Selectivity Enhancement in Heterogeneous Photocataly

Chemical Reviews 117, 1445-1514

DOI: 10.1021/acs.chemrev.6b00396

Citation Report

#	Article	IF	CITATIONS
1	Construction of Pillared-Layer MOF as Efficient Visible-Light Photocatalysts for Aqueous Cr(VI) Reduction and Dye Degradation. ACS Sustainable Chemistry and Engineering, 2017, 5, 4449-4456.	3.2	252
2	Electrospinning fabrication and photocatalytic activity of Bi2WO6 nanofibers. Journal of Materials Science: Materials in Electronics, 2017, 28, 12320-12325.	1.1	9
3	Construction of an all-solid-state artificial Z-scheme system consisting of Bi ₂ WO ₆ /Au/CdS nanostructure for photocatalytic CO ₂ reduction into renewable hydrocarbon fuel. Nanotechnology, 2017, 28, 274002.	1.3	56
4	CuO-ZnO Nanosheets with p-n Heterojunction for Enhanced Visible Light Mediated Photocatalytic Activity. ChemistrySelect, 2017, 2, 4866-4873.	0.7	15
5	Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 2017, 117, 8129-8176.	23.0	1,230
6	Developing a ferroelectric nanohybrid for enhanced photocatalysis. Chemical Communications, 2017, 53, 7596-7599.	2.2	29
7	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. ACS Catalysis, 2017, 7, 8134-8138.	5 . 5	66
8	Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chemical Society Reviews, 2017, 46, 6675-6686.	18.7	102
9	Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 54-82.	5.6	101
10	Density Functional Studies on Layered Perovskite Oxyhalide Bi $<$ sub $>$ 4 $<$ /sub $>$ MO $<$ sub $>$ 8 $<$ /sub $>$ X Photocatalysts (M = Nb and Ta, X = Cl, Br, and I). Journal of Physical Chemistry C, 2017, 121, 20662-20672.	1.5	24
11	Accessible fabrication and mechanism insight of heterostructured BiOCl/Bi2MoO6/g-C3N4 nanocomposites with efficient photosensitized activity. Journal of Alloys and Compounds, 2017, 726, 164-172.	2.8	33
13	Photocatalytic restoration of liquid effluent from oil palm agroindustry in Malaysia using tungsten oxides catalyst. Journal of Cleaner Production, 2017, 162, 205-219.	4.6	50
14	Brookite: Nothing New under the Sun?. Catalysts, 2017, 7, 304.	1.6	71
15	Pure and Fe-Doped Mesoporous Titania Catalyse the Oxidation of Acid Orange 7 by H2O2 under Different Illumination Conditions: Fe Doping Improves Photocatalytic Activity under Simulated Solar Light. Catalysts, 2017, 7, 213.	1.6	24
16	Spectroscopic and Structural Characterization of Carbon Dioxide Transition Metal Complexes. Advances in Organometallic Chemistry, 2017, 68, 1-91.	0.5	7
18	NiO Quantum Dot Modified TiO2 toward Robust Hydrogen Production Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 889-896.	3. 2	34
19	Tuning Catalytic Selectivity in Cascade Reactions by Light Irradiation. Catalysis Letters, 2018, 148, 1124-1129.	1.4	3
20	Cobalt porphyrin supported on N and P co-doped graphene quantum dots/graphene as an efficient photocatalyst for aerobic oxidation of alcohols under visible-light irradiation. Research on Chemical Intermediates, 2018, 44, 3641-3657.	1.3	20

#	Article	IF	CITATIONS
21	Mechanistic insights into 4-nitrophenol degradation and benzyl alcohol oxidation pathways over MgO/g-C _{3} N _{4} model catalyst systems. Catalysis Science and Technology, 2018, 8, 2825-2834.	2.1	44
22	Biâ€, Yâ€Codoped TiO2 for Carbon Dioxide Photocatalytic Reduction to Formic Acid under Visible Light Irradiation. Chinese Journal of Chemistry, 2018, 36, 538-544.	2.6	15
23	New insight into the selective photocatalytic oxidation of RhB through a strategy of modulating radical generation. RSC Advances, 2018, 8, 13625-13634.	1.7	30
24	Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine. Applied Surface Science, 2018, 450, 1-8.	3.1	56
25	Facile synthesis and improved photocatalytic performance of Ag-AgCl photocatalyst by loading basic zinc carbonate. Journal of Alloys and Compounds, 2018, 752, 238-246.	2.8	24
26	Noninvasively Modifying Band Structures of Wideâ€Bandgap Metal Oxides to Boost Photocatalytic Activity. Advanced Materials, 2018, 30, e1706259.	11.1	48
27	Selective photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxaldehyde by polymeric carbon nitride-hydrogen peroxide adduct. Journal of Catalysis, 2018, 359, 212-222.	3.1	68
28	Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 2018, 62, 1-25.	2.9	697
29	Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy, 2018, 47, 8-17.	8.2	125
30	Metal Doped Core–Shell Metalâ€Organic Frameworks@Covalent Organic Frameworks (MOFs@COFs) Hybrids as a Novel Photocatalytic Platform. Advanced Functional Materials, 2018, 28, 1707110.	7.8	188
31	Functionalization of Metal–Organic Frameworks for Photoactive Materials. Advanced Materials, 2018, 30, e1705634.	11.1	133
32	Functional Materials and Systems for Rewritable Paper. Advanced Materials, 2018, 30, e1705310.	11.1	157
33	Selective fluorescent sensing and photocatalytic properties of three MOFs based on naphthalene-1,4-dicarboxylic acid and 2,4,5-tri(4-pyridyl)-imidazole. New Journal of Chemistry, 2018, 42, 3551-3559.	1.4	8
34	Visible-light-induced photocatalytic benzene/cyclohexane cross-coupling utilizing a ligand-to-metal charge transfer benzene complex adsorbed on titanium oxides. Catalysis Science and Technology, 2018, 8, 2046-2050.	2.1	26
35	Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. Journal of Colloid and Interface Science, 2018, 526, 366-373.	5.0	17
36	Enhanced visible-light photocatalytic activity and photostability of Ag ₃ PO ₄ /Bi ₂ WO ₆ heterostructures toward organic pollutant degradation and plasmonic Z-scheme mechanism. RSC Advances, 2018, 8, 15853-15862.	1.7	42
37	Photocatalytic degradation of methylene blue by the Anderson-type polyoxomolybdates/TiO2 thin films. Polyhedron, 2018, 149, 163-170.	1.0	20
38	A versatile method for the determination of photochemical quantum yields via online UV-Vis spectroscopy. Photochemical and Photobiological Sciences, 2018, 17, 660-669.	1.6	50

3

#	Article	IF	CITATIONS
39	Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 283-289.	2.0	30
40	Hierarchical assembly of AgCl@Sn-TiO2 microspheres with enhanced visible light photocatalytic performance. Applied Surface Science, 2018, 441, 678-687.	3.1	12
41	Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Applied Catalysis B: Environmental, 2018, 232, 260-267.	10.8	117
42	The effects of solvent on photocatalytic properties of Bi2WO6/TiO2 heterojunction under visible light irradiation. Solid State Sciences, 2018, 78, 95-106.	1.5	33
43	TiO ₂ photocatalysis for C–C bond formation. Catalysis Science and Technology, 2018, 8, 2030-2045.	2.1	91
44	Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catalysis Communications, 2018, 111, 10-15.	1.6	47
45	Iron-titanium dioxide composite nanoparticles prepared with an energy effective method for efficient visible-light-driven photocatalytic nitrogen reduction to ammonia. Journal of Alloys and Compounds, 2018, 746, 147-152.	2.8	15
46	Selective endoperoxide formation by heterogeneous TiO 2 photocatalysis with dioxygen. Tetrahedron, 2018, 74, 2421-2427.	1.0	15
47	The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water. Applied Surface Science, 2018, 445, 376-382.	3.1	81
48	Alizarin red S–TiO ₂ -catalyzed cascade C(sp ³)–H to C(sp ²)–H bond formation/cyclization reactions toward tetrahydroquinoline derivatives under visible light irradiation. New Journal of Chemistry, 2018, 42, 6880-6888.	1.4	27
49	CdS quantum dots/Ti3+-TiO2 nanobelts heterojunctions as efficient visible-light-driven photocatalysts. Materials Research Bulletin, 2018, 103, 114-121.	2.7	33
50	Potassium-incorporated mesoporous carbons: strong solid bases with enhanced catalytic activity and stability. Catalysis Science and Technology, 2018, 8, 2794-2801.	2.1	14
51	Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols. Journal of Materials Chemistry A, 2018, 6, 6344-6355.	5.2	127
52	Novel synthesis of PbBiO2Cl/BiOCl nanocomposite with enhanced visible-driven-light photocatalytic activity. Catalysis Today, 2018, 300, 112-123.	2.2	88
53	Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Applied Catalysis B: Environmental, 2018, 224, 404-409.	10.8	136
54	Fabrication of Pt nanoparticles decorated Gd-doped Bi2MoO6 nanosheets: Design, radicals regulating and mechanism of Gd/Pt-Bi2MoO6 photocatalyst. Applied Surface Science, 2018, 427, 1046-1053.	3.1	39
55	CulnS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Applied Catalysis B: Environmental, 2018, 221, 215-222.	10.8	186
56	Highly selective oxidation of furfuryl alcohol over monolayer titanate nanosheet under visible light irradiation. Applied Catalysis B: Environmental, 2018, 224, 394-403.	10.8	47

#	ARTICLE	IF	CITATIONS
57	Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. International Journal of Biological Macromolecules, 2018, 109, 1239-1245.	3.6	121
58	Deactivation and Regeneration of NaTaO ₃ Photocatalyst in Cooperating Dehydrogenation Coupling of Isopropanol and Hydrogenation Coupling of Acetone Reaction System. Photochemistry and Photobiology, 2018, 94, 466-471.	1.3	3
59	Au Nanorod Photosensitized La ₂ Ti ₂ O ₇ Nanosteps: Successive Surface Heterojunctions Boosting Visible to Near-Infrared Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 122-131.	5.5	114
60	Effective bandgap narrowing of Cu–In–Zn–S quantum dots for photocatalytic H ₂ production < >via cocatalyst-alleviated charge recombination. Inorganic Chemistry Frontiers, 2018, 5, 258-265.	3.0	41
61	Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Applied Catalysis B: Environmental, 2018, 220, 222-233.	10.8	232
62	Two cyclotriveratrylene metal–organic frameworks as effective catalysts for Knoevenagel condensation and CO ₂ cycloaddition with epoxides. Dalton Transactions, 2018, 47, 16197-16204.	1.6	13
63	Supercritical CO2-assisted deposition of NiO on (101)-anatase-TiO2 for efficient facet engineered photocatalysts. New Journal of Chemistry, 2018, 42, 18649-18658.	1.4	9
64	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	5. 2	250
65	Polyethylene glycol-doped BiZn ₂ VO ₆ as a high-efficiency solar-light-activated photocatalyst with substantial durability toward photodegradation of organic contaminations. RSC Advances, 2018, 8, 37480-37491.	1.7	6
66	Environmental Photocatalysis/Photocatalytic Decontamination. , 2018, , 1-16.		1
67	Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials, 2018, 1, 6657-6693.	2.5	370
68	From metal to metal-free catalysts: Routes to sustainable chemistry. Advances in Catalysis, 2018, 63, 1-73.	0.1	16
69	Antidepressant, neuropharmacological activity and mode of action of theaflavin-3-gallate in in vitro and in vivo models of depression. Bangladesh Journal of Pharmacology, 2018, 13, 340-348.	0.1	2
70	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Description of the Photoreduction of	1.8	76
71	Synthesis of Metallomacrocycle and Coordination Polymers with Pyridineâ€Based Amidocarboxylate Ligands and Their Catalytic Activities towards the Henry and Knoevenagel Reactions. ChemistryOpen, 2018, 7, 865-877.	0.9	20
72	Crystal structures, selective fluorescent sensing and photocatalytic properties of cobalt(II) and copper(II) coordination architectures with 2,4,5-tri(4-pyridyl)-imidazole. Journal of Coordination Chemistry, 2018, 71, 4007-4021.	0.8	0
73	Activation of Peroxymonosulfate by CuNi@C Derived from Metal–Organic Frameworks Precursor. Australian Journal of Chemistry, 2018, 71, 874.	0.5	5
74	Direct <i>Z</i> -Scheme Cs ₂ Oâ€"Bi ₂ O ₃ â€"ZnO Heterostructures as Efficient Sunlight-Driven Photocatalysts. ACS Omega, 2018, 3, 12260-12269.	1.6	60

#	Article	IF	Citations
75	Enhanced photodesorption from near- and mid-infrared plasmonic nanocrystal thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	1
76	Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catalysis, 2018, 8, 11542-11563.	5.5	138
77	Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catalysis, 2018, 8, 11191-11225.	5.5	166
79	Tiâ€Substituted Kegginâ€Type Polyoxotungstate as Proton and Electron Reservoir Encaged into Metalâ€"Organic Framework for Carbon Dioxide Photoreduction. Advanced Materials Interfaces, 2018, 5, 1801062.	1.9	62
80	Fabrication of OD/2D Carbon Nitride Quantum Dots/SnNb ₂ O ₆ Ultrathin Nanosheets with Enhanced Photocatalytic Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 14332-14339.	3.2	45
81	TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions. Catalysts, 2018, 8, 355.	1.6	32
82	Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines. Journal of Catalysis, 2018, 366, 237-244.	3.1	68
83	Three new Zn-based metal–organic frameworks exhibiting selective fluorescence sensing and photocatalytic activity. CrystEngComm, 2018, 20, 3877-3890.	1.3	14
84	Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation. Journal of Materials Science, 2018, 53, 11329-11342.	1.7	31
85	Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. Nanotechnology, 2018, 29, 342001.	1.3	383
86	Recent Advances in Thermo-, Photo-, and Electrocatalytic Glycerol Oxidation. ACS Catalysis, 2018, 8, 6301-6333.	5. 5	305
87	The band structure control of visible-light-driven rGO/ZnS-MoS2 for excellent photocatalytic degradation performance and long-term stability. Chemical Engineering Journal, 2018, 350, 248-256.	6.6	92
88	g-C ₃ N ₄ @î±-Fe ₂ O ₃ /C Photocatalysts: Synergistically Intensified Charge Generation and Charge Transfer for NADH Regeneration. ACS Catalysis, 2018, 8, 5664-5674.	5. 5	165
89	Selective fluorescent sensing and photocatalytic properties of Zinc(II) and Cadmium(II) coordination architectures with naphthalene-1,5-disulfonate and 2,4,5-tri(4-pyridyl)-imidazole. Inorganica Chimica Acta, 2018, 482, 447-453.	1.2	11
90	Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Applied Surface Science, 2018, 456, 899-907.	3.1	97
91	Optical and Electrical Enhancement of Hydrogen Evolution by MoS ₂ @MoO ₃ Core–Shell Nanowires with Designed Tunable Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1802567.	7.8	78
92	Preparation of CdS/BiOCl/Bi2O3 double composite system for visible light active photocatalytic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 159-168.	2.0	19
93	Hydrofunctionalization of olefins to value-added chemicals <i>via</i> photocatalytic coupling. Green Chemistry, 2018, 20, 3450-3456.	4.6	21

#	Article	IF	CITATIONS
94	CQD-Based Composites as Visible-Light Active Photocatalysts for Purification of Water. , 0, , .		3
95	Noble metal free Fe and Cr dual-doped nanocrystalline titania (Ti1â^'xâ^'yMx+yO2) for high selective photocatalytic conversion of benzene to phenol at ambient temperature. Applied Catalysis A: General, 2018, 565, 1-12.	2.2	16
96	Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chemical Society Reviews, 2018, 47, 6410-6444.	18.7	178
97	Surface Defect Engineering in 2D Nanomaterials for Photocatalysis. Advanced Functional Materials, 2018, 28, 1801983.	7.8	472
98	An amorphous CoS _x modified Mn _{0.5} Cd _{0.5} S solid solution with enhanced visible-light photocatalytic H ₂ -production activity. Catalysis Science and Technology, 2018, 8, 4122-4128.	2.1	57
99	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie, 2018, 130, 12282-12286.	1.6	75
100	Rational Design of MOF/COF Hybrid Materials for Photocatalytic H ₂ Evolution in the Presence of Sacrificial Electron Donors. Angewandte Chemie - International Edition, 2018, 57, 12106-12110.	7.2	508
101	Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Frontiers in Chemistry, 2018, 6, 141.	1.8	208
102	Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of Reactive Green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). Journal of Environmental Management, 2018, 223, 1086-1097.	3.8	74
103	Yb(III)-based MOFs with different bulky backbone ligands for optical detection and degradation of organic molecules in wastewater. Polyhedron, 2018, 154, 411-419.	1.0	7
104	pH Controlled Excellent Photocatalytic Activity of a Composite Designed from CuBi-Based Metal Organic Oxide and Graphene. Crystal Growth and Design, 2018, 18, 5045-5053.	1.4	16
105	Green synthesis of bromine by TiO2 heterogeneous photocatalysis and/or ozone: A kinetic study. Journal of Catalysis, 2018, 366, 167-175.	3.1	13
106	Tailoring the rate-determining step in photocatalysis via localized excess electrons for efficient and safe air cleaning. Applied Catalysis B: Environmental, 2018, 239, 187-195.	10.8	145
107	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	1.7	81
108	Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols. Journal of Catalysis, 2018, 364, 154-165.	3.1	100
109	Fundamentals of metal oxide-based photocatalysis. , 2018, , 3-50.		4
110	A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Applied Surface Science, 2018, 456, 473-481.	3.1	149
111	Application of metal oxide-based photocatalysis. , 2018, , 211-340.		13

#	Article	IF	CITATIONS
113	Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. , 2019, , 413-438.		20
114	Porous single-crystalline titanium dioxide at 2 cm scale delivering enhanced photoelectrochemical performance. Nature Communications, 2019, 10, 3618.	5.8	50
115	Photocatalytic coupled redox cycle for two organic transformations over Pd/carbon nitride composites. Catalysis Science and Technology, 2019, 9, 5077-5089.	2.1	26
116	An Open Framework Chalcogenide Supertetrahedral Cluster as Visible-Light Driven Photocatalysts for Selective Degradation. Crystal Growth and Design, 2019, 19, 5716-5719.	1.4	8
117	Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catalysis Reviews - Science and Engineering, 2019, 61, 595-628.	5.7	452
118	Oxygen Vacancy Enhanced Photoreduction Cr(VI) on Few-Layers BiOBr Nanosheets. Catalysts, 2019, 9, 558.	1.6	25
119	A near infrared-activated photocatalyst based on elemental phosphorus by chemical vapor deposition. Applied Catalysis B: Environmental, 2019, 258, 117980.	10.8	30
120	Creating Chemisorption Sites for Enhanced CO ₂ Photoreduction Activity through Alkylamine Modification of MIL-101-Cr. ACS Applied Materials & Enterfaces, 2019, 11, 27017-27023.	4.0	67
121	Effect of Ions on the Optical Absorption Spectra of Aqueously Solvated Chromophores. Journal of Physical Chemistry A, 2019, 123, 6175-6184.	1.1	10
122	Exploration of the basic reactant in CO2 photoreduction: New insights from photophysics and photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111959.	2.0	2
123	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
124	Combined Effects of Octahedron NH ₂ -UiO-66 and Flowerlike ZnIn ₂ S ₄ Microspheres for Photocatalytic Dye Degradation and Hydrogen Evolution under Visible Light. Journal of Physical Chemistry C, 2019, 123, 18037-18049.	1.5	89
125	Ru Nanoparticles Supported on Oxygenâ€Deficient 3DOM BiVO 4 : Highâ€Performance Catalysts for the Visibleâ€Lightâ€Driven Selective Oxidation of Benzyl Alcohol. ChemCatChem, 2019, 11, 6398-6407.	1.8	9
126	CuO/TiO ₂ heterojunction composites: an efficient photocatalyst for selective oxidation of methanol to methyl formate. Journal of Materials Chemistry A, 2019, 7, 2253-2260.	5.2	113
127	Non-noble metal thickness-tunable Bi2MoO6 nanosheets for highly efficient visible-light-driven nitrobenzene reduction into aniline. Applied Catalysis B: Environmental, 2019, 259, 118087.	10.8	80
128	One-Step Synthesized Au–Bi ₂ WO ₆ Hybrid Nanostructures: Synergistic Effects of Au Nanoparticles and Oxygen Vacancies for Promoting Selective Oxidation under Visible Light. Industrial & Damp; Engineering Chemistry Research, 2019, 58, 17389-17398.	1.8	44
129	Photocatalysis of ZnTPyP fibers fabricated by surfactant-assisted method: Effect of surfactant and kinetic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123741.	2.3	7
130	Stereoselective Organic Reactions in Heterogeneous Semiconductor Photocatalysis. Frontiers in Chemistry, 2019, 7, 630.	1.8	27

#	ARTICLE	IF	CITATIONS
131	Systematic review on applicability of magnetic iron oxidesâ€"integrated photocatalysts for degradation of organic pollutants in water. Materials Today Chemistry, 2019, 14, 100186.	1.7	108
132	NOx degradation by photocatalytic mortars: The underlying role of the CH and C-S-H carbonation. Cement and Concrete Research, 2019, 125, 105805.	4.6	35
133	Large Band Edge Tunability in Colloidal Nanoplatelets. Nano Letters, 2019, 19, 7124-7129.	4.5	15
134	HCl and O ₂ co-activated bis(8-quinolinolato) oxovanadium(<scp>iv</scp>) complexes as efficient photoactive species for visible light-driven oxidation of cyclohexane to KA oil. Catalysis Science and Technology, 2019, 9, 275-285.	2.1	7
135	La(III)-based MOFs with 5-aminoisophthalic acid for optical detection and degradation of organic molecules in water. Polyhedron, 2019, 162, 255-262.	1.0	15
136	Fabrication of two-dimensional indium oxide nanosheets with graphitic carbon nitride nanosheets as sacrificial templates. Materials Letters, 2019, 242, 24-27.	1.3	11
137	Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Applied Catalysis B: Environmental, 2019, 255, 117771.	10.8	212
138	Optimal construction of WO3·H2O/Pd/CdS ternary Z-scheme photocatalyst with remarkably enhanced performance for oxidative coupling of benzylamines. Journal of Catalysis, 2019, 374, 378-390.	3.1	106
139	Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr(VI) reduction. Journal of Colloid and Interface Science, 2019, 553, 372-381.	5.0	87
140	Novel CNT/PbBiO2Br hybrid materials with enhanced broad spectrum photocatalytic activity toward ciprofloxacin (CIP) degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111901.	2.0	31
141	Engineering of highly active Au/Pd supported on hydrogenated urchin-like yolk@shell TiO ₂ for visible light photocatalytic Suzuki coupling. Catalysis Science and Technology, 2019, 9, 3820-3827.	2.1	45
143	Photoactive nanoarchitectures based on clays incorporating TiO ₂ and ZnO nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1140-1156.	1.5	50
144	Bi2MoO6/g-C3N4 of 0D/2D heterostructure as efficient photocatalyst for selective oxidation of aromatic alkanes. Applied Surface Science, 2019, 490, 102-108.	3.1	69
145	Nanostructured materials for photocatalysis. Chemical Society Reviews, 2019, 48, 3868-3902.	18.7	744
146	Oneâ€step solvothermal synthesis of hollow Bi 2 WO 6 photocatalyst. Canadian Journal of Chemical Engineering, 2019, 97, 2440-2446.	0.9	6
147	Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles. SN Applied Sciences, 2019, 1, 1.	1.5	61
148	Investigation of the structural, optical and crystallographic properties of Bi ₂ WO ₆ /Ag plasmonic hybrids and their photocatalytic and electron transfer characteristics. Dalton Transactions, 2019, 48, 10235-10250.	1.6	41
149	Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications. Coordination Chemistry Reviews, 2019, 395, 86-129.	9.5	80

#	Article	IF	CITATIONS
150	Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Science Bulletin, 2019, 64, 918-925.	4.3	109
151	Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Applied Catalysis B: Environmental, 2019, 254, 206-213.	10.8	58
153	Ag-SrTiO3/TiO2 composite nanostructures with enhanced photocatalytic activity. Materials Research Bulletin, 2019, 118, 110492.	2.7	30
154	Optimal synthesis of a direct Z-scheme photocatalyst with ultrathin W18O49 nanowires on g-C3N4 nanosheets for solar-driven oxidation reactions. Journal of Colloid and Interface Science, 2019, 550, 99-109.	5.0	86
156	Insight into Different Mechanisms for Oxidation of Liquid and Gaseous Pollutants by Biâ°NaBiO ₃ with or without Visible Light Illumination. ChemCatChem, 2019, 11, 2320-2328.	1.8	9
157	Effect of Different Functional Groups on Photocatalytic Hydrogen Evolution in Covalentâ€Organic Frameworks. ChemCatChem, 2019, 11, 2313-2319.	1.8	145
158	3D Hollow Hierarchical Structures Based on 1D BiOCl Nanorods Intersected with 2D Bi2WO6 Nanosheets for Efficient Photocatalysis Under Visible Light. Nanomaterials, 2019, 9, 322.	1.9	26
159	Photoredox/rhodium catalysis in C–H activation for the synthesis of nitrogen containing heterocycles. Organic Chemistry Frontiers, 2019, 6, 2319-2323.	2.3	27
160	Titanium-Dioxide-Based Visible-Light-Sensitive Photocatalysis: Mechanistic Insight and Applications. Catalysts, 2019, 9, 201.	1.6	69
161	Photocatalytic activity of Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ @polyaniline decorated BiOCl for azo dye degradation under visible light – integrated role and degradation kinetics interpretation. RSC Advances. 2019. 9, 8977-8993.	1.7	43
162	Eradicating Multidrugâ€Resistant Bacteria Rapidly Using a Multi Functional gâ€C ₃ N ₄ @ Bi _{>₃ Nanorod Heterojunction with or without Antibiotics. Advanced Functional Materials, 2019, 29, 1900946.}	7.8	136
163	Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons. Journal of Materials Chemistry A, 2019, 7, 7015-7024.	5.2	15
164	Mutual interplay of ZnO micro- and nanowires and methylene blue during cyclic photocatalysis process. Journal of Environmental Chemical Engineering, 2019, 7, 103016.	3.3	92
165	Preparation of Z-scheme WO3(H2O)0.333/Ag3PO4 composites with enhanced photocatalytic activity and durability. Chinese Journal of Catalysis, 2019, 40, 326-334.	6.9	55
166	New Bi2O3-ZnO composite deposited on glass wool. Effect of the synthesis method on photocatalytic efficiency under visible light. Applied Surface Science, 2019, 483, 859-869.	3.1	18
167	Effect of Substituents on Partial Photocatalytic Oxidation of Aromatic Alcohols Assisted by Polymeric C ₃ N ₄ . ChemCatChem, 2019, 11, 2713-2724.	1.8	27
168	Advances and Innovations in Photocatalysis. Environmental Chemistry for A Sustainable World, 2019, , 155-183.	0.3	0
170	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128

#	Article	IF	Citations
171	Graphene based ZnO nanoparticles to depolymerize lignin-rich residues via UV/iodide process. Environment International, 2019, 125, 172-183.	4.8	21
172	Electronically Divergent Triscyclometalated Iridium(III) 2-(1-naphthyl)pyridine Complexes and Their Application in Three-Component Methoxytrifluoromethylation of Styrene. Synlett, 2019, 30, 792-798.	1.0	1
173	Zn2SnO4 QDs decorated Bi2WO6 nanoplates for improved visible-light-driven photocatalytic removal of gaseous contaminants. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 390-399.	2.7	29
174	Heteroatom-induced band-reconstruction of metal vanadates for photocatalytic cyclohexane oxidation towards KA-oil selectivity. Applied Catalysis A: General, 2019, 575, 120-131.	2.2	26
175	Photoelectrochemical and EPR features of polymeric C3N4 and O-modified C3N4 employed for selective photocatalytic oxidation of alcohols to aldehydes. Catalysis Today, 2019, 328, 21-28.	2.2	47
176	Lightâ€Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface. Small Methods, 2019, 3, 1900048.	4.6	64
177	EPR investigations of polymeric and H2O2-modified C3N4-based photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 100-113.	2.0	38
178	A hierarchical Nb ₂ O ₅ @NiFe-MMO rod array, fabricated and used as a structured photocatalyst. RSC Advances, 2019, 9, 6177-6183.	1.7	6
179	Fabrication of Ag/AgBr/Ag ₃ VO ₄ composites with high visible light photocatalytic performance. RSC Advances, 2019, 9, 5100-5109.	1.7	24
180	Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective. Catalysts, 2019, 9, 1054.	1.6	42
181	Synthesis of a novel 2D zinc(<scp>ii</scp>) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalton Transactions, 2019, 48, 17626-17632.	1.6	84
182	Recent advances in modified TiO ₂ for photo-induced organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 9977-9989.	1.5	36
183	Photocatalytic Reactions on Transition Metal-Oxide Single Site Heterogeneous Catalysts Constructed Within Silica-Networks of MCM-41., 2019, , 105-120.		0
184	Engineering of Gd/Er/Lu-triple-doped Bi2MoO6 to synergistically boost the photocatalytic performance in three different aspects: Oxidizability, light absorption and charge separation. Applied Surface Science, 2019, 463, 556-565.	3.1	42
185	Selective redox photocatalysis: Is there any chance for solar bio-refineries?. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 38-46.	3.2	30
186	A Fullâ€6pectrum Metalâ€Free Porphyrin Supramolecular Photocatalyst for Dual Functions of Highly Efficient Hydrogen and Oxygen Evolution. Advanced Materials, 2019, 31, e1806626.	11.1	198
187	Fe/Fe ₂ O ₃ @Nâ€dopped Porous Carbon: A Highâ€Performance Catalyst for Selective Hydrogenation of Nitro Compounds. ChemCatChem, 2019, 11, 724-728.	1.8	41
188	Preparation of amine functionalized g-C3N4@H/SMOF NCs with visible light photocatalytic characteristic for 4-nitrophenol degradation from aqueous solution. Journal of Hazardous Materials, 2019, 365, 921-931.	6.5	91

#	Article	IF	CITATIONS
189	Construction of Selfâ∈Healing Internal Electric Field for Sustainably Enhanced Photocatalysis. Advanced Functional Materials, 2019, 29, 1807934.	7.8	64
190	Visible-light-initiated one-pot clean synthesis of nitrone from nitrobenzene and benzyl alcohol over CdS photocatalyst. Journal of Catalysis, 2019, 370, 97-106.	3.1	20
191	Natural leaf-assisted dual-phase two-dimensional leaf TiO2 and Cu(OH)2 co-catalyst for photocatalytic conversion of benzene to phenol. Materials Research Bulletin, 2019, 110, 67-75.	2.7	10
192	Influence of Surfaceâ€Related Phenomena on Mechanism, Selectivity, and Conversion of TiO ₂ â€Induced Photocatalytic Reactions. ChemSusChem, 2019, 12, 589-602.	3.6	33
193	Selective Photocatalytic Carbon Dioxide Reduction by a Reduced Molybdenumâ€Based Polyoxometalate Catalyst. ChemPhotoChem, 2019, 3, 93-100.	1.5	18
194	Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Applied Catalysis B: Environmental, 2019, 242, 349-357.	10.8	63
195	Ultrasound assisted ZnO coating in a microflow based photoreactor for selective oxidation of benzyl alcohol to benzaldehyde. Green Chemistry, 2019, 21, 1241-1246.	4.6	32
196	Salicylic acid complexed with TiO2 for visible light-driven selective oxidation of amines into imines with air. Applied Catalysis B: Environmental, 2019, 244, 758-766.	10.8	54
197	Heterogeneous photocatalysis: guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catalysis Reviews - Science and Engineering, 2019, 61, 163-213.	5.7	49
198	Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO ₂ Photocatalyst for Visibleâ€Light Photocatalytic Water Splitting. Chemistry - A European Journal, 2019, 25, 1787-1794.	1.7	30
199	Selective fluorescent sensing and photodegradation properties of Tb(III)-based MOFs with different bulky backbone ligands. Polyhedron, 2019, 157, 63-70.	1.0	12
200	TiO ₂ â€Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem, 2020, 21, 294-309.	1.3	22
201	Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129435.	1.1	86
202	Photocatalytic activity for decomposition of volatile organic compound on Pt-WO3 enhanced by simple physical mixing with TiO2. Catalysis Communications, 2020, 133, 105831.	1.6	15
203	Targeting Histone Deacetylase 6 Reprograms Interleukinâ€17â€Producing Helper T Cell Pathogenicity and Facilitates Immunotherapies for Hepatocellular Carcinoma. Hepatology, 2020, 71, 1967-1987.	3.6	25
204	Influence of doped platinum nanoparticles on photocatalytic performance of CuO–SiO2 for degradation of Acridine orange dye. Ceramics International, 2020, 46, 1690-1696.	2.3	15
205	Dual interfacial synergism in Au-Pd/ZnIn2S4 for promoting photocatalytic selective oxidation of aromatic alcohol. Applied Surface Science, 2020, 501, 144018.	3.1	57
206	Functionalized Polymer-Based Composite Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , 167-188.	0.3	3

#	Article	IF	CITATIONS
207	Green Photocatalysts. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	5
208	Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020, 32, 222-243.	8.3	719
209	Metal Cocatalyst Directing Photocatalytic Acetonylation of Toluene via Dehydrogenative Cross-Coupling with Acetone. Catalysis Letters, 2020, 150, 31-38.	1.4	17
210	Photocatalytic and photothermocatalytic applications of cerium oxide-based materials. , 2020, , 109-167.		17
211	Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chemical Engineering Journal, 2020, 382, 122732.	6.6	27
212	Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. Journal of CO2 Utilization, 2020, 35, 106-114.	3.3	43
213	Continuous Photoâ€Electroâ€Catalytic Synthesis of Bioâ€Based Adipic Acid with Reaction Kinetics Modeling. Chemical Engineering and Technology, 2020, 43, 375-379.	0.9	5
214	Isosorbide: Recent advances in catalytic production. Molecular Catalysis, 2020, 482, 110648.	1.0	21
215	Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111682.	1.7	82
216	Photocatalytic Selective Reduction by TiO2 of 5-Nitrosalicylic Acid Ethyl Ester: A Mild Route to Mesalazine. Catalysis Letters, 2020, 150, 1072-1080.	1.4	7
217	Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chemical Reviews, 2020, 120, 986-1041.	23.0	333
218	Leaf-like BiVO4 nanostructure decorated by nitrogen-doped carbon quantum dots: Binary heterostructure photocatalyst for enhanced photocatalytic performance. Materials Research Bulletin, 2020, 122, 110640.	2.7	24
219	Anchoring lead-free halide Cs3Bi2I9 perovskite on UV100â€"TiO2 for enhanced photocatalytic performance. Solar Energy Materials and Solar Cells, 2020, 204, 110214.	3.0	35
220	First-principles study on the mechanism of photocatalytic reduction of nitrobenzene on the rutile TiO ₂ (110) surface. Physical Chemistry Chemical Physics, 2020, 22, 1187-1193.	1.3	14
221	Charge separation and molecule activation promoted by Pd/MIL-125-NH ₂ hybrid structures for selective oxidation reactions. Catalysis Science and Technology, 2020, 10, 138-146.	2.1	53
222	ARS–TiO ₂ photocatalyzed direct functionalization of sp2 C–H bonds toward thiocyanation and cyclization reactions under visible light. Catalysis Science and Technology, 2020, 10, 1401-1407.	2.1	31
223	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	2.3	20
224	Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Materials Today, 2020, 34, 78-91.	8.3	253

#	Article	IF	CITATIONS
225	Highlighting unique function of immobilized superoxide on TiO2 for selective photocatalytic degradation. Separation and Purification Technology, 2020, 238, 116402.	3.9	19
226	Polyacrylonitrile Nanofibers Incorporating Silver-Decorated Graphitic Carbon Nitride for the Visible-Light-Activated Selective Oxidation of Styrene, Benzylic Methylene Groups, and Benzene. ACS Applied Nano Materials, 2020, 3, 1922-1933.	2.4	19
227	Visible-light-mediated high-efficiency catalytic oxidation of sulfides using wrinkled C3N4 nanosheets. Journal of Catalysis, 2020, 381, 579-589.	3.1	42
228	Preparing a photocatalytic Fe doped TiO2/rGO for enhanced bisphenol A and its analogues degradation in water sample. Applied Surface Science, 2020, 505, 144640.	3.1	67
229	Tremendously efficient Ag–ZnO–Zn(OH)2 nanosheets for nitrobenzene–aniline transformation via visible light irradiation. Applied Nanoscience (Switzerland), 2020, 10, 1453-1463.	1.6	1
230	Artificial Cytochrome c Mimics: Graphene Oxide–Fe(III) Complex-Coated Molecularly Imprinted Colloidosomes for Selective Photoreduction of Highly Toxic Pollutants. ACS Applied Materials & Interfaces, 2020, 12, 6615-6626.	4.0	25
231	The distinct role of boron doping in Sn ₃ O ₄ microspheres for synergistic removal of phenols and Cr(<scp>vi</scp>) in simulated wastewater. Environmental Science: Nano, 2020, 7, 286-303.	2.2	40
232	Hybridization of CuO with Bi ₂ MoO ₆ Nanosheets as a Surface Multifunctional Photocatalyst for Toluene Oxidation under Solar Irradiation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2259-2268.	4.0	50
233	Lead bismuth oxybromide/graphene oxide: Synthesis, characterization, and photocatalytic activity for removal of carbon dioxide, crystal violet dye, and 2-hydroxybenzoic acid. Journal of Colloid and Interface Science, 2020, 562, 112-124.	5.0	71
234	Efficient Photocatalysis of Composite Films Based on Plasmon-Enhanced Triplet–Triplet Annihilation. ACS Applied Materials & Diterfaces, 2020, 12, 717-726.	4.0	19
235	Semiconductor nanoheterostructures for photoconversion applications. Journal Physics D: Applied Physics, 2020, 53, 143001.	1.3	130
236	Mechanistic Insights on Concentrated Lithium Salt/Nitroalkane Electrolyte Based on Analogy with Fluorinated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 570-574.	1.2	24
237	Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 2020, 10, 311-335.	5.5	96
238	Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. Applied Catalysis B: Environmental, 2020, 264, 118506.	10.8	30
239	In situ no-slot joint integration of half-metallic C(CN)3 cocatalyst into g-C3N4 scaffold: An absolute metal-free in-plane heterosystem for efficient and selective photoconversion of CO2 into CO. Applied Catalysis B: Environmental, 2020, 264, 118470.	10.8	41
240	Metal–Organic Framework Based on Heptanuclear Cu–O Clusters and Its Application as a Recyclable Photocatalyst for Stepwise Selective Catalysis. Inorganic Chemistry, 2020, 59, 254-263.	1.9	13
241	g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. Journal of Cleaner Production, 2020, 276, 124319.	4.6	379
242	Biomass activated carbon-decorated spherical \hat{l}^2 -Ni(OH)2 nanoparticles for enhanced hydrogen production from sulphide wastewater. Journal of Water Process Engineering, 2020, 38, 101669.	2.6	16

#	Article	IF	Citations
243	Surface defect-rich g-C ₃ N ₄ /TiO ₂ Z-scheme heterojunction for efficient photocatalytic antibiotic removal: rational regulation of free radicals and photocatalytic mechanism. Catalysis Science and Technology, 2020, 10, 8295-8304.	2.1	37
244	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy Materials, 2020, 10, 2002091.	10.2	92
245	Multidimensional (OD-3D) functional nanocarbon: Promising material to strengthen the photocatalytic activity of graphitic carbon nitride. Green Energy and Environment, 2021, 6, 823-845.	4.7	40
246	Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 15791-15808.	3.2	6
247	Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation. Frontiers of Materials Science, 2020, 14, 469-480.	1.1	5
248	Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: Can we win against pathogenic viruses?. Journal of Colloid and Interface Science, 2020, 580, 503-514.	5.0	412
249	Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112782.	2.0	9
250	The effect of graphitized carbon on the adsorption and photocatalytic degradation of methylene blue over TiO ₂ /C composites. RSC Advances, 2020, 10, 40830-40842.	1.7	14
251	Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets. Green Energy and Environment, 2022, 7, 712-722.	4.7	17
252	Photocatalytic CO ₂ Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis, 2020, 10, 14984-15007.	5.5	199
253	Optical and photocatalytic properties of ZnO and ZnS structures formed as controlled calcination products of l-cysteine assisted aqueous precipitation. Materials Today Communications, 2020, 25, 101573.	0.9	2
254	Effect of Zn precursor concentration in the synthesis of rGO/ZnO composites and their photocatalytic activity. New Journal of Chemistry, 2020, 44, 19858-19867.	1.4	12
255	Recent progress on piezoelectric materials for renewable energy conversion. Nano Energy, 2020, 77, 105180.	8.2	60
256	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
257	Pt decorated hierarchical Sb ₂ WO ₆ microspheres as a surface functionalized photocatalyst for the visible-light-driven reduction of nitrobenzene to aniline. Journal of Materials Chemistry A, 2020, 8, 18755-18766.	5.2	47
258	Heterogeneous Photocatalytic Selective Reductive Transformations of Organic Compounds: a Review. Theoretical and Experimental Chemistry, 2020, 56, 143-173.	0.2	12
259	Construction of a Facile Recyclable Graphene-Like C3N4 Cilia Array for Effective Visible-Light-Responsive Photocatalytic Hydrogen Production. Energy & Samp; Fuels, 2020, 34, 10290-10298.	2.5	12
260	Visibleâ€Lightâ€Activated Câ^'C Bond Cleavage and Aerobic Oxidation of Benzyl Alcohols Employing BiMXO ₅ (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chemistry - an Asian Journal, 2020, 15, 3104-3115.	1.7	10

#	Article	IF	Citations
261	Hollow SnO2/Zn2SnO4 cubes with porous shells towards n-butylamine sensing and photocatalytic applications. Vacuum, 2020, 182, 109693.	1.6	19
262	Sustainable Internal Electric Field for Enhanced Photocatalysis: From Material Design to Energy Utilization. Journal of Physical Chemistry Letters, 2020, 11, 7407-7416.	2.1	31
263	Photothermal effect enhanced photocatalysis realized by photonic crystal and microreactor. Applied Surface Science, 2020, 534, 147640.	3.1	16
264	Synthesis, characterization, Xâ€ray structure, electrochemistry, photocatalytic activity and DFT studies of heterotrinuclear Ni(II), Pd(II) and Zn(II) complexes containing a formylferrocene thiosemicarbazone ligand. Applied Organometallic Chemistry, 2020, 34, e5974.	1.7	6
265	Applications of Sensitized Semiconductors as Heterogeneous Visible-Light Photocatalysts in Organic Synthesis. ACS Sustainable Chemistry and Engineering, 2020, 8, 15405-15429.	3.2	59
266	Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. CheM, 2020, 6, 3038-3053.	5.8	112
267	New Holistic Conceptual Framework for the Assessment of the Performance of Photocatalytic Pavement. Frontiers in Chemistry, 2020, 8, 743.	1.8	10
268	Few-Layered Phosphorene–Graphitic Carbon Nitride Nanoheterostructure as a Metal-Free Photocatalyst for Aerobic Oxidation of Benzyl Alcohol and Toluene. ACS Sustainable Chemistry and Engineering, 2020, 8, 13342-13351.	3.2	44
269	Recent Developments of TiO2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. Nanomaterials, 2020, 10, 1790.	1.9	121
270	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
271	A Triformylphloroglucinol-based Covalent Organic Polymer: Synthesis, Characterization and Its Application in Visible-light-driven Oxidative Coupling Reactions of Primary Amines. Chemical Research in Chinese Universities, 2020, 36, 1017-1023.	1.3	9
272	Highly efficient visible-light-driven reduction of Cr(<scp>vi</scp>) from water by porphyrin-based metal–organic frameworks: effect of band gap engineering on the photocatalytic activity. Catalysis Science and Technology, 2020, 10, 7724-7733.	2.1	41
273	Visible-light-mediated semi-heterogeneous black TiO $<$ sub $>$ 2 $<$ /sub $>$ /nickel dual catalytic C (sp $<$ sup $>$ 2 $<$ /sup $>$ 3 \in "P bond formation toward aryl phosphonates. Dalton Transactions, 2020, 49, 17147-17151.	1.6	12
274	Turning Waste into Useful Products by Photocatalysis with Nanocrystalline TiO2 Thin Films: Reductive Cleavage of Azo Bond in the Presence of Aqueous Formate. Nanomaterials, 2020, 10, 2147.	1.9	7
275	Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Separation and Purification Technology, 2020, 246, 116890.	3.9	69
276	Synthesis and catalytic activities of a Zn(<scp>ii</scp>) based metallomacrocycle and a metal–organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. Dalton Transactions, 2020, 49, 8075-8085.	1.6	26
277	Selective Photoinduced Reduction of Nitroarenes to <i>N</i> -Arylhydroxylamines. Organic Letters, 2020, 22, 4339-4343.	2.4	18
278	Enhanced Photocatalytic Hydrogen Production of Fe2O3 Decorated TiO2 Nanorods: Optimization of Hydrothermal Temperature. International Journal of Electrochemical Science, 2020, 15, 4534-4545.	0.5	4

#	Article	IF	CITATIONS
279	Photocatalytic Partial Oxidation of Tyrosol: Improving the Selectivity Towards Hydroxytyrosol by Surface Fluorination of TiO2. Topics in Catalysis, 2020, 63, 1350-1360.	1.3	7
280	Novel triptycene-based microporous polymers decorated with Cd0.5Zn0.5S quantum dots to form 0D/3D heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 18985-18994.	3.8	18
281	Hydrothermal synthesis of m-BiVO4/t-BiVO4 heterostructure for organic pollutants degradation: Insight into the photocatalytic mechanism of exposed facets from crystalline phase controlling. Journal of Hazardous Materials, 2020, 399, 123159.	6.5	89
282	Catalytic conversion of CO ₂ to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Materials Advances, 2020, 1, 1506-1545.	2.6	96
283	La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. Journal of Hazardous Materials, 2020, 400, 123174.	6.5	43
284	Fabrication of ZnO–TiO2 nanohybrids for rapid sunlight driven photodegradation of textile dyes and antibiotic residue molecules. Optical Materials, 2020, 107, 110138.	1.7	92
285	Scalable and Recyclable Heterogeneous Organoâ€photocatalysts on Cotton Threads for Organic and Polymer Synthesis. ChemPhotoChem, 2020, 4, 5201-5208.	1.5	7
286	Facile synthesis of ZnO/GO/Ag3PO4 heterojunction photocatalyst with excellent photodegradation activity for tetracycline hydrochloride under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125118.	2.3	56
287	Mechanistic Insights into Visible Light-Induced Direct Hydroxylation of Benzene to Phenol with Air and Water over Pt-Modified WO3 Photocatalyst. Catalysts, 2020, 10, 557.	1.6	10
288	Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Chemistry - A European Journal, 2020, 26, 13118-13136.	1.7	39
289	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	23.0	620
290	Photocatalysts for Hydrogen Evolution Coupled with Production of Valueâ€Added Chemicals. Small Methods, 2020, 4, 2000063.	4.6	124
291	Three Cd(II)-based luminescent metal-organic frameworks constructed from the mixed-ligand strategy for highly selective detection of nitrobenzene. Journal of Solid State Chemistry, 2020, 286, 121314.	1.4	5
292	Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis. ACS Catalysis, 2020, 10, 5715-5722.	5.5	80
293	Heterogeneous photocatalysis in flow chemical reactors. Beilstein Journal of Organic Chemistry, 2020, 16, 1495-1549.	1.3	54
294	Recent Progresses on Metal Halide Perovskite-Based Material as Potential Photocatalyst. Catalysts, 2020, 10, 709.	1.6	65
295	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	5.2	38
296	CuO Nanoparticle-Decorated TiO ₂ -Nanotube Heterojunctions for Direct Synthesis of Methyl Formate <i>via</i>) Photo-Oxidation of Methanol. ACS Omega, 2020, 5, 15942-15948.	1.6	30

#	Article	IF	CITATIONS
297	Aqueous solution photocatalytic synthesis of <i>p</i> -anisaldehyde by using graphite-like carbon nitride photocatalysts obtained <i>via</i> the hard-templating route. RSC Advances, 2020, 10, 19431-19442.	1.7	12
298	Two anthracene chromophore based metal–organic frameworks for gas adsorption and promising nitro aromatic sensing. New Journal of Chemistry, 2020, 44, 12496-12502.	1.4	4
299	Highâ€performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. Canadian Journal of Chemical Engineering, 2020, 98, 2259-2293.	0.9	9
300	Cs3Bi2I9/g-C3N4 as a new binary photocatalyst for efficient visible-light photocatalytic processes. Separation and Purification Technology, 2020, 251, 117320.	3.9	56
301	Enhanced Sunlight-Driven Photocatalytic and Antibacterial Activities of Flower-Like ZnO@MoS2 Nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	46
302	TiO ₂ superstructures with oriented nanospaces: a strategy for efficient and selective photocatalysis. Nanoscale, 2020, 12, 6420-6428.	2.8	8
303	<i>In situ</i> synthesis of Co ₂ P-decorated red phosphorus nanosheets for efficient photocatalytic H ₂ evolution. Catalysis Science and Technology, 2020, 10, 2221-2230.	2.1	25
304	Wastewater problems and treatments. , 2020, , 151-174.		5
305	Seaweed bio-inspired ZnO piezoelectric cilia array applied in microreactors for enhanced photocatalytic performance. Catalysis Science and Technology, 2020, 10, 2337-2342.	2.1	15
306	An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials, 2020, 10, 115.	1.9	20
307	Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science, 2020, 510, 145419.	3.1	28
308	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
309	Water flow drived piezo-photocatalytic flexible films: Bi-piezoelectric integration of ZnO nanorods and PVDF. Applied Surface Science, 2020, 517, 146119.	3.1	62
310	Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coordination Chemistry Reviews, 2020, 415, 213316.	9.5	21
311	Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20354-20365.	4.0	80
312	Photocatalytic Conversion of Lignin into Chemicals and Fuels. ChemSusChem, 2020, 13, 4199-4213.	3.6	71
313	Heterostructured CeO ₂ –M (M = Co, Cu, Mn, Fe, Ni) Oxide Nanocatalysts for the Visible-Light Photooxidation of Pinene to Aroma Oxygenates. ACS Omega, 2020, 5, 9775-9788.	1.6	30
314	Design of a ZnO/Poly(vinylidene fluoride) inverse opal film for photon localization-assisted full solar spectrum photocatalysis. Chinese Journal of Catalysis, 2021, 42, 184-192.	6.9	26

#	Article	IF	CITATIONS
315	Bandgap-tuned ultra-small SnO2-nanoparticle-decorated 2D-Bi2WO6 nanoplates for visible-light-driven photocatalytic applications. Chemosphere, 2021, 263, 128185.	4.2	18
316	Boosting charge carriers separation and migration efficiency via fabricating all organic van der Waals heterojunction for efficient photoreduction of CO2. Chemical Engineering Journal, 2021, 408, 127292.	6.6	22
317	Efficient visible light initiated hydrothiolations of alkenes/alkynes over Ir2S3/ZnIn2S4: Role of Ir2S3. Chinese Journal of Catalysis, 2021, 42, 409-416.	6.9	14
318	Oxygen vacancy engineering of cerium oxide for the selective photocatalytic oxidation of aromatic pollutants. Journal of Hazardous Materials, 2021, 404, 123976.	6. 5	63
319	Visible-light-driven organic transformations on semiconductors. Materials Today Physics, 2021, 16, 100297.	2.9	20
320	Assessment of TiO2 band gap from structural parameters using artificial neural networks. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 405, 112870.	2.0	11
321	Fabrication of redox-mediator-free Z-scheme CdS/NiCo2O4 photocatalysts with enhanced visible-light driven photocatalytic activity in Cr(VI) reduction and antibiotics degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125582.	2.3	28
322	The hierarchical layered microsphere of BiOlxBr1-x solid solution decorated with N-doped CQDs with enhanced visible light photocatalytic oxidation pollutants. Chemical Engineering Journal, 2021, 406, 127155.	6.6	45
323	Multiple-cores@shell clustered carbon dots/P25/rGO nanocomposite as robust visible-light photocatalyst for organic pollutant degradation and water disinfection. Applied Surface Science, 2021, 538, 148087.	3.1	18
324	Synthesis and structure of a bismuth-cobalt bimetal coordination polymer for green efficient photocatalytic degradation of organic wastes under visible light. Journal of Molecular Structure, 2021, 1230, 129636.	1.8	17
325	Anchoring Iron Oxides on Carbon Nitride Nanotubes for Improved Photocatalytic Hydrogen Production. Energy & Ene	2.5	11
326	Low-temperature conversion of base precursor KNO3 on core–shell structured Fe3O4@C: Fabrication of magnetically responsive solid strong bases. Catalysis Today, 2021, 374, 200-207.	2.2	5
327	Simple preparation of nitrogen-doped TiO2 and its performance in selective oxidation of benzyl alcohol and benzylamine under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125743.	2.3	31
328	Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 2021, 585, 684-693.	5.0	85
329	Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light. Environmental Science and Pollution Research, 2021, 28, 23667-23674.	2.7	17
330	Embedding of stereo molecular scaffold into the planar g-C3N4 nanosheets for efficient photocatalytic hydrogen evolution under ordinary pressure. Journal of Materials Science, 2021, 56, 1630-1642.	1.7	6
331	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	1.9	17
332	Selective oxidation of aromatic alcohols in the presence of C3N4 photocatalysts derived from the polycondensation of melamine, cyanuric and barbituric acids. Research on Chemical Intermediates, 2021, 47, 131-156.	1.3	16

#	Article	IF	CITATIONS
333	Air atmospheric photocatalytic oxidation by ultrathin C,N-TiO ₂ nanosheets. Green Chemistry, 2021, 23, 1165-1170.	4.6	13
334	Polyoxometalate-induced  cage-within-cage' metal–organic frameworks with high efficiency towards CO ₂ photoreduction. Sustainable Energy and Fuels, 2021, 5, 3876-3883.	2.5	12
335	Novel graphitic carbon nitride g-C ₉ N ₁₀ as a promising platform to design efficient photocatalysts for dinitrogen reduction to ammonia: the first-principles investigation. Journal of Materials Chemistry A, 2021, 9, 20615-20625.	5 . 2	21
336	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1
337	An Overview of Recent Development in Visible Light-mediated Organic Synthesis over Heterogeneous Photo-nanocatalysts. Current Organic Synthesis, 2021, 18, 23-36.	0.7	6
338	Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy and Environmental Science, 2021, 14, 1140-1175.	15.6	128
339	Organic–Inorganic Semiconductor Heterojunction Photocatalysts. , 2021, , 315-350.		2
340	Z-scheme-based heterostructure photocatalysts for organic pollutant degradation. , 2021, , 177-217.		2
341	Bio-Based Materials in Photocatalysis. , 2021, , .		1
342	Faceâ€toâ€Face Growth of Waferâ€Scale 2D Semiconducting MOF Films on Dielectric Substrates. Advanced Materials, 2021, 33, e2007741.	11.1	58
343	Temperature effects on redox potentials and implications to semiconductor photocatalysis. Fuel, 2021, 286, 119490.	3.4	11
344	Modified TiO ₂ Structures with Enhanced Photoluminescence and Photocatalytic Activity. Science of Advanced Materials, 2021, 13, 331-341.	0.1	3
345	Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic applications. Journal of Cleaner Production, 2021, 288, 125632.	4.6	113
346	Preparation of molecularly imprinted hollow TiO2 microspheres for selective photocatalysis. Chemical Engineering Journal Advances, 2021, 5, 100071.	2.4	15
347	Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Research, 2021, 14, 4188-4196.	5.8	26
348	Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar Rrl, 2021, 5, 2100100.	3.1	33
349	Selective Reductive Transformations of Organic Nitro Compounds in Heterogeneous Photocatalytic Systems: A Review. Theoretical and Experimental Chemistry, 2021, 57, 1-29.	0.2	3
350	All at once arrangement of both oxygen atoms of dioxygen into aliphatic C(sp3)-C(sp3) bonds for hydroxyketone difunctionalization. Science China Chemistry, 2021, 64, 770-777.	4.2	4

#	Article	IF	CITATIONS
352	Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105157.	3.3	31
353	Superoxide generated by blue light photocatalysis of g-C3N4/TiO2 for selective conversion of amines. Environmental Research, 2021, 195, 110851.	3.7	18
354	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	7.3	81
355	Interfacial Design to Enhance Photocatalytic Hydrogen Evolution via Optimizing Energy and Mass Flows. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21207-21216.	4.0	9
356	Advancements on Basic Working Principles of Photo-Driven Oxidative Degradation of Organic Substrates over Pristine and Noble Metal-Modified TiO2. Model Case of Phenol Photo Oxidation. Catalysts, 2021, 11, 487.	1.6	5
357	Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. Molecular Catalysis, 2021, 506, 111527.	1.0	7
358	Defect Engineering in 2D Photocatalytic Materials for CO ₂ Reduction. ChemNanoMat, 2021, 7, 737-747.	1.5	9
359	Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Materials Today, 2021, 50, 358-384.	8.3	66
360	Stand-Alone CdS Nanocrystals for Photocatalytic CO ₂ Reduction with High Efficiency and Selectivity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26573-26580.	4.0	37
361	Selective degradation of mixed dye pollutant in aqueous phase in the presence of ZnO/Al2O3 as sonophotocatalysis based on central composite design. Korean Journal of Chemical Engineering, 2021, 38, 1260-1271.	1.2	4
362	Piezotronic effect and oxygen vacancies boosted photocatalysis Câ€'N coupling of benzylamine. Nano Energy, 2021, 83, 105831.	8.2	45
363	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
364	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57
365	Selective CO ₂ â€toâ€CH ₄ Photoconversion in Aqueous Solutions Catalyzed by Atomically Dispersed Copper Sites Anchored on Ultrathin Graphdiyne Oxide Nanosheets. Solar Rrl, 2021, 5, 2100200.	3.1	13
366	Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catalysis, 2021, 11, 6656-6661.	5.5	43
367	Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System. Catalysts, 2021, 11, 624.	1.6	12
368	Microwave Synthesis of Spinel MgFe ₂ O ₄ Nanoparticles and the Effect of Annealing on Photocatalysis. Inorganic Chemistry, 2021, 60, 8704-8709.	1.9	12
369	A stable 3-D Cd(II) metal–organic framework formed by aromatic carboxylate and flexible imidazole ligand for sensing of nitroaromatic explosives. Journal of Coordination Chemistry, 2021, 74, 1856-1865.	0.8	5

#	Article	IF	CITATIONS
370	Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Separation and Purification Technology, 2021, 265, 118463.	3.9	54
371	Enhanced Nearâ€Infrared Photocatalytic Eradication of MRSA Biofilms and Osseointegration Using Oxide Perovskiteâ€Based P–N Heterojunction. Advanced Science, 2021, 8, e2002211.	5.6	33
372	Facile transfer of excited electrons in Au/SnS2 nanosheets for efficient solar-driven selective organic transformations. Applied Catalysis B: Environmental, 2021, 286, 119927.	10.8	38
373	Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 8706-8720.	3.2	43
374	A comparative study of a direct and pulse electrode-position method of TiO2 films and its effect on photo-electrocatalytic degradation of methyl orange dye. Optoelectronics Letters, 2021, 17, 334-341.	0.4	1
375	Net Zero and Catalysis: How Neutrons Can Help. Physchem, 2021, 1, 95-120.	0.5	3
376	In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: Towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chemical Engineering Journal, 2021, 414, 128914.	6.6	37
377	Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. Nano Materials Science, 2021, 3, 344-367.	3.9	47
378	Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. Applied Catalysis B: Environmental, 2021, 287, 119957.	10.8	73
379	Recent Advances in Aerobic Photoâ€Oxidation of Methanol to Valuable Chemicals. ChemCatChem, 2021, 13, 3381-3395.	1.8	20
380	Bi2O3-sensitized hierarchically mesoporous ZnO nanoparticles for Hg(II) reduction. Ceramics International, 2021, 47, 17069-17076.	2.3	5
381	A review of recent progress in silver silicate-based photocatalysts for organic pollutant degradation. Inorganic Chemistry Communication, 2021, 129, 108619.	1.8	14
382	Enhanced selective photocatalytic and sonocatalytic degradation in mixed dye aqueous solution by ZnO/GO nanocomposites: Response surface methodology. Materials Chemistry and Physics, 2021, 267, 124581.	2.0	10
383	CdSe QDs@MoS2 nanocomposites with enhanced photocatalytic activity towards ceftriaxone sodium degradation under visible-light irradiation. Journal of Alloys and Compounds, 2021, 869, 159322.	2.8	25
384	Recent Progress in LDH@Graphene and Analogous Heterostructures for Highly Active and Stable Photocatalytic and Photoelectrochemical Water Splitting. Chemistry - an Asian Journal, 2021, 16, 2211-2248.	1.7	51
385	2D MoO _{3–<i>x</i>} S <i>_x</i> /MoS ₂ van der Waals Assembly: A Tunable Heterojunction with Attractive Properties for Photocatalysis. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 36465-36474.	4.0	29
386	A Fullâ€Spectrum Porphyrin–Fullerene D–A Supramolecular Photocatalyst with Giant Builtâ€In Electric Field for Efficient Hydrogen Production. Advanced Materials, 2021, 33, e2101026.	11.1	122
387	Strain-Driven Polarized Electric Field-Promoted Photocatalytic Activity in Borate-Based CsCdBO ₃ Bulk Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34202-34212.	4.0	27

#	Article	IF	CITATIONS
388	Vacancy engineered polymeric carbon nitride nanosheets for enhanced photoredox catalytic efficiency. Cell Reports Physical Science, 2021, 2, 100491.	2.8	17
389	Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Research, 2022, 15, 1509-1516.	5.8	31
390	Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chemical Reviews, 2021, 121, 13051-13085.	23.0	426
391	Recent advances and emerging trends in (BiO)2CO3 based photocatalysts for environmental remediation: A review. Surfaces and Interfaces, 2021, 25, 101273.	1.5	12
392	Adsorptive removal and visible-light photocatalytic degradation of large cationic and anionic dyes induced by air-bubbles in the presence of a magnetic porphyrinic metal-organic framework (Fe3O4@SiO2@PCN-222(Fe)). Journal of Physics and Chemistry of Solids, 2021, 155, 110126.	1.9	26
393	Latest developments on TiO2-based photocatalysis: a special focus on selectivity and hollowness for enhanced photonic efficiency. Applied Catalysis A: General, 2021, 623, 118243.	2.2	19
394	Accelerated Photoreduction of CO ₂ to CO over a Stable Heterostructure with a Seamless Interface. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39523-39532.	4.0	47
395	Enhanced catalytic activity of one-dimensional CdS @TiO2 core-shell nanocomposites for selective organic transformations under visible LED irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113404.	2.0	9
396	Direct Z-scheme-based novel cobalt nickel tungstate/graphitic carbon nitride composite: Enhanced photocatalytic degradation of organic pollutants and oxidation of benzyl alcohol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127606.	2.3	35
397	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Renewable and Sustainable Energy Reviews, 2021, 148, 111266.	8.2	70
398	Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite. Chemosphere, 2021, 279, 130467.	4.2	85
399	Efficient Visible-Light-Driven Perovskites Photocatalysis: Design, Modification and Application. Green Chemistry and Sustainable Technology, 2022, , 357-398.	0.4	1
400	Defect engineering in polymeric carbon nitride photocatalyst: Synthesis, properties and characterizations. Advances in Colloid and Interface Science, 2021, 296, 102523.	7.0	49
401	Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition. Applied Surface Science, 2021, 563, 150383.	3.1	16
402	Multifunctional oxygen vacancies in WO3– for catalytic alkylation of C–H by alcohols under red-light. Journal of Catalysis, 2021, 402, 208-217.	3.1	10
403	Dye-TiO2/SiO2 assembly photocatalysis for blue light-initiated selective aerobic oxidation of organic sulfides. Chemical Engineering Journal, 2021, 423, 129419.	6.6	18
404	Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal. Applied Catalysis B: Environmental, 2021, 296, 120376.	10.8	62
405	Recent progress in Tungsten disulphide based Photocatalyst for Hydrogen Production and Environmental Remediation. Chemical Engineering Journal, 2021, 424, 130393.	6.6	25

#	Article	IF	CITATIONS
406	Partial photocatalytic oxidations of 3-pyridinemethanol and 3-picoline by TiO2 prepared in HCl, HNO3 and H2SO4 at different temperatures. Catalysis Today, 2021, 380, 237-247.	2.2	4
407	Aqueous selective photocatalytic oxidation of salicyl alcohol by TiO2 catalysts: Influence of some physico-chemical features. Catalysis Today, 2021, 380, 16-24.	2.2	5
408	Solar-driven valorization of glycerol towards production of chemicals and hydrogen. Catalysis Today, 2021, 380, 147-155.	2.2	16
409	Anchoring dye onto 1D Nb2O5 in cooperation with TEMPO for the selective photocatalytic aerobic oxidation of amines. Chemical Engineering Journal, 2021, 426, 131418.	6.6	15
410	Double Z-scheme system of α-SnWO4/UiO-66(NH2)/g-C3N4 ternary heterojunction with enhanced photocatalytic performance for ibuprofen degradation and H2 evolution. Journal of Alloys and Compounds, 2021, 885, 160984.	2.8	33
411	Dysprosium (III) Supported on CoFe2O4 MNPs as a Heterogeneous Catalyst for the Selective Oxidation of Sulfides and Synthesis of Symmetrical Disulfides. Journal of Molecular Structure, 2021, 1246, 131071.	1.8	16
412	Fabricating nitrogen-doped carbon dots (NCDs) on Bi3.64Mo0.36O6.55 nanospheres: A nanoheterostructure for enhanced photocatalytic performance for water purification. Journal of Physics and Chemistry of Solids, 2021, 159, 110283.	1.9	30
413	Plasmonic metallic silver induced Bi2WO6/TiO2 ternary junction towards the photocatalytic, electrochemical OER/HER, antibacterial and sensing applications. Applied Surface Science, 2021, 569, 150918.	3.1	18
414	Effect of linkages on photocatalytic H2 evolution over covalent organic frameworks. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 421, 113546.	2.0	20
415	Carbon ring and molecular scaffold co-doped g-C3N4 heterostructural nanosheets for highly efficient hydrogen evolution. Materials Research Bulletin, 2021, 144, 111482.	2.7	5
416	Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith. Chemical Engineering Journal, 2022, 429, 132284.	6.6	30
417	Selective photocatalytic reduction of selenate over TiO2 in the presence of nitrate and sulfate in mine-impacted water. Chemosphere, 2022, 287, 131951.	4.2	7
418	Defective polymeric carbon nitride: Fabrications, photocatalytic applications and perspectives. Chemical Engineering Journal, 2022, 427, 130991.	6.6	85
419	TiO2 nanotube arrays sensitized by copper (II) porphyrins with efficient interfacial charge transfer for the photocatalytic degradation of 4-nitrophenol. Journal of Hazardous Materials, 2022, 422, 126869.	6.5	25
420	Application of aluminosilicate clay mineral-based composites in photocatalysis. Journal of Environmental Sciences, 2022, 115, 190-214.	3.2	74
421	Highly efficient solar photocatalytic degradation of a textile dye by TiO2/graphene quantum dots nanocomposite. Photochemical and Photobiological Sciences, 2021, 20, 87-99.	1.6	28
422	High photocatalytic activity under visible light for dye degradation., 2021,, 141-166.		1
423	Photocatalytic processes for biomass conversion. Catalysis Science and Technology, 2021, 11, 2354-2360.	2.1	24

#	Article	IF	CITATIONS
424	Fabrication of 2D/2D COF/SnNb2O6 nanosheets and their enhanced solar hydrogen production. Inorganic Chemistry Frontiers, 2021, 8, 1686-1694.	3.0	8
425	Industrial applications of photocatalytic methods such as textile pharmaceutical industries, tannery, and craft., 2021,, 467-488.		1
426	Selective Photoelectrocatalytic Removal for Group-Targets of Phthalic Esters. Environmental Science & Eamp; Technology, 2021, 55, 2618-2627.	4.6	27
427	Recent Progress in Designing Halide-Perovskite-Based System for the Photocatalytic Applications. Frontiers in Chemistry, 2020, 8, 613174.	1.8	6
428	Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO ₄ nanorods. Catalysis Science and Technology, 2021, 11, 5931-5937.	2.1	25
429	Construction of Infraredâ€Lightâ€Responsive Photoinduced Carriers Driver for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e1906361.	11.1	131
430	Mesoporous nanoplate multi-directional assembled Bi2WO6 for high efficient photocatalytic oxidation of NO. Chemosphere, 2018, 193, 737-744.	4.2	62
431	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	5.2	209
432	Photodegradation study of TiO2 and ZnO in suspension using miniaturized tests. Revista Materia, 2019, 24, .	0.1	7
433	Toward Selective Oxidation of Contaminants in Aqueous Systems. Environmental Science & Emp; Technology, 2021, 55, 14494-14514.	4.6	145
434	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	3.1	22
435	Sustainable Visible Light-Driven Heck and Suzuki Reactions Using NiCu Nanoparticles Adorned on Carbon Nano-onions. ACS Sustainable Chemistry and Engineering, 2021, 9, 14061-14069.	3.2	8
436	Spatially Separated Photoinduced Charge Carriers for the Enhanced Photocatalysis Over the One-Dimensional Yolk–Shell In ₂ Se ₃ @N-C Nanoreactor. ACS Catalysis, 2021, 11, 12931-12939.	5 . 5	28
437	Photocatalytic activity of dyeâ€sensitized and nonâ€sensitized GOâ€TiO ₂ nanocomposites under simulated and direct sunlight. International Journal of Applied Ceramic Technology, 2022, 19, 425-435.	1.1	6
438	Photocatalytic activity of Tb3+/Eu3+-doped Bi2Sn2O7 microspheres. Ceramics International, 2022, 48, 2710-2716.	2.3	5
439	A Heterogeneous Catalyzed Oxidase Consists of Zinc-Substituted Arsenomolybdate with Reactive Oxygen Species Catalytic Ability. Journal of Cluster Science, 0 , 1 .	1.7	5
440	Post-fabrication structural changes and enhanced photodegradation activity of semiconductors@zeolite composites towards noxious contaminants. Chemosphere, 2022, 288, 132609.	4.2	10
441	Environmental Photocatalysis/Photocatalytic Decontamination., 2019,, 1625-1640.		1

#	Article	IF	CITATIONS
443	Vanadium Oxides in Photocatalysis, Including Bare Oxides and VOx-based Organic–Inorganic Nanocomposites. RSC Catalysis Series, 2020, , 340-373.	0.1	O
444	Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry, 2022, 23, 100605.	1.7	13
445	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie, 2022, 134, .	1.6	15
446	Enhancing Photocatalytic Hydrogen Production via the Construction of Robust Multivariate Tiâ€MOF/COF Composites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
447	Promoted visible-light-assisted oxidation of methanol over N-doped TiO2/WO3 nanostructures. Optical Materials, 2021, 122, 111810.	1.7	7
448	Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, morphological and, selective sonophotocatalysis of mixed pollutants: Box–Behnken design (BBD). Journal of Alloys and Compounds, 2022, 896, 163121.	2.8	10
449	Self-assembly and boosted photodegradation properties of perylene diimide <i>via</i> different solvents. New Journal of Chemistry, 2021, 45, 21701-21707.	1.4	9
450	Piezo-phototronic effect on photocatalysis, solar cells, photodetectors and light-emitting diodes. Chemical Society Reviews, 2021, 50, 13646-13691.	18.7	69
451	Z-Scheme Heterojunctionscomposed of 3D Graphene Aerogel/g-C ₃ N ₄ nanosheets/ Porous ZnO Nanospheres for the Efficient Photocatalytic Reduction of CO ₂ with H ₂ Ounder Visible Light Irradiation. SSRN Electronic Journal, 0, , .	0.4	1
452	Embedding an organic dye into Ti-MCM-48 for direct photocatalytic selective aerobic oxidation of sulfides driven by green light. Chemical Engineering Journal, 2022, 432, 134285.	6.6	8
453	A Review on Metal-Organic Frameworks as Congenial Heterogeneous Catalysts for Potential Organic Transformations. Frontiers in Chemistry, 2021, 9, 747615.	1.8	19
454	Use of magnetic hybrid nanomaterials in environmental applications. , 2022, , 187-211.		0
455	Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts, 2022, 12, 94.	1.6	22
456	State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Research, 2022, 15, 4374-4394.	5.8	42
457	Acetylene/Vinyleneâ€Bridged Ï€â€Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. ChemSusChem, 2022, 15, .	3.6	9
458	Chemical Production Using Light: Are Sustainable Photons Cheap Enough?. ACS Energy Letters, 2022, 7, 880-884.	8.8	18
459	2-D Heterometallic Pb-Iodoargentate Framework [PbAg2I6]n with a Diskoid [Pb(18-crown-6)]2+ Linker and Cocatalyst for Synergistically Enhanced Photocatalytic Properties via g-C3N4 Doping. Inorganic Chemistry, 2022, , .	1.9	1
460	Z-scheme MoO3-2D SnS nanosheets heterojunction assisted g-C3N4 composite for enhanced photocatalytic hydrogen evolutions. International Journal of Hydrogen Energy, 2022, 47, 10877-10890.	3.8	21

#	Article	IF	Citations
461	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
462	Photodriven Photo-Thermal Synergy Effect Leading to Efficient Co2 Cycloaddition with Epoxide Over a Fe-Based Metal Organic Framework. SSRN Electronic Journal, 0, , .	0.4	0
463	Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catalysis Science and Technology, 2022, 12, 2837-2845.	2.1	16
464	Construction of an Interfacial Photocatalytic Mode Based on Carbonized Mushrooms to Enhance Infrared Light-Assisted Photocatalytic Water Splitting Performance. Langmuir, 2022, 38, 2811-2820.	1.6	0
465	Triphase Photocatalytic CO ₂ Reduction over Silverâ€Decorated Titanium Oxide at a Gasâ€"Water Boundary. Angewandte Chemie - International Edition, 2022, 61, .	7.2	88
466	Triphase Photocatalytic CO ₂ Reduction over Silverâ€Decorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie, 2022, 134, .	1.6	33
467	Highly Crystalline Agâ€based Coordination Polymers for Efficient Photocatalytic Oxidation of Sulfides. Chemistry - an Asian Journal, 2022, , e202200031.	1.7	2
468	Highly Efficient Adsorptive Removal of Organic Dyes from Aqueous Solutions Using Polyaromatic Group-Containing Zn(II)-Based Coordination Polymers. Crystal Growth and Design, 2022, 22, 2248-2265.	1.4	24
469	Selectivity Control in Photocatalytic Transfer Hydrogenation of Bioâ€based Aldehydes. ChemCatChem, 2022, 14, .	1.8	3
470	Novel BiVO4/ZnO heterojunction for amended photoreduction of mercury (II) ions. Optical Materials, 2022, 127, 112251.	1.7	6
471	Local Spatial Polarization Induced Efficient Charge Separation of Squaraineâ€Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
472	Pyrithione metal (Cu, Ni, Ru) complexes as photo-catalysts for styrene oxide production. Scientific Reports, 2021, 11, 23810.	1.6	2
473	Effect of Defects on Optical, Electronic, and Interface Properties of NiO/SnO ₂ Heterostructures: Dual-Functional Solar Photocatalytic H ₂ Production and RhB Degradation. ACS Applied Materials & Degradation. ACS Applied Materials & Degradation.	4.0	11
474	Metallic Copperâ€Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. Small Methods, 2022, 6, e2101001.	4.6	18
475	Selective photocatalytic hydrogenation of citral over pure TiO ₂ nanoparticle. Materials Research Express, 2022, 9, 045012.	0.8	1
476	Syntheses and photocatalytic properties of polymeric iodoargentate and Pb-iodoargentate hybrids incorporating lanthanide complex. Inorganica Chimica Acta, 2022, 537, 120962.	1.2	2
477	Enhanced Photocatalytic Activity for CO ₂ Reduction over a CsPbBr ₃ /CoAl-LDH Composite: Insight into the S-Scheme Charge Transfer Mechanism. ACS Applied Energy Materials, 2022, 5, 6238-6247.	2.5	26
478	Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Advanced Energy Materials, 2022, 12, .	10.2	64

#	Article	IF	CITATIONS
479	Light-Activated Hydroxyapatite Photocatalysts: New Environmentally-Friendly Materials to Mitigate Pollutants. Minerals (Basel, Switzerland), 2022, 12, 525.	0.8	9
480	Facile Oneâ€Pot Synthesis and Enhanced Photocatalytic Performances of Ternary Metal Sulfide Composite gâ€C ₃ N ₄ /Cu ₃ SnS ₄ . European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
481	Perylene diimide growth on both sides of carbon nanotubes for remarkably boosted photocatalytic degradation of diclofenac. Journal of Hazardous Materials, 2022, 435, 128992.	6.5	17
482	Synergizing Inter and Intraband Transitions in Defective Tungsten Oxide for Efficient Photocatalytic Alcohol Dehydration to Alkenes. Jacs Au, 2022, 2, 1160-1168.	3.6	12
483	Boosting High Added-Value Chemicals Formation By Means Of Photoelectrocatalysis. Journal of Photocatalysis, 2022, 3, .	0.4	1
484	Recent Progress in Green Conversion of Biomass Alcohol to Chemicals via Aerobic Oxidation. Biomass, 2022, 2, 103-115.	1.2	4
485	Nanoarchitecture engineering in heterogeneous photocatalysis for improved activity and selectivity. Chem Catalysis, 2022, 2, 925-927.	2.9	1
486	Aromatic bromination with hydrogen production on organic-inorganic hybrid perovskite-based photocatalysts under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1805-1811.	6.9	5
487	Design components of porphyrin-based photocatalytic hydrogen evolution systems: A review. Coordination Chemistry Reviews, 2022, 467, 214599.	9.5	42
488	Generating strongly basic sites on magnetic nano-stirring bars: Multifunctional integrated catalysts for transesterification reaction. Science China Materials, 2022, 65, 2721-2728.	3.5	3
489	Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework. Journal of Colloid and Interface Science, 2022, 625, 33-40.	5.0	19
490	Suppression of Toxic Intermediates Ampa During Bivo4-BasedÂPhotocatalytic DegradationÂOf Glyphosate: The Effect of Surface Properties and Ph. SSRN Electronic Journal, 0, , .	0.4	0
491	Two highly crystalline coordination polymers with two-dimensional PbS networks for photocatalytic synthesis of imines. Catalysis Science and Technology, 0, , .	2.1	0
492	Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity. Journal of Colloid and Interface Science, 2022, 625, 750-760.	5.0	23
493	Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Research, 2022, 15, 8001-8009.	5.8	20
494	Water promoted photocatalytic transfer hydrogenation of furfural to furfural alcohol over ultralow loading metal supported on TiO2. Journal of Energy Chemistry, 2022, 73, 259-267.	7.1	14
495	Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chemical Communications, 2022, 58, 8466-8479.	2.2	19
496	Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from <i>Rosmarinus officinalis</i> extract. Green Chemistry Letters and Reviews, 2022, 15, 460-473.	2.1	31

#	Article	IF	CITATIONS
497	Synthesis and characterization of CdS/CeO2 Nanocomposite with improved visible-light photocatalytic degradation of methyl orange dye. Journal of Plant Science and Phytopathology, 2022, 6, 065-074.	0.4	2
498	Monitoring Cr(VI) photoreduction at different depths by operando low-field NMR relaxometry. Magnetic Resonance Letters, 2022, 2, 170-176.	0.7	3
499	Verifying the relationships of defect site and enhanced photocatalytic properties of modified ZrO2 nanoparticles evaluated by in-situ spectroscopy and STEM-EELS. Scientific Reports, 2022, 12, .	1.6	4
500	Coupling of piezocatalysis and photocatalysis for efficient degradation of methylene blue by Bi0.9Gd0.07La0.03FeO3 nanotubes. Journal of Advanced Ceramics, 2022, 11, 1069-1081.	8.9	35
501	Photocatalytic Biocidal Coatings Featuring Zr ₆ Ti ₄ -Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 12192-12201.	6.6	35
502	Catalytic oxidation of polystyrene to aromatic oxygenates over a graphitic carbon nitride catalyst. Nature Communications, 2022, 13, .	5.8	73
503	Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Advanced Science, 2022, 9, .	5.6	28
504	Selective aqueous oxidation of aromatic alcohols under solar light in the presence of TiO2 modified with different metal species. Photochemical and Photobiological Sciences, 2022, 21, 2139-2151.	1.6	5
505	Selective Oxidation of Glycerol into Formic Acid by Photogenerated Holes and Superoxide Radicals. ChemSusChem, 2022, 15, .	3.6	11
506	Palladium-Supported Polydopamine-Coated NiFe ₂ O ₄ @TiO ₂ : A Sole Photocatalyst for Suzuki and Sonogashira Coupling Reactions under Sunlight Irradiation. ACS Omega, 2022, 7, 29356-29368.	1.6	2
507	Pyrene-based conjugated microporous polymers for red light-powered oxidation of amines to imines. Applied Catalysis B: Environmental, 2022, 318, 121875.	10.8	18
508	Nanohybrid catalysts with porous structures for environmental remediation through photocatalytic degradation of emerging pollutants. Environmental Research, 2022, 214, 113955.	3.7	18
509	A stable turn-off fluorescence sensor for nitroaromatic explosives and Fe3+ detection based on a 3D strontium coordination polymer. Journal of Molecular Structure, 2022, 1270, 133944.	1.8	5
510	Engineering ZnSn(OH)6 with ternary active sites-directed hydroxyl vacancies for robust deep C6H6 photo-oxidation: Experiment and DFT calculations. Chemical Engineering Journal, 2023, 451, 138695.	6.6	7
511	Direct CO ₂ Transformation to Aliphatic Polycarbonates. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	13
512	Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coordination Chemistry Reviews, 2022, 472, 214773.	9.5	12
513	TiO2-promoted electron-tunneling of COF-based MIS nanostructures for efficient photocatalytic hydrogen production. Materials Today Chemistry, 2022, 26, 101150.	1.7	6
514	Photoreforming lignocellulosic biomass for hydrogen production: Optimized design of photocatalyst and photocatalytic system. Chemical Engineering Journal, 2023, 452, 138980.	6.6	39

#	Article	IF	Citations
515	Designing SnS/MoS ₂ van der Waals heterojunction for direct Z-scheme photocatalytic overall water-splitting by DFT investigation. Physical Chemistry Chemical Physics, 2022, 24, 21321-21330.	1.3	3
516	Dual-Site Oxygen Activation for Enhanced Photocatalytic Aerobic Oxidation by S-Scheme Ni2p/Bi3o4br-Ovs Heterojunction. SSRN Electronic Journal, 0, , .	0.4	0
517	Dual-site oxygen activation for enhanced photocatalytic aerobic oxidation by S-scheme Ni2P/Bi3O4Br-OVs heterojunction. Chemical Engineering Journal, 2023, 452, 139425.	6.6	17
518	Immobilization of AgCl/Pd Heterojunctions on Nitrogenâ€Doped Carbon Nanotubes: Interfacial Designâ€Induced Electronic Regulation Enhances Photocatalytic Activity. Chemistry - A European Journal, 2022, 28, .	1.7	3
519	Engineering Semiconductor Quantum Dots for Selectivity Switch on High-Performance Heterogeneous Coupling Photosynthesis. ACS Nano, 2022, 16, 17444-17453.	7.3	60
520	Anodic electrocatalytic behavior of graphite supported TiO2 towards the generation of hydroxyl radicals. Electrochimica Acta, 2022, 434, 141303.	2.6	3
521	Macro-Sized Hierarchical Nanostructured TiO2/Titanosilicate Composite with Enhanced Photocatalytic Activity. Catalysis Letters, 0, , .	1.4	0
522	Historical Developments in Synthesis Approaches and Photocatalytic Perspectives of Metal-Organic Frameworks. , 0, , .		1
523	Metal single atom doped 2D materials for photocatalysis: current status and future perspectives. Progress in Energy, 2023, 5, 012001.	4.6	9
524	In Situ Etching Synthesis of TiO2-SBA-15 Nanocomposite Enhancing Adsorption and Photocatalytic Degradation. Catalysts, 2022, 12, 1334.	1.6	3
525	Self-cleaning performance of photocatalytic cement mortar: Synergistic effects of hydration and carbonation. Cement and Concrete Research, 2022, 162, 107009.	4.6	12
526	Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coordination Chemistry Reviews, 2023, 475, 214889.	9.5	97
527	Phthalimide based new photocatalysts featured with highly selective photodegradation of azo-dyes and good photocatalytic activity in both homogeneous and heterogeneous systems. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 435, 114346.	2.0	5
529	Metal-Free Covalent Organic Framework for Facile Production of Solar Fuel via CO ₂ Reduction. Industrial & Engineering Chemistry Research, 2022, 61, 17044-17056.	1.8	5
530	Manipulation of band gap and hydrophilicity in vinylene-linked covalent organic frameworks for improved visible-light-driven hydrogen evolution by end-capping strategy. Chemical Engineering Journal, 2023, 454, 140341.	6.6	13
531	Intimate coupling of 3D MnFe2O4 cubes on 1D ZnO nanorods for sustainable photocatalysis under visible light: Computational analysis of reactive sites and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104558.	2.7	6
532	Highly-visible-light-driven photocatalysts based on terbium(III) complexes with tetraselenidoantimonate and polyamine mixed ligands. Inorganic Chemistry Communication, 2022, 146, 110185.	1.8	0
533	Photocatalytic and photoelectrocatalytic H2 evolution combined with valuable furfural production. Applied Catalysis A: General, 2023, 650, 118987.	2.2	6

#	Article	IF	CITATIONS
534	Nano-gold decorated ZnO: An alternative photocatalyst promising for NOx degradation. Chemical Engineering Science, 2023, 267, 118377.	1.9	6
535	Atomically dispersed cerium sites in carbon-doped boron nitride for photodriven CO2 reduction: Local polarization and mechanism insight. Applied Catalysis B: Environmental, 2023, 324, 122235.	10.8	9
536	A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sustainable Materials and Technologies, 2023, 35, e00529.	1.7	3
537	Hollow Ag@Pd Core–Shell Nanoparticles as Photocatalysts for the Plasmon-Mediated Activation of Oxygen and Oxidation of Benzyl Alcohol. ACS Applied Nano Materials, 2022, 5, 18438-18447.	2.4	1
538	Construction of a Magnetic γâ€Fe ₂ O ₃ /hâ€BN Composite for Tetracycline Degradation by Visibleâ€Lightâ€Initiated Peroxydisulfate. ChemistrySelect, 2022, 7, .	0.7	2
539	Semiconducting mineral induced photochemical conversion of PAHs in aquatic environment: Mechanism study and fate prediction. Science of the Total Environment, 2023, 860, 160382.	3.9	1
540	Enhanced Photocatalytic Benzene Oxidation to Phenol over Monoclinic WO ₃ Nanorods under Visible Light. ACS Catalysis, 2022, 12, 14976-14989.	5.5	16
541	Photocatalytic property of WO3 modified with noble metal co-catalysts towards selective hydroxylation of benzene to phenol under visible light irradiation. Applied Catalysis B: Environmental, 2023, 325, 122289.	10.8	15
542	Advances in Organic and Inorganic Photoredox Catalysis. ACS Organic & Inorganic Au, 0, , .	1.9	1
543	Benzaldehydeâ€Promoted (Auto)Photocatalysis under Visible Light: Pitfalls and Opportunities in Photocatalytic H ₂ O ₂ Production**. ChemCatChem, 2023, 15, .	1.8	5
544	In Situ Construction of Single-Site Ti Active Centers on Carbon Nitride for Photocatalytic Chemoselective Hydrogen Transfer Reduction. Chemistry of Materials, 2022, 34, 10982-10994.	3.2	6
545	Toward a facile depolymerization of alkaline lignin into high-value platform chemicals via the synergetic combination of mechanocatalysis with photocatalysis or Fenton process. Catalysis Today, 2022, , .	2.2	3
546	Visible-Light-Driven Porphyrin-Based Bimetallic Metal–Organic Frameworks for Selective Photoreduction of Nitro Compounds under Mild Conditions. ACS Applied Materials & Lamp; Interfaces, 2023, 15, 4845-4856.	4.0	5
547	Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2891-2900.	4.0	5
548	Microfluidic assembly of WO3/MoS2 Z-scheme heterojunction as tandem photocatalyst for nitrobenzene hydrogenation. Rare Metals, 2023, 42, 484-494.	3.6	7
549	Dual interfacial build-in electric field effect induced by sandwich-type heterojunction for propelling photocatalytic fuel extraction from CO2 in water. Separation and Purification Technology, 2023, 308, 122971.	3.9	9
550	Degradation of Dye Wastewater by a Novel mBT-MPR Visible Light Photocatalytic System. International Journal of Environmental Research and Public Health, 2023, 20, 571.	1.2	2
551	Magnetically retrievable graphitic carbon nitride-based nanocomposites., 2023,, 305-358.		0

#	Article	IF	Citations
552	Plethora of preparatory features on single layered double hydroxide towards energy conversion process. Materials Research Bulletin, 2023, 162, 112185.	2.7	13
553	Sustainable and Green Synthesis of C- and N-Doped Nanoporous g-C3N4: Powerful Sunlight-Responsive Photocatalysts for Aerobic Oxidation of Toluene. Reaction Chemistry and Engineering, 0, , .	1.9	1
554	A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Materials Today Physics, 2023, 34, 101080.	2.9	17
555	Photoelectrocatalytic selective removal of group-targeting thiol-containing heterocyclic pollutants. Journal of Hazardous Materials, 2023, 452, 131307.	6.5	3
556	MoS2-based hetero-nanostructures for photocatalytic, photoelectrocatalytic and piezocatalytic remediation of hazardous pharmaceuticals. Journal of Environmental Chemical Engineering, 2023, 11, 109604.	3.3	10
557	Preparation and characterization of Zr-containing silica residue purification loaded nano-TiO2 composite photocatalysts. Chemical Physics, 2023, 570, 111889.	0.9	3
558	Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews, 2023, 123, 4443-4509.	23.0	47
559	Cobalt single atom induced catalytic active site shift in carbon-doped BN for efficient photodriven CO2 reduction. Applied Surface Science, 2023, 616, 156451.	3.1	3
560	Rapid photocatalytic degradation of tetrabromobisphenol A using synergistic p-n/Z-scheme dual heterojunction of black phosphorus nanosheets/FeSe2/g-C3N4. Separation and Purification Technology, 2023, 311, 123359.	3.9	7
561	Preferential removal of phthalic esters by photocatalysis on selective TiO2. Chemical Engineering Journal, 2023, 460, 141735.	6.6	17
563	GaN nanowires/Si photocathodes for CO2 reduction towards solar fuels and chemicals: advances, challenges, and prospects. Science China Chemistry, 0, , .	4.2	1
564	Solarâ€Triggered Engineered 2Dâ€Materials for Environmental Remediation: Status and Future Insights. Advanced Materials Interfaces, 2023, 10, .	1.9	8
565	Photoredox-Catalyzed Plastic Waste Conversion: Nonselective Degradation versus Selective Synthesis. ACS Catalysis, 2023, 13, 3575-3590.	5.5	36
566	A mini review: Recent progress in light-mediated synthesis of carbon–carbon bonded stilbene analogues. Tetrahedron, 2023, 135, 133341.	1.0	0
567	Cu ₂ O/2D COFs Core/Shell Nanocubes with Antiphotocorrosion Ability for Efficient Photocatalytic Hydrogen Evolution. ACS Nano, 2023, 17, 5994-6001.	7.3	27
568	Recent advances on catalysts for photocatalytic selective hydrogenation of nitrobenzene to aniline. Frontiers in Chemistry, $0,11,.$	1.8	1
570	Hybrid Nanocomposite Fabrication of Nanocatalyst with Enhanced and Stable Photocatalytic Activity. Topics in Catalysis, 2024, 67, 17-45.	1.3	6
571	Light-Assisted CO ₂ Cycloaddition over a Nanochannel Cadmium–Organic Framework Loaded with Silver Nanoparticles. ACS Applied Nano Materials, 2023, 6, 6197-6207.	2.4	4

#	Article	IF	CITATIONS
572	Porous single crystalline-like titanium dioxide monolith with enhanced photoelectrochemical performance. Frontiers in Materials, 0, 10 , .	1.2	2
573	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	9.5	12
574	Multifunctional design of single-atom catalysts for multistep reactions. Science China Chemistry, 2023, 66, 1241-1260.	4.2	5
575	Development of self-cleaning cement mortar exposed to indoor and outdoor environment. Materials Today: Proceedings, 2023, , .	0.9	1
576	Simultaneous triple-effect on inhibiting the photogenerated carriers recombination of g-C3N4 for boosting solar H2 production at atmospheric pressure. Journal of Environmental Chemical Engineering, 2023, 11, 109975.	3.3	0
577	Syntheses, Structures, photoelectric properties and photocatalysis of iodobismuthate hybrids with lanthanide complex cations. Dalton Transactions, 0, , .	1.6	0
587	A review of boron nitride-based photocatalysts for carbon dioxide reduction. Journal of Materials Chemistry A, 2023, 11, 11925-11963.	5.2	10
591	Advanced redox processes for sustainable water treatment. , 2023, 1, 666-681.		13
592	Advancements in catalysis for plastic resource utilization. Environmental Science Advances, 2023, 2, 1151-1166.	1.0	1
600	Tuning the Magnetic and Photocatalytic Properties of Wide Bandgap Metal Oxide Semiconductors for Environmental Remediation., 0,,.		0
610	Reticular framework materials for photocatalytic organic reactions. Chemical Society Reviews, 2023, 52, 7949-8004.	18.7	8
631	Advances in Photoinduced Radical-Polar Crossover Cyclization (RPCC) of Bifunctional Alkenes. Organic Chemistry Frontiers, 0, , .	2.3	1
632	The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A, O, , .	5.2	0
635	Urea catalytic oxidation for energy and environmental applications. Chemical Society Reviews, 2024, 53, 1552-1591.	18.7	2
638	Solar reforming as an emerging technology for circular chemical industries. Nature Reviews Chemistry, 2024, 8, 87-105.	13.8	0
650	A critical review on black phosphorus mediated Z-scheme heterojunctions: properties, synthesis, and mechanistic insights towards solar H ₂ evolution. Catalysis Science and Technology, 2024, 14, 1428-1461.	2.1	0