Super-Resolution Imaging and Plasmonics

Chemical Reviews 117, 7538-7582

DOI: 10.1021/acs.chemrev.6b00547

Citation Report

#	Article	IF	CITATIONS
2	Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. Journal of Chemical Physics, 2017, 146, 224201.	1.2	20
3	Introduction: Super-Resolution and Single-Molecule Imaging. Chemical Reviews, 2017, 117, 7241-7243.	23.0	29
4	Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes. ACS Nano, 2017, 11, 10529-10538.	7.3	30
5	Mapping SERS in CB:Au Plasmonic Nanoaggregates. ACS Photonics, 2017, 4, 2681-2686.	3.2	23
6	Superâ€resolution Fluorescence Imaging for Materials Science. Small Methods, 2017, 1, 1700191.	4.6	100
7	Simultaneous Topography and Reaction Flux Mapping at and around Electrocatalytic Nanoparticles. ACS Nano, 2017, 11, 9525-9535.	7.3	71
8	Revealing the Mechanism of Photoluminescence from Single Gold Nanospheres by Defocused Imaging. ACS Photonics, 2017, 4, 2003-2010.	3.2	3
9	Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sensors, 2017, 2, 1103-1122.	4.0	266
10	Gallium platinum alloys – a new material system for UV plasmonics. Optical Materials Express, 2017, 7, 2880.	1.6	5
11	Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects. Sensors, 2017, 17, 2819.	2.1	67
12	Metallic 3D Random Nanocomposite Islands For Nearâ€Field Spatial Light Switching. Advanced Optical Materials, 2018, 6, 1701219.	3.6	7
13	Investigation of Dual-Ion Beam Sputter-Instigated Plasmon Generation in TCOs: A Case Study of GZO. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5464-5474.	4.0	52
14	Monitoring Thiol–Ligand Exchange on Au Nanoparticle Surfaces. Langmuir, 2018, 34, 1700-1710.	1.6	32
15	Visualizing the Effect of Partial Oxide Formation on Single Silver Nanoparticle Electrodissolution. Journal of Physical Chemistry C, 2018, 122, 3138-3145.	1.5	80
16	An Electrically Tunable Terahertz Plasmonic Device Based on Shape Memory Alloys and Liquid Metals. Advanced Optical Materials, 2018, 6, 1700684.	3.6	8
17	Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields. Langmuir, 2018, 34, 6237-6248.	1.6	5
18	Anti-A \hat{l}^2 drug candidates in clinical trials and plasmonic nanoparticle-based drug-screen for Alzheimer's disease. Analyst, The, 2018, 143, 2204-2212.	1.7	19
19	Soft matter nanoscopy. Current Opinion in Colloid and Interface Science, 2018, 34, 59-73.	3.4	14

#	ARTICLE	IF	CITATIONS
20	Plasmonic Nanoparticle Dimers with Reversibly Photoswitchable Interparticle Distances Linked by DNA. Journal of Physical Chemistry C, 2018, 122, 13363-13370.	1.5	16
21	The localized surface plasmon resonance induced edge effect of gold regular hexagonal nanoplates for reaction progress monitoring. Chemical Communications, 2018, 54, 13359-13362.	2.2	17
22	Introductory Chapter: Nano-bioimagingâ€"Past, Present, and Future. , 2018, , .		2
23	Quenched Stochastic Optical Reconstruction Microscopy (qSTORM) with Graphene Oxide. Scientific Reports, 2018, 8, 16928.	1.6	4
24	Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. Biosensors, 2018, 8, 100.	2.3	15
25	Comparison of LSPR-mediated enhanced fluorescence excited by S- and P-polarized light on a two-dimensionally assembled silver nanoparticle sheet. Applied Physics Letters, 2018, 113, .	1.5	4
26	Theoretical analysis of spectral precision in spectroscopic single-molecule localization microscopy. Review of Scientific Instruments, 2018, 89, 123703.	0.6	26
27	Plasmonic polymer nanocomposites. Nature Reviews Materials, 2018, 3, 375-391.	23.3	187
28	Sputter-instigated plasmon-enhanced optical backscattering layer in ultrathin solar cells: Application of GZO in CIGSe material system. Solar Energy, 2018, 174, 35-44.	2.9	11
29	Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry. CheM, 2018, 4, 1560-1585.	5.8	95
30	Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength. Optics Express, 2018, 26, 10888.	1.7	16
31	Plasmonic Nanoprobes for Multiplexed Fluorescenceâ€Free Superâ€Resolution Imaging. Advanced Optical Materials, 2018, 6, 1800432.	3.6	10
32	High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy. ACS Nano, 2018, 12, 8248-8254.	7.3	45
33	Simultaneous Opto- and Spectro-Electrochemistry: Reactions of Individual Nanoparticles Uncovered by Dark-Field Microscopy. Journal of the American Chemical Society, 2018, 140, 12658-12661.	6.6	72
34	Imaging the three-dimensional orientation and rotational mobility of fluorescent emitters using the Tri-spot point spread function. Applied Physics Letters, 2018, 113, 031103.	1.5	58
35	Monitoring Simultaneous Electrochemical Reactions with Single Particle Imaging. ChemElectroChem, 2018, 5, 3052-3058.	1.7	20
36	Mislocalization in Plasmon-Enhanced Single-Molecule Fluorescence Microscopy as a Dynamical Young's Interferometer. ACS Photonics, 2018, 5, 3141-3151.	3.2	18
37	Enhancing the blinking fluorescence of single-molecule localization imaging by using a surface-plasmon-polariton-enhanced substrate. Physical Chemistry Chemical Physics, 2018, 20, 27245-27255.	1.3	10

3

#	ARTICLE	IF	CITATIONS
38	Imaging Catalytic Hotspots on Single Plasmonic Nanostructures via Correlated Super-Resolution and Electron Microscopy. ACS Nano, 2018, 12, 5570-5579.	7.3	89
39	Morphological control of gold nanorods via thermally driven bi-surfactant growth and application for detection of heavy metal ions. Nanotechnology, 2018, 29, 334001.	1.3	6
40	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179
41	Rotation of Single-Molecule Emission Polarization by Plasmonic Nanorods. Journal of Physical Chemistry Letters, 2019, 10, 5047-5054.	2.1	17
42	From Optical to Chemical Hot Spots in Plasmonics. Accounts of Chemical Research, 2019, 52, 2525-2535.	7.6	131
43	Plasmon-Enhanced Optical Tweezers for Single Molecules on and near a Colloidal Silver Nanoaggregate. Journal of Physical Chemistry C, 2019, 123, 18001-18006.	1.5	21
44	Plasmonic Photothermal Nanoparticles for Biomedical Applications. Advanced Science, 2019, 6, 1900471.	5.6	420
45	Density Gradient Selection of Colloidal Silver Nanotriangles for Assembling Dye-Particle Plasmophores. Nanomaterials, 2019, 9, 893.	1.9	5
46	Multicolor High-Speed Tracking of Single Biomolecules with Silver, Gold, and Silver–Gold Alloy Nanoparticles. ACS Photonics, 2019, 6, 2870-2883.	3.2	17
47	Postrecording Pixel-Reconstruction Approach for Correcting the Lateral Drifts in Surface Plasmon Resonance Microscope. Analytical Chemistry, 2019, 91, 13620-13626.	3.2	7
48	A method to simulate the optical image from farâ€field scattering numerical data and its application to the total internal reflection microscopy of metallic nanowires. Journal of Microscopy, 2019, 276, 21-26.	0.8	0
49	Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2019, 52, 456-464.	7.6	76
50	Monitoring plasmonic hot-carrier chemical reactions at the single particle level. Faraday Discussions, 2019, 214, 73-87.	1.6	28
51	Finite-size effects on periodic arrays of nanostructures. JPhys Photonics, 2019, 1, 015004.	2.2	51
52	Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nature Reviews Chemistry, 2019, 3, 68-84.	13.8	145
53	The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy. Electrochimica Acta, 2019, 301, 458-464.	2.6	33
54	Quantifying Figures of Merit for Localized Surface Plasmon Resonance Applications: A Materials Survey. ACS Photonics, 2019, 6, 240-259.	3.2	93
55	Chemical reactions driven by plasmon-induced hot carriers. Applied Materials Today, 2019, 16, 112-119.	2.3	49

#	Article	IF	Citations
56	Recent progress on metamaterials: From effective medium model to real-time information processing system. Progress in Quantum Electronics, 2019, 67, 100223.	3.5	50
57	Supercharging Superlocalization Microscopy: How Electrochemical Charging of Plasmonic Nanostructures Uncovers Hidden Heterogeneity. ACS Nano, 2019, 13, 6145-6150.	7.3	13
58	Thin Metal Superlens Imaging in Nanolithography. International Journal of Optics, 2019, 2019, 1-6.	0.6	5
59	Spatiotemporal Heterogeneity of Reactions in Solution Observed with Highâ€Speed Singleâ€Nanorod Rotational Sensing. Angewandte Chemie - International Edition, 2019, 58, 8389-8393.	7.2	10
60	Switching plasmonic Fano resonance in gold nanosphere–nanoplate heterodimers. Nanoscale, 2019, 11, 9641-9653.	2.8	19
61	Spatiotemporal Heterogeneity of Reactions in Solution Observed with Highâ€Speed Singleâ€Nanorod Rotational Sensing. Angewandte Chemie, 2019, 131, 8477-8481.	1.6	1
62	Tracking Sub-Nanometer Shift in the Scattering Centroid of Single Gold Nanorods during Electrochemical Charging. ACS Nano, 2019, 13, 6279-6286.	7.3	20
63	Rayleigh-Wood anomaly approximation with FDTD simulation of plasmonic gold nanohole array for determination of optimum extraordinary optical transmission characteristics. Superlattices and Microstructures, 2019, 130, 454-471.	1.4	10
64	Optical methods for studying local electrochemical reactions with spatial resolution: A critical review. Analytica Chimica Acta, 2019, 1074, 1-15.	2.6	24
65	Plasmon Heating Promotes Ligand Reorganization on Single Gold Nanorods. Journal of Physical Chemistry Letters, 2019, 10, 1394-1401.	2.1	18
66	Recent advances in optical microscopic methods for single-particle tracking in biological samples. Analytical and Bioanalytical Chemistry, 2019, 411, 4445-4463.	1.9	31
67	Highly Tunable Polarized Chromatic Plasmonic Films Based on Subwavelength Grating Templates. Advanced Materials Technologies, 2019, 4, 1800661.	3.0	3
68	PSF Distortion in Dye–Plasmonic Nanomaterial Interactions: Friend or Foe?. ACS Photonics, 2019, 6, 699-708.	3.2	14
69	Nonlinear absorption and scattering of a single plasmonic nanostructure characterized by <i>x</i> -scan technique. Beilstein Journal of Nanotechnology, 2019, 10, 2182-2191.	1.5	7
70	Charge-transfer plasmons with narrow conductive molecular bridges: A quantum-classical theory. Journal of Chemical Physics, 2019, 151, 244125.	1.2	11
71	Coupled Plasmon Modes in 2D Gold Nanoparticle Clusters and Their Effect on Local Temperature Control. Journal of Physical Chemistry C, 2019, 123, 30594-30603.	1.5	38
72	Single-Particle Tracking with Scattering-Based Optical Microscopy. Analytical Chemistry, 2019, 91, 15327-15334.	3.2	45
73	Plasmonic noble metal@metal oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy and Fuels, 2019, 3, 63-91.	2.5	48

#	Article	IF	Citations
74	Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold–Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing. ACS Applied Materials & mp; Interfaces, 2019, 11, 2273-2281.	4.0	30
75	Gold nanoparticles in biological optical imaging. Nano Today, 2019, 24, 120-140.	6.2	259
76	Nanoscale Electrochemical Mapping. Analytical Chemistry, 2019, 91, 84-108.	3.2	131
77	Biomimetische DNAâ€Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer KanÃæ. Angewandte Chemie, 2019, 131, 9092-9108.	1.6	4
78	Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angewandte Chemie - International Edition, 2019, 58, 8996-9011.	7.2	62
79	Phonon Polaritons and Hyperbolic Response in van der Waals Materials. Advanced Optical Materials, 2020, 8, 1901393.	3.6	87
80	Formation of a Au/Au ₉ Ga ₄ Alloy Nanoshell on a Bacterial Surface through Galvanic Displacement Reaction for High-Contrast Imaging. ACS Applied Bio Materials, 2020, 3, 477-485.	2.3	7
81	Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. Analytical Chemistry, 2020, 92, 1333-1339.	3.2	13
82	Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting. Applied Surface Science, 2020, 505, 144520.	3.1	20
83	Thermoelectric and Plasmonic Properties of Metal Nanoparticles Linked by Conductive Molecular Bridges. Physica Status Solidi (B): Basic Research, 2020, 257, 2000249.	0.7	6
84	High-Speed Fluctuations in Surface-Enhanced Raman Scattering Intensities from Various Nanostructures. Applied Spectroscopy, 2020, 74, 1398-1406.	1.2	9
85	Organic Dyes and Visible Fluorescent Proteins as Fluorescence Reporters. , 2020, , 167-236.		0
86	Viewpoint: Single Molecules at 31: What's Next?. Nano Letters, 2020, 20, 8427-8429.	4.5	12
87	Nanoscale optical imaging in chemistry. Chemical Society Reviews, 2020, 49, 6087-6112.	18.7	40
88	Photoluminescence of single gold nanorods following nonlinear excitation. Journal of Chemical Physics, 2020, 153, 061101.	1.2	6
89	Farâ€Field Superresolution Imaging via Spatial Frequency Modulation. Laser and Photonics Reviews, 2020, 14, 1900011.	4.4	15
90	100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Letters, 2020, 9, 1342-1356.	2.3	28
91	Optical Properties and Applications of Plasmonicâ€Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 2005400.	7.8	265

#	Article	IF	CITATIONS
92	Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays. Nanomaterials, 2020, 10, 2563.	1.9	1
93	A Simulation Study for Field Enhancement due to Multiresonant Localized Surface Plasmon Excitation in the truncated Octahedral Gold Nanoparticle Arrays. Journal of the Korean Physical Society, 2020, 77, 1148-1152.	0.3	1
94	Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection. Analytical Methods, 2020, 12, 5657-5670.	1.3	13
95	Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances. Nanotechnology, 2020, 31, 325202.	1.3	2
96	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	23.0	78
97	Mapping Fluorescence Enhancement of Plasmonic Nanorod Coupled Dye Molecules. Nanomaterials, 2020, 10, 1048.	1.9	5
98	Plasmon-Mediated Surface Functionalization: New Horizons for the Control of Surface Chemistry on the Nanoscale. Chemistry of Materials, 2020, 32, 5442-5454.	3.2	36
99	Electrochemical Sensing at a Confined Space. Analytical Chemistry, 2020, 92, 5621-5644.	3.2	158
100	Gap plasmons inducing strong plasmonic chirality in planar metallic nanostructures. Journal Physics D: Applied Physics, 2020, 53, 265107.	1.3	1
101	Transdimensional material platforms for tunable metasurface design. MRS Bulletin, 2020, 45, 188-195.	1.7	11
102	Synthesis and intracellular tracing surface-functionalized calcium phosphate nanoparticles by super-resolution microscopy (STORM). Materialia, 2020, 12, 100773.	1.3	4
103	Overview of Synthetic Methods to Prepare Plasmonic Transitionâ€Metal Nitride Nanoparticles. Chemistry - A European Journal, 2020, 26, 8499-8505.	1.7	31
104	Wideband Miniaturized Design of Complementary Spoof Surface Plasmon Polaritons Waveguide Based on Interdigital Structures. Scientific Reports, 2020, 10, 3258.	1.6	13
105	Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence, 2020, 8, 022001.	1.1	183
106	Controllable Filtering Structure Using Magnetic Coupling Between Spoof Plasmonic Waveguide and Solid Dielectric Resonators. IEEE Access, 2020, 8, 9619-9629.	2.6	2
107	Broadband chiral hybrid plasmon modes on nanofingernail substrates. Nanoscale, 2020, 12, 3827-3833.	2.8	2
108	Isolating strong nanoantenna–molecule interactions by ensemble-level single-molecule detection. Nanoscale, 2020, 12, 3723-3730.	2.8	13
109	Plasmonic-Active Nanostructured Thin Films. Processes, 2020, 8, 115.	1.3	15

#	Article	IF	Citations
110	Operando Studies of the Electrochemical Dissolution of Silver Nanoparticles in Nitrate Solutions Observed With Hyperspectral Dark-Field Microscopy. Frontiers in Chemistry, 2019, 7, 912.	1.8	28
111	Lanthanideâ€Doped Nearâ€Infrared Nanoparticles for Biophotonics. Advanced Materials, 2021, 33, e2000678.	11.1	113
112	Pairwise Proximityâ€Differentiated Visualization of Singleâ€Cell DNA Epigenetic Marks. Angewandte Chemie, 2021, 133, 3470-3474.	1.6	3
113	Resolution Enhancement and Background Suppression in Optical Superâ€Resolution Imaging for Biological Applications. Laser and Photonics Reviews, 2021, 15, .	4.4	13
114	Super-Resolution Characterization of Heterogeneous Light–Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Analytical Chemistry, 2021, 93, 430-444.	3.2	8
115	Pairwise Proximityâ€Differentiated Visualization of Singleâ€Cell DNA Epigenetic Marks. Angewandte Chemie - International Edition, 2021, 60, 3428-3432.	7.2	15
116	Gold embedded chitosan nanoparticles with cell membrane mimetic polymer coating for pH-sensitive controlled drug release and cellular fluorescence imaging. Journal of Biomaterials Applications, 2021, 35, 857-868.	1.2	15
117	A Programmable DNAâ€Silicificationâ€Based Nanocavity for Singleâ€Molecule Plasmonic Sensing. Advanced Materials, 2021, 33, e2005133.	11.1	27
118	Automated Plasmonic Resonance Scattering Imaging Analysis via Deep Learning. Analytical Chemistry, 2021, 93, 2619-2626.	3.2	25
119	Symmetric and asymmetric epitaxial growth of metals (Ag, Pd, and Pt) onto Au nanotriangles: effects of reductants and plasmonic properties. Nanoscale, 2021, 13, 2902-2913.	2.8	10
120	Polarization-controlled efficient and unidirectional surface plasmon polariton excitation enabled by metagratings in a generalized Kretschmann configuration. Optics Express, 2021, 29, 3659.	1.7	3
121	Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS Nano, 2021, 15, 3522-3528.	7.3	13
122	Charge transfer plasmons in the arrays of nanoparticles connected by conductive linkers. Journal of Chemical Physics, 2021, 154, 084123.	1.2	3
123	Single-particle scattering spectroscopy: fundamentals and applications. Nanophotonics, 2021, 10, 1621-1655.	2.9	33
124	Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2021, 125, 7523-7532.	1.5	11
125	Quantum Plasmonic Sensors. Chemical Reviews, 2021, 121, 4743-4804.	23.0	70
126	Gold Nanoparticles in Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 647905.	2.0	63
127	Probing Biosensing Interfaces With Single Molecule Localization Microscopy (SMLM). Frontiers in Chemistry, 2021, 9, 655324.	1.8	3

#	Article	IF	CITATIONS
128	Inverse Design of Plasmonic Structures with FDTD. ACS Photonics, 2021, 8, 1489-1496.	3.2	18
129	Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules, 2021, 26, 3085.	1.7	39
130	Orientation-independent reaction activity monitoring with single particle and data analytics. Journal of Colloid and Interface Science, 2021, 590, 458-466.	5 . 0	5
131	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
132	Investigation of multiple metal nanoparticles near-field coupling on the surface by discrete dipole approximation method. Optoelectronics Letters, 2021, 17, 257-261.	0.4	2
135	Plasmonic colorimetric PCR for Rapid molecular diagnostic assays. Sensors and Actuators B: Chemical, 2021, 337, 129762.	4.0	22
136	Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the subâ€particle to ensemble level. Electrochemical Science Advances, 2022, 2, e2100081.	1.2	22
137	Efficient plasmonic functional lens constructed via a nano-dichroic element. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C58.	0.9	2
138	Potential dependent spectroelectrochemistry of electrofluorogenic dyes on indiumâ€tin oxide. Electrochemical Science Advances, 2022, 2, e2100094.	1.2	5
139	High-Resolution, High-Contrast Optical Interface for Defect Qubits. ACS Photonics, 2021, 8, 2642-2649.	3.2	3
140	Light emission from plasmonic nanostructures. Journal of Chemical Physics, 2021, 155, 060901.	1.2	16
141	Kinetics of Plasmon-Driven Hydrosilylation of Silicon Surfaces: Photogenerated Charges Drive Silicon–Carbon Bond Formation. Journal of Physical Chemistry C, 2021, 125, 17983-17992.	1.5	0
142	Impact of polydispersity and confinement on diffusion in hydrodynamically interacting colloidal suspensions. Journal of Fluid Mechanics, 2021, 925, .	1.4	7
143	Nanophotonic Color Routing. Advanced Materials, 2021, 33, e2103815.	11.1	24
144	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	8.2	19
145	Progress in Multidimensional Particle Characterization. KONA Powder and Particle Journal, 2022, 39, 3-28.	0.9	12
146	Exploring the Synergy of Radiative Coupling and Substrate Undercut in Arrayed Gold Nanodisks for Economical, Ultra-Sensitive Label-Free Biosensing. IEEE Sensors Journal, 2021, 21, 23971-23978.	2.4	3
147	Experimental analysis of submicrometer optical intensity distributions after an opaque disk. Applied Optics, 2020, 59, 1678.	0.9	5

#	ARTICLE	IF	CITATIONS
148	Nanoscale control of single molecule $F\tilde{A}\P$ rster resonance energy transfer by a scanning photonic nanoantenna. Nanophotonics, 2020, 9, 4021-4031.	2.9	11
149	Hyperbolic dispersion metasurfaces for molecular biosensing. Nanophotonics, 2020, 10, 295-314.	2.9	48
150	Biomolecular Sensing in Hybrid Chiral/Hyperbolic Metastructures. , 2021, , 1-14.		0
151	Simultaneously Azimuth-Pitch Super-Resolution Imaging for Ground-to-Air Radar. , 2021, , .		1
152	Imaging and Localization of Single Emitters near Plasmonic Particles of Different Size, Shape, and Material. Journal of Physical Chemistry C, 2021, 125, 22084-22092.	1.5	2
153	Super-Resolution Imaging Based on Nonlinear Plasmonic Scattering. Biological and Medical Physics Series, 2019, , 239-259.	0.3	O
154	Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147104.	0.2	6
155	Spatially switched near field distribution using plasmonic random nanoislands. , 2019, , .		O
156	Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS Nano, 2021, 15, 18023-18036.	7.3	33
157	Broadband and polarization-mediated unidirectional plasmon polaritons launch based on metallic triangle aperture arrays. International Journal of Modern Physics B, 2021, 35, 2150006.	1.0	3
158	Hyperbolic dispersion metamaterials and metasurfaces. EPJ Applied Metamaterials, 2020, 7, 11.	0.8	5
159	Evanescent Field Effects and Plasmonic Enhancement of Luminescence in Sensing Technologies. , 2020, , 503-529.		1
160	Multifunctional Plasmonic Grating Based on the Phase Modulation of Excitation Light. Nanomaterials, 2021, 11, 2941.	1.9	0
161	Multipolar and bulk modes: fundamentals of single-particle plasmonics through the advances in electron and photon techniques. Nanophotonics, 2020, 9, 4433-4446.	2.9	3
162	Phase-sensitive surface plasmon resonance sensors for highly sensitive bioanalysis. Comprehensive Analytical Chemistry, 2021, , 55-88.	0.7	1
163	Super-resolution imaging of plasmonic nanostructures by microsphere-assisted microscopy. Applied Optics, 2022, 61, E8.	0.9	4
164	Negative refraction in twisted hyperbolic metasurfaces. Nanophotonics, 2022, 11, 1977-1987.	2.9	10
165	Spectrally Resolved Surface-Enhanced Raman Scattering Imaging Reveals Plasmon-Mediated Chemical Transformations. ACS Nanoscience Au, 2021, 1, 38-46.	2.0	6

#	ARTICLE	IF	CITATIONS
166	Can super-resolution microscopy become a standard characterization technique for materials chemistry?. Chemical Science, 2022, 13, 2152-2166.	3.7	14
167	Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres. Journal of the American Chemical Society, 2022, 144, 1267-1273.	6.6	7
168	Microsphere-assisted microscopy. Journal of Applied Physics, 2022, 131, .	1.1	31
169	Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS Physical Chemistry Au, 2022, 2, 289-298.	1.9	11
170	Achieving sub-diffraction spatial resolution using combined Fourier transform spectroscopy and nonlinear optical microscopy. Journal of Chemical Physics, 2022, 156, 021101.	1.2	5
171	Photoresponsive DNA materials and their applications. Chemical Society Reviews, 2022, 51, 720-760.	18.7	48
173	High Resolution of Plasmonic Resonance Scattering Imaging with Deep Learning. Analytical Chemistry, 2022, 94, 4610-4616.	3.2	7
174	Synergistic Electronic Effects in AuCo Nanoparticles Stabilized in a Triazine-Based Covalent Organic Framework: A Catalyst for Methyl Orange and Methylene Blue Reduction. ACS Applied Nano Materials, 2022, 5, 4744-4753.	2.4	10
175	Spatiotemporal imaging of the longitudinal and transverse components of the few-cycle surface plasmon polaritons near-field in nano-femto scale by time-resolved photoemission electron microscopy. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	2
176	Super-resolution imaging: when biophysics meets nanophotonics. Nanophotonics, 2022, 11, 169-202.	2.9	6
177	Self-Referenced SERS Thermometry of Molecules on a Metallic Nanostructure. Journal of Physical Chemistry C, 2022, 126, 451-458.	1.5	7
178	Single-Molecule SERS Hotspot Dynamics in Both Dry and Aqueous Environments. Journal of Physical Chemistry C, 2022, 126, 7117-7126.	1.5	8
181	Remote two-dimensional nanometric localization of molecules by the analysis of fluorescence coupled to guided surface plasmons. Journal of Materials Chemistry $C,0,\ldots$	2.7	0
182	A Wide-Field Imaging Approach for Simultaneous Super-Resolution Surface-Enhanced Raman Scattering Bioimaging and Spectroscopy. ACS Measurement Science Au, 2022, 2, 332-341.	1.9	6
183	Gold triangular nanoplates with edge effect for reaction monitoring under dark-field microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129133.	2.3	2
184	Blinking-Based Multiplexing: A New Approach for Differentiating Spectrally Overlapped Emitters. Journal of Physical Chemistry Letters, 2022, 13, 5056-5060.	2.1	5
185	Emerging Trends in Super-resolution Imaging: How Lasers Light the Way. ACS Symposium Series, 0, , 255-276.	0.5	2
187	Insight into the Heterogeneity of Longitudinal Plasmonic Field in a Nanocavity Using an Intercalated Two-Dimensional Atomic Crystal Probe with a $\hat{a}^{-1}/47$ Å Resolution. Journal of the American Chemical Society, 2022, 144, 13174-13183.	6.6	4

#	Article	IF	CITATIONS
188	Bacteria (<i>E. coli</i>) take up ultrasmall gold nanoparticles (2Ânm) as shown by different optical microscopic techniques (CLSM, SIM, STORM). Nano Select, 2022, 3, 1407-1420.	1.9	12
190	An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chemistry, 2023, 402, 134239.	4.2	7
191	Silencing of proinflammatory NF-κB and inhibition of herpes simplex virus (HSV) replication by ultrasmall gold nanoparticles (2 nm) conjugated with small-interfering RNA. Nanoscale Advances, 2022, 4, 4502-4516.	2.2	5
192	Branched immunochip-integrated pairwise barcoding amplification exploring the spatial proximity of two post-translational modifications in distinct cell subpopulations. Chemical Communications, 2022, 58, 10020-10023.	2.2	0
193	Charge-transfer plasmons of complex nanoparticle arrays connected by conductive molecular bridges. Physical Chemistry Chemical Physics, 2022, 24, 19531-19540.	1.3	2
194	Plasmonic Nanostars: Systematic Review of their Synthesis and Applications. ACS Applied Nano Materials, 2022, 5, 14051-14091.	2.4	10
195	Amplitude and Phase Spectra of Light Scattered from a Single Nanoparticle. ACS Photonics, 2022, 9, 3052-3059.	3.2	7
196	Super-resolution SERS spectral bioimaging. , 2022, , .		O
197	Super-localisation of a point-like emitter in a resonant environment: Correction of the mirage effect. Inverse Problems and Imaging, 2022, .	0.6	0
198	Rigorous Analysis and Systematical Design of Double-Layer Metal Superlens for Improved Subwavelength Imaging Mediated by Surface Plasmon Polaritons. Nanomaterials, 2022, 12, 3553.	1.9	3
199	Noble metal nanoparticles meet molecular cages: A tale of integration and synergy. Current Opinion in Colloid and Interface Science, 2023, 63, 101660.	3.4	4
200	Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Advances, 2022, 13, 80-114.	1.7	18
201	Linear and Nonlinear Optical Properties of Wellâ€Defined and Disordered Plasmonic Systems: A Review. Advanced Optical Materials, 2023, 11, .	3.6	3
202	Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps Containing an Organic Semiconductor., 2023, 1, 500-506.		1
203	Quantitative Discrimination of Silver and Gold Nanoparticles Immobilized in Transparent Plastic Film by Photothermal Microscopy with Multiwavelength Excitation. Chemistry Letters, 2023, 52, 113-115.	0.7	0
204	Observation of Ultrabroadband Striped Space-Time Surface Plasmon Polaritons. ACS Photonics, 2023, 10, 374-382.	3.2	4
205	Near-field manipulation of Tamm plasmon polaritons. Optics Express, 0, , .	1.7	3
206	Gender and CVD- Does It Really Matters?. Current Problems in Cardiology, 2023, 48, 101604.	1.1	9

#	Article	IF	CITATIONS
207	Machine learning for nanoplasmonics. Nature Nanotechnology, 2023, 18, 111-123.	15.6	15
208	Photo-to-heat conversion of broadband metamaterial absorbers based on TiN nanoparticles under laser and solar illumination. Materials Today Communications, 2023, 35, 105794.	0.9	0
209	CoSi Nanostructures Prepared by Laser Ablation as Plasmonic Absorbers for Photothermal Conversion., 2023, 1, 552-557.		1
210	Sensing Performance Analysis of Spiral Metasurface Utilizing Phase Spectra Measurement Technique. Photonics, 2023, 10, 243.	0.9	1
211	The evolutionary plasmonic properties of single truncated Ag nanowire-on-Au film nanocavity. Chinese Physics Letters, 0 , , .	1.3	0
212	Rapid, Accurate Classification of Single Emitters in Various Conditions and Environments for Blinking-Based Multiplexing. Journal of Physical Chemistry A, 2023, 127, 3518-3525.	1.1	1