Nanoporous Materials for the Onboard Storage of Natur

Chemical Reviews 117, 1796-1825 DOI: 10.1021/acs.chemrev.6b00505

Citation Report

#	Article	IF	CITATIONS
1	Gas Storage Applications. Crystal Growth and Design, 2017, 17, 3221-3228.	3.0	24
2	Lanthanide-Based Coordination Polymers for the Size-Selective Detection of Nitroaromatics. Crystal Growth and Design, 2017, 17, 3907-3916.	3.0	45
3	A Host Material for Deep-Blue Electrophosphorescence Based on a Cuprous Metal–Organic Framework. Journal of Physical Chemistry C, 2017, 121, 23072-23079.	3.1	16
4	On the microscopic origin of the temperature evolution of isosteric heat for methane adsorption on graphite. Physical Chemistry Chemical Physics, 2017, 19, 27105-27115.	2.8	11
5	N ₂ Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing. Journal of Physical Chemistry C, 2017, 121, 22130-22138.	3.1	21
6	Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13300-13303.	13.7	140
7	Room-temperature fabrication of a three-dimensional porous silicon framework inspired by a polymer foaming process. Chemical Communications, 2017, 53, 8858-8861.	4.1	5
8	Cycling and Regeneration of Adsorbed Natural Gas in Microporous Materials. Energy & Fuels, 2017, 31, 14332-14337.	5.1	14
9	Enhancing Higher Hydrocarbons Capture for Natural Gas Upgrading by Tuning van der Waals Interactions in <i>fcu</i> -Type Zr-MOFs. Industrial & Engineering Chemistry Research, 2017, 56, 14633-14641.	3.7	49
10	Diethylenetriamine-mediated self-assembly of three-dimensional hierarchical nanoporous CoP nanoflowers/pristine graphene interconnected networks as efficient electrocatalysts toward hydrogen evolution. Sustainable Energy and Fuels, 2017, 1, 2172-2180.	4.9	35
11	Synthesis and characterization of metalorganic polymers of intrinsic microporosity based on iron(II) clathrochelate. Polymer, 2017, 122, 200-207.	3.8	22
12	Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research. Molecules, 2017, 22, 1557.	3.8	9
13	A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 5225-5231.	4.0	33
14	A Multifaceted Study of Methane Adsorption in Metal–Organic Frameworks by Using Three Complementary Techniques. Chemistry - A European Journal, 2018, 24, 7866-7881.	3.3	29
15	Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination Chemistry Reviews, 2018, 360, 77-91.	18.8	48
16	Self-assembled 1D infinite inorganic [2]catenane and 2D sheet framework with calix[8]phenylazoimidazole and [4+4]metallomacrocyclic motifs based on silver and ditopic bis(imidazolyl)methane ligands. Journal of Molecular Structure, 2018, 1160, 222-226.	3.6	4
17	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	2.0	6
18	Diverse architectures and luminescence properties of three low-dimensional Zn(II)/Cd(II) coordination polymers based on a pyridine-imidazole ligand. Inorganic Chemistry Communication, 2018, 90, 29-33.	3.9	5

ATION RED

#	Article	IF	CITATIONS
19	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	13.8	40
20	Sorption of CO ₂ in a hydrogen-bonded diamondoid network of sulfonylcalix[4]arene. Supramolecular Chemistry, 2018, 30, 540-544.	1.2	4
21	Oil/molten salt interfacial synthesis of hybrid thin carbon nanostructures and their composites. Journal of Materials Chemistry A, 2018, 6, 4988-4996.	10.3	17
22	Diffusion Control in the in Situ Synthesis of Iconic Metal–Organic Frameworks within an Ionic Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 3793-3800.	8.0	30
23	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	4.1	42
24	Methane Hydrate in Confined Spaces: An Alternative Storage System. ChemPhysChem, 2018, 19, 1298-1314.	2.1	59
25	Methane hydrate formation in the confined nanospace of activated carbons in seawater environment. Microporous and Mesoporous Materials, 2018, 255, 220-225.	4.4	37
26	Open and closed forms of the interpenetrated [Cu2(Tae)(Bpa)2](NO3)2·nH2O: magnetic properties and high pressure CO2/CH4 gas sorption. Dalton Transactions, 2018, 47, 958-970.	3.3	2
28	Renaissance of the Methane Adsorbents. Israel Journal of Chemistry, 2018, 58, 985-994.	2.3	7
30	MOF-GO Hybrid Nanocomposite Adsorbents for Methane Storage. Industrial & Engineering Chemistry Research, 2018, 57, 17470-17479.	3.7	50
31	Optimization of structural and energy characteristics of adsorbents for methane storage. Russian Chemical Bulletin, 2018, 67, 1814-1822.	1.5	21
32	Combined Natural Gas Separation and Storage Based on in Silico Material Screening and Process Optimization. Industrial & Engineering Chemistry Research, 2018, 57, 16727-16750.	3.7	7
33	Spectroscopic characterization of adsorbate confined in small mesopores: Distinction of first surfaceâ€adsorbed layer, polymolecular layers, and liquid clusters. Journal of Raman Spectroscopy, 2018, 49, 1945-1952.	2.5	6
34	Porous carbon-based adsorption systems for natural gas (methane) storage. Russian Chemical Reviews, 2018, 87, 950-983.	6.5	48
35	The Effects of Methane Storage Capacity Using Upgraded Activated Carbon by KOH. Applied Sciences (Switzerland), 2018, 8, 1596.	2.5	24
36	Coordination Network That Reversibly Switches between Two Nonporous Polymorphs and a High Surface Area Porous Phase. Journal of the American Chemical Society, 2018, 140, 15572-15576.	13.7	51
37	Predicting the Features of Methane Adsorption in Large Pore Metal-Organic Frameworks for Energy Storage. Nanomaterials, 2018, 8, 818.	4.1	14
38	Steam Activation of Anthracite Intercalated with Nitric Acid. Solid Fuel Chemistry, 2018, 52, 222-229.	0.7	2

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
39	Metal–Organic Framework Hybrid Materials and Their Applications. Crystals, 2018, 8	, 325.	2.2	58
40	Storage of CO ₂ into Porous Coordination Polymer Controlled by Molecula Dynamics. Angewandte Chemie - International Edition, 2018, 57, 8687-8690.	ır Rotor	13.8	64
41	Recyclable switching between nonporous and porous phases of a square lattice (sq topology coordination network. Chemical Communications, 2018, 54, 7042-7045.	l)	4.1	37
42	Dual-metal zeolitic imidazolate frameworks and their derived nanoporous carbons for n environmental and electrochemical applications. Chemical Engineering Journal, 2018, 3	nultiple 51, 641-649.	12.7	49
43	From synthesis to applications: Metal–organic frameworks for an environmentally su future. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 47-56.	stainable	5.9	33
44	Effect of rheological properties of mesophase pitch and coal mixtures on pore developr activated carbon discs with high compressive strength. Fuel Processing Technology, 20		7.2	19
45	Photoacoustic Sensing of Trapped Fluids in Nanoporous Thin Films: Device Engineering Scheme. ACS Applied Materials & amp; Interfaces, 2018, 10, 27947-27954.	and Sensing	8.0	21
46	Ag-Based Coordination Polymers Based on Metalloligands and Their Catalytic Performa Multicomponent A ³ -Coupling Reactions. Crystal Growth and Design, 2018		3.0	25
47	First principles Monte Carlo simulations of unary and binary adsorption: CO _{2N₂, and H₂O in Mg-MOF-74. Chemical Communications, 201}	ıb>, 18, 54, 10816-10819.	4.1	31
48	Storage of CO ₂ into Porous Coordination Polymer Controlled by Molecula Dynamics. Angewandte Chemie, 2018, 130, 8823-8826.	ır Rotor	2.0	18
49	Assessing the Potential of Biochars Prepared by Steam-Assisted Slow Pyrolysis for CO (Adsorption and Separation. Energy & amp; Fuels, 2018, 32, 10218-10227.	sub>2	5.1	64
50	In Silico Design of 2D and 3D Covalent Organic Frameworks for Methane Storage Appli Chemistry of Materials, 2018, 30, 5069-5086.	cations.	6.7	101
51	Solvent-free vacuum growth of oriented HKUST-1 thin films. Journal of Materials Chemi 19396-19406.	stry A, 2019, 7,	10.3	54
52	High-capacity methane storage in flexible alkane-linked porous aromatic network polyn Energy, 2019, 4, 604-611.	ners. Nature	39.5	110
53	Ultrafast preparation of saccharide-derived carbon microspheres with excellent dispersi ammonium persulfate-assisted hydrothermal carbonization. Journal of Materials Chemis 18840-18845.	bility via stry A, 2019, 7,	10.3	38
54	Effect of crosslinking patterns on the properties of conjugated microporouspolymers. I Journal of Chemistry, 2019, 43, 730-739.	urkish	1.2	2
55	Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A M Simulation Perspective. ACS Applied Materials & Interfaces, 2019, 11, 38697-3870	olecular)7	8.0	56
56	Metal-organic framework structures: adsorbents for natural gas storage. Russian Chem 2019, 88, 925-978.	ical Reviews,	6.5	57

#	Article	IF	CITATIONS
57	Zn―and Cdâ€based Coordination Polymers Offering Hâ€Bonding Cavities: Highly Selective Sensing of S ₂ O ₇ ^{2â^'} and Fe ³⁺ Ions. Chemistry - an Asian Journal, 2019, 14, 4594-4600.	3.3	20
58	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie - International Edition, 2019, 58, 18212-18217.	13.8	55
59	Electrical Properties of Nanostructured MgAl2O4 Ceramics in Adsorption-Desorption Cycles. , 2019, , .		0
60	A Reversible Phase Transition of 2D Coordination Layers by B–Hâ^™â^™â^™Cu(II) Interactions in a Coordination Polymer. Molecules, 2019, 24, 3204.	3.8	7
61	Investigation on methane hydrate formation in silica gel particles below the freezing point. RSC Advances, 2019, 9, 15022-15032.	3.6	7
62	Pd-Supported N/S-Codoped Graphene-Like Carbons Boost Quinoline Hydrogenation Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 11369-11376.	6.7	34
63	Porosity Modulation in Two-Dimensional Covalent Organic Frameworks Leads to Enhanced Iodine Adsorption Performance. Industrial & Engineering Chemistry Research, 2019, 58, 10495-10502.	3.7	66
64	Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nature Communications, 2019, 10, 2345.	12.8	180
65	Computational design of multilayer frameworks to achieve DOE target for on-board methane delivery. Carbon, 2019, 152, 206-217.	10.3	5
66	In-situ preparation of nitrogen-doped unimodal ultramicropore carbon nanosheets with ultrahigh gas selectivity. Carbon, 2019, 149, 538-545.	10.3	20
67	Sustainable Salt Templateâ€Assisted Chemical Activation for the Production of Porous Carbons with Enhanced Power Handling Ability in Supercapacitors. Batteries and Supercaps, 2019, 2, 701-711.	4.7	41
70	Nanoporous Carbons with Tuned Porosity. Green Energy and Technology, 2019, , 91-135.	0.6	2
71	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.6	14
72	Gas storage. , 2019, , 341-382.		1
73	Postfunctionalized Metalloligand-Based Catenated Coordination Polymers: Syntheses, Structures, and Effect of Labile Sites on Catalysis. Crystal Growth and Design, 2019, 19, 2723-2735.	3.0	7
74	Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. Journal of Molecular Liquids, 2019, 285, 9-19.	4.9	102
76	Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A, 2019, 7, 10104-10137.	10.3	187
77	Tuning the Gateâ€Opening Pressure in a Switching pcu Coordination Network, Xâ€pcuâ€5â€Zn, by Pillarâ€Ligand Substitution. Angewandte Chemie, 2019, 131, 18380-18385.	2.0	12

#	Article	IF	CITATIONS
78	Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Science China Materials, 2019, 62, 341-350.	6.3	16
79	Quantum Dynamics of H ₂ and D ₂ Confined in Hydrate Structures as a Function of Pressure and Temperature. Journal of Physical Chemistry C, 2019, 123, 1888-1903.	3.1	12
80	A microporous metal–organic framework with naphthalene diimide groups for high methane storage. Dalton Transactions, 2020, 49, 3658-3661.	3.3	31
81	A novel model for natural gas storage on carbon nanotubes. Applied Nanoscience (Switzerland), 2020, 10, 1115-1129.	3.1	2
82	Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nature Communications, 2020, 11, 77.	12.8	51
83	Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity. Energy and Environmental Science, 2020, 13, 2967-2978.	30.8	55
84	Adsorption Accumulation of Liquefied Natural Gas Vapors. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 897-903.	1.1	8
85	Thermodynamic Behaviors of Adsorbed Methane Storage Systems Based on Nanoporous Carbon Adsorbents Prepared from Coconut Shells. Nanomaterials, 2020, 10, 2243.	4.1	19
86	Thermodynamics of Adsorbed Methane Storage Systems Based on Peat-Derived Activated Carbons. Nanomaterials, 2020, 10, 1379.	4.1	21
87	Luminescent Cd ^{II} metal–organic frameworks based on isoniazid using a mixed ligand approach. CrystEngComm, 2020, 22, 5980-5986.	2.6	4
88	Potassium Oxalate as an Alternative Activating Reagent of Corn Starch-Derived Porous Carbons for Methane Storage. Journal of Nanoscience and Nanotechnology, 2020, 20, 7124-7129.	0.9	7
89	Evolution of the Design of CH4 Adsorbents. Surfaces, 2020, 3, 433-466.	2.3	10
90	Improved latent heat storage properties through mesopore enrichment of a zeolitic shape stabilizer. Solar Energy Materials and Solar Cells, 2020, 216, 110677.	6.2	4
91	<i>In Vivo</i> Enzyme Entrapment in a Protein Crystal. Journal of the American Chemical Society, 2020, 142, 9879-9883.	13.7	39
92	Adsorption equilibrium and the effect of honeycomb heat exchanging device on charge/discharge characteristic of methane on MIL-101(Cr) and activated carbon. Chinese Journal of Chemical Engineering, 2020, 28, 1964-1972.	3.5	6
93	Self-adjusting binding pockets enhance H ₂ and CH ₄ adsorption in a uranium-based metal–organic framework. Chemical Science, 2020, 11, 6709-6716.	7.4	25
94	Combustible ice mimicking behavior of hydrogen-bonded organic framework at ambient condition. Nature Communications, 2020, 11, 3124.	12.8	30
95	Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 4841-4877.	2.4	34

#	Article	IF	CITATIONS
96	Design, preparation and characterization of aerogel NiO–CuO–CoO/SiO ₂ nanocomposite as a reusable catalyst for C–N cross-coupling reaction. New Journal of Chemistry, 2020, 44, 5056-5063.	2.8	13
97	Highly Hierarchical Fibrillar Biogenic Silica with Mesoporous Structure Derived from the Perennial Plant <i>Equisetum Fluviatile</i> . ACS Applied Materials & Interfaces, 2020, 12, 35259-35265.	8.0	7
98	Valsartan metal complexes as capture and reversible storage media for methane. Applied Petrochemical Research, 2020, 10, 77-82.	1.3	5
99	Adsorption equilibrium and charge/discharge characteristics of hydrogen on MOFs. Cryogenics, 2020, 112, 103121.	1.7	7
100	Primary Adsorption Sites of Light Alkanes in Multivariate UiO-66 at Room Temperature as Revealed by Solid-State NMR. Journal of Physical Chemistry C, 2020, 124, 3738-3746.	3.1	12
101	Controlled release of H2S and NO gases through CO2-stimulated anion exchange. Nature Communications, 2020, 11, 453.	12.8	8
102	Anion-regulated selective growth ultrafine copper templates in carbon nanosheets network toward highly efficient gas capture. Journal of Colloid and Interface Science, 2020, 564, 296-302.	9.4	17
103	Charge-Separated Metal–Organic Frameworks Derived from Boron-Centered Tetrapods. Crystal Growth and Design, 2020, 20, 1598-1608.	3.0	5
104	Impact of Chemical Features on Methane Adsorption by Porous Materials at Varying Pressures. Journal of Physical Chemistry C, 2020, 124, 4534-4544.	3.1	29
105	Polyphenylene networks containing triptycene units: Promising porous materials for CO2, CH4, and H2 adsorption. Microporous and Mesoporous Materials, 2020, 303, 110256.	4.4	13
106	Adsorption-induced two-way nanoconvection enhances nucleation and growth kinetics of methane hydrates in confined porespace. Chemical Engineering Journal, 2020, 396, 125256.	12.7	44
107	Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage. Journal of the American Chemical Society, 2020, 142, 8541-8549.	13.7	182
108	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	12.6	429
109	Molecular simulation of adsorption and diffusion of CH4 and H2O in flexible metal-organic framework ZIF-8. Fuel, 2021, 286, 119342.	6.4	20
110	More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem, 2021, 14, 94-117.	6.8	137
111	Gas Storage in Porous Molecular Materials. Chemistry - A European Journal, 2021, 27, 4531-4547.	3.3	30
112	Probing adsorbent heterogeneity using Toth isotherms. Journal of Materials Chemistry A, 2021, 9, 944-962.	10.3	12
113	Recent advances in the design of metal–organic frameworks for methane storage and delivery. Journal of Porous Materials, 2021, 28, 213-230.	2.6	13

ARTICLE IF CITATIONS # Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 3.2 12 114 51-65. Gas hydrates in confined space of nanoporous materials: new frontier in gas storage technology. 5.6 28 Nanoścale, 2021, 13, 7447-7470. 116 Recent developments in chemical energy storage., 2021, , 447-494. 2 Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular 1.8 dynamics simulation. Journal of Molecular Modeling, 2021, 27, 59. CARS Diagnostics of Molecular Fluid Phase Behavior in Nanoporous Glasses. Springer Series in 118 0.2 0 Chemical Physics, 2021, , 121-147. Adsorbed Natural Gas Storage for Onboard Applications. Advanced Sustainable Systems, 2021, 5, 119 5.3 2000200. Post-synthetic metalation of porous framework materials for achieving high natural gas storage and 120 4.4 3 working capacity: A GCMC simulation study. Microporous and Mesoporous Materials, 2021, 315, 110931. Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature. Chemistry and Chemical Technology, 1.1 2021, 15, 81-88. Carbon adsorbents for methane storage: genesis, synthesis, porosity, adsorption. Korean Journal of 122 2.7 17 Chemical Engineering, 2021, 38, 276-291. Copper benzene-1,3,5-tricarboxylate (HKUST-1) – graphene oxide pellets for methane adsorption. 4.4 Microporous and Mesoporous Materials, 2021, 316, 110948. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. 124 9 3.3 Scientific Reports, 2021, 11, 9197. Machine learning assisted rediscovery of methane storage and separation in porous carbon from 6.4 material literature. Fuel, 2021, 290, 120080. Heat transfer and water migration rules during formation/dissociation of methane hydrate under 126 4.8 14 temperature fields with gradient. International Journal of Heat and Mass Transfer, 2021, 169, 120929. Reversible Vapochromic Luminescence Accompanied by Planar Halfâ€Chair Conformational Change of a Propellerâ€Shaped Boron βâ€Diketiminate Complex. Chemistry - A European Journal, 2021, 27, 9302-9312. 127 3.3 The Concentration of C(sp3) Atoms and Properties of an Activated Carbon with over 3000 m2/g BET 128 4.1 11 Surface Area. Nanomaterials, 2021, 11, 1324. Physicochemical activation and palletisation of Azadirachta indica wood carbons for increased 129 biomethane adsorbed energy storage. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105102. Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7. 130 5.6 9 Chemical Engineering Research and Design, 2021, 169, 153-164. Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with 4.5 precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .

#	Article	IF	CITATIONS
132	Elastic properties of confined fluids from molecular modeling to ultrasonic experiments on porous solids. Applied Physics Reviews, 2021, 8, .	11.3	14
133	Have Covalent Organic Framework Films Revealed Their Full Potential?. Crystals, 2021, 11, 762.	2.2	2
134	Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chinese Journal of Chemical Engineering, 2022, 42, 104-111.	3.5	10
135	Adsorption of Semiflexible Polymers in Cylindrical Tubes. Langmuir, 2021, 37, 11759-11770.	3.5	0
136	Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies, 2021, 14, 5912.	3.1	3
137	Controllable pore structures of pure and sub-millimeter-long carbon nanotubes. Applied Surface Science, 2021, 566, 150751.	6.1	9
138	Carbon natural gas storage performance as predicted by multiscale modeling. Chemical Engineering Journal, 2021, 426, 131593.	12.7	6
139	Surface Area and Porosity of Co ₃ (ndc) ₃ (dabco) Metal–Organic Framework and Its Methane Storage Capacity: A Combined Experimental and Simulation Study. Journal of Physical Chemistry C, 2021, 125, 2411-2423.	3.1	7
140	Cylindrical confinement of solutions containing semiflexible macromolecules: surface-induced nematic order versus phase separation. Soft Matter, 2021, 17, 3443-3454.	2.7	6
141	Nanoporous naphthalene diimide surface enhances humidity and ammonia sensing at room temperature. Sensors and Actuators B: Chemical, 2022, 351, 130972.	7.8	25
142	Failureâ€Experimentâ€Supported Optimization of Poorly Reproducible Synthetic Conditions for Novel Lanthanide Metalâ€Organic Frameworks with Twoâ€Dimensional Secondary Building Units**. Chemistry - A European Journal, 2021, 27, 16347-16353.	3.3	6
143	Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage. Chemical Engineering Journal, 2022, 430, 132901.	12.7	8
144	Hydrocarbon adsorption in a series of mesoporous metal-organic frameworks. Microporous and Mesoporous Materials, 2021, 328, 111477.	4.4	10
145	Efficient N2/CH4 separation in a stable metal–organic framework with high density of open Cr sites. Separation and Purification Technology, 2022, 281, 119951.	7.9	13
146	Thermodynamics of Methane Adsorption in a Microporous Carbon Adsorbent Prepared From Polymer Composition. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 883-889.	1.1	3
147	Biological Metal–Organic Frameworks (Bio-MOFs) for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 37-51.	3.7	46
149	Materials informatics-guided superior electrocatalyst: A case of pyrolysis-free single-atom coordinated with N-graphene nanomesh. Nano Energy, 2022, 94, 106868.	16.0	31
150	Modulating the porosity of carbons for improved adsorption of hydrogen, carbon dioxide, and methane: a review. Materials Advances, 2022, 3, 1905-1930.	5.4	21

#	Article	IF	CITATIONS
151	Light-induced switchable adsorption in azobenzene- and stilbene-based porous materials. Trends in Chemistry, 2022, 4, 32-47.	8.5	11
152	Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. Materials, 2022, 15, 1037.	2.9	13
153	Introducing artificial MOFs for improved machine learning predictions: Identification of top-performing materials for methane storage. Journal of Chemical Physics, 2022, 156, 054103.	3.0	9
154	Investigation of the densification and heat conducting enhancement measures on MIL-101 and its composite for hydrogen storage by adsorption. International Journal of Hydrogen Energy, 2022, 47, 9958-9958.	7.1	3
155	Direct and mild non-hydroxide activation of biomass to carbons with enhanced CO ₂ storage capacity. Energy Advances, 2022, 1, 216-224.	3.3	9
156	Two bis-ligand-coordinated Zn(<scp>ii</scp>)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Advances, 2022, 12, 7780-7788.	3.6	15
158	Molecular Dynamics of CH4 Hydrate Growth in Confined Space of ZIF-8: Micro-insights in Technology of Adsorption-Hydration Hybrid to CH4 Storage. Lecture Notes in Civil Engineering, 2022, , 342-349.	0.4	0
159	Evaluation of metal-organic frameworks for natural gas storage. , 2022, , .		1
160	Extended Line Defect Graphene Modified by the Adsorption of Mn Atoms and Its Properties of Adsorbing CH4. Nanomaterials, 2022, 12, 697.	4.1	5
161	Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect lons, antibiotics and pesticides in aqueous solutions. Polyhedron, 2022, 217, 115759.	2.2	16
162	A review on high-density methane storage in confined nanospace by adsorption-hydration hybrid technology. Journal of Energy Storage, 2022, 50, 104195.	8.1	12
163	Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications – A review. Chemosphere, 2022, 298, 134184.	8.2	82
164	Adsorbed Natural Gas Storage for Vehicular Applications. , 0, , .		0
165	Porous liquids $\hat{a} \in $ the future is looking emptier. Chemical Science, 2022, 13, 5042-5054.	7.4	22
166	A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies, 2022, 26, 199-212.	1.4	1
167	Molecular simulation of methane on various g-C3N4 isomers: collision, adsorption, desorption, and diffusion studies. Journal of the Iranian Chemical Society, 2022, 19, 3649-3657.	2.2	4
168	Evaluating the High-Pressure Volumetric CH ₄ , H ₂ , and CO ₂ Storage Properties of Denser-Version Isostructural soc -Metal–Organic Frameworks. Journal of Chemical & Engineering Data, 2022, 67, 1732-1742.	1.9	8
169	A copper-based metal-organic framework for upgrading natural gas through the recovery of C2H6 and C3H8. Green Chemical Engineering, 2023, 4, 81-87.	6.3	7

#	Article	IF	CITATIONS
170	A versatile route to fabricate Metal/UiO-66 (MetalÂ=ÂPt, Pd, Ru) with high activity and stability for the catalytic oxidation of various volatile organic compounds. Chemical Engineering Journal, 2022, 448, 136900.	12.7	33
171	May sediments affect the inhibiting properties of NaCl on CH4 and CO2 hydrates formation? an experimental report. Journal of Molecular Liquids, 2022, 359, 119300.	4.9	12
172	Accelerated formation of hydrate in size-varied ZIF-8 for CH4 storage by adsorption-hydration hybrid technology. Fuel, 2022, 322, 124266.	6.4	8
173	Synthesis of MIL-101(Cr)/graphite oxide composite and enhanced the capacity of methane. Journal of Natural Gas Science and Engineering, 2022, 103, 104647.	4.4	5
174	Modulating the porosity of activated carbons <i>via</i> pre-mixed precursors for simultaneously enhanced gravimetric and volumetric methane uptake. Journal of Materials Chemistry A, 2022, 10, 13744-13757.	10.3	9
175	Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): A review. Chemical Engineering Journal, 2022, 446, 137373.	12.7	22
176	Energy, exergy, economic and environmental (4E) analysis of a novel power/refrigeration cascade system to recover low-grade waste heat at 90–150°C. Journal of Cleaner Production, 2022, 363, 132353.	9.3	24
177	Recent Advances in Carbon-Based Adsorbents for Adsorptive Separation of Light Hydrocarbons. Research, 2022, 2022, .	5.7	8
178	Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks. Materials, 2022, 15, 4247.	2.9	1
179	Scaleâ€Up of Solventâ€Free, Mechanochemical Precursor Synthesis for Nanoporous Carbon Materials via Extrusion. ChemSusChem, 2022, 15, .	6.8	6
180	Suitability analysis of sustainable nanoporous adsorbents for higher biomethane adsorption and storage applications. International Journal of Energy Research, 2022, 46, 14779-14793.	4.5	5
181	Highly Porous Materials as Potential Components of Natural Gas Storage Systems: Part 1 (A Review). Petroleum Chemistry, 2022, 62, 561-582.	1.4	5
182	Rational synthesis of microporous carbons for enhanced post-combustion CO ₂ capture <i>via</i> non-hydroxide activation of air carbonised biomass. RSC Advances, 2022, 12, 20080-20087.	3.6	7
183	Computational Simulation Study on Adsorption and Separation of Ch4/H2 in Five Higher-Valency Covalent Organic Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
184	Exergy Analysis and Advanced Exergy Analysis of a Novel Power/Refrigeration Cascade System for Recovering Low-Grade Waste Heat at 90–150 °C. ACS Sustainable Chemistry and Engineering, 2022, 10, 9184-9193.	6.7	3
185	Life cycle assessment as a comparison tool for activated carbon preparations and biomethane storage for vehicular applications. International Journal of Energy Research, 2022, 46, 17362-17375.	4.5	2
186	Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity. Journal of the American Chemical Society, 2022, 144, 13729-13739.	13.7	39
187	Computational simulation study on adsorption and separation of CH4/H2 in five higher-valency covalent organic frameworks. Materials Today Communications, 2022, 33, 104374.	1.9	3

#	Article	IF	CITATIONS
188	Generalised predictability in the synthesis of biocarbons as clean energy materials: targeted high performance CO ₂ and CH ₄ storage. Energy and Environmental Science, 2022, 15, 4710-4724.	30.8	7
189	Elastic Properties of Confined Fluids in Nanopores: An Acoustic-Propagation Model. Journal of Physical Chemistry B, 2022, 126, 8010-8020.	2.6	3
190	Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material. Journal of Materials Chemistry A, 2022, 10, 23499-23508.	10.3	17
191	Computational insights into the energy storage of ultraporous MOFs NU-1501-M (M = Al or Fe): Protonization revealing and performance improving by decoration of superalkali clusters. International Journal of Hydrogen Energy, 2022, 47, 41034-41045.	7.1	5
192	Scalable Mechanochemical Synthesis of <i>β</i> â€Ketoenamineâ€ŀinked Covalent Organic Frameworks for Methane Storage. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
193	Reduced graphene oxide based composite aerogels for energy storage and transportation of methane. Journal of Cleaner Production, 2022, 379, 134770.	9.3	5
194	Rational design of carbon-based materials for purification and storage of energy carrier gases of methane and hydrogen. Journal of Energy Storage, 2022, 56, 105967.	8.1	9
195	A parametric investigation of methane jets in direct-injection compression-ignition conditions. Fuel, 2023, 334, 126521.	6.4	4
196	Adsorbate-dependent phase switching in the square lattice topology coordination network [Ni(4,4′-bipyridine) ₂ (NCS) ₂] _{<i>n</i>} . Chemical Communications, 2023, 59, 559-562.	4.1	4
197	Application of monocyclic compounds as natural gas hydrate promoters: A review. Chemical Engineering Research and Design, 2023, 190, 66-90.	5.6	6
198	Experimental study of adsorption CO2 storage device for compressed CO2 energy storage system. Journal of Energy Storage, 2023, 58, 106286.	8.1	3
199	Adsorbed natural gas storage facility based on activated carbon of wood waste origin. Adsorption, 2023, 29, 291-307.	3.0	2
200	Computer-aided design of high-connectivity covalent organic frameworks as CH4/H2 adsorption and separation media. International Journal of Hydrogen Energy, 2023, 48, 12753-12766.	7.1	0
201	Porosity Engineering of Hyper-Cross-Linked Polymers Based on Fine-Tuned Rigidity in Building Blocks and High-Pressure Methane Storage Applications. Macromolecules, 2023, 56, 1213-1222.	4.8	7
202	Current overview of the valorization of bio-wastes for adsorbed natural gas applications. Carbon Letters, 2023, 33, 1519-1547.	5.9	2
203	Co-adsorption of hydrogen and methane can improve the energy storage capacity of Mn-modified graphene. Journal of Energy Storage, 2023, 63, 106973.	8.1	0
204	Rational Construction of Ultrahigh Thermal Stable MOF for Efficient Separation of MTO Products and Natural Gas. , 2023, 5, 1091-1099.		19
205	Highly Efficient Separation of CH ₄ /C ₂ H ₆ /C ₃ H ₈ from Natural Gas on a Novel Copper-Based Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2023, 62. 5252-5261.	3.7	11

#	Article	IF	CITATIONS
206	Surface area per volumetric loading and its practical significance. Microporous and Mesoporous Materials, 2023, 354, 112549.	4.4	2
207	Insights into the CO ₂ Capture Characteristics within the Hierarchical Pores of Carbon Nanospheres Using Small-Angle Neutron Scattering. Langmuir, 2023, 39, 4382-4393.	3.5	3
209	Adsorption of methane on biochar for emission reduction in oil and gas fields. Biochar, 2023, 5, .	12.6	2
210	Structure and stability of nitrogen hydrate in a single-walled carbon nanotube under external electric fields. Chinese Physics B, 2023, 32, 076402.	1.4	1
211	A novel type microporous adsorbent based on single-walled carbon nanotubes assembled by toluene molecules for methane storage. Adsorption, 2023, 29, 183-198.	3.0	1
212	The Upcoming Future of Metal-Organic Frameworks: Challenges and Opportunities. Nano Hybrids and Composites, 0, 39, 27-48.	0.8	1
213	Direction of changes in porous structure and adsorption capacity during topochemical oxidation of coal activated by alkali. Voprosy Khimii I Khimicheskoi Tekhnologii, 2023, , 127-136.	0.4	0
214	Fuel Storage Application of Activated Carbon. , 2023, , 179-205.		0
215	Enhanced Methane Storage in Graphene Oxide Induced by an External Electric Field: A Study by MD Simulations and DFT Calculation. Langmuir, 2023, 39, 7648-7659.	3.5	2
216	Review and Perspectives of Monolithic Metal–Organic Frameworks: Toward Industrial Applications. Energy & Fuels, 2023, 37, 9938-9955.	5.1	5
217	A Study of the Fabrication of Different-Dimensional Metal–Organic Frameworks and Their Hybrid Composites for Novel Applications. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
218	Review and Perspectives of Energy-Efficient Methane Production from Natural Gas Hydrate Reservoirs Using Carbon Dioxide Exchange Technology. Energy & Fuels, 2023, 37, 9841-9872.	5.1	5
219	Halogen-modified metal–organic frameworks for efficient separation of alkane from natural gas. Dalton Transactions, 0, , .	3.3	2
220	Grand canonical Monte Carlo simulations of the hydrogen and methane storage capacities of novel but MOFs at room temperature. International Journal of Hydrogen Energy, 2024, 50, 160-177.	7.1	1
221	Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks. Nature Communications, 2023, 14, .	12.8	6
222	Dynamics of polymer chains confined to a periodic cylinder: molecular dynamics simulation <i>vs.</i> Lifson–Jackson formula. Physical Chemistry Chemical Physics, 0, , .	2.8	1
223	Air-Stable Cu(I) Metal–Organic Framework for Hydrogen Storage. Journal of the American Chemical Society, 2023, 145, 20492-20502.	13.7	8
224	Carboxymethyl cellulose/polyvinyl alcohol composite aerogel supported beta molecular sieve for CH4 adsorption and storage. Carbohydrate Polymers, 2023, 321, 121246.	10.2	2

#	Article	IF	CITATIONS
225	Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. , 2023, 42, 100172.		1
226	Storage systems safety: vessels, reservoirs, etc , 2023, , 211-225.		0
227	An ethynyl-modified interpenetrated metal–organic framework for highly efficient selective gas adsorption. Dalton Transactions, 2023, 52, 15101-15106.	3.3	1
228	Rational Design of Porous Ionic Liquids for Coupling Natural Gas Purification with Waste Gas Conversion. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
229	Rational Design of Porous Ionic Liquids for Coupling Natural Gas Purification with Waste Gas Conversion. Angewandte Chemie, 2023, 135, .	2.0	1
230	Mesoporous carbon xerogel as a promising adsorbent for capture and storage of liquified natural gas vapors. Adsorption, 2023, 29, 255-273.	3.0	1
231	Adsorption equilibrium of methane on activated carbon and typical metal organic frameworks. Journal of Fuel Chemistry and Technology, 2023, 51, 1879-1888.	2.0	0
232	On the surface area per volumetric loading: Its pronounced improvement in densely-packed SWCNT by double-function purification. Microporous and Mesoporous Materials, 2024, 366, 112940.	4.4	0
234	Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage. Polymers, 2024, 16, 156.	4.5	0
235	Kaolin-based metal-organic frameworks for sustainable natural gas storage. , 2024, 122, 205200.		0
236	Selective Carbon Dioxide Capture and Ultrahigh Iodine Uptake by Tetraphenylethylene-Functionalized Nitrogen-Rich Porous Organic Polymers. ACS Applied Polymer Materials, 2024, 6, 1314-1324.	4.4	1
237	Dibromomethane Knitted Highly Porous Hyper rossâ€Linked Polymers for Efficient Highâ€Pressure Methane Storage. Advanced Materials, 2024, 36, .	21.0	0
238	Natural gas resources, emission, and climate change. , 2024, , 19-53.		0
239	Multivariate Metal–Organic Frameworks for Programming Functions. Advanced Functional Materials, 0, , .	14.9	0
240	Temperature Evolution of Sorbonorit-4 Methane-Induced Deformation through the Eyes of Classical Density Functional Theory. Langmuir, 2024, 40, 4122-4131.	3.5	0
241	Tailoring a <scp>MOF</scp> â€based adsorbent with partitioned aliphatic pore spaces for efficient <scp>CH₄</scp> purification from natural gas. AICHE Journal, 0, , .	3.6	0