperâ€Photocatalyzed Gieseâ€Type Alkylation of C(sp ³)â^'H Bonds. Chemistry - A European Journal, 2019, 25, 16120-16127.	1.7	28
221	NHC Ligand-Enabled, Palladium-Catalyzed Non-Directed C(sp ³)–H Carbonylation To Access Indanone Cores. ACS Catalysis, 2019, 9, 10299-10304.	5.5	33
223	Palladium-Catalyzed Controllable Reductive/Oxidative Heck Coupling between Cyclic Enones and Thiophenes via C–H Activation. Organic Letters, 2019, 21, 9545-9549.	2.4	16
224	Nickel-catalyzed intermolecular oxidative Heck arylation driven by transfer hydrogenation. Nature Communications, 2019, 10, 5025.	5.8	73
225	Enamine/Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates. Topics in Current Chemistry, 2019, 377, 38.	3.0	19
226	Direct Construction of Diverse Polyheterocycles Bearing Pyrrolidinediones via Rh(III) atalyzed Cascade Câ~'H Activation/Spirocyclization. Advanced Synthesis and Catalysis, 2019, 361, 5587-5595.	2.1	34
227	Scandium-Catalyzed <i>para</i> -Selective Alkylation of Aromatic Amines with Alkenes. Organic Letters, 2019, 21, 9055-9059.	2.4	34
228	Controllable, Sequential, and Stereoselective C–H Allylic Alkylation of Alkenes. Journal of the American Chemical Society, 2019, 141, 17305-17313.	6.6	28
230	Generation of Heteroatom Stereocenters by Enantioselective C–H Functionalization. ACS Catalysis, 2019, 9, 9164-9177.	5.5	122
231	Imidate as the Intact Directing Group for the Cobalt-Catalyzed C–H Allylation. Journal of Organic Chemistry, 2019, 84, 13203-13210.	1.7	25
232	Hydride–Rhodium(III)- <i>N</i> -Heterocyclic Carbene Catalyst for Tandem Alkylation/Alkenylation via C–H Activation. ACS Catalysis, 2019, 9, 9372-9386.	5.5	11
233	Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. Journal of Organic Chemistry, 2019, 84, 12835-12847.	1.7	29
234	Regioselective Alkylative Cross-Coupling of Remote Unactivated C(<i>sp</i> ³)–H Bonds. Journal of the American Chemical Society, 2019, 141, 14062-14067.	6.6	72
235	Palladium-Catalyzed Aerobic Benzannulation of Amines, Benzaldehydes, and β-Dicarbonyls. Organic Letters, 2019, 21, 7489-7492.	2.4	19
236	Cobalt-Catalyzed Olefinic C–H Alkenylation/Alkylation Switched by Carbonyl Groups. Organic Letters, 2019, 21, 7772-7777.	2.4	45

ARTICLE IF CITATIONS # Ruthenium-Catalyzed Enantioselective Câ€"H Functionalization: A Practical Access to Optically Active 237 6.6 89 Indoline Derivatives. Journal of the American Chemical Society, 2019, 141, 15730-15736. Site-Selective Catalytic Deaminative Alkylation of Unactivated Olefins. Journal of the American 6.6 169 Chemical Society, 2019, 141, 16197-16201. Rhodium-Catalyzed Alkenylation of Toluene Using 1-Pentene: Regioselectivity To Generate Precursors 239 1.1 15 for Bicyclic Compounds. Organometallics, 2019, 38, 3860-3870. Promoting Ni(II) Catalysis with Plasmonic Antennas. CheM, 2019, 5, 2879-2899. 240 5.8 Rhodium(III)-Catalyzed Chemo-divergent Couplings of Sulfoxonium Ylides with Oxa/azabicyclic 241 2.4 51 Olefins. Organic Letters, 2019, 21, 8459-8463. Hydroaminoalkylation of sterically hindered alkenes with N,N-dimethyl anilines using a scandium catalyst. Organic and Biomolecular Chemistry, 2019, 17, 2013-2019. 1.5 Copperâ€Catalyzed Sequential C(<i>sp</i>²)/C(<i>sp</i>³)â[^]H Amination of 243 2â€Vinylanilines with <i>N</i>à€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2019, 361, 2.1 11 1771-1776. Trisannulation of benzamides and cyclohexadienone-tethered 1,1-disubstituted allenes initiated by 244 2.3 10 Cp*Rh(<scp>iii</scp>)-catalyzed Cấ€"H activation. Organic Chemistry Frontiers, 2019, 6, 699-703. Branchedâ€Selective Direct αâ€Alkylation of Cyclic Ketones with Simple Alkenes. Angewandte Chemie -245 7.2 53 International Edition, 2019, 58, 4366-4370. Cascade reaction based synthetic strategies targeting biologically intriguing indole polycycles. 246 1.5 Organic and Biomolecular Chemistry, 2019, 17, 413-431. N-Heterocyclic Carbene Ligand-Controlled Regioselectivity for Nickel-Catalyzed Hydroarylation of 247 2.4 23 Vinylarenes with Benzothiazoles. Organic Letters, 2019, 21, 5055-5058. Jenseits von Friedel und Crafts: immanente Alkylierung von Câ€Hâ€Bindungen in Arenen. Angewandte 1.6 24 Chemie, 2019, 131, 7638-7680. Rhodium(III)â€Catalyzed Regioselective Câ[°]'H Activation/Annulation for the Diverse Pyrazoleâ€Core 249 2.1 19 Substituted Furans. Advanced Synthesis and Catalysis, 2019, 361, 4022-4032. Glycopeptides by Linchâ€Pin Câ^'H Activations for Peptide arbohydrate Conjugation by Manganese(I) atalysis. Chemistry - A European Journal, 2019, 25, 10585-10589. 1.7 39 Pyrrolo[3,4-c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to 251 29 2.4 Maleimides. Organic Letters, 2019, 21, 5046-5050. Ironâ€Catalyzed <i>Ortho</i>â€Selective Câ[~]H Alkylation of Aromatic Ketones with <i>N</i>â€Alkenylindoles 1.3 and Partial Indolylation via 1,4â€Iron Migration. Asián Journal of Organic Chemistry, 2019, 8, 1115-1117. Rhodium(III)-Catalyzed Oxidative Allylic Câ€"H Indolylation via Nucleophilic Cyclization. Organic 253 2.4 22 Letters, 2019, 21, 4662-4666. Ru^{II}-Catalyzed/NH₂-Assisted Selective Alkenyl Câ€"H [5 + 1] Annulation of 254 2.4 Alkenylanilines with Sulfoxonium Ylides to Quinolines. Organic Letters, 2019, 21, 4812-4815.

#	Article	IF	CITATIONS
255	Chemoselective metal-free indole arylation with cyclohexanones. Organic Chemistry Frontiers, 2019, 6, 2738-2743.	2.3	37
256	Reaching Green: Heterocycle Synthesis by Transition Metalâ€Catalyzed Câ^'H Functionalization in Sustainable Medium. Chemistry - A European Journal, 2019, 25, 9366-9384.	1.7	52
257	Pd(OAc)2-catalyzed orthogonal synthesis of 2-hydroxybenzoates and substituted cyclohexanones from acyclic unsaturated 1,3-carbonyl compounds. Tetrahedron Letters, 2019, 60, 1653-1657.	0.7	6
258	Ligand Promoted, Palladium-Catalyzed C(sp ²)–H Arylation of Free Primary 2-Phenylethylamines. Organic Letters, 2019, 21, 4224-4228.	2.4	15
259	Efficient Kinetic Resolution of Sulfur‣tereogenic Sulfoximines by Exploiting Cp ^X Rh ^{III} â€Catalyzed Câ^'H Functionalization. Angewandte Chemie, 2019, 131, 8994-8998.	1.6	37
260	Transitionâ€Metalâ€Promoted Direct Câ^'H Cyanoalkylation and Cyanoalkoxylation of Internal Alkenes via Radical Câ^'C Bond Cleavage of Cycloketone Oxime Esters. Advanced Synthesis and Catalysis, 2019, 361, 3787-3799.	2.1	25
261	A Bulky Chiral Nâ€Heterocyclic Carbene Nickel Catalyst Enables Enantioselective Câ^'H Functionalizations of Indoles and Pyrroles. Angewandte Chemie - International Edition, 2019, 58, 11044-11048.	7.2	82
262	Rhodium(III)-Catalyzed Intramolecular Olefin Hydroarylation of Aromatic Aldehydes Using a Transient Directing Group. Organic Letters, 2019, 21, 3959-3962.	2.4	29
263	A Bulky Chiral Nâ€Heterocyclic Carbene Nickel Catalyst Enables Enantioselective Câ^'H Functionalizations of Indoles and Pyrroles. Angewandte Chemie, 2019, 131, 11160-11164.	1.6	29
264	Exploiting Natural Complexity: Synthetic Terpenoidâ€Alkaloids by Regioselective and Diastereoselective Hydroaminoalkylation Catalysis. ChemCatChem, 2019, 11, 3871-3876.	1.8	19
265	Easy access to synthesize isoquinolines from aryl ketoximes and internal alkynes via Iridium (III)-catalyzed C H/N O bond activation. Tetrahedron, 2019, 75, 3015-3023.	1.0	14
266	Unexpected Stability of CO-Coordinated Palladacycle in Bidentate Auxiliary Directed C(sp ³)–H Bond Activation: A Combined Experimental and Computational Study. Organometallics, 2019, 38, 2022-2030.	1.1	6
267	One-Pot Protocol To Synthesize 2-Aminophenols from Anilines via Palladium-Catalyzed C–H Acetoxylation. Organometallics, 2019, 38, 2084-2091.	1.1	9
268	Chemoselective Boraneâ€Catalyzed Hydroarylation of 1,3â€Dienes with Phenols. Angewandte Chemie, 2019, 131, 1708-1713.	1.6	7
269	Rhodium(<scp>iii</scp>)-catalyzed chemoselective C–H functionalization of benzamides with methyleneoxetanones controlled by the solvent. Organic and Biomolecular Chemistry, 2019, 17, 6114-6118.	1.5	20
270	Iminyl Radical-Triggered 1,5-Hydrogen-Atom Transfer/Heck-Type Coupling by Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 6475-6482.	1.7	27
271	Transition-metal-free sp3 C–H activation of 2-methylquinoline with terminal alkynes for synthesis of 3-(quinolin-2-yl)isoxazoles. Tetrahedron Letters, 2019, 60, 1443-1447.	0.7	5
272	Palladium atalyzed <i>meta</i> ‧elective Câ€H Alkenylation and Acetoxylation of Arylacetic Acid Using a Pyrimidine Template. European Journal of Organic Chemistry, 2019, 2019, 3195-3202.	1.2	6

ARTICLE IF CITATIONS # Efficient Kinetic Resolution of Sulfurâ€Stereogenic Sulfoximines by Exploiting Cp^XRh^{III}â€Catalyzed Câ[^]H Functionalization. Angewandte Chemie - International 273 7.2 121 Edition, 2019, 58, 8902-8906. Palladiumâ€Catalyzed Oxidation Reactions of Alkenes with Green Oxidants. ChemSusChem, 2019, 12, 274 3.6 2911-2935. Computational Investigation of Scandium-Based Catalysts for Olefin Hydroaminoalkylation and C–H 275 1.1 27 Addition. Organometallics, 2019, 38, 1887-1896. BrÃ,nsted acid and Pd–PHOX dual-catalysed enantioselective addition of activated C-pronucleophiles to internal dienes. Chemical Science, 2019, 10, 5176-5182. Metal-Free Site-Specific Hydroxyalkylation of Imidazo[1,2-<i>a</i>)pyridines with Alcohols through 277 2.4 30 Radical Reaction. Organic Letters, 2019, 21, 3436-3440. Benzylarylation of N-Allyl Anilines: Synthesis of Benzylated Indolines. Journal of Organic Chemistry, 2019, 84, 6072-6083. 278 1.7 Rhodium(I)-Catalyzed Aryl Câ€"H Carboxylation of 2-Arylanilines with CO₂. Organic Letters, 279 2.4 65 2019, 21, 3663-3669. Enabling Catalytic Arene C–H Amidomethylation via Bis(tosylamido)methane as a Sustainable 280 2.4 14 Formaldimine Releaser. Organic Letters, 2019, 21, 3735-3740. Ru(II)-Catalyzed Câ€"H Activation/Alkylation of 3-Formylbenzofurans with Conjugated Olefins: Product 281 1.7 8 Divergence. Journal of Organic Chemistry, 2019, 84, 5056-5066. Regio- and Enantioselective C–H Cyclization of Pyridines with Alkenes Enabled by a 139 6.6 Nickel/N-Heterocyclic Carbene Catalysis. Journal of the American Chemical Society, 2019, 141, 5628-5634. Directingâ€Groupâ€Free C7â€Alkylations of Nâ€Alkylindoles Mediated by Cationic Zirconium Complexes: Role 283 1.7 8 of BrÃnsted Acid for Catalytic Manifold. Chemistry - A European Journal, 2019, 25, 7292-7297. Rhodium atalyzed Alkylation of Câ[^]H Bonds in Aromatic Amides with Nonâ€activated 1â€Alkenes: The Possible Generation of Carbene Intermediates from Alkenes. Chemistry - A European Journal, 2019, 25, 6915-6919. Nickel-Catalyzed Reaction of Benzamides with Bicylic Alkenes: Cleavage of Câ€"H and Câ€"N Bonds. 285 2.4 42 Organic Letters, 2019, 21, 1774-1778. Nickelâ€Catalyzed Intramolecular Coupling of Sulfones via the Extrusion of Sulfur Dioxide. Advanced Synthesis and Catalysis, 2019, 361, 2020-2024. 2.1 Mn(II)-Catalyzed Câ€"H Alkylation of Imidazopyridines and N-Heteroarenes via Decarbonylative and 287 1.7 48 Cross-Dehydrogenative Coupling. Journal of Organic Chemistry, 2019, 84, 4363-4371. Direct C2â€Heteroarylation of Indoles by Rhodiumâ€Catalyzed Câ°C Bond Cleavage of Secondary Alcohols. Asian Journal of Organic Chemistry, 2019, 8, 46<u>6-469.</u> Homocoupling-free iron-catalysed twofold Câ€"H activation/cross-couplings of aromatics via transient 289 16.1 53 connection of reactants. Nature Catalysis, 2019, 2, 400-406. Palladium(II)-Catalyzed Stereospecific Alkenyl C–H Bond Alkylation of Allylamines with Alkyl Iodides. 290 ACS Catalysis, 2019, 9, 4271-4276.

#	Article	IF	CITATIONS
291	Copper atalyzed Oxidative Câ^'H Bond Functionalization of Nâ€Allylbenzamide for Regioselective Câ^'N and Câ^'O Bond Formation. Chemistry - an Asian Journal, 2019, 14, 1448-1451.	1.7	4
292	Transient Ligandâ€Enabled Transition Metalâ€Catalyzed Câ^'H Functionalization. ChemSusChem, 2019, 12, 2955-2969.	3.6	103
293	Investigations of the generality of quaternary ammonium salts as alkylating agents in direct C–H alkylation reactions: solid alternatives for gaseous olefins. Organic and Biomolecular Chemistry, 2019, 17, 4024-4030.	1.5	10
294	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90
295	An Efficient, One-Pot Transamidation of 8-Aminoquinoline Amides Activated by Tertiary-Butyloxycarbonyl. Molecules, 2019, 24, 1234.	1.7	6
296	Graphene oxide catalyzed ketone α-alkylation with alkenes: enhancement of graphene oxide activity by hydrogen bonding. Chemical Communications, 2019, 55, 5379-5382.	2.2	17
297	Chemodivergent Oxidative Annulation of Benzamides and Enynes via 1,4-Rhodium Migration. Organic Letters, 2019, 21, 1789-1793.	2.4	35
299	Branchedâ€Selective Direct αâ€Alkylation of Cyclic Ketones with Simple Alkenes. Angewandte Chemie, 2019, 131, 4410-4414.	1.6	14
300	Reaction of Pentafulvene Titanium and Zirconium Complexes with Phosphorus Ylides: Stoichiometric Reactions and Catalytic Intramolecular Proton Shuttles. Organometallics, 2019, 38, 829-843.	1.1	8
301	Mnâ€Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câ~H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie, 2019, 131, 5144-5148.	1.6	9
302	Pd/Cu-Catalyzed Cascade C(sp3)–H Arylation and Intramolecular C–N Coupling: A One-Pot Synthesis of 3,4-2H-Quinolinone Skeletons. Organic Letters, 2019, 21, 1668-1671.	2.4	22
303	Nickel-catalyzed C–H bond trifluoromethylation of 8-aminoquinoline derivatives by acyl-directed functionalization. Organic Chemistry Frontiers, 2019, 6, 1189-1193.	2.3	20
304	The literature of heterocyclic chemistry, part XVII, 2017. Advances in Heterocyclic Chemistry, 2019, 129, 337-418.	0.9	5
305	One-pot synthesis of 2,4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Letters, 2019, 60, 965-970.	0.7	6
306	Ruthenium(II)-Catalyzed Distal Weak <i>O</i> -Coordinating C–H Alkylation of Arylacetamides with Alkenes: Combined Experimental and DFT Studies. Journal of Organic Chemistry, 2019, 84, 3977-3989.	1.7	22
307	Insights into the role of noncovalent interactions in distal functionalization of the aryl C(sp ²)–H bond. Chemical Science, 2019, 10, 3826-3835.	3.7	34
308	Cuâ€Catalyzed [4+1] Annulation toward Indolo[2,1â€ <i>a</i>]isoquinolines through Oxidative C(sp ³)/C(sp ²)â^'H Bond Bifunctionalization. Chemistry - an Asian Journal, 2019, 14, 1042-1049.	1.7	12
309	Nickel-catalyzed anti-Markovnikov hydroarylation of alkenes. Chemical Science, 2019, 10, 3231-3236.	3.7	86

#	Article	IF	CITATIONS
310	Mn atalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câ°'H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie - International Edition, 2019, 58, 5090-5094.	7.2	45
311	Jenseits von Friedel und Crafts: dirigierte Alkylierung von Câ€Hâ€Bindungen in Arenen. Angewandte Chemie, 2019, 131, 7278-7314.	1.6	16
312	Enantioselective Copper-Catalyzed Cyanation of Remote C(sp3)-H Bonds Enabled by 1,5-Hydrogen Atom Transfer. IScience, 2019, 21, 490-498.	1.9	35
313	Synthesis and Biological Evaluation of New Functionalized Nitroindazolylacetonitrile Derivatives. ChemistrySelect, 2019, 4, 14335-14342.	0.7	8
314	Bidentate auxiliary-directed alkenyl C–H allylation via exo-palladacycles: synthesis of branched 1,4-dienes. Chemical Communications, 2019, 55, 13582-13585.	2.2	28
315	An Approach to Peri-Fused Heterocycles: A Metal-Mediated Cascade Carbonylative Cyclization/Dearomatic Diels–Alder Reaction. Organic Letters, 2019, 21, 9512-9515.	2.4	10
316	C–H Bond Alkylation of Cyclic Amides with Maleimides via a Site-Selective-Determining Six-Membered Ruthenacycle. Journal of Organic Chemistry, 2019, 84, 16183-16191.	1.7	27
317	Redox-Neutral [4 + 2] Annulation of <i>N</i> -Methoxybenzamides with Alkynes Enabled by an Osmium(II)/HOAc Catalytic System. Organic Letters, 2019, 21, 9904-9908.	2.4	25
318	Nickel-catalyzed hydroalkylation and hydroalkenylation of 1,3-dienes with hydrazones. Chemical Science, 2019, 10, 10417-10421.	3.7	32
319	Photocatalytic carbanion generation from C–H bonds – reductant free Barbier/Grignard-type reactions. Chemical Science, 2019, 10, 10991-10996.	3.7	38
320	Developments in Cp*Co ^{III} â€Catalyzed Câ^'H Bond Functionalizations. Asian Journal of Organic Chemistry, 2019, 8, 430-455.	1.3	45
321	Tandem Cyclization/Hydroarylation of α,ï‰-Dienes Triggered by Scandium-Catalyzed C–H Activation. ACS Catalysis, 2019, 9, 599-604.	5.5	20
322	Lateâ€Stage Diversification through Manganeseâ€Catalyzed Câ^'H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angewandte Chemie, 2019, 131, 3514-3518.	1.6	36
323	Late‣tage Diversification through Manganeseâ€Catalyzed Câ^'H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angewandte Chemie - International Edition, 2019, 58, 3476-3480.	7.2	84
324	Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coordination Chemistry Reviews, 2019, 382, 69-84.	9.5	42
325	Redox-Neutral Annulation of Alkynylcyclopropanes with <i>N</i> -Aryloxyamides via Rhodium(III)-Catalyzed Sequential C–H/C–C Activation. Journal of Organic Chemistry, 2019, 84, 1588-1595.	1.7	18
326	Theoretical study on the base-controlled selective linear or branched ortho-alkylation of azines catalyzed by rhodium: Mechanisms and the role of base. Molecular Catalysis, 2019, 462, 77-84.	1.0	9
327	Enantioselective C(sp 3)–H Amidation of Thioamides Catalyzed by a Cobalt III /Chiral Carboxylic Acid Hybrid System. Angewandte Chemie, 2019, 131, 1165-1169.	1.6	72

#	Article	IF	Citations
328	Enantioselective C(sp ³)–H Amidation of Thioamides Catalyzed by a Cobalt ^{III} /Chiral Carboxylic Acid Hybrid System. Angewandte Chemie - International Edition, 2019, 58, 1153-1157.	7.2	230
329	High-efficiency toluene alkylation with tert-butyl alcohol catalyzed by Ce2O3-modified H-beta zeolites. Chemistry Africa, 2019, 2, 39-45.	1.2	0
330	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
331	Rhodium(III) atalyzed Enantioselective Coupling of Indoles and 7â€Azabenzonorbornadienes by Câ^'H Activation/Desymmetrization. Angewandte Chemie - International Edition, 2019, 58, 322-326.	7.2	82
332	Rhodium-catalyzed direct alkylation of benzylic amines using alkyl bromides. Monatshefte Für Chemie, 2019, 150, 127-138.	0.9	1
333	Rhodium(III) atalyzed Enantioselective Coupling of Indoles and 7â€Azabenzonorbornadienes by Câ^'H Activation/Desymmetrization. Angewandte Chemie, 2019, 131, 328-332.	1.6	31
334	Transition metal-catalyzed α-alkylation of amines by C(sp3)‒H bond activation. Tetrahedron, 2019, 75, 145-163.	1.0	48
335	Rhodium atalyzed P ^{III} â€Directed <i>ortho</i> â^'H Borylation of Arylphosphines. Angewandte Chemie, 2019, 131, 2100-2104.	1.6	19
336	Rhodiumâ€Catalyzed P ^{III} â€Directed <i>ortho</i> â€Câ^'H Borylation of Arylphosphines. Angewandte Chemie - International Edition, 2019, 58, 2078-2082.	7.2	90
337	Goldâ€catalyzed Rapid Construction of Nitrogenâ€containing Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity. Advanced Synthesis and Catalysis, 2019, 361, 1419-1440.	2.1	34
338	Cationic Iridium Complex-Catalyzed Intermolecular Hydroalkylation of Unactivated Alkenes with 1,3-Diketones. Organic Letters, 2019, 21, 741-744.	2.4	9
339	Iridium-Catalyzed Direct Hydroarylation of Glycals via C–H Activation: Ligand-Controlled Stereoselective Synthesis of α- and β- <i>C</i> -Glycosyl Arenes. ACS Catalysis, 2019, 9, 1347-1352.	5.5	49
340	Iron-Enhanced Reactivity of Radicals Enables C–H Tertiary Alkylations for Construction of Functionalized Quaternary Carbons. ACS Catalysis, 2019, 9, 1757-1762.	5.5	50
341	Palladium atalyzed Intermolecular [4+1] Spiroannulation by C(sp ³)â~'H Activation and Naphthol Dearomatization. Angewandte Chemie - International Edition, 2019, 58, 1474-1478.	7.2	78
342	π-Bond Character in Metal–Alkyl Compounds for C–H Activation: How, When, and Why?. Journal of the American Chemical Society, 2019, 141, 648-656.	6.6	46
343	Highly Efficient Construction of Pentacyclic Carbolineâ€Containing Salts via a [Cp*RhCl ₂] ₂ â€Catalyzed Tandem Reaction. Asian Journal of Organic Chemistry, 2019, 8, 191-195.	1.3	9
344	Accessing Remote <i>meta</i> ―and <i>para</i> C(sp ²)â^H Bonds with Covalently Attached Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 10820-10843.	7.2	273
345	Zugang zu <i>meta</i> ―und <i>para</i> (sp ²)â€Hâ€Bindungen mithilfe kovalent gebundener dirigierender Gruppen. Angewandte Chemie, 2019, 131, 10934-10958.	1.6	56

#	Article	IF	CITATIONS
346	Chemoselective Boraneâ€Catalyzed Hydroarylation of 1,3â€Dienes with Phenols. Angewandte Chemie - International Edition, 2019, 58, 1694-1699.	7.2	54
347	Rhodium(III) atalyzed C–H Alkylation/Nucleophilic Addition Domino Reaction. European Journal of Organic Chemistry, 2019, 2019, 660-664.	1.2	13
348	Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Advanced Powder Technology, 2019, 30, 451-460.	2.0	49
349	Olefin Bifunctionalization: A Visibleâ€light Photoredoxâ€catalyzed Aryl Alkoxylation of Olefins. Chemistry - an Asian Journal, 2019, 14, 121-124.	1.7	18
350	Ruthenium(II)biscarboxylate atalyzed Hydrogenâ€Isotope Exchange by Alkene Câ^'H Activation. ChemCatChem, 2019, 11, 435-438.	1.8	23
351	Electrochemical Transitionâ€Metalâ€Catalyzed Câ^'H Bond Functionalization: Electricity as Clean Surrogates of Chemical Oxidants. ChemSusChem, 2019, 12, 115-132.	3.6	63
352	Redox-Selective Iron Catalysis for α-Amino C–H Bond Functionalization via Aerobic Oxidation. Organic Letters, 2020, 22, 16-21.	2.4	47
353	Pyrroles and benzannulated forms. , 2020, , 239-564.		1
354	Kinetics and Mechanism of the Platinum(II)â€Catalyzed Hydroarylation of Vinyl Arenes with 1,2â€Dimethylindole. Israel Journal of Chemistry, 2020, 60, 437-445.	1.0	3
355	Cp*Co ^{III} /Chiral Carboxylic Acid atalyzed Enantioselective 1,4â€Addition Reactions of Indoles to Maleimides. Asian Journal of Organic Chemistry, 2020, 9, 368-371.	1.3	63
356	Efficient Heterogeneous Palladium atalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 1992-1996.	7.2	24
357	Synergistic Photoredox/Transitionâ€Metal Catalysis for Carbon–Carbon Bond Formation Reactions. European Journal of Organic Chemistry, 2020, 2020, 1327-1378.	1.2	64
358	Reaction mechanism, norbornene and ligand effects, and origins of meta-selectivity of Pd/norbornene-catalyzed C–H activation. Chemical Science, 2020, 11, 113-125.	3.7	11
359	Indium controlled regioselective 1,4-alkylarylation of 1,3-dienes with α-carbonyl alkyl bromides and N-heterocycles. Chemical Communications, 2020, 56, 1279-1282.	2.2	20
360	Cobalt(<scp>iii</scp>)-catalyzed ketone-directed C–H vinylation using vinyl acetate. Organic Chemistry Frontiers, 2020, 7, 19-24.	2.3	30
361	Rh(<scp>ii</scp>)-catalyzed branch-selective C–H alkylation of aryl sulfonamides with vinylsilanes. Chemical Science, 2020, 11, 389-395.	3.7	20
362	Construction of All-Carbon Quaternary Stereocenters by Scandium-Catalyzed Intramolecular C–H Alkylation of Imidazoles with 1,1-Disubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 1200-1205.	6.6	86
363	Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes. CheM, 2020, 6, 675-688.	5.8	57

ARTICLE IF CITATIONS Bidentate Directing Groups: An Efficient Tool in Câ€"H Bond Functionalization Chemistry for the 23.0 687 364 Expedient Construction of C–C Bonds. Chemical Reviews, 2020, 120, 1788-1887. Nanoscale boron carbonitride semiconductors for photoredox catalysis. Nanoscale, 2020, 12, 2.8 3593-3604. Nickel/NHC atalyzed Enantioselective Cyclization of Pyridones and Pyrimidones with Tethered 366 2.1 45 Alkenes. Advanced Synthesis and Catalysis, 2020, 362, 1125-1130. $\label{eq:Ru(II)/Rh(III)-Catalyzed C(sp³) \ensuremath{\widehat{\sup}}\ \ensuremath$ Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 368 79 5.5 2020, 10, 1334-1343. Efficient Heterogeneous Palladium atalyzed Oxidative Cascade Reactions of Enallenols to Furan and 1.6 Oxaborole Derivatives. Angewandte Chemie, 2020, 132, 2008-2012. Catalytic Enantio- and Regioselective Addition of Nucleophiles in the Intermolecular 370 5.5 131 Hydrofunctionalization of 1,3-Dienes. ACS Catalysis, 2020, 10, 1060-1076. Rapid and Efficient Construction of Indolizino[3,4,5―ab]isoindole Skeletons by a Rhodiumâ€Catalyzed 371 1.3 Tandem Reaction. Asian Journal of Organic Chemistry, 2020, 9, 68-72. 372 Difunctionalization of Alkenes Involving Metal Migration. Angewandte Chemie, 2020, 132, 8066-8079. 1.6 28 Difunctionalization of Alkenes Involving Metal Migration. Angewandte Chemie - International Edition, 373 7.2 214 2020, 59, 7990-8003. Cu-Catalyzed Regioselective Câ€"H Alkylation of Benzimidazoles with Aromatic Alkenes. Organic Letters, 374 2.4 10 2020, 22, 8250-8255. Direct C(sp2)–H alkylation of unactivated arenes enabled by photoinduced Pd catalysis. Nature 5.8 Communications, 2020, 11, 5266. Rhodium-Catalyzed Deoxygenation and Borylation of Ketones: A Combined Experimental and 376 6.6 38 Theoretical Investigation. Journal of the American Chemical Society, 2020, 142, 18118-18127. Regiodivergent C–H Alkylation of Quinolines with Alkenes by Half-Sandwich Rare-Earth Catalysts. 6.6 Journal of the American Chemical Society, 2020, 142, 18128-18137. Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond 378 5.588 Functionalization. ACS Catalysis, 2020, 10, 12898-12919. The [3+2] Annulation of CF3-Ketimines by Re Catalysis: Access to CF3-Containing Amino Heterocycles and Polyamides. IScience, 2020, 23, 101705. 379 1.9 Addition of 1,3-dicarbonyl compounds to terminal alkynes catalyzed by a cationic 380 1.7 4 cobalt(<scp>iii</scp>) complex. RSC Advances, 2020, 10, 36014-36019. Rh(III)â€Catalyzed Nâ€Nitroso Directed Câ€H Arylation for Facile Construction of Diverse Nâ€Hetero Biaryl Compounds. Chemistry - an Asian Journal, 2020, 15, 3825-3828.

#	Article	IF	CITATIONS
382	Copper atalyzed Defluorinative Hydroarylation of Alkenes with Polyfluoroarenes. Angewandte Chemie, 2020, 132, 23256-23260.	1.6	8
383	Theoretical Insight into Ni(0)-Catalyzed Hydroarylation of Alkenes and Arylboronic Acids. Journal of Organic Chemistry, 2020, 85, 13264-13271.	1.7	9
384	Rh(<scp>iii</scp>)-catalyzed tandem annulative redox-neutral arylation/amidation of aromatic tethered alkenes. Chemical Science, 2020, 11, 12124-12129.	3.7	11
385	Palladium-Catalyzed Asymmetric Allylic C–H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Accounts of Chemical Research, 2020, 53, 2841-2854.	7.6	122
386	Multicomponent Synthesis of Iminocoumarins via Rhodium-Catalyzed C—H Bond Activation. Journal of Organic Chemistry, 2020, 85, 11006-11013.	1.7	10
387	[C^N]â€Alkenyl Gold(III) Complexes by Proximal Ringâ€Opening of (2â€Pyridyl)alkylidenecyclopropanes: Mechanistic Insights. Angewandte Chemie - International Edition, 2020, 59, 20049-20054.	7.2	10
388	Amide-Directed Intramolecular Co(III)-Catalyzed C–H Hydroarylation of Alkenes for the Synthesis of Dihydrobenzofurans with a Quaternary Center. Journal of Organic Chemistry, 2020, 85, 10261-10270.	1.7	16
389	A Predictive Model Towards Siteâ€Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnClâ‹LiCl. Angewandte Chemie, 2020, 132, 15102-15109.	1.6	8
390	Transition-Metal-Catalyzed Arene Alkylation and Alkenylation: Catalytic Processes for the Generation of Chemical Intermediates. ACS Catalysis, 2020, 10, 14080-14092.	5.5	15
391	Recent Advances in Rapid Synthesis of Non-proteinogenic Amino Acids from Proteinogenic Amino Acids Derivatives via Direct Photo-Mediated C–H Functionalization. Molecules, 2020, 25, 5270.	1.7	11
392	FMPhos: Expanding the Catalytic Capacity of Small-Bite-Angle Bisphosphine Ligands in Regioselective Alkene Hydrofunctionalizations. ACS Catalysis, 2020, 10, 14349-14358.	5.5	25
393	Zirconium-Catalyzed Hydroaminoalkylation of Alkynes for the Synthesis of Allylic Amines. Journal of the American Chemical Society, 2020, 142, 20566-20571.	6.6	31
394	Rhodium-catalyzed oxidative annulation of 1 <i>H</i> -indazoles with alkynes for the synthesis of indazolo[3,2- <i>a</i>]isoquinolines <i>via</i> C–H bond functionalization. Organic and Biomolecular Chemistry, 2020, 18, 9863-9872.	1.5	11
395	Transition Metal Catalyzed Enantioselective C(sp ²)–H Bond Functionalization. ACS Catalysis, 2020, 10, 13748-13793.	5.5	177
396	Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nature Communications, 2020, 11, 5857.	5.8	56
397	Cyclic Ureate Tantalum Catalyst for Preferential Hydroaminoalkylation with Aliphatic Amines: Mechanistic Insights into Substrate Controlled Reactivity. Journal of the American Chemical Society, 2020, 142, 15740-15750.	6.6	28
398	Synthesis of 7-Amido Indolines by Cp*Co(III)-Catalyzed C–H Bond Amidation. Journal of Organic Chemistry, 2020, 85, 11190-11199.	1.7	18
399	Rhodium-catalyzed multiple C–H activation/highly <i>meta</i> -selective C–H amination between amidines and alkynes. Chemical Communications, 2020, 56, 11227-11230.	2.2	13

#	Article	IF	CITATIONS
401	Redoxâ€Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angewandte Chemie, 2020, 132, 20579-20584.	1.6	7
402	Redoxâ€Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angewandte Chemie - International Edition, 2020, 59, 20399-20404.	7.2	40
403	Insights into the Regioselectivity of Hydroheteroarylation of Allylbenzene with Pyridine Catalyzed by Ni/AlMe ₃ with <i>N</i> -Heterocyclic Carbene: The Concerted Hydrogen Transfer Mechanism. Journal of Organic Chemistry, 2020, 85, 11340-11349.	1.7	13
404	Development of BrÃ,nsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catalysis, 2020, 10, 10546-10550.	5.5	27
405	Pd atalyzed <i>ortho</i> â^'H Olefination of Benzenesulfonamides Directed by 7â€Azaindole. Asian Journal of Organic Chemistry, 2020, 9, 2087-2091.	1.3	5
406	Rh(III)â€Catalyzed C2â€Alkylation of Indoles with Maleimides at Low Catalyst Loadings. ChemistrySelect, 2020, 5, 12819-12822.	0.7	14
407	Development of unique dianionic Ir(III) CCC pincer complexes with a favourable spirocyclic NHC framework. Science China Chemistry, 2020, 63, 1761-1766.	4.2	10
408	General and efficient synthesis of 1,2-dihydropyrrolo[3,4-b]indol-3-ones via a formal [3 + 2] cycloaddition initiated by C–H activation. Organic Chemistry Frontiers, 2020, 7, 4057-4063.	2.3	0
409	Exploiting hexafluoroisopropanol (HFIP) in Lewis and BrÃ,nsted acid-catalyzed reactions. Chemical Communications, 2020, 56, 11548-11564.	2.2	166
410	Rhodium(III) atalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3â€Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angewandte Chemie, 2020, 132, 22895-22902.	1.6	8
411	Rhodium(III)â€Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3â€Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angewandte Chemie - International Edition, 2020, 59, 22706-22713.	7.2	40
412	On the Superior Activity of In(I) versus In(III) Cations Toward <i>ortho-C-</i> Alkylation of Anilines and Intramolecular Hydroamination of Alkenes. Journal of Organic Chemistry, 2020, 85, 12947-12959.	1.7	12
413	Rhodium-catalyzed coupling of arenes and fluorinated α-diazo diketones: synthesis of chromones. Chemical Communications, 2020, 56, 13169-13172.	2.2	14
414	[C^N]â€Alkenyl Gold(III) Complexes by Proximal Ringâ€Opening of (2â€Pyridyl)alkylidenecyclopropanes: Mechanistic Insights. Angewandte Chemie, 2020, 132, 20224-20229.	1.6	2
415	Fe(III)-Based Tandem Catalysis for Amidomethylative Multiple Substitution Reactions of α-Substituted Styrene Derivatives. ACS Catalysis, 2020, 10, 10627-10636.	5.5	8
416	Intermolecular Hydroaminoalkylation of Propadiene. Chemistry - A European Journal, 2020, 26, 14300-14304.	1.7	16
417	Lewis Acid/Hexafluoroisopropanol: A Promoter System for Selective <i>ortho</i> -C-Alkylation of Anilines with Deactivated Styrene Derivatives and Unactivated Alkenes. ACS Catalysis, 2020, 10, 10794-10802.	5.5	63
418	Ruthenium-catalyzed, site-selective C–H activation: access to C5-substituted azaflavanone. RSC Advances, 2020, 10, 31570-31574.	1.7	6

#	Article	IF	CITATIONS
419	Direct remote δ-C(sp ²)–H olefination of β-aryl-substituted aliphatic aldehydes <i>via</i> palladium/enamine co-catalysis. Organic Chemistry Frontiers, 2020, 7, 2965-2974.	2.3	8
420	Catalytic addition of C–H bonds across C–C unsaturated systems promoted by iridium(<scp>i</scp>) and its group IX congeners. Chemical Society Reviews, 2020, 49, 7378-7405.	18.7	73
421	Computational Study on the Fate of Oxidative Directing Groups in Ru(II), Rh(III), and Pd(II) Catalyzed C–H Functionalization. Journal of Organic Chemistry, 2020, 85, 12594-12602.	1.7	8
422	Cp*Co(III)-Catalyzed C–H Hydroarylation of Alkynes and Alkenes and Beyond: A Versatile Synthetic Tool. ACS Omega, 2020, 5, 24974-24993.	1.6	21
423	Ligandâ€Controlled Regiodivergence in Nickel atalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angewandte Chemie - International Edition, 2020, 59, 23306-23312.	7.2	51
424	Cobalt-catalyzed ring-opening addition of azabenzonorbornadienes <i>via</i> C(sp ³)–H bond activation of 8-methylquinoline. Chemical Communications, 2020, 56, 12570-12573.	2.2	18
425	Copper atalyzed Defluorinative Hydroarylation of Alkenes with Polyfluoroarenes. Angewandte Chemie - International Edition, 2020, 59, 23056-23060.	7.2	30
426	Transition metal-catalyzed electrochemical processes for C–C bond formation. New Journal of Chemistry, 2020, 44, 15321-15336.	1.4	8
427	Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes. Nature Communications, 2020, 11, 4462.	5.8	20
428	Chiral Transient Directing Group Strategies in Asymmetric Synthesis. Chemistry - an Asian Journal, 2020, 15, 3225-3238.	1.7	14
429	External oxidant-compatible phosphorus(III)-directed site-selective C–H carbonylation. Science Advances, 2020, 6, .	4.7	20
430	Ligand ontrolled Regiodivergence in Nickel atalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angewandte Chemie, 2020, 132, 23506-23512.	1.6	6
431	Synthesis of β-CF ₃ β-Amino Esters with an Indane Backbone by Rhenium-Catalyzed [3+2] Annulation. Organic Letters, 2020, 22, 8866-8871.	2.4	8
432	Ruthenium-Catalyzed C(sp ²)–H Bond Bisallylation with Imidazopyridines as Directing Groups. Journal of Organic Chemistry, 2020, 85, 15167-15182.	1.7	19
433	Rhodium(III)-Catalyzed Alkenyl C–H Functionalization to Dienes and Allenes. Organic Letters, 2020, 22, 8786-8790.	2.4	11
434	Mechanistic Studies of Nickel-Catalyzed Hydroarylation of Styrenes. Organic Letters, 2020, 22, 8998-9003.	2.4	22
435	Regioselective B(3,4)–H arylation of <i>o</i> -carboranes by weak amide coordination at room temperature. Chemical Science, 2020, 11, 10764-10769.	3.7	52
436	Enantioselective Synthesis of Functionalized Arenes by Nickelâ€Catalyzed Siteâ€Selective Hydroarylation of 1,3â€Dienes with Aryl Boronates. Angewandte Chemie - International Edition, 2020, 59, 14070-14075.	7.2	48

#	Article	IF	CITATIONS
437	Stereoselective and Atom-Economic Alkenyl C–H Allylation/Alkenylation in Aqueous Media by Iridium Catalysis. Journal of Organic Chemistry, 2020, 85, 7225-7237.	1.7	17
438	Catalytic α-Hydroarylation of Acrylates and Acrylamides via an Interrupted Hydrodehalogenation Reaction. Journal of the American Chemical Society, 2020, 142, 10477-10484.	6.6	11
439	Mechanism and origins of stereo- and enantioselectivities of palladium-catalyzed hydroamination of racemic internal allenes <i>via</i> dynamic kinetic resolution: a computational study. Organic Chemistry Frontiers, 2020, 7, 1502-1511.	2.3	21
440	Cobaltâ€Catalyzed Direct C(sp ²)–H Alkylation with Unactivated Alkenes. European Journal of Organic Chemistry, 2020, 2020, 4026-4030.	1.2	7
441	Cobalta-Electrocatalyzed C–H Allylation with Unactivated Alkenes. ACS Catalysis, 2020, 10, 6457-6462.	5.5	48
442	Enantioselective Synthesis of Functionalized Arenes by Nickelâ€Catalyzed Siteâ€Selective Hydroarylation of 1,3â€Dienes with Aryl Boronates. Angewandte Chemie, 2020, 132, 14174-14179.	1.6	11
443	A Predictive Model Towards Siteâ€Selective Metalations of Functionalized Heterocycles, Arenes, Olefins, and Alkanes using TMPZnClâ‹LiCl. Angewandte Chemie - International Edition, 2020, 59, 14992-14999.	7.2	20
444	Directed Cobalt-Catalyzed <i>anti</i> -Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by "Co–H―Catalysis. Organic Letters, 2020, 22, 4333-4338.	2.4	33
445	C7â€Indole Amidations and Alkenylations by Ruthenium(II) Catalysis. Angewandte Chemie - International Edition, 2020, 59, 12534-12540.	7.2	70
446	Copperâ€Catalyzed Hydrodifluoroallylation of Terminal Alkynes to Access (E)â€1,1â€Difluoroâ€1,4â€Dienes. Advanced Synthesis and Catalysis, 2020, 362, 2852-2856.	2.1	6
447	Nickel-Catalyzed Câ^'H Functionalization Using A Non-directed Strategy. CheM, 2020, 6, 1056-1081.	5.8	99
448	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
449	<scp>Nickelâ€Catalyzed</scp> Dicarbofunctionalization of Alkenes ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1371-1394.	2.6	154
450	Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis. ACS Catalysis, 2020, 10, 8765-8779.	5.5	62
451	Cobalt/Lewis Acid Catalysis for Hydrocarbofunctionalization of Alkynes via Cooperative C–H Activation. Journal of the American Chemical Society, 2020, 142, 12878-12889.	6.6	51
452	Transition Metal atalysed Direct Câ^'H Bond Functionalizations of 2â€Pyridone Beyond C3â€Selectivity. Chemistry - an Asian Journal, 2020, 15, 2092-2109.	1.7	35
453	C7â€Indolâ€Amidierung und â€Alkenylierung durch Ruthenium(II)―Katalyse. Angewandte Chemie, 2020, 132, 12635-12641.	1.6	13
454	A Transientâ€Directingâ€Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angewandte Chemie - International Edition, 2020, 59, 8885-8890.	7.2	53

#	Article	IF	CITATIONS
455	Late-stage C(sp ²)–H and C(sp ³)–H glycosylation of <i>C</i> -aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chemical Science, 2020, 11, 6521-6526.	3.7	76
456	A Transientâ€Directingâ€Group Strategy Enables Enantioselective Reductive Heck Hydroarylation of Alkenes. Angewandte Chemie, 2020, 132, 8970-8975.	1.6	13
457	A general platinum-catalyzed alkoxycarbonylation of olefins. Chemical Communications, 2020, 56, 5235-5238.	2.2	27
458	Mechanism and Origin of MADâ€Induced Ni/Nâ€Heterocyclic Carbeneâ€Catalyzed Regio―and Enantioselective Câ^'H Cyclization of Pyridines with Alkenes. Chemistry - A European Journal, 2020, 26, 5459-5468.	1.7	9
459	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie, 2020, 132, 17005-17018.	1.6	25
460	Experimental and Computational Studies on Cp* ^{Cy} Rh(III)/KOPiv-Catalyzed Intramolecular Dehydrogenative Cross-Couplings for Building Eight-Membered Sultam/Lactam Frameworks. Organic Letters, 2020, 22, 5473-5478.	2.4	14
461	Remote azidation of C(sp ³)–H bonds to synthesize δ-azido sulfonamides <i>via</i> iron-catalyzed radical relay. Organic and Biomolecular Chemistry, 2020, 18, 5354-5358.	1.5	12
462	DMAP and PivOH-promoted amination/allenization reaction. Chemical Communications, 2020, 56, 9202-9205.	2.2	7
463	Stereospecific 1,2â€Migrations of Boronate Complexes Induced by Electrophiles. Angewandte Chemie - International Edition, 2020, 59, 16859-16872.	7.2	106
464	Tandem C–H Transformations by a Single Iridium Catalyst: Direct Access to Indoles and Indolines from <i>o</i> -Alkyl- <i>N</i> -methylanilines. ACS Catalysis, 2020, 10, 3152-3157.	5.5	13
465	Access to [4,3,1]-Bridged Carbocycles via Rhodium(III)-Catalyzed C–H Activation of 2-Arylindoles and Annulation with Quinone Monoacetals. Journal of Organic Chemistry, 2020, 85, 4543-4552.	1.7	18
466	C(sp2)–H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification. Organic Letters, 2020, 22, 1846-1851.	2.4	23
467	Chromium(III)-Catalyzed C(sp ²)–H Alkynylation, Allylation, and Naphthalenation of Secondary Amides with Trimethylaluminum as Base. Journal of the American Chemical Society, 2020, 142, 4883-4891.	6.6	35
468	Mechanism of Ir-catalyzed hydrogenation: A theoretical view. Coordination Chemistry Reviews, 2020, 412, 213251.	9.5	33
469	Cu-Catalyzed Generation of Alkyl Radicals from Alkylsilyl Peroxides and Subsequent C(sp ³)–C(sp ²) Cross-Coupling with Arylboronic Acids. Journal of Organic Chemistry, 2020, 85, 3973-3980.	1.7	26
470	Photoinduced C(sp2)–H/C(sp2)–H Cross-Coupling of Alkenes: Direct Synthesis of 1,3-Dienes. Organic Letters, 2020, 22, 1692-1697.	2.4	31
471	Nickel-Catalyzed Hydroarylation of in Situ Generated 1,3-Dienes with Arylboronic Acids Using a Secondary Homoallyl Carbonate as a Surrogate for the 1,3-Diene and Hydride Source. Organic Letters, 2020, 22, 1124-1129.	2.4	18
472	Regioselective Carboiodination of Styrenes: <i>N</i> ″odosuccinimide Affords Complete Reaction Regioselectivity. Asian Journal of Organic Chemistry, 2020, 9, 210-213.	1.3	8

	CITATION RE	PORT	
#	Article	IF	CITATIONS
473	Diverse Approaches for Enantioselective Câ^'H Functionalization Reactions Using Groupâ€9 Cp ^x M ^{III} Catalysts. Chemistry - A European Journal, 2020, 26, 7346-7357.	1.7	176
474	Synthesis of C6-Substituted Isoquinolino[1,2- <i>b</i>]quinazolines via Rh(III)-Catalyzed C–H Annulation with Sulfoxonium Ylides. Journal of Organic Chemistry, 2020, 85, 3192-3201.	1.7	62
475	Nickelaelektrokatalysierte, milde Câ€Hâ€Alkylierungen bei Raumtemperatur. Angewandte Chemie, 2020, 132, 14258-14263.	1.6	8
476	Nickelaâ€electrocatalyzed Mild Câ~'H Alkylations at Room Temperature. Angewandte Chemie - International Edition, 2020, 59, 14154-14159.	7.2	46
477	Iridiumâ€Catalyzed Enantioselective Hydroarylation of Alkenes through Câ^'H bond Activation: Experiment and Computation. Chemistry - A European Journal, 2020, 26, 8308-8313.	1.7	25
478	C(sp3)–H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert-Butyl Hydroperoxide as a Radical Initiator. Synlett, 2021, 32, 23-29.	1.0	5
479	Enantioselective Three omponent Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angewandte Chemie, 2021, 133, 4541-4545.	1.6	2
480	Enantioselective Threeâ€Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angewandte Chemie - International Edition, 2021, 60, 4491-4495.	7.2	25
481	Aerobic Copper atalyzed Salicylaldehydic C formyl â^'H Arylations with Arylboronic Acids. Chemistry - A European Journal, 2021, 27, 3278-3283.	1.7	5
482	Rhodium(III)â€Catalyzed Alkylation of 2â€Arylquinazolinâ€4(3H)â€ones with Cyclopropanols by Directing Câ€H Activation and Ring Opening at Ambient Temperature. Asian Journal of Organic Chemistry, 2021, 10, 192-195.	1.3	14
483	Synthesis of C ₃ -alkylated benzofurans <i>via</i> palladium-catalyzed regiocontrolled hydro-furanization of unactivated alkenes. Organic Chemistry Frontiers, 2021, 8, 127-132.	2.3	23
484	DFT Mechanistic Study on Palladium atalyzed Redoxâ€Neutral Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Asian Journal of Organic Chemistry, 2021, 10, 412-420.	1.3	4
485	Thiocarbamateâ€directed Cp*Co(III) atalyzed Olefinic Câ^'H Amidation: Facile Access to Enamines with High (<i>Z</i>)‧electivity. European Journal of Organic Chemistry, 2021, 2021, 694-700.	1.2	9
486	Rh(<scp>iii</scp>)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Organic and Biomolecular Chemistry, 2021, 19, 4937-4942.	1.5	4
487	Recent advances in hydride transfer-involved C(sp ³)–H activation reactions. Organic Chemistry Frontiers, 2021, 8, 1364-1383.	2.3	66
488	Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chemical Society Reviews, 2021, 50, 3263-3314.	18.7	105
489	A facile method for Rh-catalyzed decarbonylative <i>ortho</i> -C–H alkylation of (hetero)arenes with alkyl carboxylic acids. RSC Advances, 2021, 11, 19827-19831.	1.7	2
490	Lewis acid mediated cyclization: synthesis of 2 spirocyclohexylindolines. Organic and Biomolecular Chemistry, 2021, 19, 4043-4047.	1.5	1

#	Article	IF	CITATIONS
491	Directed Markovnikov hydroarylation and hydroalkenylation of alkenes under nickel catalysis. Chemical Science, 2021, 12, 11038-11044.	3.7	19
492	Electron-deficient boron-based catalysts for C–H bond functionalisation. Chemical Society Reviews, 2021, 50, 1945-1967.	18.7	66
493	Recent advances in aminative difunctionalization of alkenes. Organic and Biomolecular Chemistry, 2021, 19, 3036-3054.	1.5	49
494	Metal-catalyzed silylation of sp ³ C–H bonds. Chemical Society Reviews, 2021, 50, 5062-5085.	18.7	50
495	Benzylic C–H addition of aromatic amines to alkenes using a scandium catalyst. Chemical Communications, 2021, 57, 3688-3691.	2.2	13
496	Phosphorus(III)-assisted regioselective C–H silylation of heteroarenes. Nature Communications, 2021, 12, 524.	5.8	34
497	Additive-Controlled Divergent Synthesis of Tetrasubstituted 1,3-Enynes and Alkynylated 3 <i>H</i> -Pyrrolo[1,2- <i>a</i>]indol-3-ones via Rhodium Catalysis. Organic Letters, 2021, 23, 727-733.	2.4	46
498	Palladium-Catalyzed C8 Alkylation of 1-Naphthylamides and Its Application to the Synthesis of the Core Sturctures of Aporphine and Aristolactam Alkaloids. Chinese Journal of Organic Chemistry, 2021, 41, 1691.	0.6	1
499	Strong and Confined Acids Catalyze Asymmetric Intramolecular Hydroarylations of Unactivated Olefins with Indoles. Journal of the American Chemical Society, 2021, 143, 675-680.	6.6	49
500	Transition Metal-Catalyzed C—P Bond Activation. Chinese Journal of Organic Chemistry, 2021, 41, 3880.	0.6	12
501	Iron-catalyzed alkylation of carbazole derivatives <i>via</i> hydroarylation of styrenes. Chemical Communications, 2021, 57, 7148-7151.	2.2	7
502	Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Organic and Biomolecular Chemistry, 2021, 19, 6380-6391.	1.5	20
503	DTBP-promoted decarbonylative alkylation of quinoxaline-2(1H)-ones with aldehydes. Tetrahedron Letters, 2021, 64, 152720.	0.7	13
504	Zeolite catalyzed hydroarylation of alkenes with aromatic amines under organic ligand-free conditions. Journal of Catalysis, 2021, 394, 18-29.	3.1	6
505	Simple in-situ functionalization of polyaniline with boroncarbonitride as potential multipurpose photocatalyst: Generation of hydrogen, organic and inorganic pollutant detoxification. Nano Structures Nano Objects, 2021, 25, 100667.	1.9	15
506	Iridium-Catalyzed Asymmetric Hydroalkenylation of Norbornene Derivatives. Organometallics, 2021, 40, 2182-2187.	1.1	7
507	Differences in Mechanism and Rate of Zeolite-Catalyzed Cyclohexanol Dehydration in Apolar and Aqueous Phase. ACS Catalysis, 2021, 11, 2879-2888.	5.5	26
508	Co(III), Rh(III) & Ir(III) atalyzed Direct Câ^'H Alkylation/Alkenylation/Arylation with Carbene Precursors. Chemistry - an Asian Journal, 2021, 16, 443-459.	1.7	62

#	Article	IF	CITATIONS
509	Rhodium-Catalyzed Twofold Unsymmetrical C–H Alkenylation–Annulation/Thiolation Reaction To Access Thiobenzofurans. Organic Letters, 2021, 23, 1194-1198.	2.4	15
510	Recent Advances in Enantioselective Direct C–H Addition to Carbonyls and Michael Acceptors. Bulletin of the Chemical Society of Japan, 2021, 94, 641-647.	2.0	28
511	Intermolecular Hydroaminoalkylation of Alkynes. Chemistry - A European Journal, 2021, 27, 6899-6903.	1.7	15
512	Copper-Catalyzed Radical 1,2-Carbotrifluoromethylselenolation of Alkenes under Ambient Conditions. Organic Letters, 2021, 23, 1945-1949.	2.4	12
513	Rhodium-Catalyzed Redox-Neutral Olefination of Aryldiazenes with Acrylate Esters via C–H Activation and Transfer Hydrogenation. Organic Letters, 2021, 23, 1687-1691.	2.4	9
514	Unactivated Alkyl Halides in Transition-Metal-Catalyzed C–H Bond Alkylation. ACS Catalysis, 2021, 11, 3268-3292.	5.5	45
515	A Tutorial on Selectivity Determination in C(sp ²)–H Oxidative Addition of Arenes by Transition Metal Complexes. Organometallics, 2021, 40, 813-831.	1.1	23
516	Palladium-Catalyzed Thiocarbonylation of Alkenes toward Linear Thioesters. ACS Catalysis, 2021, 11, 3614-3619.	5.5	32
517	Iron-Catalyzed Ortho C–H Homoallylation of Aromatic Ketones with Methylenecyclopropanes. Journal of the American Chemical Society, 2021, 143, 4543-4549.	6.6	28
518	Silverâ€Catalysed Hydroarylation of Highly Substituted Styrenes. Angewandte Chemie - International Edition, 2021, 60, 8537-8541.	7.2	10
519	Titanium atalyzed Intermolecular Hydroaminoalkylation of Alkenes with Tertiary Amines. Angewandte Chemie, 2021, 133, 10024-10028.	1.6	8
520	Rhodium(III)-catalyzed chelation-assisted ortho-selective carbonâ^'hydrogen alkylation of phenols with diazocarbonyl compounds involving a carbene migratory insertion process. Catalysis Communications, 2021, 151, 106278.	1.6	3
521	Nickel-catalyzed hydroalkylation of 1,3-dienes with malonates using a homoallyl carbonate as the 1,3-diene and hydride source. Tetrahedron Letters, 2021, 68, 152916.	0.7	4
522	Titaniumâ€Catalyzed Intermolecular Hydroaminoalkylation of Alkenes with Tertiary Amines. Angewandte Chemie - International Edition, 2021, 60, 9936-9940.	7.2	19
523	A Palladium Complex as an Asymmetric π-Lewis Base Catalyst for Activating 1,3-Dienes. Journal of the American Chemical Society, 2021, 143, 4809-4816.	6.6	56
524	Rh(III)-Catalyzed Redox-Neutral C–H Activation/[3 + 2] Annulation of <i>N</i> -Phenoxy Amides with Propargylic Monofluoroalkynes. Organic Letters, 2021, 23, 2285-2291.	2.4	10
525	Advances in C(<i>sp</i> ²)â^'H/C(<i>sp</i> ²)â^'H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1998-2022.	2.1	36
526	Silberâ€katalysierte Hydroarylierung von hochsubstituierten Styrolen. Angewandte Chemie, 2021, 133, 8618-8623.	1.6	0

#	Δρτιςι ε	IF	CITATIONS
527	Visible-light induced one-pot hydrogenation and amidation of nitroaromatics with carboxylic acids over 2D MXene-derived Pt/N-TiO2/Ti3C2. Molecular Catalysis, 2021, 504, 111490.	1.0	5
528	Calcium-mediated C(sp ³)–H Activation and Alkylation of Alkylpyridines. Inorganic Chemistry, 2021, 60, 5114-5121.	1.9	13
529	Straightforward Construction and Functionalizations of Nitrogenâ€Containing Heterocycles Through Migratory Insertion of Metalâ€Carbenes/Nitrenes. Chemical Record, 2021, 21, 3411-3428.	2.9	21
532	Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chemical Reviews, 2021, 121, 7059-7121.	23.0	75
533	Ligand-Controlled Ni(0)–Al(III) Bimetal-Catalyzed C3–H Alkenylation of 2-Pyridones by Reversing Conventional Selectivity. ACS Catalysis, 2021, 11, 4606-4612.	5.5	26
534	Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction via Benzylpalladium Intermediate. Chemical Record, 2021, , .	2.9	4
535	Highly regioselective Ru(II)-catalyzed [3+2] spiroannulation of 1-aryl-2-naphthols with alkynes via a double directing group strategy. Tetrahedron Letters, 2021, 71, 153050.	0.7	4
536	Enantioselective Intermolecular Murai-Type Alkene Hydroarylation Reactions. Synthesis, 2021, 53, 2961-2975.	1.2	19
537	Hydroarylation of olefins catalysed by a dimeric ytterbium(II) alkyl. Nature Communications, 2021, 12, 3147.	5.8	16
538	N-doped reduced graphene oxide anchored with ÎTa2O5 for energy and environmental remediation: Efficient light-driven hydrogen evolution and simultaneous degradation of textile dyes. Advanced Powder Technology, 2021, 32, 2202-2212.	2.0	23
539	Palladium-Catalyzed Isoquinoline Synthesis by Tandem C–H Allylation and Oxidative Cyclization of Benzylamines with Allyl Acetate. Organic Letters, 2021, 23, 4209-4213.	2.4	5
540	Site-Selective C–H alkylation of Complex Arenes by a Two-Step Aryl Thianthrenation-Reductive Alkylation Sequence. Journal of the American Chemical Society, 2021, 143, 7909-7914.	6.6	63
541	Rh(III)-catalyzed selective C7-H functionalization of indolines with 1,3-enynes enables access to six-membered 1,7-fused indolines. Tetrahedron Letters, 2021, 72, 153065.	0.7	2
542	Rh(II)-Catalyzed C–H Alkylation of Benzylamines with Unactivated Alkenes: The Influence of Acid on Linear and Branch Selectivity. Organic Letters, 2021, 23, 4273-4278.	2.4	10
543	Rh-Catalyzed General Method for Directed C–H Functionalization via Decarbonylation of <i>in-Situ</i> -Generated Acid Fluorides from Carboxylic Acids. Organic Letters, 2021, 23, 4191-4196.	2.4	11
544	Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective Three-Component Carboamination of Dienes via C–H Activation. ACS Catalysis, 2021, 11, 6692-6697.	5.5	37
545	Development and Mechanistic Studies of (<i>E</i>)-Selective Isomerization/Tandem Hydroarylation Reactions of Alkenes with a Nickel(0)/Phosphine Catalyst. ACS Catalysis, 2021, 11, 6741-6749.	5.5	24
546	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	0.7	5

#	Article	IF	CITATIONS
547	Ni-catalyzed hydroaminoalkylation of alkynes with amines. Nature Communications, 2021, 12, 3800.	5.8	16
548	Transition Metalâ€Free Regioselective Remote Câ ^{°°} H Bond 2,2,2â€Trifluoroethoxylation of 8â€Aminoquinoline Derivatives at the C5 Position. European Journal of Organic Chemistry, 2021, 2021, 3407-3410.	1.2	6
549	Rhodium atalyzed Câ^'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie - International Edition, 2021, 60, 16628-16633.	7.2	68
550	<i>Ortho</i> â€C–H addition of 2â€substituted pyridines with alkenes and imines enabled by mono(phosphinoamido)â€rare earth complexes. Applied Organometallic Chemistry, 2021, 35, e6345.	1.7	10
551	Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides <i>via</i> Palladium(II)-Catalyzed C–H Activation. Organic Letters, 2021, 23, 4699-4704.	2.4	9
552	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
553	Iridium atalyzed Hydroarylation via Câ^'H Bond Activation. Chemical Record, 2021, 21, 3532-3545.	2.9	21
554	Ruthenium(II)-Catalyzed Redox-Neutral C–H Alkylation of Arylamides with Unactivated Olefins. Organic Letters, 2021, 23, 4849-4854.	2.4	12
555	On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coordination Chemistry Reviews, 2021, 437, 213863.	9.5	17
556	Nickel-Catalyzed Electrochemical Cyclization of Alkynyl Aryl Iodide and the Domino Reaction with Aldehydes. Journal of Organic Chemistry, 2021, 86, 8882-8890.	1.7	15
557	Rh(III)-Catalyzed Chemoselective C–H Alkenylation and [5 + 1] Annulation with <i>Gem</i> -Difluoromethylene Enabled by the Distinctive Fluorine Effect. Journal of Organic Chemistry, 2021, 86, 9711-9722.	1.7	9
558	Rhodium atalyzed Câ^'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie, 2021, 133, 16764-16769.	1.6	16
559	Highly Enantioselective Iridium(I) atalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie - International Edition, 2021, 60, 19297-19305.	7.2	27
560	Direct, Catalytic α-Alkylation of <i>N</i> -Heterocycles by Hydroaminoalkylation: Substrate Effects for Regiodivergent Product Formation. Journal of the American Chemical Society, 2021, 143, 11243-11250.	6.6	26
561	Palladium(II)-catalyzed direct annulation of 2-chloronicotinaldehyde with 2-bromothiophenol via novel C(formyl)-C(aryl) coupling strategy. Research on Chemical Intermediates, 2021, 47, 4513-4524.	1.3	2
562	Reusable Manganese Catalyst for Site‧elective Pyridine Câ~'H Arylations and Alkylations. Chemistry - A European Journal, 2021, 27, 12737-12741.	1.7	13
563	Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- <i>a</i>]indoles. Journal of Organic Chemistry, 2021, 86, 10591-10607.	1.7	11
564	Advances in Photocatalytic Organic Synthetic Transformations in Water and Aqueous Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 10016-10047.	3.2	27

#	ARTICLE	IF	CITATIONS
565	Rh(III)â€Catalyzed [4+2] Cyclization of 2â€Arylâ€1 <i>H</i> â€benzo[<i>d</i>]imidazoles with Maleimides via Câ Activation. European Journal of Organic Chemistry, 2021, 2021, 3552-3558.	€H 1.2	14
566	Chemo―and Regioselective Synthesis of Functionalized 1 <i>H</i> ―midazo[1,5â€ <i>a</i>]indolâ€3(2 <i>H</i>)â€ones via a Redoxâ€Neutral Rhodium(III)â€Catalyzed [4 Annulation between Indoles and Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 4380-4389.	4+2.]1	9
567	Highly Enantioselective Iridium(I) atalyzed Hydrocarbonation of Alkenes: A Versatile Approach to Heterocyclic Systems Bearing Quaternary Stereocenters. Angewandte Chemie, 2021, 133, 19446-19454.	1.6	3
568	Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances. Beilstein Journal of Organic Chemistry, 2021, 17, 1565-1590.	1.3	4
569	Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catalysis, 2021, 11, 9151-9158.	5.5	46
570	Palladium-Catalyzed Asymmetric Tandem Denitrogenative Heck/Tsuji–Trost of Benzotriazoles with 1,3-Dienes. Journal of the American Chemical Society, 2021, 143, 13010-13015.	6.6	36
571	Development and Mechanistic Studies of the Iridiumâ€Catalyzed Câ^'H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angewandte Chemie, 2021, 133, 21094-21102.	1.6	2
572	Development and Mechanistic Studies of the Iridiumâ€Catalyzed Câ^'H Alkenylation of Enamides with Vinyl Acetates: A Versatile Approach for Ketone Functionalization. Angewandte Chemie - International Edition, 2021, 60, 20926-20934.	7.2	12
573	Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nature Communications, 2021, 12, 5035.	5.8	15
574	Experimental and Computational Studies on the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with Aldehydes for the Synthesis of 2-Alkylphenol, Benzofuran, and Xanthene Derivatives. Journal of the American Chemical Society, 2021, 143, 13428-13440.	6.6	11
575	Ruthenium Catalyzed Intramolecular Câ^'X (X=C, N, O, S) Bond Formation <i>via</i> Câ^'H Functionalization: An Overview. Chemistry - an Asian Journal, 2021, 16, 2392-2412.	1.7	12
576	Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coordination Chemistry Reviews, 2021, 442, 214012.	9.5	16
577	Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol A. Chemosphere, 2022, 287, 132348.	4.2	20
578	Alkylation of monomeric, dimeric, and polymeric lignin models through carbon-hydrogen activation using Ru-catalyzed Murai reaction. Tetrahedron, 2021, 100, 132475.	1.0	1
579	Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catalysis, 2021, 11, 11639-11649.	5.5	19
580	Intramolecular Alkene–Alkene Coupling via Rh(III)-Catalyzed Alkenyl sp ² C–H Functionalization: Divergent Pathways to Indene or α-Naphthol Derivatives. ACS Catalysis, 2021, 11, 11494-11500.	5.5	6
581	Temperatureâ€Controlled Divergent Synthesis of Tetrasubstituted Alkenes and Pyrrolo[1,2―a]indole Derivatives via Iridium Catalysis. Asian Journal of Organic Chemistry, 0, , .	1.3	2
582	Palladium-Catalyzed Arylation of C(sp2)–H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS Omega, 2021, 6, 25151-25161.	1.6	0

#	Article	IF	CITATIONS
583	Ni/NHC catalysis in C–H functionalization using air-tolerant nickelocene and sodium formate for <i>i>in situ</i> catalyst generation. Organic Chemistry Frontiers, 2021, 8, 2515-2524.	2.3	19
584	Access to the C2 C–H olefination, alkylation and deuteration of indoles by rhodium(<scp>iii</scp>) catalysis: an opportunity for diverse syntheses. Organic Chemistry Frontiers, 2021, 8, 3032-3040.	2.3	12
585	Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes and its application in flow chemistry. Chemical Science, 2021, 12, 3202-3209.	3.7	12
586	Recent advances in acyl radical enabled reactions between aldehydes and alkenes. Chemical Communications, 2021, 57, 6111-6120.	2.2	40
587	<i>Z</i> -Selective Pd-catalyzed 2,2,2-trifluoroethylation of acrylamides at room temperature. Chemical Communications, 2021, 57, 6241-6244.	2.2	19
588	<i>O</i> -Directed C–H functionalization <i>via</i> cobaltacycles: a sustainable approach for C–C and C–heteroatom bond formations. Chemical Communications, 2021, 57, 3630-3647.	2.2	29
589	Dual C–H activation: Rh(iii)-catalyzed cascade π-extended annulation of 2-arylindole with benzoquinone. RSC Advances, 2021, 11, 13030-13033.	1.7	10
590	DFT study of Ni/NHC-catalyzed C–H alkylation of fluoroarenes with alkenes to synthesize fluorotetralins: mechanism, chemoselectivity of C–H <i>vs.</i> C–F bond activation, and regio- and enantioselectivities of C–H bond activation. Organic Chemistry Frontiers, 2021, 8, 1520-1530.	2.3	5
591	The ortho effect in directed Câ€"H activation. Chemical Science, 2021, 12, 5152-5163.	3.7	25
592	Transition metal catalyzed C–H bond activation by <i>exo</i> -metallacycle intermediates. Chemical Communications, 2021, 57, 11885-11903.	2.2	7
593	Rhodium-catalyzed enone carbonyl directed C–H activation for the synthesis of indanones containing all-carbon quaternary centers. Organic Chemistry Frontiers, 2021, 8, 1447-1453.	2.3	13
594	Palladium(I) Dimer Enabled Extremely Rapid and Chemoselective Alkylation of Aryl Bromides over Triflates and Chlorides in Air. Angewandte Chemie, 2017, 129, 7184-7188.	1.6	56
595	Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Organic Letters, 2020, 22, 1259-1264.	2.4	16
596	Rh(III)-Catalyzed Reaction of α-Carbonyl Sulfoxonium Ylides and Alkenes: Synthesis of Indanones via [4 + 1] Cycloaddition. Organic Letters, 2020, 22, 1375-1379.	2.4	52
597	CHAPTER 6. Manganese Catalysis. RSC Catalysis Series, 2020, , 139-230.	0.1	3
598	Nickel-catalyzed oxidative C–H/N–H annulation of <i>N</i> -heteroaromatic compounds with alkynes. Chemical Science, 2019, 10, 3242-3248.	3.7	55
599	Understanding the role of frustrated Lewis pairs as ligands in transition metal-catalyzed reactions. Dalton Transactions, 2020, 49, 3129-3137.	1.6	10
600	Transition metal-catalyzed coupling of heterocyclic alkenes <i>via</i> C–H functionalization: recent trends and applications. Organic Chemistry Frontiers, 2020, 7, 1527-1569.	2.3	75

#	Article	IF	CITATIONS
601	Progress in the Synthesis of C(sp2)—C(sp3) Bond by Reductive Heck Reactions of Alkenes. Chinese Journal of Organic Chemistry, 2021, 41, 3349.	0.6	0
602	Iridium-catalyzed enantioselective addition of an <i>N</i> -methyl C–H bond to α-trifluoromethylstyrenes <i>via</i> C–H activation. Chemical Communications, 2021, 57, 11787-11790.	2.2	13
603	Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Organic Chemistry Frontiers, 2021, 8, 7050-7076.	2.3	39
604	1,3-Difunctionalization of alkenes: state-of-the-art and future challenges. Organic Chemistry Frontiers, 2021, 8, 7037-7049.	2.3	31
605	Selective synthesis of enol ethers <i>via</i> nickel-catalyzed cross coupling of α-oxy-vinylsulfones with alkylzinc reagents. Chemical Communications, 2021, 57, 12273-12276.	2.2	4
606	Pd-Catalyzed and ligand-enabled alkene difunctionalization <i>via</i> unactivated C–H bond functionalization. Chemical Communications, 2021, 57, 12045-12057.	2.2	9
607	Ï€â€Łewisâ€Baseâ€Catalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angewandte Chemie - International Edition, 2021, 60, 26762-26768.	7.2	40
608	Palladiumâ€Catalyzed Carbonylative Fourâ€Component Synthesis of βâ€Perfluoroalkyl Amides. Chemistry - A European Journal, 2021, 27, 17682-17687.	1.7	16
609	Palladium-Catalyzed C–H Amination/[2 + 3] or [2 + 4] Cyclization via C(sp ³ or) Tj ETQq0 0 0 rgBT	- /Qverlock	2 10 Tf 50 42
610	<i>Z</i> ‣elective Fluoroalkenylation of (Hetero)Aromatic Systems by Iodonium Reagents in Palladium atalyzed Directed Câ^'H Activation. Advanced Synthesis and Catalysis, 2022, 364, 348-354.	2.1	6
611	Rhodium atalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie, 2022, 134, .	1.6	15
612	Ï€â€Łewis Base atalyzed Asymmetric Vinylogous Umpolung Reactions of Cyclopentadienones and Tropone. Angewandte Chemie, 0, , .	1.6	0
613	Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews, 2022, 122, 5682-5841.	23.0	237
614	Rhodium atalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
615	Ni-catalyzed hydroalkylation of olefins with N-sulfonyl amines. Nature Communications, 2021, 12, 5881.	5.8	19
616	Enantioselective Cross-Coupling of Electron-Deficient Alkenes via Ir-Catalyzed Vinylic sp ² C–H Alkylation. Organic Letters, 2021, 23, 8158-8162.	2.4	14

617	Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp ³)–H Bonds. Chemical Reviews, 2021, 121, 14957-15074.	23.0	262
618	Rhodaâ€Electrocatalyzed Câ^'H Methylation and Paired Electrocatalyzed Câ^'H Ethylation and Propylation. Chemistry - A European Journal, 2022, 28, .	1.7	18

#	Article	IF	CITATIONS
619	Cationic Iridium/Chiral Bidentate Phosphoramidite Catalyzed Asymmetric Hydroarylation. Synthesis, 0,	1.2	2
620	Development of Earth-Abundant Metals-Catalyzed Enantioselective Alkenylations Using Alkenyl Metal Reagents. Acta Chimica Sinica, 2021, 79, 1331.	0.5	8
621	Redox-neutral rhodium(iii)-catalyzed chemo- and regiospecific [4 + 1] annulation between benzamides and alkenes for the synthesis of functionalized isoindolinones. Organic and Biomolecular Chemistry, 2021, 19, 9946-9952.	1.5	2
622	Maleimides in Directingâ€Groupâ€Controlled Transitionâ€Metalâ€Catalyzed Selective Câ^'H Alkylation. European Journal of Organic Chemistry, 2021, 2021, 5862-5879.	1.2	29
623	Recent Advances in Mono―and Difunctionalization of Unactivated Olefins. Asian Journal of Organic Chemistry, 2021, 10, 3201-3232.	1.3	32
624	Environmentally Friendly Cp*Co(III)-catalyzed C-H Bond Hydroarylation of Alkynes. Journal of Physics: Conference Series, 2021, 2076, 012038.	0.3	0
625	Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. Journal of the Indian Chemical Society, 2021, 98, 100247.	1.3	3
626	Cp*Co(III)-Catalyzed Enantioselective Hydroarylation of Unactivated Terminal Alkenes via C–H Activation. Journal of the American Chemical Society, 2021, 143, 19112-19120.	6.6	73
627	Regioselective Hydroalkylation of Vinylarenes via Cooperative Cu and Ni Catalysis. Angewandte Chemie, 0, , .	1.6	1
628	Regioselective Hydroalkylation of Vinylarenes via Cooperative Cu and Ni Catalysis. Angewandte Chemie - International Edition, 2021, , .	7.2	5
629	An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh(II)-Catalyzed C–H Alkylation of Aryl Sulfonamides with Vinylsilanes. Organometallics, 0, , .	1.1	2
630	Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nature Catalysis, 2021, 4, 968-975.	16.1	35
631	Synthesis of <scp>2â€Deoxyâ€<i>C</i>â€Glycosides</scp> via <scp>Iridiumâ€Catalyzed</scp> sp ² and sp ³ C—H Glycosylation with Unfunctionalized Glycals ^{â€} . Chinese Journal of Chemistry, 2022, 40, 571-576.	2.6	21
632	Rhodium-Catalyzed Regio- and Diastereoselective Hydroarylation of Allenes: An Unprecedented Ene Reaction. ACS Catalysis, 2021, 11, 14570-14574.	5.5	5
633	Iridium-Catalyzed Regioselective Hydroalkynylation of Internal Alkenes Directed by an Oxime. Organic Letters, 2021, 23, 9500-9504.	2.4	4
634	Synthesis of Tetrahydroquinolines by Scandium-Catalyzed [3 + 3] Annulation of Anilines with Allenes and Dienes. ACS Catalysis, 2021, 11, 14995-15003.	5.5	12
635	Iridium-catalyzed enantioselective intramolecular hydroarylation of allylic aryl ethers devoid of a directing group on the aryl group. Chemical Communications, 2021, 57, 13542-13545.	2.2	4
636	C–H bond functionalization by dual catalysis: merging of high-valent cobalt and photoredox catalysis. Chemical Communications, 2021, 57, 13075-13083.	2.2	16

#	Article	IF	CITATIONS
637	Pd-Catalyzed direct C–H arylation of pyrrolo[1,2-a]quinoxalines. Organic and Biomolecular Chemistry, 2022, , .	1.5	8
638	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18
639	Ni(<scp>ii</scp>)-catalyzed C–H hydroarylation of diarylacetylenes with imidazolium salts. Chemical Communications, 2022, 58, 2730-2733.	2.2	3
640	Palladium-Catalyzed Site-Selective [5 + 1] Annulation of Aromatic Amides with Alkenes: Acceleration of β-Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catalysis, 2022, 12, 1595-1600.	5.5	5
641	How the electron-deficient Cp ligand facilitates Rh-catalyzed annulations with alkynes. Organic Chemistry Frontiers, 2022, 9, 979-988.	2.3	14
642	A Perspective on Late-Stage Aromatic C–H Bond Functionalization. Journal of the American Chemical Society, 2022, 144, 2399-2414.	6.6	136
643	Overcoming the Challenges toward Selective C(6)–H Functionalization of 2-Pyridone with Maleimide through Mn(I)-Catalyst: Easy Access to All-Carbon Quaternary Center. Organic Letters, 2022, 24, 848-852.	2.4	9
644	Cationic Iridiumâ€Catalyzed Asymmetric Decarbonylative Aryl Addition of Aromatic Aldehydes to Bicyclic Alkenes. Chemistry - A European Journal, 2022, 28, .	1.7	5
645	Highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols enabled by a hydrogen-bonding assisting effect. Chemical Science, 2022, 13, 2317-2323.	3.7	8
646	Construction of quaternary carbon centers by KO <i>t</i> Bu-catalyzed α-homoallylic alkylation of lactams with 1,3-dienes. Organic Chemistry Frontiers, 2022, 9, 1642-1648.	2.3	4
647	Stereoselective Synthesis of Tertiary Allylic Amines by Titaniumâ€Catalyzed Hydroaminoalkylation of Alkynes with Tertiary Amines. Chemistry - A European Journal, 2022, 28, .	1.7	9
648	Palladium catalyzed nitrile insertion and cyanation of biindoles: Synthesis of indole fused α-carboline scaffolds via double C–H activation. Tetrahedron Letters, 2022, 89, 153600.	0.7	4
649	Electrooxidative palladium- and enantioselective rhodium-catalyzed [3 + 2] spiroannulations. Chemical Science, 2022, 13, 2783-2788.	3.7	51
650	Pd-Catalyzed Coupling of [1,1'-Biphenyl]-2-yl Trifluoromethylsulfonates with CH2Br2 to Access Fluorenes. Synlett, 0, , .	1.0	2
651	Cathodic Regioselective Coupling of Unactivated Aliphatic Ketones with Alkenes. Organic Letters, 2022, 24, 1412-1417.	2.4	13
652	Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Science China Materials, 2022, 65, 298-320.	3.5	36
653	Metal-catalyzed asymmetric heteroarylation of alkenes: diverse activation mechanisms. Chemical Society Reviews, 2022, 51, 1592-1607.	18.7	26
654	Cascade Michael/Aldol//Rearrangement between Phenacylmalononitriles and Maleimides: Highly Diastereoselective Access to Functionalized Bicyclic Cyclopentenes Containing a CN-substituted All-Carbon Quaternary Center. Organic Chemistry Frontiers, 0, , .	2.3	5

#	Article	IF	Citations
655	Rh(<scp>iii</scp>)-Catalyzed cascade annulation to produce an <i>N</i> -acetyl chain of spiropyrroloisoquinoline derivatives. Organic and Biomolecular Chemistry, 2022, 20, 2293-2299.	1.5	3
656	Recent Advances in Metal Catalyzed Câ^'H Functionalization with a Wide Range of Directing Groups. ChemistrySelect, 2022, 7, .	0.7	4
657	Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C–H Functionalization. Journal of the American Chemical Society, 2022, 144, 4530-4540.	6.6	19
658	Regioâ€, Diastereoâ€, and Enantioselective Decarboxylative Hydroâ€aminoalkylation of Dienol Ethers Enabled by Dual Palladium/Phoâ€ŧoredox Catalysis. Angewandte Chemie, 0, , .	1.6	1
659	Ir-Catalyzed Ligand-Free Directed C–H Borylation of Arenes and Pharmaceuticals: Detailed Mechanistic Understanding. Journal of Organic Chemistry, 2022, 87, 4360-4375.	1.7	22
660	A new approach to isoindolinones via rhodium(III)â€catalyzed [3+2] annulation reactions of Nâ€methoxybenzamides with bis(tosylamido)methane. European Journal of Organic Chemistry, 0, , .	1.2	1
661	Regioâ€; Diastereoâ€; and Enantioselective Decarboxylative Hydroaminoalkylation of Dienol Ethers Enabled by Dual Palladium/Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
662	Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catalysis, 2022, 12, 4394-4401.	5.5	13
663	Transition Metal Catalyzed Enantioselective Migratory Functionalization Reactions of Alkenes through <scp>Chainâ€Walking</scp> . Chinese Journal of Chemistry, 2022, 40, 1608-1622.	2.6	21
664	Cobaltâ€Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes. Angewandte Chemie, 2022, 134, .	1.6	2
665	Identification of the Encapsulation Effect of Heteropolyacid in the Si–Al Framework toward Benzene Alkylation. ACS Catalysis, 2022, 12, 4765-4776.	5.5	8
666	Organophotocatalytic Regioselective Câ~'H Alkylation of Electronâ€Rich Arenes Using Activated and Unactivated Alkenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
667	Enantioselective Organocopper-Catalyzed Hetero Diels–Alder Reaction through <i>in Situ</i> Oxidation of Ethers into Enol Ethers. Journal of the American Chemical Society, 2022, 144, 6173-6179.	6.6	8
668	Organophotocatalytic Regioselective Câ~'H Alkylation of Electronâ€Rich Arenes Using Activated and Unactivated Alkenes. Angewandte Chemie, 0, , .	1.6	0
669	Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Letters, 2022, 97, 153779.	0.7	3
670	Cobaltâ€Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
671	Insights into the C H activation mechanism in the Rh(I)-Catalyzed alkenylation of ketone with alkyne. Computational and Theoretical Chemistry, 2022, 1212, 113703.	1.1	1
672	Calcium-catalyzed C(sp)-H silylation of terminal alkynes with hydrosilanes. Polyhedron, 2022, 218, 115771.	1.0	6

#	Article	IF	CITATIONS
673	Regio―and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandiumâ€Catalyzed β (sp ³)â^'H Activation. Angewandte Chemie - International Edition, 2022, 61, e202115996.	7.2	15
674	Potassium Carbonate to Unlock a GaCl ₃ -Catalyzed C–H Propargylation of Arenes. ACS Catalysis, 2022, 12, 305-315.	5.5	4
675	Regio―and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandiumâ€Catalyzed βâ€C(sp ³)â''H Activation. Angewandte Chemie, 2022, 134, .	1.6	3
676	Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroarylation/Cyclization of 1,6-Enynes with <i>N</i> -Pyridylindoles. Journal of Organic Chemistry, 2022, 87, 6438-6443.	1.7	15
677	Transition metal-catalyzed C-H Alkylations as versatile tools for synthetic transformations: a review. Journal of the Iranian Chemical Society, 2022, 19, 3285-3315.	1.2	1
678	Mild Three-Step Consecutive C–H Activations. Organic Letters, 2022, 24, 3118-3122.	2.4	4
679	Rhodium(III)-Catalyzed Sequential Cyclization of <i>N</i> -Boc Hydrazones with Propargylic Monofluoroalkynes via C–H Activation/C–F Cleavage for the Synthesis of Spiro[cyclobutane-1,9â€2-indeno[1,2- <i>a</i>]indenes]. Journal of Organic Chemistry, 2022, 87, 6105-6114.	1.7	6
680	Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
681	An Intermolecular Hydroarylation of Highly Deactivated Styrenes Catalyzed by Re ₂ O ₇ /HReO ₄ in Hexafluoroisopropanol. ACS Catalysis, 2022, 12, 5857-5863.	5.5	8
682	Metal/Metal Dual Catalysis in Câ^'H Activation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
683	An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon–carbon coupling of 2,6-di- <i>tert</i> -butylphenol. Dalton Transactions, 2022, 51, 8234-8239.	1.6	3
684	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	3.2	20
685	Regioselective Synthetic Approach to Higher Alkenes from Lower Alkenes with Sulfoxides in the Fe ³⁺ /H ₂ O ₂ System <i>via</i> Direct Alkylation or Arylation of the Csp ² –H Bond on the C╀ Bond of Alkenes. Journal of Organic Chemistry, 2022, 87, 7022-7032.	1.7	4
686	Nickel(0)-catalysed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids by a bifunctional temporary directing group strategy. Organic Chemistry Frontiers, 2022, 9, 3840-3846.	2.3	2
687	Scandium-Catalyzed Benzylic C(sp ³)–H Alkenylation of Tertiary Anilines with Alkynes. Organic Letters, 2022, 24, 3970-3975.	2.4	7
688	Palladium-catalysed branch- and enantioselective allylic C–H alkylation of α-alkenes. , 2022, 1, 487-496.		12
689	Rh(<scp>iii</scp>)-Catalyzed C–C coupling of unactivated C(sp ³)–H bonds with iodonium ylides for accessing all-carbon quaternary centers. Organic Chemistry Frontiers, 2022, 9, 3823-3827.	2.3	6
690	Hydroaminoalkylation for the Catalytic Addition of Amines to Alkenes or Alkynes: Diverse Mechanisms Enable Diverse Substrate Scope. Journal of the American Chemical Society, 2022, 144, 11459-11481.	6.6	27

#	Article	IF	CITATIONS
691	Recent Advances in the Synthesis of 5â€Membered <i>N</i> â€Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect, 2022, 7, .	0.7	8
692	Ru(II)â€Catalyzed Hydroarylation of inâ€situ Generated 3,3,3â€Trifluoroâ€1â€propyne by Câ^'H Bond Activatior Facile and Practical Access to βâ€Trifluoromethylstyrenes. Chemistry - A European Journal, 2022, 28, .	1: A 1.7	5
693	Regioselective C–H Alkylation of Aromatic Ethers with Alkenes by a Half-Sandwich Calcium Catalyst. ACS Catalysis, 2022, 12, 7877-7885.	5.5	10
694	Visible-Light-Promoted Cross-Coupling of <i>O</i> -Aryl Oximes and Nitrostyrenes to Access Cyanoalkylated Alkenes. Organic Letters, 2022, 24, 4640-4644.	2.4	10
695	Hydroarylation of enamides enabled by HFIP <i>via</i> a hexafluoroisopropyl ether as iminium reservoir. Chemical Science, 2022, 13, 8436-8443.	3.7	16
696	Understanding the Regioselectivity of Ion-Pair-Assisted Meta-Selective C(sp ²)–H Activation in Conformationally Flexible Arylammonium Salts. Journal of Organic Chemistry, 2022, 87, 9222-9231.	1.7	2
697	Palladium and Amino Acid Co-Catalyzed Highly Regio- and Enantioselective Hydroarylation of Unbiased Alkenes. ACS Catalysis, 2022, 12, 8667-8675.	5.5	5
698	Copperâ€Catalyzed Oxidative 1,2â€Alkylarylation of Styrenes with Unactivated C(<i>sp</i> ³)â€H Alkanes and Electronâ€Rich Aromatics via C(<i>sp</i> ³)â€H/C(<i>sp</i> ²)â€H Functionalization. Advanced Synthesis and Catalysis, 2022, 364, 2772-2782.	2.1	6
699	Copper-promoted C1â^'H amination of pyrrolo[1,2-a]quinoxaline with N‑fluorobenzenesulfonimide. Journal of Molecular Structure, 2022, 1267, 133636.	1.8	3
700	Enantio- and Regioselective Ni-Catalyzed <i>para</i> -C–H Alkylation of Pyridines with Styrenes via Intermolecular Hydroarylation. Journal of the American Chemical Society, 2022, 144, 13643-13651.	6.6	46
701	Nickel-Catalyzed Stereoselective Alkenylation of Ketones Mediated by Hydrazine. Jacs Au, 2022, 2, 1929-1934.	3.6	4
702	Diverse reactivity of alkynes in C–H activation reactions. Chemical Communications, 2022, 58, 10262-10289.	2.2	12
703	Directed Palladium Catalyzed Câ^'H (Ethoxycarbonyl)difluoromethylthiolation Reactions. Chemistry - A European Journal, 2022, 28, .	1.7	3
704	Comprehensive theoretical study of nickelâ€NHCâ€catalyzed enantioselective intramolecular indole CH cyclization: Reaction mechanism, reactivity, regioselectivity, and electronic processes. Applied Organometallic Chemistry, 0, , .	1.7	0
705	Construction of <i>N</i> -heterocycles through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation: utilizing alkynes and olefins as coupling partners. Catalysis Reviews - Science and Engineering, 0, , 1-107.	5.7	3
706	Nickel-Catalyzed Intermolecular Enantioselective Heteroaromatic C–H Alkylation. ACS Catalysis, 2022, 12, 11015-11023.	5.5	9
707	Leveraging the Hydroarylation of α-(Trifluoromethyl)styrenes to Access Trifluoromethylated All-Carbon Quaternary Centers. ACS Catalysis, 2022, 12, 10995-11001.	5.5	11
708	Cp*Co ^{III} -catalyzed C2-alkylation of indole derivatives with substituted cyclopropanols. Chemical Communications, 2022, 58, 10536-10539.	2.2	7

#	Article	IF	CITATIONS
709	Metal catalyzed C–H functionalization on triazole rings. RSC Advances, 2022, 12, 27534-27545.	1.7	8
710	Transition metal-catalyzed regioselective functionalization of carbazoles and indolines with maleimides. Organic and Biomolecular Chemistry, 2022, 20, 6776-6783.	1.5	4
711	Nickel-catalyzed hydroarylation reaction: a useful tool in organic synthesis. Organic Chemistry Frontiers, 2022, 9, 5074-5103.	2.3	12
712	Merging dearomatization with redox-neutral C(sp ³)–H functionalization <i>via</i> hydride transfer/cyclization: recent advances and perspectives. Organic Chemistry Frontiers, 2022, 9, 5041-5052.	2.3	20
713	Asymmetric addition of an <i>N</i> -methyl C(sp ³)–H bond to cyclic alkenes enabled by an iridium/phosphine–olefin catalyst. Chemical Communications, 2022, 58, 11783-11786.	2.2	5
714	Transition-metal-catalyzed C–H bond alkylation using olefins: recent advances and mechanistic aspects. Chemical Society Reviews, 2022, 51, 7358-7426.	18.7	37
715	Ni-Catalyzed Site-Selective Hydrofluoroalkylation of Terminal and Internal Olefins. ACS Catalysis, 2022, 12, 12132-12137.	5.5	12
716	Divergent Câ^'H Amidations and Imidations by Tuning Electrochemical Reaction Potentials. ChemSusChem, 2022, 15, .	3.6	3
717	Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C–H Cleavage of Enamides. Journal of the American Chemical Society, 2022, 144, 17351-17358.	6.6	14
718	Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp ²)–H Alkylation Using Nitroalkanes as Alkylating Agents. Journal of the American Chemical Society, 2022, 144, 17399-17406.	6.6	9
719	Rh(III)-catalyzed twofold unsymmetrical C H alkenylation-annulation/amidation reaction enabled delivery of diverse furoquinazolinones. Tetrahedron Letters, 2022, 108, 154141.	0.7	1
720	The Linkage of Sulfonimidoyl Fluorides and Unactivated Alkenes via Hydrosulfonimidoylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
721	The Linkage of Sulfonimidoyl Fluorides and Unactivated Alkenes via Hydrosulfonimidoylation. Angewandte Chemie, 2022, 134, .	1.6	1
723	Enantioselective C2–H Alkylation of Pyridines with 1,3-Dienes via Ni–Al Bimetallic Catalysis. Journal of the American Chemical Society, 2022, 144, 18810-18816.	6.6	36
726	Electrochemical Synthesis of $\hat{I}^2 \hat{a} \in F$ luoroselenides. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
732	A Transition Metal-Free System for C3-H Nitrosation of Imidazo[1,2-a]pyridine Using Sodium Nitrite at Room Temperature. Heterocycles, 2022, 104, 2008.	0.4	0
733	Consecutive 2-Azidoallylation/Click Cycloaddition of Active Methylene for Synthesis of Functionalized Hepta-1,6-dienes with Bis-1,2,3-triazole Scaffold. Organic Chemistry Frontiers, 0, , .	2.3	0
734	Native functional group directed distal C(sp ³)–H activation of aliphatic systems. Catalysis Science and Technology, 2023, 13, 11-27.	2.1	3

#	Article	IF	CITATIONS
735	Cobalt-catalyzed regiodivergent hydrofunctionalization of allenes. Organic Chemistry Frontiers, 0, , .	2.3	0
736	Advances in α-C(sp3)–H functionalization of ethers via cascade [1,n]-hydride transfer/cyclization. Tetrahedron, 2022, 127, 133089.	1.0	6
737	Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Science China Chemistry, 2022, 65, 2163-2176.	4.2	7
738	Substrate Facilitating Roles in Rare-Earth-Catalyzed C–H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorganic Chemistry, 2022, 61, 17330-17341.	1.9	5
739	N-Heterocyclic Carbene Catalyzed Three-Component Reaction for the Synthesis of Multi-substituted Benzenes. Organic Letters, 2022, 24, 7747-7751.	2.4	3
740	Recent Advances in Rareâ€Earth Metal atalyzed Câ^'H Functionalization Reactions. ChemCatChem, 2022, 14, .	1.8	10
741	Copper(I)-Catalyzed Three-Component Selenosulfonation of Maleimides with Sulfonyl Hydrazides and Diselenides via Radical Relay. Journal of Organic Chemistry, 2022, 87, 15661-15669.	1.7	6
742	Transition metal pincer complexes: A series of potential catalysts in C H activation reactions. Coordination Chemistry Reviews, 2023, 475, 214915.	9.5	8
743	Homogeneous catalysis with polyhydride complexes. Chemical Society Reviews, 2022, 51, 9717-9758.	18.7	9
744	Ligand-enabled Ni-catalyzed hydroarylation and hydroalkenylation of internal alkenes with organoborons. Nature Communications, 2022, 13, .	5.8	13
745	Olefin Difunctionnalization With the Same Atoms; 1,2-Dicarbofunctionalization of Olefins. , 2022, , .		0
746	<i>>n</i> -BuLi-promoted nucleophilic addition of unactivated C(sp ³)–H bonds to diazo compounds as N-terminal electrophiles: efficient synthesis of hydrazine derivatives. Organic Chemistry Frontiers, 2023, 10, 499-505.	2.3	3
747	Ru(<scp>ii</scp>)-catalysed oxidative (4 + 2) annulation of chromene and coumarin carboxylic acids with alkynes/propargylic alcohols: isolation of Ru(0) complexes. Organic and Biomolecular Chemistry, 2022, 21, 195-208.	1.5	6
748	Nickel-catalyzed tandem isomerization/ <i>anti</i> -Markovnikov hydroarylation of unactivated internal alkenes with heteroarenes. Organic Chemistry Frontiers, 2023, 10, 1361-1367.	2.3	2
749	The recent advances in cobalt-catalyzed C(sp ³)–H functionalization reactions. Organic and Biomolecular Chemistry, 2023, 21, 673-699.	1.5	1
750	Rh(<scp>iii</scp>)-catalyzed [4 + 1] cyclization of aryl substituted pyrazoles with cyclopropanols <i>via</i> C–H activation. Organic and Biomolecular Chemistry, 2023, 21, 775-782.	1.5	4
751	Electrocatalytic synthesis: an environmentally benign alternative for radical-mediated aryl/alkenyl C(sp ²)–C(sp ³) cross-coupling reactions. Green Chemistry, 2022, 24, 9373-9401.	4.6	17
757	Lone pair-ï€ interaction induced regioselective sulfonation of ethers under light irradiation. Green Synthesis and Catalysis, 2022, , .	3.7	2

#	Article	IF	CITATIONS
758	Ru3(CO)12 atalyzed Modular Assembly of Hemilabile Ligands by C–H Activation of Phosphines with Isocyanates. Angewandte Chemie, 0, , .	1.6	0
759	Ru ₃ (CO) ₁₂ â€Catalyzed Modular Assembly of Hemilabile Ligands by Câ^'H Activation of Phosphines with Isocyanates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
760	Rh(III)â€Catalyzed Oxidative Annulation of 2â€Arylâ€1 <i>H</i> â€benzo[<i>d</i>]imidazoles with 1,4â€Quinones through Câ^'H Activation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
761	Palladium(II)-Catalyzed Regioselective Hydrocarbofunctionalization of <i>N</i> -Alkenyl Amides: Synthesis of Tryptamine Derivatives. Organic Letters, 2022, 24, 9228-9232.	2.4	1
762	Palladium-Catalyzed [3 + 2] Annulation of Aryl Halides with 7-Oxa- and 7-Azabenzonorbornadienes via C(sp ² or sp ³)–H Activation. Organic Letters, 2022, 24, 8964-8968.	2.4	4
763	Catalyst-Controlled Chemodivergent Reactivity of Vinyl Cyclopropanes: A Selective Approach toward Indoles and Aniline Derivatives. Organic Letters, 2022, 24, 9043-9048.	2.4	10
764	Synthesis of Complex Dihydroisoquinolin Derivatives <i>via</i> Cobaltâ€Electrocatalyzed Câ^'H Activation. Advanced Synthesis and Catalysis, 2023, 365, 23-30.	2.1	4
765	Rh(III)-Catalyzed Stereoselective Câ^'H Homoallylation of Indolines with 4-Vinyl-1,3-dioxan-2-ones. Synthesis, 0, , .	1.2	1
766	Recent Developments in Enantioselective Domino Reactions. Part A: Noble Metal Catalysts. Advanced Synthesis and Catalysis, 2023, 365, 620-681.	2.1	11
767	Triazole-enabled, iron-catalysed linear/branched selective C–H alkylations with alkenes. Organic and Biomolecular Chemistry, 2023, 21, 1264-1269.	1.5	2
768	A <i>syn</i> outer-sphere oxidative addition: the reaction mechanism in Pd/Senphos-catalyzed carboboration of 1,3-enynes. Chemical Science, 2023, 14, 2082-2090.	3.7	8
769	Organocalcium Hydride-Catalyzed Intramolecular C(sp ³)–H Annulation of Functionalized 2,6-Lutidines. Journal of Organic Chemistry, 0, , .	1.7	0
770	Addition of Alcohols onto Electron Deficient Heteroarenium Salts: A Reversible Covalent Bonding Process under Basic Condition. Synlett, 0, , .	1.0	0
771	Mechanism and Origin of Site Selectivity and Regioselectivity of Scandium-Catalyzed Benzylic C–H Alkylation of Tertiary Anilines with Alkenes. Inorganic Chemistry, 2023, 62, 979-988.	1.9	2
772	Radical Arylaminoformylation of Activated Alkenes to Amides Containing All arbon Quaternary Stereocenters. European Journal of Organic Chemistry, 0, , .	1.2	0
773	Synthesis of CF3-substituted isoindolones via rhodium(iii)-catalyzed carbenoid C–H functionalization of aryl hydroxamates. Mendeleev Communications, 2023, 33, 34-36.	0.6	2
774	Rhodium(<scp>iii</scp>)-catalyzed oxidative annulation of <i>N</i> arylbenzamidines with maleimides <i>via</i> dual C–H activation. Organic and Biomolecular Chemistry, 2023, 21, 1719-1724.	1.5	2
775	Highly regioselective C–H carbonylation of alkenes with phenyl formate <i>via</i> aryl to vinyl 1,4-palladium migration. Organic Chemistry Frontiers, 2023, 10, 1537-1543.	2.3	2

#	Article	IF	CITATIONS
776	Nickelâ€Catalyzed Intermolecular Branched/Linear Regioselective Câ^'H Alkylation of 4â€Oxoquinazolines. Advanced Synthesis and Catalysis, 2023, 365, 469-475.	2.1	2
777	<i>ortho</i> -C(sp ³)–H arylation of aromatic aldehydes using 2-amino- <i>N</i> -methyl-acetamide as a L,L-type transient directing group. Organic and Biomolecular Chemistry, 2023, 21, 1878-1882.	1.5	2
778	Palladium-catalyzed remote <i>meta</i> -C–H olefination of cinnamates. Chemical Communications, 2023, 59, 5249-5252.	2.2	3
779	Photochemical Alkene Trifluoromethylimination Enabled by Trifluoromethylsulfonylamide as a Bifunctional Reagent. Organic Letters, 2023, 25, 2129-2133.	2.4	16
780	Recent Advances in Rhodium atalyzed Electrochemical Câ^'H Activation. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
781	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
782	Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview. Beilstein Journal of Organic Chemistry, 0, 19, 448-473.	1.3	3
783	Electrochemical rhodium catalysed alkyne annulation with pyrazoles through anodic oxidation – a metal oxidant/additive free methodology. Organic and Biomolecular Chemistry, 2023, 21, 2024-2033.	1.5	3
784	Iridium-Catalyzed Enantioselective Intermolecular Hydroarylation of 1,1-Disubstituted Alkenes. Journal of Organic Chemistry, 0, , .	1.7	1
785	Rhodium-Catalyzed Allylic C–H Functionalization of Unactivated Alkenes with α-Diazocarbonyl Compounds. Organic Letters, 2023, 25, 1257-1262.	2.4	6
786	Distal <i>meta</i> -C–H functionalization of α-substituted cinnamates. Chemical Science, 0, , .	3.7	0
787	Cobalt(III)-catalyzed asymmetric ring-opening of 7-oxabenzonorbornadienes via indole C–H functionalization. Nature Communications, 2023, 14, .	5.8	15
788	Transition metal-catalyzed C–H/C–C activation and coupling with 1,3-diyne. Organic and Biomolecular Chemistry, 2023, 21, 2842-2869.	1.5	6
789	Synthesis of 3,4,5-trisubstituted phenols <i>via</i> Rh(<scp>iii</scp>)-catalyzed alkenyl C–H activation assisted by phosphonium cations. Chemical Communications, 2023, 59, 3775-3778.	2.2	2
790	Transition Metal atalyzed Câ^'H Functionalization Through Electrocatalysis. ChemSusChem, 2023, 16, .	3.6	7
791	Understanding the mechanism and origins of stereoconvergence in nickel-catalyzed hydroarylation of 1,3-dienes with aryl boronates. Dalton Transactions, 2023, 52, 4849-4855.	1.6	1
792	Palladium-catalyzed highly selective <i>gem</i> -difluoroallylation of propargyl sulfonates with <i>gem</i> -difluoroallylboron. Chemical Communications, 2023, 59, 4241-4244.	2.2	0
793	Directing Group Repositioning Strategy Enabled Site- and Enantioselective Addition of Heteroaromatic C–H Bonds to Acyclic Internal Alkenes. Journal of the American Chemical Society, 2023, 145, 6861-6870.	6.6	9

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
794	Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catalysis, 2023, 13, 4250-4260.	5.5	24
795	Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catalysis, 2023, 13, 4421-4432.	5.5	5
796	Synthesis of Chiral Heterocycles from Asymmetric Cascade Palladium Catalysis. Current Organic Chemistry, 2023, 27, .	0.9	0
797	N-Heterocyclic carbenes as privileged ligands for nickel-catalysed alkene functionalisation. Chemical Society Reviews, 2023, 52, 2946-2991.	18.7	26
798	Derivation of Benzothiadiazineâ€1,1â€dioxide Scaffolds via Transition Metalâ€Catalyzed C—H Activation/Annulation. Chinese Journal of Chemistry, 2023, 41, 1973-1978.	2.6	2
799	Nickel-Catalyzed 1,1-Aminoborylation of Unactivated Terminal Alkenes. ACS Catalysis, 2023, 13, 5538-5543.	5.5	11
800	Diversified Synthesis of All-Carbon Quaternary <i>gem</i> -Difluorinated Cyclopropanes via Copper-Catalyzed Cross-Coupling. Organic Letters, 2023, 25, 2674-2679.	2.4	7
801	Tantalum ureate complexes for photocatalytic hydroaminoalkylation. Chemical Science, 0, , .	3.7	0
817	Aldehyde Olefination with Arylboroxines Enabled by Binary Rhodium Catalysis. Organic Letters, 2023, 25, 3228-3233.	2.4	2
827	Ir-Catalyzed Distal Branch-Selective Hydroarylation of Unactivated Internal Alkenes with Benzanilides via C–H Activation along with Consecutive Isomerization. Organic Letters, 2023, 25, 5197-5202.	2.4	2
838	Stapled peptides for new drug discovery. , 2023, , 817-859.		0
848	Asymmetric Nickel-Catalyzed Reactions. , 2023, , .		0
853	Rhodium-catalyzed divergent dehydroxylation/alkenylation of hydroxyisoindolinones with vinylene carbonate. Chemical Communications, 2023, 59, 14559-14562.	2.2	0
858	Transition-metal-free and additive-free intermolecular hydroarylation of alkenes with indoles in hexafluoroisopropanol. Organic and Biomolecular Chemistry, 0, , .	1.5	0
861	Catalytic Addition of C–H Bonds Across C–C π-Bonds. , 2023, , .		0
879	Asymmetric Dual Catalytic Processes: Transition Metal Catalysis and Photoredox Catalysis. , 2024, , .		0