Structure of a Pancreatic ATP-Sensitive Potassium Char

Cell 168, 101-110.e10 DOI: 10.1016/j.cell.2016.12.028

Citation Report

#	Article	IF	CITATIONS
1	Energy in Ancient Metabolism. Cell, 2017, 168, 953-955.	13.5	42
2	Transporters Revealed. Cell, 2017, 168, 951-953.	13.5	17
3	Neonatal Diabetes and the K ATP Channel: From Mutation to Therapy. Trends in Endocrinology and Metabolism, 2017, 28, 377-387.	3.1	79
4	The mechano-sensitivity of cardiac ATP-sensitive potassium channels is mediated by intrinsic MgATPase activity. Journal of Molecular and Cellular Cardiology, 2017, 108, 34-41.	0.9	8
5	Mechanisms of the amplifying pathway of insulin secretion in the \hat{I}^2 cell. , 2017, 179, 17-30.		106
6	Modeling Congenital Hyperinsulinism with ABCC8-Deficient Human Embryonic Stem Cells Generated by CRISPR/Cas9. Scientific Reports, 2017, 7, 3156.	1.6	16
7	Structure of the Human Lipid Exporter ABCA1. Cell, 2017, 169, 1228-1239.e10.	13.5	214
8	Hyperinsulinism-Causing Mutations Cause Multiple Molecular Defects in SUR1 NBD1. Biochemistry, 2017, 56, 2400-2416.	1.2	8
9	The structure of the human ABC transporter ABCG2 reveals a novel mechanism for drug extrusion. Scientific Reports, 2017, 7, 13767.	1.6	62
10	Disrupted Ionic Homeostasis in Ischemic Stroke and New Therapeutic Targets. Journal of Stroke and Cerebrovascular Diseases, 2017, 26, 2706-2719.	0.7	53
11	Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel. Journal of Biological Chemistry, 2017, 292, 17387-17398.	1.6	31
12	Chansporter complexes in cell signaling. FEBS Letters, 2017, 591, 2556-2576.	1.3	18
13	βâ€Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes, Obesity and Metabolism, 2017, 19, 22-29.	2.2	59
14	Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging. Journal of Materials Chemistry B, 2017, 5, 8525-8531.	2.9	88
15	Structural basis of MsbA-mediated lipopolysaccharide transport. Nature, 2017, 549, 233-237.	13.7	214
16	Functional mapping of the N-terminal arginine cluster and C-terminal acidic residues of Kir6.2 channel fused to a G protein-coupled receptor. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2144-2153.	1.4	2
17	A new familial form of a late-onset, persistent hyperinsulinemic hypoglycemia of infancy caused by a novel mutation in <i>KCNJ11</i> . Channels, 2017, 11, 636-647.	1.5	8
18	Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. ELife, 2017, 6, .	2.8	122

TION RE

# 19	ARTICLE Molecular structure of human KATP in complex with ATP and ADP. ELife, 2017, 6, .	IF 2.8	CITATIONS
20	From ions to insulin. ELife, 2017, 6, .	2.8	0
21	K _{ATP} Channel Mutations and Neonatal Diabetes. Internal Medicine, 2017, 56, 2387-2393.	0.3	22
22	Cantu syndrome–associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms. Journal of Biological Chemistry, 2018, 293, 2041-2052.	1.6	34
23	A mechanism for CO regulation of ion channels. Nature Communications, 2018, 9, 907.	5.8	38
25	ATP-sensitive potassium channels in the sinoatrial node contribute to heart rate control and adaptation to hypoxia. Journal of Biological Chemistry, 2018, 293, 8912-8921.	1.6	23
26	The role of KATP channels in cerebral ischemic stroke and diabetes. Acta Pharmacologica Sinica, 2018, 39, 683-694.	2.8	55
27	Regionally clustered <i>ABCC8</i> polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1152-1162.	0.9	36
28	Multifaceted structures and mechanisms of ABC transport systems in health and disease. Current Opinion in Structural Biology, 2018, 51, 116-128.	2.6	74
29	Never at rest: insights into the conformational dynamics of ion channels from cryoâ €e lectron microscopy. Journal of Physiology, 2018, 596, 1107-1119.	1.3	22
30	Hyperpolarization by N-(3-oxododecanoyl)- l -homoserine-lactone, a quorum sensing molecule, in rat thymic lymphocytes. Chemico-Biological Interactions, 2018, 283, 91-96.	1.7	0
31	Expression, purification, and electrophysiological characterization of a recombinant, fluorescent Kir6.2 in mammalian cells. Protein Expression and Purification, 2018, 146, 61-68.	0.6	3
32	Conformational Coupling and trans-Inhibition in the Human Antigen Transporter Ortholog TmrAB Resolved with Dipolar EPR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 4527-4533.	6.6	42
33	Lipophilicity predicts the ability of nonsulphonylurea drugs to block pancreatic betaâ€cell <scp>K_{ATP}</scp> channels and stimulate insulin secretion; statins as a test case. Endocrinology, Diabetes and Metabolism, 2018, 1, e00017.	1.0	5
34	Cryo-electron microscopy structures and progress toward a dynamic understanding of KATP channels. Journal of General Physiology, 2018, 150, 653-669.	0.9	48
35	Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein and Cell, 2018, 9, 553-567.	4.8	95
36	Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology, 2018, 132, 20-30.	2.0	11
37	Applications of sequence coevolution in membrane protein biochemistry. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 895-908.	1.4	27

#	Article	IF	CITATIONS
38	SUR1â€TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia, 2018, 66, 108-125.	2.5	92
39	Solid-State Nuclear Magnetic Resonance Spectroscopy of Membrane Proteins. , 2018, , 251-283.		0
40	ABCB6, an ABC Transporter Impacting Drug Response and Disease. AAPS Journal, 2018, 20, 8.	2.2	36
41	Membrane Biophysics. , 2018, , .		0
42	ABCG2: does resolving its structure elucidate the mechanism?. Biochemical Society Transactions, 2018, 46, 1485-1494.	1.6	15
43	Structural and functional insights into the interaction and targeting hub TMD0 of the polypeptide transporter TAPL. Scientific Reports, 2018, 8, 15662.	1.6	7
44	Functional protection against cardiac diseases depends on <scp>ATP</scp> â€sensitive potassium channels. Journal of Cellular and Molecular Medicine, 2018, 22, 5801-5806.	1.6	9
45	G protein–coupled receptors differentially regulate glycosylation and activity of the inwardly rectifying potassium channel Kir7.1. Journal of Biological Chemistry, 2018, 293, 17739-17753.	1.6	14
46	ATP‣ensitive Potassium Channels and Their Physiological and Pathophysiological Roles. , 2018, 8, 1463-1511.		99
47	Potassium channels in the sinoatrial node and their role in heart rate control. Channels, 2018, 12, 356-366.	1.5	18
48	Phosphorylation Alters the Residual Structure and Interactions of the Regulatory L1 Linker Connecting NBD1 to the Membrane-Bound Domain in SUR2B. Biochemistry, 2018, 57, 6278-6292.	1.2	9
49	Combining theoretical and experimental data to decipher CFTR 3D structures and functions. Cellular and Molecular Life Sciences, 2018, 75, 3829-3855.	2.4	29
50	A novel high-affinity inhibitor against the human ATP-sensitive Kir6.2 channel. Journal of General Physiology, 2018, 150, 969-976.	0.9	13
51	BAD and KATP channels regulate neuron excitability and epileptiform activity. ELife, 2018, 7, .	2.8	35
52	Membrane Transport: Energetics and Overview. , 2018, , 1-13.		0
53	Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Physiological Reviews, 2018, 98, 2097-2131.	13.1	34
54	From in silico to in vitro: a trip to reveal flavonoid binding on the <i>Rattus norvegicus</i> Kir6.1 ATP-sensitive inward rectifier potassium channel. PeerJ, 2018, 6, e4680.	0.9	14
55	Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 2018, 16, 523-539.	13.6	580

#	Article	IF	CITATIONS
56	Moving the Cellular Peptidome by Transporters. Frontiers in Cell and Developmental Biology, 2018, 6, 43.	1.8	19
57	ABC Transporters in Dynamic Macromolecular Assemblies. Journal of Molecular Biology, 2018, 430, 4481-4495.	2.0	29
58	The pore-forming subunit Kir6.1 of the K-ATP channel negatively regulates the NLRP3 inflammasome to control insulin resistance by interacting with NLRP3. Experimental and Molecular Medicine, 2019, 51, 1-13.	3.2	15
59	Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochemical Society Transactions, 2019, 47, 23-36.	1.6	110
60	Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nature Structural and Molecular Biology, 2019, 26, 792-801.	3.6	61
61	Structural insights into the mechanism of human soluble guanylate cyclase. Nature, 2019, 574, 206-210.	13.7	102
62	A family of orthologous proteins from centipede venoms inhibit the hKir6.2 channel. Scientific Reports, 2019, 9, 14088.	1.6	8
63	Conduction through a narrow inward-rectifier K+ channel pore. Journal of General Physiology, 2019, 151, 1231-1246.	0.9	36
64	Venom-Derived Peptide Modulators of Cation-Selective Channels: Friend, Foe or Frenemy. Frontiers in Pharmacology, 2019, 10, 58.	1.6	13
65	Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. Advances in Experimental Medicine and Biology, 2019, 1135, 119-138.	0.8	16
66	Computational Identification of Novel Kir6 Channel Inhibitors. Frontiers in Pharmacology, 2019, 10, 549.	1.6	5
67	The Selective Rat Toxicant Norbormide Blocks KATP Channels in Smooth Muscle Cells But Not in Insulin-Secreting Cells. Frontiers in Pharmacology, 2019, 10, 598.	1.6	6
68	The Structural Basis for the Binding of Repaglinide to the Pancreatic KATP Channel. Cell Reports, 2019, 27, 1848-1857.e4.	2.9	76
70	Genetic Discovery of ATP-Sensitive K ⁺ Channels in Cardiovascular Diseases. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007322.	2.1	25
71	Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Scientific Reports, 2019, 9, 3803.	1.6	35
72	Relationship between conformation shift and disease related variation sites in ATP-binding cassette transporter proteins. Biophysics and Physicobiology, 2019, 16, 68-79.	0.5	4
73	Pharmacological polysulfide suppresses glucose-stimulated insulin secretion in an ATP-sensitive potassium channel-dependent manner. Scientific Reports, 2019, 9, 19377.	1.6	9
74	Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. Handbook of Experimental Pharmacology, 2019, 260, 187-205.	0.9	27

ARTICLE IF CITATIONS # ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing 75 1.6 16 conformations that activate KATP channels. Journal of Biological Chemistry, 2019, 294, 3707-3719. Molecular aspects of pancreatic βâ€cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. Journal of Cellular Physiology, 2019, 234, 8411-8425. Spacial models of malfunctioned protein complexes help to elucidate signal transduction critical for 77 0.9 2 insulin release. BioSystems, 2019, 177, 48-55. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes/Metabolism Research and Reviews, 2019, 35, e3100. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochemical 79 1.7 176 Journal, 2019, 476, 1-23. Downstream<i>TRPM4</i>Polymorphisms Are Associated with Intracranial Hypertension and Statistically Interact with<i>ABCC8</i>Polymorphisms in a Prospective Cohort of Severe Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 1804-1817. 1.7 81 Ion Channels of the Islets in Type 2 Diabetes. Journal of Molecular Biology, 2020, 432, 1326-1346. 2.0 36 Structural Insights into the Inhibitory Mechanism of Insulin Secretagogues on the Pancreatic 1.2 20 ATP-Sensitive Potassium Channel. Biochemistry, 2020, 59, 18-25. Lipid-Dependent Regulation of Ion Channels and G Proteinâ€"Coupled Receptors: Insights from 83 4.2 117 Structures and Simulations. Annual Review of Pharmacology and Toxicology, 2020, 60, 31-50. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM 84 1.6 structures. Molecular and Cellular Endocrinology, 2020, 502, 110667. <scp>Cryoâ€</scp>electron microscopy structure of human <scp>ABCB6</scp> transporter. Protein 3.1 22 85 Science, 2020, 29, 2363-2374. Cryoâ€EM of ABC transporters: an iceâ€cold solution to everything?. FEBS Letters, 2020, 594, 3776-3789. 1.3 86 Identification and Expression of Inward-Rectifying Potassium Channel Subunits in Plutella xylostella. 87 1.0 6 Insects, 2020, 11, 461. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular 1.3 mechanisms to treatment for secretory diarrhoeas. FEBS Letters, 2020, 594, 4085-4108. ATP-Sensitive Potassium Channels Mediate the Cardioprotective Effect of Panax notoginseng Saponins against Myocardial Ischaemia–Reperfusion Injury and Inflammatory Reaction. BioMed Research 89 0.9 13 International, 2020, 2020, 1-12. Characterization of rare ABCC8 variants identified in Spanish pulmonary arterial hypertension 90 patients. Scientific Reports, 2020, 10, 15135. Thermodynamic Basis for Conformational Coupling in an ATP-Binding Cassette Exporter. Journal of 91 2.1 13 Physical Chemistry Letters, 2020, 11, 7946-7953. Structure of voltage-modulated sodium-selective NALCN-FAM155A channel complex. Nature 5.8 Communications, 2020, 11, 6199.

#	Article	IF	CITATIONS
93	The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Frontiers in Cellular Neuroscience, 2020, 14, 601324.	1.8	33
94	Evolutionary history of ATPâ€binding cassette proteins. FEBS Letters, 2020, 594, 3882-3897.	1.3	25
95	Neonatal diabetes due to potassium channel mutation: Response to sulfonylurea according to the genotype. Pediatric Diabetes, 2020, 21, 932-941.	1.2	19
96	New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nature Reviews Endocrinology, 2020, 16, 378-393.	4.3	87
97	Structural and Mechanistic Principles of ABC Transporters. Annual Review of Biochemistry, 2020, 89, 605-636.	5.0	252
98	Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. Journal of Physical Chemistry B, 2020, 124, 6198-6211.	1.2	11
99	The full-length structure of Thermus scotoductus OLD defines the ATP hydrolysis properties and catalytic mechanism of Class 1 OLD family nucleases. Nucleic Acids Research, 2020, 48, 2762-2776.	6.5	17
100	Palmitoylation of the K _{ATP} channel Kir6.2 subunit promotes channel opening by regulating PIP ₂ sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10593-10602.	3.3	24
101	OBSOLETE: Ion Channels. , 2021, , .		0
102	Functional characterization of <i>ABCC8</i> variants of unknown significance based on bioinformatics predictions, splicing assays, and protein analyses: Benefits for the accurate diagnosis of congenital hyperinsulinism. Human Mutation, 2021, 42, 408-420.	1.1	6
103	High-Resolution Structures of K+ Channels. Handbook of Experimental Pharmacology, 2021, 267, 51-81.	0.9	3
104	Therapeutic Antibodies Targeting Potassium Ion Channels. Handbook of Experimental Pharmacology, 2021, 267, 507-545.	0.9	2
105	Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handbook of Experimental Pharmacology, 2021, 267, 277-356.	0.9	21
106	Ion Channels. , 2021, , .		0
107	Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits. Handbook of Experimental Pharmacology, 2021, 267, 445-480.	0.9	4
108	Design and synthesis of hydrazinecarbothioamide sulfones as potential antihyperglycemic agents. Archiv Der Pharmazie, 2021, 354, 2000336.	2.1	1
109	Kir6.1 improves cardiac dysfunction in diabetic cardiomyopathy via the AKTâ€FoxO1 signalling pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 3935-3949.	1.6	5
110	The <i>KCNJ11-E23K</i> Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes, 2021, 70, 1145-1156.	0.3	11

	Сітатіо	CITATION REPORT		
#	Article	IF	CITATIONS	
111	Structural basis for human TRPC5 channel inhibition by two distinct inhibitors. ELife, 2021, 10, .	2.8	39	
112	Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 2021, 15, 652593.	1.8	13	
113	Structure based analysis of KATP channel with a DEND syndrome mutation in murine skeletal muscle. Scientific Reports, 2021, 11, 6668.	1.6	4	
115	Structure of Ycf1p reveals the transmembrane domain TMD0 and the regulatory region of ABCC transporters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24	
121	Structure of a mammalian sperm cation channel complex. Nature, 2021, 595, 746-750.	13.7	44	
122	Genetic Variants Associated With Intraparenchymal Hemorrhage Progression After Traumatic Brain Injury. JAMA Network Open, 2021, 4, e2116839.	2.8	11	
123	Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxidants and Redox Signaling, 2022, 36, 920-952.	2.5	10	
124	Zoledronic Acid as a Novel Dual Blocker of KIR6.1/2-SUR2 Subunits of ATP-Sensitive K+ Channels: Role in the Adverse Drug Reactions. Pharmaceutics, 2021, 13, 1350.	2.0	10	
125	Simulating PIP2-Induced Gating Transitions in Kir6.2 Channels. Frontiers in Molecular Biosciences, 2021, 8, 711975.	1.6	6	
126	Distinct allosteric mechanisms of first-generation MsbA inhibitors. Science, 2021, 374, 580-585.	6.0	29	
127	Redox Signaling is Essential for Insulin Secretion. , 0, , .		0	
128	The short form of the SUR1 and its functional implications in the damaged brain. Neural Regeneration Research, 2022, 17, 488.	1.6	6	
129	Structures of human dual oxidase 1 complex in low-calcium and high-calcium states. Nature Communications, 2021, 12, 155.	5.8	36	
130	Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Methods in Enzymology, 2021, 653, 121-150.	0.4	4	
131	The Pancreatic \hat{I}^2 -Cell: The Perfect Redox System. Antioxidants, 2021, 10, 197.	2.2	16	
132	The Pharmacology of ATP-Sensitive K+ Channels (KATP). Handbook of Experimental Pharmacology, 2021, 267, 357-378.	0.9	6	
133	CFTR structure. Journal of Cystic Fibrosis, 2018, 17, S5-S8.	0.3	20	
138	Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiological Reviews, 2018, 98, 117-214.	13.1	497	

#	Article	IF	CITATIONS
139	The expression of KATP channel subunits in alpha-synuclein-transfected MES23.5 cells. Annals of Translational Medicine, 2018, 6, 170-170.	0.7	6
140	Activation mechanism of ATP-sensitive K+ channels explored with real-time nucleotide binding. ELife, 2019, 8, .	2.8	28
141	Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. ELife, 2019, 8, .	2.8	68
142	lschemic postconditioning reduces spinal cord ischemia-reperfusion injury through ATP-sensitive potassium channel. Spinal Cord, 2021, , .	0.9	1
143	Beta ell Ion Channels and Their Role in Regulating Insulin Secretion. , 2021, 11, 1-21.		15
151	Congenital hyperinsulinism: from molecular genetics to clinical practice. Ukrainian Journal of Pediatric Endocrinology, 2020, .	0.1	0
152	Vascular K _{ATP} channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
153	Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. Journal of Neuroscience Research, 2022, 100, 413-443.	1.3	6
154	Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Biochemical Journal, 2020, 477, 671-689.	1.7	2
155	Expression of truncated Kir6.2 promotes insertion of functionally inverted ATP-sensitive K+ channels. Scientific Reports, 2021, 11, 21539.	1.6	0
157	Molecular structure of an open human K _{ATP} channel. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
158	Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. ELife, 2021, 10, .	2.8	42
159	Photo-Switchable Sulfonylureas Binding to ATP-Sensitive Potassium Channel Reveal the Mechanism of Light-Controlled Insulin Release. Journal of Physical Chemistry B, 2021, 125, 13111-13121.	1.2	4
160	The manifold roles of protein S-nitrosylation in the life of insulin. Nature Reviews Endocrinology, 2022, 18, 111-128.	4.3	10
161	Antimicrobial Resistance and Inorganic Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 12890.	1.8	32
164	Protective role of activating PPARÎ ³ in advanced glycation end products-induced impairment of coronary artery vasodilation via inhibiting p38 phosphorylation and reactive oxygen species production. Biomedicine and Pharmacotherapy, 2022, 147, 112641.	2.5	8
165	Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature, 2022, 601, 280-284.	13.7	58
166	Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic Î ² cells and lowers blood glucose in diabetic mice. ELife, 2022, 11, .	2.8	4

#	Article	IF	CITATIONS
168	Inward and outward currents of native and cloned K(ATP) channels (Kir6.2/SUR1) share single-channel kinetic properties. Biochemistry and Biophysics Reports, 2022, 30, 101260.	0.7	1
170	Role of upregulation of the K _{ATP} channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson's disease. Aging Cell, 2022, 21, e13618.	3.0	8
174	Structure and mechanism of NALCN-FAM155A-UNC79-UNC80 channel complex. Nature Communications, 2022, 13, 2639.	5.8	10
175	Structural identification of vasodilator binding sites on the SUR2 subunit. Nature Communications, 2022, 13, 2675.	5.8	10
176	Structural insights into the mechanism of pancreatic KATP channel regulation by nucleotides. Nature Communications, 2022, 13, 2770.	5.8	18
177	Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Frontiers in Pharmacology, 0, 13, .	1.6	6
179	Impact of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose induced electrical activity. Islets, 2022, 14, 149-163.	0.9	0
180	Rab35 GTPase positively regulates endocytic recycling of cardiac K _{ATP} channels. Channels, 2022, 16, 137-147.	1.5	1
181	Structural Insights Into the High Selectivity of the Anti-Diabetic Drug Mitiglinide. Frontiers in Pharmacology, 0, 13, .	1.6	6
182	Kir6.1 and SUR2B in Cantú syndrome. American Journal of Physiology - Cell Physiology, 2022, 323, C920-C935.	2.1	10
184	Ligand-mediated Structural Dynamics of a Mammalian Pancreatic KATP Channel. Journal of Molecular Biology, 2022, 434, 167789.	2.0	8
185	Plastic structures for diverse substrates: A revisit of human <scp>ABC</scp> transporters. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1749-1765.	1.5	7
186	The Emerging Structural Pharmacology of ATP-Sensitive Potassium Channels. Molecular Pharmacology, 2022, 102, 234-239.	1.0	5
187	Personalized Therapeutics for K _{ATP} -Dependent Pathologies. Annual Review of Pharmacology and Toxicology, 2023, 63, 541-563.	4.2	7
188	The dynamic interplay of PIP ₂ and ATP in the regulation of the K _{ATP} channel. Journal of Physiology, 2022, 600, 4503-4519.	1.3	7
190	Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron, 2022, 110, 4162-4175.e7.	3.8	10
191	Mechanistic insights on KATP channel regulation from cryo-EM structures. Journal of General Physiology, 2023, 155, .	0.9	10
192	Structure of human phagocyte NADPH oxidase in the resting state. ELife, 0, 11, .	2.8	18

#	Article	IF	CITATIONS
193	The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Frontiers in Microbiology, 0, 14, .	1.5	5
194	Structure and Mechanism of Human ABC Transporters. Annual Review of Biophysics, 2023, 52, 275-300.	4.5	20
195	Structural Insights into ATP-Sensitive Potassium Channel Mechanics: A Role of Intrinsically Disordered Regions. Journal of Chemical Information and Modeling, 2023, 63, 1806-1818.	2.5	2
196	KATP channels in focus: Progress toward a structural understanding of ligand regulation. Current Opinion in Structural Biology, 2023, 79, 102541.	2.6	6
197	Metal organic framework-modified bioadaptable implant potentiates the reconstruction of nerve microenvironment via immunometabolism reprogramming. Nano Today, 2023, 49, 101814.	6.2	24
198	KATP channel mutations in congenital hyperinsulinism: Progress and challenges towards mechanism-based therapies. Frontiers in Endocrinology, 0, 14, .	1.5	4
205	The N-sulfonyl carboxamide moiety as a privileged structure in approved drugs. , 2023, , 65-80.		0