Plant-soil feedbacks and mycorrhizal type influence ter

Science 355, 181-184 DOI: 10.1126/science.aai8212

Citation Report

#	Article	IF	CITATIONS
1	Photosynthesis and aboveground carbon allocation of two co-occurring poplar species in an urban brownfield. Environmental Pollution, 2017, 223, 497-506.	7.5	13
2	Belowground drivers of plant diversity. Science, 2017, 355, 134-135.	12.6	61
3	Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 2017, 38, 155-163.	7.1	538
4	Geographical Variation in Community Divergence: Insights from Tropical Forest Monodominance by Ectomycorrhizal Trees. American Naturalist, 2017, 190, S105-S122.	2.1	19
5	Temperatureâ€mediated local adaptation alters the symbiotic function in arbuscular mycorrhiza. Environmental Microbiology, 2017, 19, 2616-2628.	3.8	11
6	Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the United States of America, 2017, 114, 11169-11174.	7.1	203
7	Soil Biodiversity and Tree Crops Resilience. , 2017, , 321-343.		2
8	Sapling growth rates reveal conspecific negative density dependence in a temperate forest. Ecology and Evolution, 2017, 7, 7661-7671.	1.9	23
9	Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytologist, 2017, 216, 1130-1139.	7.3	71
10	Live long and prosper: plant–soil feedback, lifespan, and landscape abundance covary. Ecology, 2017, 98, 3063-3073.	3.2	35
11	Plant trait-based approaches for interrogating belowground function. Biology and Environment, 2017, 117B, 1.	0.3	48
12	Relationships between mycorrhizal type and leaf flammability in the Australian flora. Pedobiologia, 2017, 65, 43-49.	1.2	7
13	Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170641.	2.6	70
14	Conspecific negative density dependence in American beech. Forest Ecosystems, 2017, 4, .	3.1	8
15	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	3.3	38
17	Variable seed behavior increases recruitment success of a hardwood tree, Zelkova serrata, in spatially heterogeneous forest environments. Forest Ecology and Management, 2018, 415-416, 1-9.	3.2	10
18	Communityâ€level plant–soil feedbacks explain landscape distribution of native and nonâ€native plants. Ecology and Evolution, 2018, 8, 2041-2049.	1.9	36
19	Competition–colonization tradeoffs structure fungal diversity. ISME Journal, 2018, 12, 1758-1767.	9.8	91

#	ARTICLE	IF	CITATIONS
20	Heterospecific plant–soil feedback and its relationship to plant traits, species relatedness, and co-occurrence in natural communities. Oecologia, 2018, 187, 679-688.	2.0	17
21	The strength of negative plant–soil feedback increases from the intraspecific to the interspecific and the functional group level. Ecology and Evolution, 2018, 8, 2280-2289.	1.9	25
22	Soil microbes promote complementarity effects among coâ€existing trees through soil nitrogen partitioning. Functional Ecology, 2018, 32, 1879-1889.	3.6	31
23	Soil fungi underlie a phylogenetic pattern in plant growth responses to nitrogen enrichment. Journal of Ecology, 2018, 106, 2161-2175.	4.0	8
24	Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes. Ecology Letters, 2018, 21, 865-874.	6.4	60
25	The role of plant–soil feedbacks in stabilizing a reindeerâ€induced vegetation shift in subarctic tundra. Functional Ecology, 2018, 32, 1959-1971.	3.6	15
26	Towards the Integration of Niche and Network Theories. Trends in Ecology and Evolution, 2018, 33, 287-300.	8.7	112
27	Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release. Oecologia, 2018, 186, 611-620.	2.0	9
28	Timing of mutualist arrival has a greater effect on <i>Pinus muricata</i> seedling growth than interspecific competition. Journal of Ecology, 2018, 106, 514-523.	4.0	31
29	<i>In situ</i> mycorrhizal function – knowledge gaps and future directions. New Phytologist, 2018, 220, 957-962.	7.3	39
30	Toward more robust plantâ€soil feedback research. Ecology, 2018, 99, 550-556.	3.2	49
31	Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology, 2018, 106, 1545-1557.	4.0	25
32	Individual species–area relationships in temperate coniferous forests. Journal of Vegetation Science, 2018, 29, 317-324.	2.2	15
33	Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA) forest and steppe communities?. Plant Ecology, 2018, 219, 359-368.	1.6	2
34	Shifts in prokaryotic communities under forest and grassland within a tropical mosaic landscape. Applied Soil Ecology, 2018, 125, 156-161.	4.3	2
35	Beyond ICOM8: perspectives on advances in mycorrhizal research from 2015 to 2017. Mycorrhiza, 2018, 28, 197-201.	2.8	4
36	Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. Mycorrhiza, 2018, 28, 187-195.	2.8	9
37	Spatial heterogeneity in plant–soil feedbacks alters competitive interactions between two grassland plant species. Functional Ecology, 2018, 32, 2085-2094.	3.6	24

#	Article	IF	CITATIONS
38	Climate, but not trait, effects on plant–soil feedback depend on mycorrhizal type in temperate forests. Ecosphere, 2018, 9, e02132.	2.2	40
39	Tree species with limited geographical ranges show extreme responses to ectomycorrhizas. Global Ecology and Biogeography, 2018, 27, 839-848.	5.8	16
40	Global negative effects of nitrogen deposition on soil microbes. ISME Journal, 2018, 12, 1817-1825.	9.8	405
41	Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecology Letters, 2018, 21, 713-723.	6.4	97
42	Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia, 2018, 186, 195-204.	2.0	44
43	Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology, 2018, 106, 254-264.	4.0	86
44	How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant and Soil, 2018, 424, 11-33.	3.7	149
45	Janzen–Connell patterns can be induced by fungalâ€driven decomposition and offset by ectomycorrhizal fungi accumulated under a closely related canopy. Functional Ecology, 2018, 32, 785-798.	3.6	12
46	Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. Journal of Ecology, 2018, 106, 230-241.	4.0	61
48	Dominant forest tree mycorrhizal type mediates understory plant invasions. Ecology Letters, 2018, 21, 217-224.	6.4	49
49	Plant–Soil Feedback: Bridging Natural and Agricultural Sciences. Trends in Ecology and Evolution, 2018, 33, 129-142.	8.7	249
50	The genetics underlying natural variation of plant–plant interactions, a beloved but forgotten member of the family of biotic interactions. Plant Journal, 2018, 93, 747-770.	5.7	65
51	Ecosystem responses to elevated <scp>CO</scp> ₂ governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytologist, 2018, 217, 507-522.	7.3	139
52	Fertilizing riparian forests: nutrient repletion across ecotones with trophic rewilding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170439.	4.0	9
53	Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Communications Biology, 2018, 1, 196.	4.4	73
54	Genetically determined fungal pathogen tolerance and soil variation influence ectomycorrhizal traits of loblolly pine. Ecology and Evolution, 2018, 8, 9646-9656.	1.9	6
55	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	10.3	161
56		1.2	8

		CITATION REPORT		
#	Article		IF	CITATIONS
57	How Soil Biota Drive Ecosystem Stability. Trends in Plant Science, 2018, 23, 1057-1067.		8.8	145
58	Insights on the persistence of pines (<i>Pinus</i> species) in the Late Cretaceous and their incredominance in the Anthropocene. Ecology and Evolution, 2018, 8, 10345-10359.	asing	1.9	13
59	Intraspecific Plant–Soil Feedbacks Link Ecosystem Ecology and Evolutionary Biology. Ecologic Studies, 2018, , 69-84.	al	1.2	7
60	Effects of host species, environmental filtering and forest age on community assembly of ectomycorrhizal fungi in fragmented forests. Fungal Ecology, 2018, 36, 89-98.		1.6	30
61	Phylogenetic trait conservatism predicts patterns of plantâ \in soil feedback. Ecosphere, 2018, 9, ϵ	02409.	2.2	7
62	Invasive earthworm damage predicts occupancy of a threatened forest fern: Implications for conservation and management. Forest Ecology and Management, 2018, 430, 291-298.		3.2	1
63	Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biology and Biochemistry, 2018, 127, 22-30.		8.8	84
64	Impact of local forest composition on soil fungal communities in a mixed boreal forest. Plant and Soil, 2018, 432, 345-357.	1	3.7	38
65	Effects of interspecific competition on plant-soil feedbacks generated by long-term grazing. Soil Biology and Biochemistry, 2018, 126, 133-143.		8.8	17
66	Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environmental Research Letters, 2018, 13, 094017.		5.2	22
67	Belowâ€ground biotic interactions moderated the postglacial range dynamics of trees. New Phytologist, 2018, 220, 1148-1160.		7.3	36
68	Stochastic and deterministic effects on interactions between canopy and recruiting species in fo communities. Functional Ecology, 2018, 32, 2264-2274.	prest	3.6	13
69	Response to Comment on $\hat{a} \in \infty$ Plant diversity increases with the strength of negative density de at the global scale $\hat{a} \in Science$, 2018, 360, .	pendence	12.6	9
70	Plant Communities as Modulators of Soil Carbon Storage. , 2018, , 29-71.			1
71	Mimicking a rainfall gradient to test the role of soil microbiota for mediating plant responses to drier conditions. Oikos, 2018, 127, 1776-1786.		2.7	17
72	Soil microbes regulate forest succession in a subtropical ecosystem in China: evidence from a mesocosm experiment. Plant and Soil, 2018, 430, 277-289.		3.7	14
73	Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in Temperate Forest. Frontiers in Microbiology, 2018, 9, 433.	а	3.5	54
74	Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 2018, 9, 2738.		12.8	861

#	Article	IF	CITATIONS
75	The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecology and Management, 2018, 429, 84-92.	3.2	26
76	Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere, 2018, 9, e02226.	2.2	49
77	Ecology and Evolution of the Amanita Cyclic Peptide Toxins. , 2018, , 167-204.		0
78	The Responses of Forest Fine Root Biomass/Necromass Ratio to Environmental Factors Depend on Mycorrhizal Type and Latitudinal Region. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1769-1788.	3.0	14
79	Biotic controls of plant coexistence. Journal of Ecology, 2018, 106, 1767-1772.	4.0	18
80	Heterogeneity in arbuscular mycorrhizal fungal communities may contribute to inconsistent plant-soil feedback in a Neotropical forest. Plant and Soil, 2018, 432, 29-44.	3.7	15
81	Environment and host as large-scale controls of ectomycorrhizal fungi. Nature, 2018, 558, 243-248.	27.8	282
82	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	6.4	197
83	Biotic and abiotic plant–soil feedback depends on nitrogenâ€acquisition strategy and shifts during longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 142-153.	4.0	41
84	Responses of plant community mycorrhization to anthropogenic influence depend on the habitat and mycorrhizal type. Oikos, 2019, 128, 1565-1575.	2.7	4
85	Beyond the black box: promoting mathematical collaborations for elucidating interactions in soil ecology. Ecosphere, 2019, 10, e02799.	2.2	8
86	Plant facilitation through mycorrhizal symbiosis is stronger between distantly related plant species. New Phytologist, 2019, 224, 928-935.	7.3	19
87	Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant and Soil, 2019, 442, 1-22.	3.7	43
88	Negative plant–soil feedbacks are stronger in agricultural habitats than in forest fragments in the tropical Andes. Ecology, 2019, 100, e02850.	3.2	21
89	Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biological Reviews, 2019, 94, 1857-1880.	10.4	178
90	Land Use Change and Water Quality Use for Irrigation Alters Drylands Soil Fungal Community in the Mezquital Valley, Mexico. Frontiers in Microbiology, 2019, 10, 1220.	3.5	15
91	Role of seed size and relative abundance in conspecific negative distance-dependent seedling mortality for eight tree species in a temperate forest. Forest Ecology and Management, 2019, 453, 117537.	3.2	19
92	The Role of Plant Litter in Driving Plant-Soil Feedbacks. Frontiers in Environmental Science, 2019, 7, .	3.3	79

#	ARTICLE	IF	CITATIONS
93	High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased Caulerpa lentillifera. BMC Microbiology, 2019, 19, 225.	3.3	18
94	Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, 2019, 10, 5077.	12.8	170
95	Edge Effects on Seedling Diversity Are Mediated by Impacts of Fungi and Insects on Seedling Recruitment but Not Survival. Frontiers in Forests and Global Change, 2019, 2, .	2.3	7
96	Site Soil-Fertility and Light Availability Influence Plant-Soil Feedback. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	11
97	Interdomain ecological networks between plants and microbes. Molecular Ecology Resources, 2019, 19, 1565-1577.	4.8	64
98	Does Inoculation with Arbuscular Mycorrhizal Fungi Reduce Trunk Disease in Grapevine Rootstocks?. Horticulturae, 2019, 5, 61.	2.8	17
99	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	12.8	88
100	Bias in the detection of negative density dependence in plant communities. Ecology Letters, 2019, 22, 1923-1939.	6.4	84
101	Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Science Advances, 2019, 5, eaax5088.	10.3	48
102	Taking plant–soil feedbacks to the field in a temperate grassland. Basic and Applied Ecology, 2019, 40, 30-42.	2.7	17
103	The role of long-distance dispersal and mycorrhizas on plant colonisation within mainland Germany. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 258, 151443.	1.2	1
104	Plant-Soil Feedbacks Predict Native but Not Non-native Plant Community Composition: A 7-Year Common-Garden Experiment. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	13
105	Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 2019, 366, 124-128.	12.6	157
106	Clobal plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nature Ecology and Evolution, 2019, 3, 239-250.	7.8	79
107	Fungal communities do not recover after removing invasive Alliaria petiolata (garlic mustard). Biological Invasions, 2019, 21, 3085-3099.	2.4	14
108	Adaptive partner recruitment can help maintain an intra-guild diversity in mutualistic systems. Journal of Theoretical Biology, 2019, 478, 40-47.	1.7	1
109	The Effect of Forest Thinning on Soil Microbial Community Structure and Function. Forests, 2019, 10, 352.	2.1	24
110	Distinct Biogeography of Different Fungal Guilds and Their Associations With Plant Species Richness in Forest Ecosystems. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	22

#	Article	IF	CITATIONS
111	Microbial inoculation influences arbuscular mycorrhizal fungi community structure and nutrient dynamics in temperate tree restoration. Restoration Ecology, 2019, 27, 1084-1093.	2.9	11
112	Quantification of tree fine roots by real-time PCR. Plant and Soil, 2019, 440, 593-600.	3.7	3
113	The role of arbuscular mycorrhizal fungi in plant invasion trajectory. Plant and Soil, 2019, 441, 1-14.	3.7	30
114	Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 2019, 569, 404-408.	27.8	371
115	Diversityâ€dependent plant–soil feedbacks underlie longâ€ŧerm plant diversity effects on primary productivity. Ecosphere, 2019, 10, e02704.	2.2	26
116	Single introductions of soil biota and plants generate longâ€ŧerm legacies in soil and plant community assembly. Ecology Letters, 2019, 22, 1145-1151.	6.4	59
117	Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytologist, 2019, 223, 366-376.	7.3	8
118	Range-expansion effects on the belowground plant microbiome. Nature Ecology and Evolution, 2019, 3, 604-611.	7.8	67
119	Role of mycorrhizal associations in tree spatial distribution patterns based on size class in an old-growth forest. Oecologia, 2019, 189, 971-980.	2.0	27
120	Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME Journal, 2019, 13, 1722-1736.	9.8	716
121	Host plant phylogeny and abundance predict rootâ€essociated fungal community composition and diversity of mutualists and pathogens. Journal of Ecology, 2019, 107, 1557-1566.	4.0	27
122	Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytologist, 2019, 223, 462-474.	7.3	51
123	Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Science Advances, 2019, 5, eaav6358.	10.3	107
124	Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecological Monographs, 2019, 89, e01367.	5.4	31
125	Arbuscular mycorrhizal fungal community recovers faster than plant community in historically disturbed Tibetan grasslands. Soil Biology and Biochemistry, 2019, 134, 131-141.	8.8	16
126	Bringing Plants & Soils to Life through a Simple Role-Playing Activity. American Biology Teacher, 2019, 81, 287-290.	0.2	2
127	Biogeographic variation of distanceâ€dependent effects in an invasive tree species. Functional Ecology, 2019, 33, 1135-1143.	3.6	5
128	Domesticated tomatoes are more vulnerable to negative plant–soil feedbacks than their wild relatives. Journal of Ecology, 2019, 107, 1753-1766.	4.0	30

#	Article	IF	CITATIONS
129	Tree mycorrhizal associations mediate soil fertility effects on forest community structure in a temperate forest. New Phytologist, 2019, 223, 475-486.	7.3	39
130	Structural Complexity and Benthic Cover Explain Reef-Scale Variability of Fish Assemblages in Los Roques National Park, Venezuela. Frontiers in Marine Science, 2019, 6, .	2.5	16
131	Soil Inoculation Steers Plant-Soil Feedback, Suppressing Ruderal Plant Species. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	13
132	Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 2019, 5, eaaz1834.	10.3	245
133	The Foundation for Building the Conservation Capacity of Community Ecology. Frontiers in Marine Science, 2019, 6, .	2.5	10
134	Suilloid fungi as global drivers of pine invasions. New Phytologist, 2019, 222, 714-725.	7.3	97
135	Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytologist, 2019, 222, 91-96.	7.3	261
136	Temperatureâ€mediated phylogenetic assemblage of fungal communities and local adaptation in mycorrhizal symbioses. Environmental Microbiology Reports, 2019, 11, 215-226.	2.4	8
137	Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza, 2019, 29, 97-111.	2.8	41
138	Why are plant–soil feedbacks so unpredictable, and what to do about it?. Functional Ecology, 2019, 33, 118-128.	3.6	91
139	Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems. Biogeochemistry, 2019, 142, 53-71.	3.5	14
140	Dibutyl phthalate contamination remolded the fungal community in agro-environmental system. Chemosphere, 2019, 215, 189-198.	8.2	27
141	Dualâ€nycorrhizal plants: their ecology and relevance. New Phytologist, 2020, 225, 1835-1851.	7.3	119
142	Effects of soil microbes on plant competition: a perspective from modern coexistence theory. Ecological Monographs, 2020, 90, e01391.	5.4	69
143	The long-term case for partial-cutting over clear-cutting in the southern Appalachians USA. New Forests, 2020, 51, 273-295.	1.7	8
144	Shade tolerance and mycorrhizal type may influence sapling susceptibility to conspecific negative density dependence. Journal of Ecology, 2020, 108, 325-336.	4.0	19
145	Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 2020, 31, 355-366.	2.2	20
146	Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecology Letters, 2020, 23, 119-128.	6.4	38

#	Article	IF	Citations
147	Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications, 2020, 11, 34.	12.8	176
148	Plant–microbial interactions facilitate grassland species coexistence at the community level. Oikos, 2020, 129, 533-543.	2.7	8
149	Environmental predictors of vascular plant richness at large spatial scales based on protected area data of China. Global Ecology and Conservation, 2020, 21, e00846.	2.1	2
150	Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soilâ€borne pathogen. Environmental Microbiology, 2020, 22, 660-676.	3.8	36
151	Insight into the truffle brûlé: tripartite interactions between the black truffle (Tuber melanosporum), holm oak (Quercus ilex) and arbuscular mycorrhizal plants. Plant and Soil, 2020, 446, 577-594.	3.7	18
152	Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Frontiers in Microbiology, 2020, 11, 1953.	3.5	126
153	Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. , 2020, 8, coaa061.		20
154	Untangling the effect of roots and mutualistic ectomycorrhizal fungi on soil metabolite profiles under ambient and elevated carbon dioxide. Soil Biology and Biochemistry, 2020, 151, 108021.	8.8	7
155	The influence of warming and biotic interactions on the potential for range expansion of native and nonnative species. AoB PLANTS, 2020, 12, plaa040.	2.3	2
156	Arbuscular mycorrhizal fungi favor invasive Echinops sphaerocephalus when grown in competition with native Inula conyzae. Scientific Reports, 2020, 10, 20287.	3.3	6
157	Plant diversity and local rainfall regime mediate soil ecosystem functions in tropical forests of north-east Bangladesh. Environmental Advances, 2020, 2, 100022.	4.8	9
158	Conspecific distance-dependent seedling performance, and replacement of conspecific seedlings by heterospecifics in five hardwood, temperate forest species. Oecologia, 2020, 193, 937-947.	2.0	2
159	Plant-mycorrhiza association in urban forests: Effects of the degree of urbanisation and forest size on the performance of sycamore (Acer pseudoplatanus) saplings. Urban Forestry and Urban Greening, 2020, 56, 126872.	5.3	8
160	Impact of TiO ₂ and ZnO Nanoparticles on Soil Bacteria and the Enantioselective Transformation of Racemic-Metalaxyl in Agricultural Soil with <i>Lolium perenne</i> : A Wild Greenhouse Cultivation. Journal of Agricultural and Food Chemistry, 2020, 68, 11242-11252.	5.2	10
161	Ectomycorrhizal fungal communities in the boundary between secondary broad-leaved forests and Japanese cypress plantations. Journal of Forest Research, 2020, 25, 397-404.	1.4	2
162	Climate Disruption of Plant-Microbe Interactions. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 561-586.	8.3	72
163	Dominant community mycorrhizal types influence local spatial structure between adult and juvenile temperate forest tree communities. Functional Ecology, 2020, 34, 2571-2583.	3.6	7
164	Soil precipitation legacies influence intraspecific plant–soil feedback. Ecology, 2020, 101, e03142.	3.2	29

#	Article	IF	CITATIONS
165	Limited contributions of plant pathogens to densityâ€dependent seedling mortality of mast fruiting Bornean trees. Ecology and Evolution, 2020, 10, 13154-13164.	1.9	7
166	Seedling survival declines with increasing conspecific density in a common temperate tree. Ecosphere, 2020, 11, e03292.	2.2	10
167	Ectomycorrhizal Flora Formed by Main Forest Trees in the Irtysh River Region of Central and Northeastern Kazakhstan. South-East European Forestry, 2020, 11, 61-69.	0.4	1
168	Vegetation type determines spore deposition within a forest–agricultural mosaic landscape. FEMS Microbiology Ecology, 2020, 96, .	2.7	22
169	Variations of density-dependent seedling survival in a temperate forest. Forest Ecology and Management, 2020, 468, 118158.	3.2	6
170	Tree mycorrhizal type mediates the strength of negative density dependence in temperate forests. Journal of Ecology, 2020, 108, 2601-2610.	4.0	25
171	Seeing the forest not just for its trees: exotic pathogens shift forest communities aboveground and belowground. New Phytologist, 2020, 227, 283-285.	7.3	2
172	Lithological constraints on resource economies shape the mycorrhizal composition of a Bornean rain forest. New Phytologist, 2020, 228, 253-268.	7.3	23
173	Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nature Communications, 2020, 11, 2636.	12.8	81
174	Individual Plant-Soil Feedback Effects Influence Tree Growth and Rhizosphere Fungal Communities in a Temperate Forest Restoration Experiment. Frontiers in Ecology and Evolution, 2020, 7, .	2.2	12
175	Soil nitrogen availability intensifies negative density-dependent effects in a subtropical forest. Journal of Plant Ecology, 2020, 13, 281-287.	2.3	2
176	Ectomycorrhizal fungal diversity interacts with soil nutrients to predict plant growth despite weak plant-soil feedbacks. Plant and Soil, 2020, 453, 445-458.	3.7	9
177	Mixed evidence for plant–soil feedbacks in forest invasions. Oecologia, 2020, 193, 665-676.	2.0	11
178	Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. Environment International, 2020, 143, 105912.	10.0	31
179	Prairie plants harbor distinct and beneficial root-endophytic bacterial communities. PLoS ONE, 2020, 15, e0234537.	2.5	0
180	Native tree and shrub canopy facilitates oak seedling regeneration in semiarid woodland. Ecosphere, 2020, 11, e03017.	2.2	8
181	Plant–soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology, 2020, 101, e03023.	3.2	24
182	How mycorrhizal associations drive plant population and community biology. Science, 2020, 367, .	12.6	453

#	Article	IF	CITATIONS
183	Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. Journal of Ecology, 2020, 108, 931-944.	4.0	33
184	Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 2020, 11, 286.	12.8	78
185	Gap creation alters the mode of conspecific distance-dependent seedling establishment via changes in the relative influence of pathogens and mycorrhizae. Oecologia, 2020, 192, 449-462.	2.0	14
186	Associations between fungal root endophytes and grass dominance in arid highlands. Fungal Ecology, 2020, 45, 100924.	1.6	7
187	Plant nutrientâ€ e cquisition strategies drive topsoil microbiome structure and function. New Phytologist, 2020, 227, 1189-1199.	7.3	96
188	Effects of Microplastic Fibers and Drought on Plant Communities. Environmental Science & Technology, 2020, 54, 6166-6173.	10.0	244
189	Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family. Ecology, 2020, 101, e03083.	3.2	44
190	Overview and challenges in the implementation of plant beneficial microbes. , 2020, , 1-18.		3
191	Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 2021, 50, 25-42.	2.7	19
192	Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. Journal of Ecology, 2021, 109, 1210-1223.	4.0	23
193	Contrasting patterns of microbial community and enzyme activity between rhizosphere and bulk soil along an elevation gradient. Catena, 2021, 196, 104921.	5.0	59
194	ls Variation in Conspecific Negative Density Dependence Driving Tree Diversity Patterns at Large Scales?. Trends in Ecology and Evolution, 2021, 36, 151-163.	8.7	34
195	The soil biotic community protects Rhododendron spp. across multiple clades from the oomycete Phytophthora cinnamomi at a cost to plant growth. Oecologia, 2021, 195, 1-12.	2.0	5
196	Contrasting effects of Rhizophagus irregularis versus bacterial and fungal seed endophytes on Trifolium repens plant-soil feedback. Mycorrhiza, 2021, 31, 103-115.	2.8	14
197	Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology, 2021, 102, e03259.	3.2	20
198	First report on the microbial communities of the wild and planted raspberry rhizosphere – A statement on the taxa, processes and a new indicator of functional diversity. Ecological Indicators, 2021, 121, 107117.	6.3	10
199	Residence time determines invasiveness and performance of garlic mustard (<i>Alliaria petiolata</i>) in North America. Ecology Letters, 2021, 24, 327-336.	6.4	17
200	Foundation species across a latitudinal gradient in China. Ecology, 2021, 102, e03234.	3.2	10

#	Article	IF	CITATIONS
201	Light can modify densityâ€dependent seedling mortality in a temperate forest. Journal of Vegetation Science, 2021, 32, .	2.2	9
202	Clobally, plantâ€soil feedbacks are weak predictors of plant abundance. Ecology and Evolution, 2021, 11, 1756-1768.	1.9	19
203	Soil biota suppress maize growth and influence root traits under continuous monoculture. Plant and Soil, 2021, 461, 441-455.	3.7	7
204	Aboveground herbivores drive stronger plant species-specific feedback than belowground fungi to regulate tree community assembly. Oecologia, 2021, 195, 773-784.	2.0	2
205	Differences in phenolics produced by invasive Quercus rubra and native plant communities induced changes in soil microbial properties and enzymatic activity. Forest Ecology and Management, 2021, 482, 118901.	3.2	25
206	Effect of microrelief and water-table on vegetation dynamics in silty loam saline soils of coastal areas. SN Applied Sciences, 2021, 3, 1.	2.9	4
207	Compatible Mycorrhizal Types Contribute to a Better Design for Mixed Eucalyptus Plantations. Frontiers in Plant Science, 2021, 12, 616726.	3.6	2
208	The Forest of Unintended Consequences: Anthropogenic Actions Trigger the Rise and Fall of Black Cherry. BioScience, 2021, 71, 683-696.	4.9	13
209	Soil fungal networks moderate densityâ€dependent survival and growth of seedlings. New Phytologist, 2021, 230, 2061-2071.	7.3	26
210	A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecology Letters, 2021, 24, 1193-1204.	6.4	70
211	How and where do disturbances promote the establishment of nonnative mycorrhizal plants at high elevations?. New Phytologist, 2021, 230, 883-885.	7.3	2
212	Depression of the soil arbuscular mycorrhizal fungal community by the canopy gaps in a Japanese cedar (<i>Cryptomeria japonica</i>) plantation on Lushan Mountain, subtropical China. PeerJ, 2021, 9, e10905.	2.0	5
213	Elevated CO ₂ shifts soil microbial communities from <i>K</i> ―to <i>r</i> â€strategists. Global Ecology and Biogeography, 2021, 30, 961-972.	5.8	32
214	Genetic tracking of densityâ€dependent adult recruitment: A case study in a subtropical oak. Journal of Ecology, 2021, 109, 2317-2328.	4.0	1
215	Nitrogen Uptake, Not Transfer of Carbon and Nitrogen by CMN, Explains the Effect of AMF on the Competitive Interactions Between Flaveria bidentis and Native Species. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
217	Experimental evidence of strong relationships between soil microbial communities and plant germination. Journal of Ecology, 2021, 109, 2488-2498.	4.0	17
218	Microbeâ€mediated adaptation in plants. Ecology Letters, 2021, 24, 1302-1317.	6.4	33
219	Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests bordering the Yellow Sea of China. Brazilian Journal of Microbiology, 2021, 52, 801-809.	2.0	6

#	Article	IF	CITATIONS
220	Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza, 2021, 31, 313-324.	2.8	13
221	Networks of friends and foes and the fate of tree seedlings. New Phytologist, 2021, 230, 1688-1689.	7.3	0
222	Tripartite symbioses regulate plant–soil feedback in alder. Functional Ecology, 2021, 35, 1353-1365.	3.6	4
223	Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types. Scientific Reports, 2021, 11, 10788.	3.3	8
224	Short-lived legacies of Prunus serotina plant–soil feedbacks. Oecologia, 2021, 196, 529-538.	2.0	7
225	Multiâ€dimensionality as a path forward in plantâ€soil feedback research. Journal of Ecology, 2021, 109, 3446-3465.	4.0	34
226	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	12.8	28
227	Linking leaf δ15N and δ13C with soil fungal biodiversity, ectomycorrhizal and plant pathogenic abundance in forest ecosystems of China. Catena, 2021, 200, 105176.	5.0	8
228	A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecology Letters, 2021, 24, 1341-1351.	6.4	74
229	Biodiversity and ecosystem functioning: Have our experiments and indices been underestimating the role of facilitation?. Journal of Ecology, 2021, 109, 1962-1968.	4.0	36
230	Effects of soil microbial communities associated to different soil fertilization practices on tomato growth in intensive greenhouse agriculture. Applied Soil Ecology, 2021, 162, 103896.	4.3	11
231	Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape. ISME Journal, 2021, 15, 3437-3454.	9.8	26
232	The role of soil-borne fungi in driving the coexistence of <i>Pinus massoniana</i> and <i>Lithocarpus glaber</i> in a subtropical forest via plant–soil feedback. Journal of Plant Ecology, 2021, 14, 1189-1203.	2.3	5
233	α-Terpineol fumigation alleviates negative plant-soil feedbacks of Panax notoginseng via suppressing Ascomycota and enriching antagonistic bacteria. Phytopathology Research, 2021, 3, .	2.4	13
234	Interkingdom plant-microbial ecological networks under selective and clear cutting of tropical rainforest. Forest Ecology and Management, 2021, 491, 119182.	3.2	9
235	Relationships between plant–soil feedbacks and functional traits. Journal of Ecology, 2021, 109, 3411-3423.	4.0	29
236	The effects of plant–soil feedback on invasion resistance are soil context dependent. Oecologia, 2021, 197, 213-222.	2.0	7
237	Legacy effects of preâ€crop plant functional group on fungal root symbionts of barley. Ecological Applications, 2021, 31, e02378.	3.8	6

#	Article	IF	CITATIONS
238	Effects of one dark septate endophytic fungal and two Helotiales strains on the growth of plane-leaved willow (<i>Salix planifolia</i>) cuttings on iron ore waste rock. Botany, 2021, 99, 725-733.	1.0	1
239	Warming intensifies soil pathogen negative feedback on a temperate tree. New Phytologist, 2021, 231, 2297-2307.	7.3	13
240	Disentangling the role of oomycete soil pathogens as drivers of plant–soil feedbacks. Ecology, 2021, 102, e03430.	3.2	14
241	Shared friends counterbalance shared enemies in old forests. Ecology, 2021, 102, e03495.	3.2	6
242	Growth responses of ectomycorrhizal and arbuscular mycorrhizal seedlings to low soil nitrogen availability in a tropical montane forest. Functional Ecology, 2022, 36, 107-119.	3.6	7
243	Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. Forest Ecology and Management, 2021, 494, 119277.	3.2	18
244	Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environmental Microbiology, 2022, 24, 4236-4255.	3.8	22
245	Variation in plant–soil interactions among temperate forest herbs. Plant Ecology, 2021, 222, 1225-1238.	1.6	3
246	Severance of arbuscular mycorrhizal fungal mycelial networks in restoration grasslands enhances seedling biomass. New Phytologist, 2021, 232, 753-761.	7.3	3
247	Effect of microfibers combined with UV-B and drought on plant community. Chemosphere, 2022, 288, 132413.	8.2	8
248	Soil composition and plant genotype determine benzoxazinoidâ€nediated plant–soil feedbacks in cereals. Plant, Cell and Environment, 2021, 44, 3732-3744.	5.7	8
249	Mycorrhizal type and soil pathogenic fungi mediate tree survival and density dependence in a temperate forest. Forest Ecology and Management, 2021, 496, 119459.	3.2	9
250	Facilitation and plant phenotypic evolution. Trends in Plant Science, 2021, 26, 913-923.	8.8	13
251	Belowground feedbacks as drivers of spatial self-organization and community assembly. Physics of Life Reviews, 2021, 38, 1-24.	2.8	23
252	Stoichiometry of Carbon, Nitrogen and Phosphorus in Shrub Organs Linked Closely With Mycorrhizal Strategy in Northern China. Frontiers in Plant Science, 2021, 12, 687347.	3.6	10
253	Tree growth response to soil nutrients and neighborhood crowding varies between mycorrhizal types in an old-growth temperate forest. Oecologia, 2021, 197, 523-535.	2.0	5
254	The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere, 2021, 282, 130967.	8.2	83
255	The effects of long-term warming on arbuscular mycorrhizal fungal communities depend on habitat type on the Qinghai-Tibet Plateau. Applied Soil Ecology, 2021, 167, 104030.	4.3	12

ARTICLE IF CITATIONS # Fencing promotes fast recovery of demographic processes after grazing-driven collapse in Bursera 256 3.2 2 graveolens forests. Forest Ecology and Management, 2021, 499, 119592. Fungal community of forest soil: Diversity, functions, and services., 2021, , 231-255. The global invader Ligustrum lucidum accumulates beneficial arbuscular mycorrhizal fungi in a novel 258 9 1.6 range. Plant Ecology, 2021, 222, 397-408. Successful seedling establishment of arbuscular mycorrhizal-compared to ectomycorrhizal-associated hardwoods in arbuscular cedar plantations. Forest Ecology and Management, 2020, 468, 118155. INFLUENCE OF SOIL FERTILITY ON THE ABILITY OF SCOTS PINE (Pinus sylvestris L.) TO ADAPT TO 264 0.9 3 TECHNOGENIC POLLUTION. Cerne, 2019, 25, 326-331. Natural Enemies and the Maintenance of Tropical Tree Diversity: Recent Insights and Implications for the Future of Biodiversity in a Changing World. Annals of the Missouri Botanical Garden, 2020, 105, 1.3 377-392. Microbial regulation of soil carbon properties under nitrogen addition and plant inputs removal. 266 2.0 12 PeerJ, 2019, 7, e7343. Forest Disease Affecting Pines in the Mediterranean Basin. Managing Forest Ecosystems, 2021, , 183-198. 269 The Mycorrizal Status in Vineyards Affected by Esca. Journal of Fungi (Basel, Switzerland), 2021, 7, 869. 3.5 3 Microbiome influence on host community dynamics: Conceptual integration of microbiome feedback 270 6.4 with classical host–microbe theory. Ecology Letters, 2021, 24, 2796-2811. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil 271 5.815 acid–base chemistry. Global Ecology and Biogeography, 2022, 31, 168-182. Limited evidence that larger acorns buffer Quercus rubra seedlings from densityâ€dependent biotic stressors. American Journal of Botany, 2021, 108, 1861-1872. Plantâ€"soil biota interactions explain shifts in plant community composition under global change. 273 3.6 8 Functional Ecology, 2021, 35, 2778-2788. Positive heterospecific interactions can increase longâ€term diversity of plant communities more than 274 3.6 negative conspecific interactions alone. Functional Ecology, 2022, 36, 159-173. Arbuscular Mycorrhizal Fungi Associated with Rhizosphere of Tomato Grown in Arid and Semi-arid 277 0.4 0 Regions of Indian Desert. Asian Journal of Agricultural Research, 2017, 12, 10-18. A simulation model for exploring the effects of plant-soil feedbacks on the resilience of plant 278 280 Biotic Influences: Symbiotic Associations., 2019, , 487-540. 3 Response of aspen genotypes to browsing damage is not influenced by soil community diversity. Plant and Soil, 2020, 452, 153-170.

#	Article	IF	CITATIONS
283	Density-dependent plant-soil feedbacks of two plant species affected by plant competition. Science of the Total Environment, 2022, 807, 150908.	8.0	7
284	Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest. ISME Communications, 2021, 1, .	4.2	7
286	Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Tropical Ecology, 2022, 63, 216-228.	1.2	3
287	Does resource exchange in ectomycorrhizal symbiosis vary with competitive context and nitrogen addition?. New Phytologist, 2021, 233, 1331.	7.3	12
288	Root traits and soil microâ€organisms as drivers of plant–soil feedbacks within the subâ€arctic tundra meadow. Journal of Ecology, 2022, 110, 466-478.	4.0	8
289	Sensitivity of soil fungal and bacterial community compositions to nitrogen and phosphorus additions in a temperate meadow. Plant and Soil, 2022, 471, 477-490.	3.7	16
290	Comment les parasites sculptent les paysages végétaux. Pourlascience Fr, 2021, Nº 528 - octobre, 40-48.	0.0	0
291	Climate warming may weaken stabilizing mechanisms in old forests. Ecological Monographs, 2022, 92, .	5.4	6
292	Effect of <i>Elymus nutan</i> s on the assemblage of arbuscular mycorrhizal fungal communities enhanced by soil available nitrogen in the restoration succession of revegetated grassland on the <scp>Qinghaiâ€Tibetan</scp> Plateau. Land Degradation and Development, 2022, 33, 931-944.	3.9	7
293	Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME Journal, 2022, 16, 1327-1336.	9.8	62
294	Coupling of plant and mycorrhizal fungal diversity: its occurrence, relevance, and possible implications under global change. New Phytologist, 2022, 234, 1960-1966.	7.3	23
295	Arbuscular Mycorrhizal Tree Communities Have Greater Soil Fungal Diversity and Relative Abundances of Saprotrophs and Pathogens than Ectomycorrhizal Tree Communities. Applied and Environmental Microbiology, 2022, 88, AEM0178221.	3.1	14
296	The effects of ectomycorrhizal inoculation on survival and growth of Pinus thunbergii seedlings planted in saline soil. Symbiosis, 2022, 86, 71-80.	2.3	8
297	Plant diversity but not productivity is associated with community mycorrhization in temperate grasslands. Journal of Vegetation Science, 2022, 33, .	2.2	2
298	Interactions with soil fungi alter density dependence and neighborhood effects in a locally abundant dipterocarp species. Ecology and Evolution, 2022, 12, e8478.	1.9	0
299	Microbial mediators of plant community response to longâ€ŧerm N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi. Global Change Biology, 2022, 28, 2721-2735.	9.5	12
301	Phosphorus Limitation of Trees Influences Forest Soil Fungal Diversity in China. Forests, 2022, 13, 223.	2.1	11
302	Plant-soil feedback as a driver of spatial structure in ecosystems. Physics of Life Reviews, 2022, 40, 6-14.	2.8	10

#	Article	IF	CITATIONS
303	Intraspecific trait variation, growth, and altered soil conditions at tree species distribution limits: From the alpine treeline to the rear edge. Agricultural and Forest Meteorology, 2022, 315, 108811.	4.8	4
304	Beneficial effects of warming on temperate tree carbon storage depend on precipitation and mycorrhizal types. Science of the Total Environment, 2022, 819, 153086.	8.0	5
305	Changes in organic carbon and microbiology community structure due to long-term irrigated agriculture on Luvisols in the Brazilian semi-arid region. Catena, 2022, 212, 106058.	5.0	3
306	Functional Variability in Specific Root Respiration Translates to Autotrophic Differences in Soil Respiration in a Temperate Deciduous Forest. SSRN Electronic Journal, 0, , .	0.4	0
307	Mycorrhizal dominance reduces local tree species diversity across US forests. Nature Ecology and Evolution, 2022, 6, 370-374.	7.8	15
308	Opportunities for Microbiome Suppression of Weeds Using Regenerative Agricultural Technologies. Frontiers in Soil Science, 2022, 2, .	2.2	5
309	A framework for fineâ€root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. Oikos, 2023, 2023, .	2.7	7
310	Changes in precipitation patterns can destabilize plant species coexistence via changes in plant–soil feedback. Nature Ecology and Evolution, 2022, 6, 546-554.	7.8	8
311	Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere. Journal of Fungi (Basel, Switzerland), 2022, 8, 251.	3.5	30
312	Phylogenetic Signal, Root Morphology, Mycorrhizal Type, and Macroinvertebrate Exclusion: Exploring Wood Decomposition in Soils Conditioned by 13 Temperate Tree Species. Forests, 2022, 13, 536.	2.1	2
313	Deciphering the role of specialist and generalist plant–microbial interactions as drivers of plant–soil feedback. New Phytologist, 2022, 234, 1929-1944.	7.3	63
314	Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. Trends in Plant Science, 2022, 27, 793-801.	8.8	10
315	Tree species diversity increases with conspecific negative density dependence across an elevation gradient. Ecology Letters, 2022, 25, 1237-1249.	6.4	3
316	Phylogenetic dependence of plant–soil feedback promotes rare species in a subtropical forest. Journal of Ecology, 2022, 110, 1237-1246.	4.0	5
318	Topography in tropical forests enhances growth and survival differences within and among species via water availability and biotic interactions. Functional Ecology, 2022, 36, 686-698.	3.6	6
319	Above―and belowâ€ground biodiversity responses to the prolonged flood pulse in centralâ€western Amazonia, Brazil. Environmental DNA, 2022, 4, 533-548.	5.8	1
342	Agricultural Management Drive Bacterial Community Assembly in Different Compartments of Soybean Soil-Plant Continuum. Frontiers in Microbiology, 2022, 13, .	3.5	3
343	Soil microbial community is resilient to thinning disturbance. Tropical Ecology, 0, , 1.	1.2	0

#	Article	IF	CITATIONS
344	Fungal phylogeny and plant functional traits structure plant–rhizosphere fungi networks in a subtropical forest. Oikos, 2022, 2022, .	2.7	5
345	Drivers of tree demographic trade-offs in a temperate forest. Forest Ecosystems, 2022, 9, 100044.	3.1	4
346	Plant landscape abundance and soil fungi modulate drought effects on plant–soil feedbacks. Oikos, 0, , .	2.7	2
347	A general mathematical model for coevolutionary dynamics of mutualisms with partner discrimination. Theoretical Ecology, 0, , .	1.0	0
348	Mycorrhizal type of woody plants influences understory species richness in British broadleaved woodlands. New Phytologist, 2022, 235, 2046-2053.	7.3	3
349	Metagenomics: A Tool for Exploring Key Microbiome With the Potentials for Improving Sustainable Agriculture. Frontiers in Sustainable Food Systems, 0, 6, .	3.9	17
350	Effects of dual mycorrhizal inoculation on Pinus strobus seedlings are influenced by soil resource availability. Plant and Soil, 2022, 479, 607-620.	3.7	1
351	Drought legacy effects on root morphological traits and plant biomass via soil biota feedback. New Phytologist, 2022, 236, 222-234.	7.3	12
352	Demographic consequences of heterogeneity in conspecific density dependence among mast-fruiting tropical trees. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	5
353	Functional Variability in Specific Root Respiration Translates to Autotrophic Differences in Soil Respiration in a Temperate Decicuous Forest. SSRN Electronic Journal, 0, , .	0.4	0
354	Spatial variation of soil temperature fields in a urban park. IOP Conference Series: Earth and Environmental Science, 2022, 1049, 012056.	0.3	1
355	Shifts in understory plant composition induced by nitrogen addition predict soil fungal beta diversity in a boreal forest. Biology and Fertility of Soils, 2022, 58, 667-677.	4.3	4
356	Climate and mycorrhizae mediate the relationship of tree species diversity and carbon stocks in subtropical forests. Journal of Ecology, 2022, 110, 2462-2474.	4.0	7
357	Stoichiometric Ratios of Carbon, Nitrogen and Phosphorus of Shrub Organs Vary with Mycorrhizal Type. Agriculture (Switzerland), 2022, 12, 1061.	3.1	5
358	Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology, 0, , .	3.2	4
359	Soil inoculum identity and rate jointly steer microbiomes and plant communities in the field. ISME Communications, 2022, 2, .	4.2	2
360	Plant-soil feedbacks persist following tree death, reducing survival and growth of Populus tremuloides seedlings. Plant and Soil, O, , .	3.7	3
361	Tree mycorrhizal type mediates conspecific negative density dependence effects on seedling herbivory, growth, and survival. Oecologia, 2022, 199, 907-918.	2.0	2

#	Article	IF	CITATIONS
362	Responses of soil fungal communities and functional guilds to ~160 years of natural revegetation in the Loess Plateau of China. Frontiers in Microbiology, 0, 13, .	3.5	1
363	Dynamic Energy Budget models: fertile ground for understanding resource allocation in plants in a changing world. , 2022, 10, .		4
364	Ectomycorrhizal Fungi Associated With Pinus sylvestris var. mongolica Were Altered by Soil Environments With Aging Plantation in a Semi-arid Desert. Frontiers in Environmental Science, 0, 10, .	3.3	5
365	The multiscale feedback theory of biodiversity. Trends in Ecology and Evolution, 2023, 38, 171-182.	8.7	5
366	Phosphorus acquisition strategies of arbuscular mycorrhizal and ectomycorrhizal trees in subtropical plantations. European Journal of Soil Science, 2022, 73, .	3.9	0
367	Differences in Density Dependence among Tree Mycorrhizal Types Affect Tree Species Diversity and Relative Growth Rates. Plants, 2022, 11, 2340.	3.5	2
369	Soil fungal communities vary more with soil characteristics than tree diversity at a local scale. Canadian Journal of Forest Research, 2023, 53, 14-24.	1.7	0
370	Diversity of Arbuscular Mycorrhizal Fungi in the Ecuadorian Amazon Region. Fungal Biology, 2022, , 141-170.	0.6	1
371	Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology, 2023, 104, .	3.2	12
372	Correlation between fine root traits and pathogen richness depends on plant mycorrhizal types. Oikos, 2023, 2023, .	2.7	2
373	Climate change-driven shifts in plant–soil feedbacks: a meta-analysis. Ecological Processes, 2022, 11, .	3.9	5
374	Tamm review: Forest understorey and overstorey interactions: So much more than just light interception by trees. Forest Ecology and Management, 2022, 526, 120584.	3.2	10
375	Tree regeneration response to a shifting soil nutrient economy depends on mycorrhizal association and age. Forest Ecology and Management, 2023, 527, 120580.	3.2	3
376	Ectomycorrhizal (dipterocarp) and arbuscular mycorrhizal (nonâ€dipterocarp) tree hosts and their relative distribution in a tropical forest predict soil bacterial communities. Journal of Ecology, 2023, 111, 251-262.	4.0	1
378	The rhizosphere microbiome and host plant glucosinolates exhibit feedback cycles in <i>Brassica rapa</i> . Molecular Ecology, 2023, 32, 741-751.	3.9	6
379	Context matters: Natural tree mortality can lead to neighbor growth release or suppression. Forest Ecology and Management, 2023, 529, 120735.	3.2	4
380	The effects of light, conspecific density and soil fungi on seedling growth of temperate tree species. Forest Ecology and Management, 2023, 529, 120683.	3.2	5
381	Plant-soil feedbacks in Hydrocotyle vulgaris: Genotypic differences and relations to functional traits. Ecological Indicators, 2023, 146, 109766.	6.3	3

#	Article	IF	CITATIONS
382	Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. Science of the Total Environment, 2023, 861, 160616.	8.0	2
383	Tradeoffs of a rising agroecological practice: addressing uncertainty around tarping with participatory action research and mixed methods. Agroecology and Sustainable Food Systems, 2023, 47, 355-381.	1.9	2
384	First report of ectomycorrhizae in Prunus serotina in the exotic range. Plant and Soil, 2023, 484, 171-181.	3.7	2
385	Contrasting plant–soil–microbial feedbacks stabilize vegetation types and uncouple topsoil C and N stocks across a subarctic–alpine landscape. New Phytologist, 2023, 238, 2621-2633.	7.3	8
386	Hostâ€specific soil microbes contribute to habitat restriction of closely related oaks (<i>Quercus</i> spp.). Ecology and Evolution, 2022, 12, .	1.9	1
387	Mycorrhizal nutrient acquisition strategies shape tree competition and coexistence dynamics. Journal of Ecology, 2023, 111, 564-577.	4.0	1
388	Microclimate, soil chemistry, and microbiota fail to explain <i>Euphorbia dendroides</i> <scp>Janzen onnell</scp> pattern in a shrubland. Ecosphere, 2022, 13, .	2.2	1
389	Foliar Pathogen Infection Manipulates Soil Health through Root Exudate-Modified Rhizosphere Microbiome. Microbiology Spectrum, 2022, 10, .	3.0	9
390	Arbuscular mycorrhiza can be disadvantageous for weedy annuals in competition with paired perennial plants. Scientific Reports, 2022, 12, .	3.3	3
391	Tree Communication: the Effects of "Wired―and "Wireless―Channels on Interactions with Herbivores. Current Forestry Reports, 2023, 9, 33-47.	7.4	1
392	Mycorrhizal Complexes and Their Role in the Ecology of Boreal Forests (Review). Biology Bulletin, 2022, 49, 704-712.	0.5	1
393	Plant-soil feedback in the â€~real world': how does fire fit into all of this?. Plant and Soil, 2023, 485, 91-102.	3.7	7
394	Soil microbial legacy determines mycorrhizal colonization and root traits of conifer seedlings during subalpine forest succession. Plant and Soil, 2023, 485, 361-375.	3.7	2
395	Accuracy of mutual predictions of plant and microbial communities vary along a successional gradient in an alpine glacier forefield. Frontiers in Plant Science, 0, 13, .	3.6	3
397	Soil fungal and bacterial community structure in monocultures of fourteen tree species of the temperate zone. Forest Ecology and Management, 2023, 530, 120751.	3.2	3
398	Secondary vegetation succession on the Loess Plateau altered the interaction between arbuscular mycorrhizal fungi and nitrogen-fixing bacteria. Forest Ecology and Management, 2023, 530, 120744.	3.2	8
399	Tree mycorrhizal association types control biodiversity-productivity relationship in a subtropical forest. Science Advances, 2023, 9, .	10.3	25
400	Phosphorus availability and planting patterns regulate soil microbial effects on plant performance in a semiarid steppe. Annals of Botany, 2023, 131, 1081-1095.	2.9	1

#	Article	IF	CITATIONS
401	Speciation Underpinned by Unexpected Molecular Diversity in the Mycorrhizal Fungal Genus <i>Pisolithus</i> . Molecular Biology and Evolution, 2023, 40, .	8.9	11
402	Effects of Topography on Radial Growth of Tree Species with Different Mycorrhizal Types. Forests, 2023, 14, 546.	2.1	1
403	Females face more positive plant-soil feedback and intersexual competition under adequate nitrogen conditions compared to males in Populus cathayana. Science of the Total Environment, 2023, 874, 162479.	8.0	5
404	The effects of geographic origin and genotype on fungal diversity of silver birch (Betula pendula). Fungal Ecology, 2023, 63, 101241.	1.6	0
405	The interactive effects of soil fertility and tree mycorrhizal association explain spatial variation of diversity–biomass relationships in a subtropical forest. Journal of Ecology, 2023, 111, 1037-1049.	4.0	3
406	Context-dependence of fungal community responses to dominant tree mycorrhizal types in Northern hardwood forests. Soil Biology and Biochemistry, 2023, 178, 108971.	8.8	2
407	Islands in the shade: scattered ectomycorrhizal trees influence soil inoculum and heterospecific seedling response in a northeastern secondary forest. Mycorrhiza, 2023, 33, 33-44.	2.8	2
408	Effects of nitrogen and phosphorus imbalance input on rhizosphere and bulk soil bacterial community of Suaeda salsa in the Yellow River Delta. Frontiers in Marine Science, 0, 10, .	2.5	2
409	Niche theory for positive plantâ \in soil feedbacks. Ecology, 2023, 104, .	3.2	3
410	Scaleâ€dependent diversity–biomass relationships can be driven by tree mycorrhizal association and soil fertility. Ecological Monographs, 2023, 93, .	5.4	8
411	Plant and Native Microorganisms Amplify the Positive Effects of Microbial Inoculant. Microorganisms, 2023, 11, 570.	3.6	4
412	Using root economics traits to predict biotic plant soil-feedbacks. Plant and Soil, 2023, 485, 71-89.	3.7	4
413	Exploring the mycobiome and arbuscular mycorrhizal fungi associated with the rizosphere of the genus Inga in the pristine Ecuadorian Amazon. Frontiers in Fungal Biology, 0, 4, .	2.0	1
414	Functional variability in specific root respiration translates to autotrophic differences in soil respiration in a temperate deciduous forest. Geoderma, 2023, 432, 116414.	5.1	1
415	Microbiome sustains forest ecosystem functions across hierarchical scales. , 2023, 2, 24-31.		5
416	Allelopathy and Allelochemicals in Grasslands and Forests. Forests, 2023, 14, 562.	2.1	11
417	Plant–soil feedback under drought: does history shape the future?. Trends in Ecology and Evolution, 2023, 38, 708-718.	8.7	9
418	Plants changed the response of bacterial community to the nitrogen and phosphorus addition ratio. Frontiers in Plant Science, 0, 14, .	3.6	0

#	Article	IF	CITATIONS
419	Species diversity of arbuscular mycorrhizal but not ectomycorrhizal plants decreases with habitat loss due to environmental filtering. Plant and Soil, 0, , .	3.7	0
420	Plant Mycobiome in Sustainable Agriculture. , 2023, , 121-136.		0
421	Mycorrhizal Networks: A Secret Interplant Communication System. , 2023, , 447-467.		0
422	Plant-soil feedback: the next generation. Plant and Soil, 2023, 485, 1-5.	3.7	2
423	Synthesis of plant-soil feedback effects on eastern North American tree species: implications for climate-adaptive forestry. Frontiers in Ecology and Evolution, 0, 11, .	2.2	2
424	Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant and Soil, 2023, 489, 41-88.	3.7	14
425	Does wood mulch trigger microbially mediated positive plant-soil feedback in degraded boreal forest sites? A post hoc study. Frontiers in Plant Science, 0, 14, .	3.6	0
426	Reâ€examining the evidence for the mother tree hypothesis – resource sharing among trees via ectomycorrhizal networks. New Phytologist, 2023, 239, 19-28.	7.3	10
427	The structure and ecological function of the interactions between plants and arbuscular mycorrhizal fungi through multilayer networks. Functional Ecology, 0, , .	3.6	2
428	Contribution of tree species to the co-occurrence network of the leaf phyllosphere and soil bacterial community in the subtropical forests. Journal of Environmental Management, 2023, 343, 118274.	7.8	1
429	Composition, Abundance, and Diversity of the Soil Microbiome Associated with the Halophytic Plants Tamarix aphylla and Halopeplis perfoliata on Jeddah Seacoast, Saudi Arabia. Plants, 2023, 12, 2176.	3.5	0
430	Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. Environmental Geochemistry and Health, 2023, 45, 6177-6198.	3.4	2
431	Proportion of mycorrhiza-associated trees mediates community assemblages of soil fungi but not of bacteria. Fungal Ecology, 2023, 64, 101251.	1.6	0
432	Plant–soil feedback effects on conspecific and heterospecific successors of annual and perennial Central European grassland plants are correlated. Nature Plants, 2023, 9, 1057-1066.	9.3	2
433	Symbiotic mycorrhizal types affect patterns of tree aboveground and belowground C allocation in Northeast China. Ecological Processes, 2023, 12, .	3.9	0
435	Nitrogen-fixing tree species rather than tree species diversity shape soil nematode communities in subtropical plantations. Geoderma, 2023, 436, 116561.	5.1	1
436	Roles of pathogens and mycorrhizae in conspecific negative distance dependency and replacement of tree species in a temperate forest. Forest Ecology and Management, 2023, 544, 121177.	3.2	1
437	Effect of Micro-Topography and Edaphic Factors on the Asafoetida Volatile Oil Components. , 2023, 47, 641-651.		0

#	Article	IF	CITATIONS
439	Fire severity as a key determinant of aboveground and belowground biological community recovery in managed evenâ€aged boreal forests. Ecology and Evolution, 2023, 13, .	1.9	1
440	Influence of Mycorrhiza on C:N:P Stoichiometry in Senesced Leaves. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	314 rgBT /(Dverlock 10 T
441	Shifts of Leaf Litter-Induced Plant-Soil Feedback from Negative to Positive Driven by Ectomycorrhizal Symbiosis between Quercus ilex and Pisolithus arrhizus. Microorganisms, 2023, 11, 1394.	3.6	0
442	Contrasted root trait responses between saplings of an arbuscular and an ectomycorrhizal tree species in open field compared to forest conditions. Journal of Ecology, 2023, 111, 1700-1710.	4.0	1
444	Elevational Patterns of Tree Species Richness and Forest Biomass on Two Subtropical Mountains in China. Forests, 2023, 14, 1337.	2.1	1
445	Mechanistic approaches to investigate soil microbeâ€mediated plant competition. Journal of Ecology, 2023, 111, 1590-1597.	4.0	1
446	Tree species size class patterns portend compositional shifts and low resilience in managed northern hardwood forests. Ecosphere, 2023, 14, .	2.2	4
447	Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field. ELife, 0, 12, .	6.0	11
448	Soil chemical and microbial gradients determine accumulation of rootâ€exuded secondary metabolites and plant–soil feedbacks in the field. , 2023, 2, 173-188.		1
450	Seedling performance in a dioecious tree species is similar near female and male conspecific adults despite differences in colonization by arbuscular mycorrhizal fungi. Oikos, 2023, 2023, .	2.7	0
451	Silicon modifies leaf nutriome and improves growth of oak seedlings exposed to phosphorus deficiency and Phytophthora plurivora infection. Frontiers in Plant Science, 0, 14, .	3.6	0
452	Ectomycorrhizal community associated with Cedrus deodara in four urban forests of Nantong in East China. Frontiers in Plant Science, 0, 14, .	3.6	0
453	Modification of Density Dependence and Habitat Filtering on Seedling Survival of Different Mycorrhizal-Type Tree Species in Temperate Forests. Forests, 2023, 14, 1919.	2.1	1
454	Temporal approach to identifying ectomycorrhizal community associated with Mongolian pine in a desert environment, northern China. Microbiology Spectrum, 2023, 11, .	3.0	0
455	Plant–Soil Feedback of Companion Species during Grassland Community Succession. Forests, 2023, 14, 1634.	2.1	1
456	Increasing soil microplastic diversity decreases community biomass via its impact on the most dominant species. Ecological Indicators, 2023, 155, 111010.	6.3	4
457	Heterogeneous landscape promotes distinct microbial communities in an imperiled scrub ecosystem. Mycologia, 2023, 115, 739-748.	1.9	0
458	The Influence of Traditional Ethnic Villages on Forest Structure Based on PLS-SEM: A Case Study of Miao Inhabited Area. Forests, 2023, 14, 2011.	2.1	0

#	Article	IF	CITATIONS
459	Invasive and native plants show different root responses to feedback-mediated soil heterogeneity. Plant and Soil, 2024, 494, 497-508.	3.7	3
460	Succession of endophytic fungi and rhizosphere soil fungi and their correlation with secondary metabolites in Fagopyrum dibotrys. Frontiers in Microbiology, 0, 14, .	3.5	2
461	Tree mycorrhizal types and the interaction between tree and shrub species richness shape soil fungal communities in a subtropical forest in China. Plant and Soil, 0, , .	3.7	0
462	Proximity to an old-growth forest edge and ectomycorrhizal tree islands enhance ectomycorrhizal fungal colonization of Betula lenta L. (black birch) seedlings in secondary forest soils. Plant and Soil, 0, , .	3.7	0
463	Mycorrhizal driven positive feedbacks and forest resilience to reduced rainfall. Fungal Ecology, 2023, 65, 101280.	1.6	0
464	Long-term field translocation differentially affects arbuscular mycorrhizal and ectomycorrhizal trees in a sub-tropical forest. Agricultural and Forest Meteorology, 2023, 342, 109724.	4.8	0
465	Fine-Root C:N:P Stoichiometry and Its Driving Factors Are Different between Arbuscular and Ectomycorrhizal Plants in China. Agronomy, 2023, 13, 2512.	3.0	1
467	Heavy grazing causes plant cluster fragmentation of sparse grasses. Ecology and Evolution, 2023, 13, .	1.9	0
469	Changes in nitrogen and phosphorus availability driven by secondary succession in temperate forests shape soil fungal communities and function. Ecology and Evolution, 2023, 13, .	1.9	2
470	Dynamic response of root-associated fungal community structure to nitrogen and phosphorus additions in a subtropical forest. Pedobiologia, 2023, 101, 150909.	1.2	0
471	Mycorrhizal feedbacks influence global forest structure and diversity. Communications Biology, 2023, 6, .	4.4	3
473	Tree seedling functional traits mediate plant-soil feedback survival responses across a gradient of light availability. PLoS ONE, 2023, 18, e0293906.	2.5	0
474	Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland. Fungal Ecology, 2024, 67, 101303.	1.6	0
475	Plant–soil feedbacks among boreal forest species. Journal of Ecology, 0, , .	4.0	1
476	Biomolecular mycorrhizal diversity in Azadirechta excelsa (Jack) Jacobs roots in habitats with different altitude. IOP Conference Series: Earth and Environmental Science, 2023, 1255, 012059.	0.3	0
477	Soil legacies of tree species richness in a young plantation do not modulate tree seedling response to watering regime. Plant Biology, 2024, 26, 316-329.	3.8	1
480	Interkingdom ecological networks between plants and fungi drive soil multifunctionality across arid inland river basin. Molecular Ecology, 2023, 32, 6939-6952.	3.9	0
482	Soil microbial community response to ectomycorrhizal dominance in diverse neotropical montane forests. Mycorrhiza, 2024, 34, 95-105.	2.8	0

# 483	ARTICLE Fungi in soil: a rich community with diverse functions. , 2024, , 75-129.	IF	CITATIONS
484	Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe. Nature Communications, 2024, 15, .	12.8	2
485	Tree diversity and mycorrhizal type coâ€determine multitrophic ecosystem functions. Journal of Ecology, 2024, 112, 528-546.	4.0	0
486	Arbuscular mycorrhizal and ectomycorrhizal plants together shape seedling diversity in a subtropical forest. Frontiers in Forests and Global Change, 0, 6, .	2.3	0
487	Global patterns and drivers of plantâ \in soil microbe interactions. Ecology Letters, 2024, 27, .	6.4	0
488	Plant–soil feedback is dependent on tree mycorrhizal types and tree species richness in a subtropical forest. Geoderma, 2024, 442, 116780.	5.1	0
489	Different Response of Arbuscular Mycorrhizal Fungal Communities in Roots and Rhizosphere Soil of Elymus nutans to Long-term Warming in an Alpine Meadow. Journal of Soil Science and Plant Nutrition, 2024, 24, 1149-1159.	3.4	0
491	Effects of Stand Types on Ectomycorrhizal Fungal Community Composition and Structure of Pinus massoniana in Subtropical Mountain Forest Ecosystems. Forests, 2024, 15, 258.	2.1	0
492	Forest tree community ecology and plant–soil feedback: Theory and evidence. Ecological Research, 0, ,	1.5	0
493	Negative plant-soil feedback in Arabidopsis thaliana: Disentangling the effects of soil chemistry, microbiome, and extracellular self-DNA. Microbiological Research, 2024, 281, 127634.	5.3	1
494	Nitrogen availability mediates the effects of roots and mycorrhizal fungi on soil organic carbon decomposition: A meta-analysis. Pedosphere, 2024, 34, 289-296.	4.0	0
495	An Overview of Mycorrhiza in Pines: Research, Species, and Applications. Plants, 2024, 13, 506.	3.5	0
496	Effects of γ-polyglutamic acid on grassland sandy soil properties and plant functional traits exposed to drought stress. Scientific Reports, 2024, 14, .	3.3	0
497	Tree mycorrhizal type mediates the responses of foliar stoichiometry and tree growth to functionally dissimilar neighbours in a subtropical forest experiment. Functional Ecology, 2024, 38, 765-777.	3.6	0
498	Tree adaptive growth (TAG) model: a life-history theory-based analytical model for post-thinning forest stand dynamics. Frontiers in Plant Science, 0, 15, .	3.6	0
499	Plant–mycorrhizal associations may explain the latitudinal gradient of plant community assembly. Oikos, 0, , .	2.7	0
501	Soil acidification drives the negative effects of nitrogen enrichment on soil microbial biomass at the global scale. Plant and Soil, 0, , .	3.7	0
502	Fungal community composition predicts forest carbon storage at a continental scale. Nature Communications, 2024, 15, .	12.8	0

#	Article	IF	CITATIONS
503	Interplay of biotic and abiotic factors shapes tree seedling growth and root-associated microbial communities. Communications Biology, 2024, 7, .	4.4	0
504	Advances in Plant–Soil Feedback Driven by Root Exudates in Forest Ecosystems. Forests, 2024, 15, 515.	2.1	0
505	Intransitivity in plant–soil feedbacks is rare but is associated with multispecies coexistence. Ecology Letters, 2024, 27, .	6.4	0