Three-Dimensional Localization of Single Molecules for Single-Particle Tracking

Chemical Reviews 117, 7244-7275

DOI: 10.1021/acs.chemrev.6b00629

Citation Report

		EDODT	
#	Article	IF	CITATIONS
2	Introduction: Super-Resolution and Single-Molecule Imaging. Chemical Reviews, 2017, 117, 7241-7243.	23.0	29
3	Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes. ACS Nano, 2017, 11, 10529-10538.	7.3	30
4	The imaging tsunami: Computational opportunities and challenges. Current Opinion in Systems Biology, 2017, 4, 105-113.	1.3	27
5	Dynamic imaging of mitochondrial membrane proteins in specific sub-organelle membrane locations. Biophysical Reviews, 2017, 9, 345-352.	1.5	51
6	Single-Molecule Fluorescence Microscopy Reveals Local Diffusion Coefficients in the Pore Network of an Individual Catalyst Particle. Journal of the American Chemical Society, 2017, 139, 13632-13635.	6.6	70
7	Dynamics of surface neurotransmitter receptors and transporters in glial cells: Single molecule insights. Cell Calcium, 2017, 67, 46-52.	1.1	11
8	The effects of slit-like confinement on flow-induced polymer deformation. Journal of Chemical Physics, 2017, 147, 064905.	1.2	2
9	Single-molecule fluorescence microscopy review: shedding new light on old problems. Bioscience Reports, 2017, 37, .	1.1	219
10	sCMOS noise-correction algorithm for microscopy images. Nature Methods, 2017, 14, 760-761.	9.0	41
11	A Photoactivatable Probe for Super-Resolution Imaging of Enzymatic Activity in Live Cells. Journal of the American Chemical Society, 2017, 139, 13200-13207.	6.6	88
12	Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging. Beilstein Journal of Nanotechnology, 2017, 8, 2296-2306.	1.5	13
13	Subdiffraction incoherent optical imaging via spatial-mode demultiplexing: Semiclassical treatment. Physical Review A, 2018, 97, .	1.0	32
14	Multicolor Three-Dimensional Tracking for Single-Molecule Fluorescence Resonance Energy Transfer Measurements. Analytical Chemistry, 2018, 90, 6109-6115.	3.2	13
15	Nano Trek Beyond: Driving Nanocars/Molecular Machines at Interfaces. Chemistry - an Asian Journal, 2018, 13, 1266-1278.	1.7	42
16	Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nature Communications, 2018, 9, 1521.	5.8	65
17	Spatial organization and dynamics of RNase E and ribosomes in <i>Caulobacter crescentus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3712-E3721.	3.3	64
18	A method for optical imaging and monitoring of the excretion of fluorescent nanocomposites from the body using artificial neural networks. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1371-1380.	1.7	19
19	Live Cell Microscopy: A Physical Chemistry Approach. Journal of Physical Chemistry B, 2018, 122, 3023-3036.	1.2	19

#	Article	IF	CITATIONS
20	Biological Insight from Super-Resolution Microscopy: What We Can Learn from Localization-Based Images. Annual Review of Biochemistry, 2018, 87, 965-989.	5.0	166
21	Editorial Overview: Single-Molecule Approaches to Difficult Challenges in Folding and Dynamics. Journal of Molecular Biology, 2018, 430, 405-408.	2.0	3
22	3D single-molecule super-resolution microscopy with a tilted light sheet. Nature Communications, 2018, 9, 123.	5.8	143
23	3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 829-844.	0.5	37
24	Extended-Depth 3D Super-Resolution Imaging Using Probe-Refresh STORM. Biophysical Journal, 2018, 114, 1980-1987.	0.2	19
25	Chromatin reprogramming in breast cancer. Endocrine-Related Cancer, 2018, 25, R385-R404.	1.6	17
26	Enhancing Analytical Separations Using Super-Resolution Microscopy. Annual Review of Physical Chemistry, 2018, 69, 353-375.	4.8	18
27	Conservative classical and quantum resolution limits for incoherent imaging. Journal of Modern Optics, 2018, 65, 1385-1391.	0.6	19
28	Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles. Analytical Chemistry, 2018, 90, 769-776.	3.2	14
29	Through-focus or volumetric type of optical imaging methods: a review. Journal of Biomedical Optics, 2018, 23, 1.	1.4	17
30	Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. Biosensors, 2018, 8, 100.	2.3	15
31	Applications of nanostructures in wide-field, label-free super resolution microscopy. Chinese Physics B, 2018, 27, 118704.	0.7	4
32	VIPER is a genetically encoded peptide tag for fluorescence and electron microscopy. Proceedings of the United States of America, 2018, 115, 12961-12966.	3.3	30
33	Quantitative Nanoscopy of Small Blinking Graphene Nanocarriers in Drug Delivery. Bioconjugate Chemistry, 2018, 29, 3658-3666.	1.8	11
34	Analyzing complex single-molecule emission patterns with deep learning. Nature Methods, 2018, 15, 913-916.	9.0	70
35	Superresolution mapping of energy landscape for single charge carriers in plastic semiconductors. Nature Communications, 2018, 9, 4314.	5.8	19
36	Micro-Refractometry and Local-Field Mapping with Single Molecules. Nano Letters, 2018, 18, 6129-6134.	4.5	31
37	Minimizing Structural Bias in Single-Molecule Super-Resolution Microscopy. Scientific Reports, 2018, 8, 13133.	1.6	12

		CITATION R	EPORT	
#	Article		IF	CITATIONS
38	Divide and Rule: Plant Plasma Membrane Organization. Trends in Plant Science, 2018, 2	.3, 899-917.	4.3	83
39	Visualizing and discovering cellular structures with super-resolution microscopy. Science 880-887.	e, 2018, 361,	6.0	500
40	MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc the National Academy of Sciences of the United States of America, 2018, 115, 6117-61	eedings of 22.	3.3	126
41	Breaking the Axial Diffraction Limit: A Guide to Axial Superâ€Resolution Fluorescence M and Photonics Reviews, 2018, 12, 1700333.	icroscopy. Laser	4.4	33
42	Ultrasound Localization Microscopy and Super-Resolution: A State of the Art. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1304-1320.	sactions on	1.7	213
43	Reversible, Spatial and Temporal Control over Protein Activity Using Light. Trends in Bio Sciences, 2018, 43, 567-575.	chemical	3.7	90
44	ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Natu Communications, 2018, 9, 2409.	re	5.8	89
45	Maximizing the field of view and accuracy in 3D Single Molecule Localization Microscop Express, 2018, 26, 4631.	y. Optics	1.7	5
46	Maximum-likelihood analysis of axial displacement in fluorescence phase-shifting interfe Optics Express, 2018, 26, 7965.	rometry.	1.7	0
47	Light sheet approaches for improved precision in 3D localization-based super-resolution mammalian cells [Invited]. Optics Express, 2018, 26, 13122.	imaging in	1.7	46
48	Multicolor Fluorescence Photoswitching: Colorâ€Correlated versus Colorâ€Specific Swi Advanced Optical Materials, 2018, 6, 1800678.	tching.	3.6	78
49	Active PSF shaping and adaptive optics enable volumetric localization microscopy throu sections. Nature Methods, 2018, 15, 583-586.	ıgh brain	9.0	74
50	Fundamental Precision Bounds for Three-Dimensional Optical Localization Microscopy v Statistics. Physical Review Letters, 2018, 121, 023904.	vith Poisson	2.9	57
51	Fidelity test for through-focus or volumetric type of optical imaging methods. Optics Ex 26, 19100.	press, 2018,	1.7	6
52	Developing Noise-Resistant Three-Dimensional Single Particle Tracking Using Deep Neur Analytical Chemistry, 2018, 90, 10748-10757.	ral Networks.	3.2	14
53	Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Compl Processes to Synthetic Biology and Biomedical Applications. Chemical Reviews, 2018, 1	ex Membrane 18, 8598-8654.	23.0	112
54	Finding order in a bustling construction zone: quantitative imaging and analysis of cell v in plants. Current Opinion in Plant Biology, 2018, 46, 62-67.	wall assembly	3.5	5
55	From a Protein's Perspective: Elution at the Single-Molecule Level. Accounts of Cher 2018, 51, 2247-2254.	mical Research,	7.6	17

#	Article	IF	CITATIONS
56	Observing DNA in live cells. Biochemical Society Transactions, 2018, 46, 729-740.	1.6	41
57	Kilohertz frame-rate two-photon tomography. Nature Methods, 2019, 16, 778-786.	9.0	122
58	The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us?. Materials Horizons, 2019, 6, 1538-1547.	6.4	97
59	Non-uniform stochastic dynamics of nanoparticle clusters at a solid–liquid interface induced by laser trapping. Japanese Journal of Applied Physics, 2019, 58, SDDK07.	0.8	9
60	Super-resolution imaging of non-fluorescent reactions via competition. Nature Chemistry, 2019, 11, 687-694.	6.6	78
61	Determination of Aneurysm Volume Critical for Stability After Coil Embolization: AÂRetrospective Study of 3530 Aneurysms. World Neurosurgery, 2019, 132, e766-e774.	0.7	9
62	Fluorescence imaging with tailored light. Nanophotonics, 2019, 8, 2111-2128.	2.9	32
63	Intensity-Based Axial Localization at the Quantum Limit. Physical Review Letters, 2019, 123, 193601.	2.9	12
64	Spectroscopic fluorescent tracking of a single molecule in a live cell with a dual-objective fluorescent reflection microscope. Applied Physics Express, 2019, 12, 112007.	1.1	5
66	Nanoscale Resolution 3D Snapshot Particle Tracking by Multifocal Microscopy. Nano Letters, 2019, 19, 6781-6787.	4.5	17
67	Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules, 2019, 24, 2826.	1.7	40
68	A protocol for single molecule imaging and tracking of processive myosin motors. MethodsX, 2019, 6, 1854-1862.	0.7	5
69	Quantum 3D thermal imaging at the micro–nanoscale. Nanoscale, 2019, 11, 2249-2263.	2.8	4
70	Toxicology in the Superâ€Resolution Era. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2019, 80, e77.	1.1	1
71	Expanding single-molecule fluorescence spectroscopy to capture complexity in biology. Current Opinion in Structural Biology, 2019, 58, 233-240.	2.6	6
72	Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends in Cell Biology, 2019, 29, 727-739.	3.6	20
73	Topologically-guided continuous protein crystallization controls bacterial surface layer self-assembly. Nature Communications, 2019, 10, 2731.	5.8	25
74	Advances in 3D single particle localization microscopy. APL Photonics, 2019, 4, .	3.0	35

#	Article	IF	CITATIONS
75	Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis. Analyst, The, 2019, 144, 4362-4370.	1.7	2
76	Myosin V fluorescence imaging dataset for single-molecule localization and tracking. Data in Brief, 2019, 25, 103973.	0.5	2
77	Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia. Nanoscale Advances, 2019, 1, 2571-2579.	2.2	25
78	Information-rich localization microscopy through machine learning. Nature Communications, 2019, 10, 1996.	5.8	28
79	Spatiotemporal Heterogeneity of Reactions in Solution Observed with Highâ€5peed Singleâ€Nanorod Rotational Sensing. Angewandte Chemie - International Edition, 2019, 58, 8389-8393.	7.2	10
80	Spatiotemporal Heterogeneity of Reactions in Solution Observed with Highâ€Speed Singleâ€Nanorod Rotational Sensing. Angewandte Chemie, 2019, 131, 8477-8481.	1.6	1
81	Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. International Journal of Molecular Sciences, 2019, 20, 1424.	1.8	23
82	Imaging through the Whole Brain of Drosophila at λ/20 Super-resolution. IScience, 2019, 14, 164-170.	1.9	9
83	A Brief History of Single-Particle Tracking of the Epidermal Growth Factor Receptor. Methods and Protocols, 2019, 2, 12.	0.9	20
84	Toward Precision Measurement and Manipulation of Singleâ€Molecule Reactions by a Confined Space. Small, 2019, 15, e1805426.	5.2	15
85	A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy. Chemical Science, 2019, 10, 4914-4922.	3.7	72
86	Facile single-molecule pull-down assay for analysis of endogenous proteins. Physical Biology, 2019, 16, 035002.	0.8	2
87	Nonconvex Optimization for 3-Dimensional Point Source Localization Using a Rotating Point Spread Function. SIAM Journal on Imaging Sciences, 2019, 12, 259-286.	1.3	8
88	Resolving starlight: a quantum perspective. Contemporary Physics, 2019, 60, 279-298.	0.8	70
89	Tunable super- and subradiant boundary states in one-dimensional atomic arrays. Communications Physics, 2019, 2, .	2.0	13
90	Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Applied Physics Reviews, 2019, 6, .	5.5	194
91	Accurate phase retrieval of complex 3D point spread functions with deep residual neural networks. Applied Physics Letters, 2019, 115, 251106.	1.5	33
92	Simultaneous Two-Angle Axial Ratiometry for Fast Live and Long-Term Three-Dimensional Super-Resolution Fluorescence Imaging. Journal of Physical Chemistry Letters, 2019, 10, 7811-7816.	2.1	3

#	ARTICLE	IF	CITATIONS
93	Spatial Temporal Analysis of Fieldwise Flow in Microvasculature. Journal of Visualized Experiments, 2019, , .	0.2	6
94	Revealing Nanoscale Morphology of the Primary Cilium Using Super-Resolution Fluorescence Microscopy. Biophysical Journal, 2019, 116, 319-329.	0.2	21
95	Modern description of Rayleigh's criterion. Physical Review A, 2019, 99, .	1.0	73
96	Quantum limit to subdiffraction incoherent optical imaging. Physical Review A, 2019, 99, .	1.0	68
97	Localization microscopy of single molecules enhanced by 3D imaging and light sheet illumination. Journal Physics D: Applied Physics, 2019, 52, 011001.	1.3	0
98	Single-Molecule Kinetics in Living Cells. Annual Review of Biochemistry, 2019, 88, 635-659.	5.0	91
99	Optical Microscopic Techniques for Synthetic Polymer Characterization. Analytical Chemistry, 2019, 91, 405-424.	3.2	24
100	Realâ€ŧime parallel 3D multiple particle tracking with single molecule centrifugal force microscopy. Journal of Microscopy, 2019, 273, 178-188.	0.8	5
101	Fluorescence microscopy for visualizing single-molecule protein dynamics. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129362.	1.1	17
102	Fast and accurate sCMOS noise correction for fluorescence microscopy. Nature Communications, 2020, 11, 94.	5.8	90
103	Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nature Physics, 2020, 16, 171-176.	6.5	94
104	Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Transactions on Nanobioscience, 2020, 19, 78-99.	2.2	9
105	Nonclassical Crystallization Observed by Liquid-Phase Transmission Electron Microscopy. ACS Symposium Series, 2020, , 115-146.	0.5	4
106	Quantitative Data Analysis in Single-Molecule Localization Microscopy. Trends in Cell Biology, 2020, 30, 837-851.	3.6	47
107	Nanoscale Cinematography of Soft Matter System under Liquid-Phase TEM. Accounts of Materials Research, 2020, 1, 41-52.	5.9	20
108	Super-resolution Microscopy with Single Molecules in Biology and Beyond–Essentials, Current Trends, and Future Challenges. Journal of the American Chemical Society, 2020, 142, 17828-17844.	6.6	108
109	Extended Dual-Focus Microscopy for Ratiometric-Based 3D Movement Tracking. Applied Sciences (Switzerland), 2020, 10, 6243.	1.3	5
110	vLUME: 3D virtual reality for single-molecule localization microscopy. Nature Methods, 2020, 17, 1097-1099.	9.0	23

#	Article	IF	CITATIONS
111	Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization. Communications Biology, 2020, 3, 220.	2.0	13
112	Recent advances in point spread function engineering and related computational microscopy approaches: from one viewpoint. Biophysical Reviews, 2020, 12, 1303-1309.	1.5	8
113	Viewpoint: Single Molecules at 31: What's Next?. Nano Letters, 2020, 20, 8427-8429.	4.5	12
114	Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins. Applied and Environmental Microbiology, 2020, 86, .	1.4	21
115	Cryogenic Far-Field Fluorescence Nanoscopy: Evaluation with DNA Origami. Journal of Physical Chemistry B, 2020, 124, 7525-7536.	1.2	3
116	Fluorescence molecular localization in submicronic depth through waveguide mode coupled emission. Optics Communications, 2020, 475, 126290.	1.0	2
117	Integrating engineered point spread functions into the phasor-based single-molecule localization microscopy framework. Methods, 2021, 193, 107-115.	1.9	5
118	Nanoparticle Tracking to Probe Transport in Porous Media. Accounts of Chemical Research, 2020, 53, 2130-2139.	7.6	27
119	Farâ€Field Superresolution Imaging via Spatial Frequency Modulation. Laser and Photonics Reviews, 2020, 14, 1900011.	4.4	15
120	100th Anniversary of Macromolecular Science Viewpoint: Enabling Advances in Fluorescence Microscopy Techniques. ACS Macro Letters, 2020, 9, 1342-1356.	2.3	28
121	Twin-Airy Point-Spread Function for Extended-Volume Particle Localization. Physical Review Letters, 2020, 124, 198104.	2.9	23
122	The cell biologist's guide to super-resolution microscopy. Journal of Cell Science, 2020, 133, .	1.2	103
123	DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nature Methods, 2020, 17, 734-740.	9.0	194
124	Single-Molecule Imaging of Protein Interactions and Dynamics. Annual Review of Analytical Chemistry, 2020, 13, 337-361.	2.8	22
125	Visualizing and Manipulating Biological Processes by Using HaloTag and SNAPâ€Tag Technologies. ChemBioChem, 2020, 21, 1935-1946.	1.3	70
126	Fluorescence polarization filtering for accurate single molecule localization. APL Photonics, 2020, 5, .	3.0	14
127	Quasi-Two-Dimensional Diffusion in Adherent Cells Revealed by Three-Dimensional Single Quantum Dot Tracking. Chinese Physics Letters, 2020, 37, 078701.	1.3	11
128	Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. Annual Review of Analytical Chemistry, 2020, 13, 381-403.	2.8	20

#	Article	IF	CITATIONS
129	Super-resolution imaging and quantification of megakaryocytes and platelets. Platelets, 2020, 31, 559-569.	1.1	9
130	Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 60-67.	3.3	46
131	Single-Molecule Fluorescence Microscopy for Probing the Electrochemical Interface. ACS Omega, 2020, 5, 89-97.	1.6	37
132	Super-resolution photoluminescence lifetime and intensity mapping of interacting CdSe/CdS quantum dots. Applied Physics Letters, 2020, 116, .	1.5	6
133	Novel fibrillar structure in the inversin compartment of primary cilia revealed by 3D single-molecule superresolution microscopy. Molecular Biology of the Cell, 2020, 31, 619-639.	0.9	32
134	The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 253.	1.8	128
135	Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods and Applications in Fluorescence, 2020, 8, 032002.	1.1	15
136	Bioanalysis in single cells: current advances and challenges. Science China Chemistry, 2020, 63, 564-588.	4.2	16
137	Pairwise Proximityâ€Differentiated Visualization of Singleâ€Cell DNA Epigenetic Marks. Angewandte Chemie, 2021, 133, 3470-3474.	1.6	3
138	High-speed super-resolution imaging of rotationally symmetric structures using SPEED microscopy and 2D-to-3D transformation. Nature Protocols, 2021, 16, 532-560.	5.5	17
139	Pairwise Proximityâ€Ðifferentiated Visualization of Singleâ€Cell DNA Epigenetic Marks. Angewandte Chemie - International Edition, 2021, 60, 3428-3432.	7.2	15
140	Large field-of-view nanometer-sectioning microscopy by using metal-induced energy transfer and biexponential lifetime analysis. Communications Biology, 2021, 4, 91.	2.0	11
141	Single molecule fluorescence imaging of nanoconfinement in porous materials. Chemical Society Reviews, 2021, 50, 6483-6506.	18.7	33
142	Nanometric axial localization of single fluorescent molecules with modulated excitation. Nature Photonics, 2021, 15, 297-304.	15.6	70
144	Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting supercritical angle fluorescence. Biomedical Optics Express, 2021, 12, 802.	1.5	4
145	Single-molecule study on the interactions between melittin and a lipid membrane. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	2
146	Information Optimal Control for Single Particle Tracking Microscopy. IFAC-PapersOnLine, 2021, 54, 649-654.	0.5	4
147	Principles and Applications of Single Particle Tracking in Cell Research. Small, 2021, 17, e2005133.	5.2	14

#	Article	IF	CITATIONS
148	Three-Dimensional Visualization Algorithm Simulation of Construction Management Based on GIS and VR Technology. Complexity, 2021, 2021, 1-13.	0.9	3
149	Investigating Spatial Heterogeneity of Nanoparticles Movement in Live Cells with Pair-Correlation Microscopy and Phasor Analysis. Analytical Chemistry, 2021, 93, 3803-3812.	3.2	4
150	Single-molecule orientation localization microscopy II: a performance comparison. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 288.	0.8	24
151	Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Science Advances, 2021, 7, .	4.7	14
152	Axial superlocalization with vortex beams. Quantum Science and Technology, 2021, 6, 025021.	2.6	4
153	Camera-based localization microscopy optimized with calibrated structured illumination. Communications Physics, 2021, 4, .	2.0	3
154	Resolving cargo-motor-track interactions with bifocal parallax single-particle tracking. Biophysical Journal, 2021, 120, 1378-1386.	0.2	8
155	Probing Biosensing Interfaces With Single Molecule Localization Microscopy (SMLM). Frontiers in Chemistry, 2021, 9, 655324.	1.8	3
157	Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annual Review of Physical Chemistry, 2021, 72, 253-278.	4.8	44
158	Unveiling Cellular Internalization Dynamics of Single Gold Nanorods by Tracking Their Orientational and Translational Motions. CCS Chemistry, 0, , 995-1004.	4.6	1
159	EM-based algorithms for single particle tracking of Ornstein-Uhlenbeck motion from sCMOS camera data. , 2021, 2021, 3945-3950.		1
160	Three-dimensional fluorescence nanoscopy of single quantum emitters based on the optics of spiral light beams. Physics-Uspekhi, 2022, 65, 617-626.	0.8	2
161	Spatial and temporal super-resolution for fluorescence microscopy by a recurrent neural network. Optics Express, 2021, 29, 15747.	1.7	4
162	Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chemical Reviews, 2021, 121, 14281-14347.	23.0	34
163	3D printable diffractive optical elements by liquid immersion. Nature Communications, 2021, 12, 3067.	5.8	13
166	Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Communications Biology, 2021, 4, 613.	2.0	26
167	Accurate localization microscopy by intrinsic aberration calibration. Nature Communications, 2021, 12, 3925.	5.8	8
170	Single-Molecule Tracking of Chromatin-Associated Proteins in the <i>C.Âelegans</i> Gonad. Journal of Physical Chemistry B, 2021, 125, 6162-6170.	1.2	4

		CITATION REPORT		
#	Article		IF	CITATIONS
171	Dynamic Behavior of Charged Particles at the Nanopipette Orifice. ACS Sensors, 2021	, 6, 2330-2338.	4.0	12
172	Long-term switching of single photochromic triads based on dithienylcyclopentene an at cryogenic temperatures. Journal of Chemical Physics, 2021, 155, 014901.	d fluorophores	1.2	1
173	Learning Optimal Wavefront Shaping for Multi-Channel Imaging. IEEE Transactions on and Machine Intelligence, 2021, 43, 2179-2192.	Pattern Analysis	9.7	27
174	Innovations in exÂvivo Light Sheet Fluorescence Microscopy. Progress in Biophysics ar Biology, 2022, 168, 37-51.	id Molecular	1.4	8
175	Single Molecules Are Your Quanta: A Bottom-Up Approach toward Multidimensional S Microscopy. ACS Nano, 2021, 15, 12483-12496.	uper-resolution	7.3	23
176	Seeing beyond the limit: A guide to choosing the right super-resolution microscopy teo Journal of Biological Chemistry, 2021, 297, 100791.	chnique.	1.6	68
177	Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells, 2021, 10, 1	760.	1.8	30
178	Multiplexed PSF Engineering for Three-Dimensional Multicolor Particle Tracking. Nano 21, 5888-5895.	Letters, 2021,	4.5	13
179	Uncover Single Nanoparticle Dynamics on Live Cell Membrane with Data-Driven Histor Analysis. Analytical Chemistry, 2021, 93, 9559-9567.	ical Experience	3.2	1
180	Superâ€Resolution Fluorescence Microscopy Methods for Assessing Mouse Biology. C 2021, 1, e224.	urrent Protocols,	1.3	5
181	What is resolution? A statistical minimax testing perspective on superresolution micro of Statistics, 2021, 49, .	scopy. Annals	1.4	3
182	Targeted Nanoscale 3D Thermal Imaging of Tumor Cell Surface with Functionalized Qu Small, 2021, 17, e2102807.	antum Dots.	5.2	3
183	Three-dimensional localization refinement and motion model parameter estimation for single particle tracking under low-light conditions. Biomedical Optics Express, 2021, 1	confined 2, 5793.	1.5	3
184	Super-resolution fluorescence imaging of extracellular environments. Spectrochimica A Molecular and Biomolecular Spectroscopy, 2021, 257, 119767.	Acta - Part A:	2.0	3
185	Particles 3D tracking with large axial depth by using the 2Ï \in -DH-PSF. Optics Letters, 20	021, 46, 5088.	1.7	5
187	Mapping Activity-Dependent Quasi-stationary States of Mitochondrial Membranes wit Graphene-Induced Energy Transfer Imaging. Nano Letters, 2021, 21, 8244-8249.	h	4.5	9
188	Localization precision in chromatic multifocal imaging. Journal of the Optical Society of Optical Physics, 2021, 38, 2792.	f America B:	0.9	2
189	Simultaneous Real-Time Three-Dimensional Localization and FRET Measurement of Two Particles. Nano Letters, 2021, 21, 7479-7485.	b Distinct	4.5	4

#	Article	IF	CITATIONS
190	Exploring Cell Surface–Nanopillar Interactions with 3D Super-Resolution Microscopy. ACS Nano, 2022, 16, 192-210.	7.3	10
191	Single quantum emitters detection with amateur CCD: Comparison to a scientific-grade camera. Optics and Laser Technology, 2021, 143, 107301.	2.2	5
192	Optimization of Fresnel-zones-based Double Helix Point Spread Function and measurement of particle diffusion coefficient. Optics Communications, 2022, 502, 127411.	1.0	3
193	Nuclear Import of Adeno-Associated Viruses Imaged by High-Speed Single-Molecule Microscopy. Viruses, 2021, 13, 167.	1.5	9
194	Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, 2020, 2173, 21-51.	0.4	7
195	Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ Co-doping. Journal of Luminescence, 2020, 225, 117364.	1.5	18
203	Semiparametric estimation for incoherent optical imaging. Physical Review Research, 2019, 1, .	1.3	20
204	Quantum limits for precisely estimating the orientation and wobble of dipole emitters. Physical Review Research, 2020, 2, .	1.3	19
205	Tilted light sheet microscopy with 3D point spread functions for single-molecule super-resolution imaging in mammalian cells. , 2018, 10500, .		3
206	Towards a super-resolution structured illumination microscope based on an array of nanoLEDs. , 2019, , .		2
207	Can phase masks extend depth-of-field in localization microscopy?. , 2020, , .		3
208	Quantifying bio-filament morphology below the diffraction limit of an optical microscope using out-of-focus images. Applied Optics, 2020, 59, 2914.	0.9	2
209	Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. Applied Optics, 2019, 58, 2248.	0.9	35
210	Joint 3D localization and classification of space debris using a multispectral rotating point spread function. Applied Optics, 2019, 58, 8598.	0.9	3
211	Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization. Biomedical Optics Express, 2019, 10, 2708.	1.5	37
212	Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited]. Biomedical Optics Express, 2020, 11, 1633.	1.5	65
213	Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography. Biomedical Optics Express, 2021, 12, 20.	1.5	9
214	Generalized method to design phase masks for 3D super-resolution microscopy. Optics Express, 2019, 27, 3799.	1.7	16

#	Article	IF	CITATIONS
215	Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy. Optics Express, 2019, 27, 7237.	1.7	23
216	Model-free 3D localization with precision estimates for brightfield-imaged particles. Optics Express, 2019, 27, 29875.	1.7	9
217	3D printing of gas-dynamic virtual nozzles and optical characterization of high-speed microjets. Optics Express, 2020, 28, 21749.	1.7	20
218	Addressing systematic errors in axial distance measurements in single-emitter localization microscopy. Optics Express, 2020, 28, 18616.	1.7	18
219	Nano illumination microscopy: a technique based on scanning with an array of individually addressable nanoLEDs. Optics Express, 2020, 28, 19044.	1.7	18
220	Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy. Optics Express, 2020, 28, 15432.	1.7	16
221	Co-designed annular binary phase masks for depth-of-field extension in single-molecule localization microscopy. Optics Express, 2020, 28, 32426.	1.7	21
222	Three-dimensional nanoscale localization of point-like objects using self-interference digital holography. Optics Letters, 2020, 45, 591.	1.7	18
223	Single molecule light field microscopy. Optica, 2020, 7, 1065.	4.8	37
224	Quantum-limited estimation of the axial separation of two incoherent point sources. Optica, 2019, 6, 534.	4.8	64
225	Improving the Energy Efficiency of Diffraction Optical Elements for 3D Nanoscopy. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1453-1458.	0.1	4
226	Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. ELife, 2019, 8, .	2.8	98
227	High-axial-resolution single-molecule localization under dense excitation with a multi-channel deep U-Net. Optics Letters, 2021, 46, 5477.	1.7	1
229	Splicing exponential point spread function design for localization of nanoparticles. Optics Express, 2021, 29, 35336.	1.7	1
231	Two-color super-resolution localization microscopy via joint encoding of emitter location and color. Optics Express, 2021, 29, 34797.	1.7	4
235	Measuring 3D molecular orientation and rotational mobility using a Tri-spot point spread function. , 2018, , .		0
236	A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely. , 2018, , .		0
240	Imaging Through the Whole Brain of Drosophila at λ/20 Super-Resolution. SSRN Electronic Journal, 0, ,	0.4	0

Т

#	Article	IF	CITATIONS
241	Single-Molecule Super-Resolution Imaging of Molecular Orientation using a Tri-Spot Point Spread Function. , 2019, , .		0
242	Fundamental Limits on Imaging the Orientational Dynamics of Dipole-Like Emitters. , 2019, , .		0
243	Automatic Correction of Pixel-dependent Noise: Towards the Ideal sCMOS Camera. , 2019, , .		0
244	Three-dimensional localization microscopy by incoherent holography. , 2019, , .		0
248	High-speed three-dimensional tracking of individual 100 nm polystyrene standard particles in multi-wavelength evanescent fields. Measurement Science and Technology, 2020, 31, 094012.	1.4	4
251	A time-varying approach to single particle tracking with a nonlinear observation model. , 2020, 2020, 5151-5156.		1
252	Nonequilibrium Carrier Transport in Quantum Dot Heterostructures. Nano Letters, 2021, 21, 8945-8951.	4.5	13
253	Feedforward Control for Single Particle Tracking Synthetic Motion. IFAC-PapersOnLine, 2020, 53, 8878-8883.	0.5	1
254	Correction of CMOS-related noise in fluorescence microscopy. , 2020, , .		0
255	Three-dimensional super-resolution imaging with self-interference digital holography. , 2020, , .		0
256	Engineering the pupil: from focus-free cameras to 3D microscopy. , 2020, , .		0
258	A Novel Method for 3D Nanoscale Tracking of 100 nm Polystyrene Particles in Multi-Wavelength Evanescent Fields Microscopy – Absolute Difference Height Verification –. International Journal of Automation Technology, 2021, 15, 831-841.	0.5	1
259	Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. Journal of Physical Chemistry B, 2021, 125, 12718-12729.	1.2	26
260	Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes. Journal of Physical Chemistry B, 2021, 125, 13181-13191.	1.2	3
261	Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Frontiers in Synaptic Neuroscience, 2021, 13, 761530.	1.3	6
262	Dimensions of a Living Cochlear Hair Bundle. Frontiers in Cell and Developmental Biology, 2021, 9, 742529.	1.8	8
263	Embracing the uncertainty: the evolution of SOFI into a diverse family of fluctuation-based super-resolution microscopy methods. JPhys Photonics, 2022, 4, 012002.	2.2	7
264	Three-Dimensional Tracking of Tethered Particles for Probing Nanometer-Scale Single-Molecule Dynamics Using a Plasmonic Microscope. ACS Sensors, 2021, 6, 4234-4243.	4.0	7

#	Article	IF	CITATIONS
265	Analysis of super-resolution single molecule localization microscopy data: A tutorial. AIP Advances, 2022, 12, .	0.6	12
266	Super-resolved 3D tracking of cargo transport through nuclear pore complexes. Nature Cell Biology, 2022, 24, 112-122.	4.6	24
267	Imaging Dynamic Processes in Multiple Dimensions and Length Scales. Annual Review of Physical Chemistry, 2022, 73, .	4.8	1
268	Synthetic Stochastic Motion Platform for Testing Single Particle Tracking Microscopes. IEEE Transactions on Control Systems Technology, 2022, 30, 2726-2733.	3.2	1
269	Fast and parallel nanoscale three-dimensional tracking of heterogeneous mammalian chromatin dynamics. Molecular Biology of the Cell, 2022, 33, mbcE21100514.	0.9	9
270	Approach to map nanotopography of cell surface receptors. Communications Biology, 2022, 5, 218.	2.0	6
271	Review of the use of nanodevices to detect single molecules. Analytical Biochemistry, 2022, 654, 114645.	1.1	7
272	LOCAN: a python library for analyzing single-molecule localization microscopy data. Bioinformatics, 2022, 38, 2670-2672.	1.8	8
273	Four-dimensional multi-particle tracking in living cells based on lifetime imaging. Nanophotonics, 2022, .	2.9	1
274	Quantifying cell-cycle-dependent chromatin dynamics during interphase by live 3D tracking. IScience, 2022, 25, 104197.	1.9	2
275	Spatiotemporal three-dimensional transport dynamics of endocytic cargos and their physical regulations in cells. IScience, 2022, 25, 104210.	1.9	10
277	Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules. Optica, 2022, 9, 505.	4.8	20
278	The effect of stress on biophysical characteristics of misfolded protein aggregates in living Saccharomyces cerevisiae cells. Experimental Gerontology, 2022, 162, 111755.	1.2	5
279	Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Science Advances, 2021, 7, eabj4990.	4.7	21
280	Extraction of Hidden Science from Nanoscale Images. Journal of Physical Chemistry C, 2022, 126, 3-13.	1.5	0
283	When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. Nanomaterials, 2022, 12, 1433.	1.9	7
285	Deformable mirror based optimal PSF engineering for 3D super-resolution imaging. Optics Letters, 2022, 47, 3031.	1.7	10
286	Ultra-bright and narrow-band emission from Ag atomic sized nanoclusters in a self-assembled plasmonic resonator. Nanoscale, 2022, 14, 9910-9917.	2.8	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
287	Realâ€Time Feedbackâ€Driven Singleâ€Particle Tracking: A Survey and Perspective. Small, 2022	., 18, .	5.2	10
288	Unraveling docking and initiation of mRNA export through the nuclear pore complex. BioEssays 44, .	, 2022,	1.2	2
290	Nanoscale fluorescence imaging of biological ultrastructure via molecular anchoring and physic expansion. Nano Convergence, 2022, 9, .	al	6.3	5
291	Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification. Accoun Chemical Research, 2022, 55, 2248-2259.	ts of	7.6	4
292	Fluorophores' talk turns them dark. Nature Methods, 2022, 19, 932-933.		9.0	1
294	Single-molecule counting applied to the study of GPCR oligomerization. Biophysical Journal, 20. 3175-3187.	22, 121,	0.2	6
295	Localization Microscopy. , 2023, , 335-391.			0
296	Motion Tracking and Analysis. , 2023, , 393-430.			0
297	Single-Molecule Microscopy Methods to Study Mitochondrial Processes. Springer Series on Fluorescence, 2022, , .		0.8	0
298	Deep learning in single-molecule imaging and analysis: recent advances and prospects. Chemica Science, 2022, 13, 11964-11980.	al .	3.7	5
299	Branched immunochip-integrated pairwise barcoding amplification exploring the spatial proxim two post-translational modifications in distinct cell subpopulations. Chemical Communications 2022, 58, 10020-10023.	ity of	2.2	0
300	Towards optimal point spread function design for resolving closely spaced emitters in three dimensions. Optics Express, 2022, 30, 37154.		1.7	3
302	Efficient and accurate conversion-gain estimation of a photon-counting image sensor based on maximum likelihood estimation. Optics Express, 2022, 30, 37493.	the	1.7	4
303	Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells, 2022, 11, 307	79.	1.8	8
304	Tuning axial and lateral localization precision in 3D super-resolution microscopy with variable astigmatism. Optics Letters, 2022, 47, 5727.		1.7	2
305	Deep-learning-based methods for super-resolution fluorescence microscopy. Journal of Innovati Optical Health Sciences, 2023, 16, .	ve	0.5	6
306	Surface Preparation for Single-Molecule Fluorescence Imaging in Organic Solvents. Langmuir, 2 38, 15848-15857.	022,	1.6	4
308	Single-Molecule Imaging in Commercial Stationary Phase Particles Using Highly Inclined and Lar Optical Sheet Microscopy. Analytical Chemistry, 2023, 95, 2245-2252.	ninated	3.2	2

#	Article	IF	CITATIONS
309	Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. Journal of Biomedical Optics, 2022, 27, .	1.4	1
310	Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nature Communications, 2022, 13, .	5.8	5
311	High-SPEED super-resolution SPEED microscopy to study primary cilium signaling in vivo. Methods in Cell Biology, 2023, , .	0.5	1
313	Deep-Learning-Enhanced Diffusion Imaging Assay for Resolving Local-Density Effects on Membrane Receptors. Analytical Chemistry, 2023, 95, 3300-3308.	3.2	1
314	Single-molecule imaging in the primary cilium. Methods in Cell Biology, 2023, , 59-83.	0.5	2
315	The Ciliary Lumen Accommodates Passive Diffusion and Vesicle-Assisted Trafficking in Cytoplasm-Ciliary Transport. Molecular Biology of the Cell, 0, , .	0.9	1
317	Introduction to Fluorescence Microscopy. Springer Series on Fluorescence, 2022, , .	0.8	0
318	Comparison of Physicochemical Properties of Native Mucus and Reconstituted Mucin Gels. Biomacromolecules, 2023, 24, 628-639.	2.6	7
319	Obtaining 3D super-resolution images by utilizing rotationally symmetric structures and 2D-to-3D transformation. Computational and Structural Biotechnology Journal, 2023, 21, 1424-1432.	1.9	1
320	General Strategy To Improve the Photon Budget of Thiol-Conjugated Cyanine Dyes. Journal of the American Chemical Society, 2023, 145, 4187-4198.	6.6	9
321	Refractometric Imaging and Biodetection Empowered by Nanophotonics. Laser and Photonics Reviews, 2023, 17, .	4.4	8
322	Design strategy for a dual-wedge prism imaging spectrometer in spectroscopic nanoscopy. Review of Scientific Instruments, 2023, 94, .	0.6	1
323	Single-molecule tracking of dye diffusion in synthetic polymers: A tutorial review. Journal of Applied Physics, 2023, 133, .	1.1	6
324	Time-resolved super-resolution microscopy to image photoluminescence lifetimes and spatially resolve dual emitter semiconductor nanostructures. , 2023, , .		0
325	åį«é€Ÿä¸‰ç»´è§å‰æ~¾å¾®æ^åƒæŠ€æœ⁻çš"ç"ç©¶èį›å±•ï¼^特é,€ï¼‰. Hongwai Yu Jiguang Gongcheng,	/Inforaired a	nddLaser Engi
327	Nucleic Acid Probes for Single-Molecule Localization Imaging of Cellular Biomolecules. , 2023, 1, 18-29.		5
334	Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. , 0, , .		1

339	A Minimax Testing Perspective on Spatial Statistical Resolution in Microscopy. Springer Proceedings in Mathematics and Statistics, 2023, , 483-508.	0.1	0	
-----	---	-----	---	--

#	Article	IF	CITATIONS
353	Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. Methods in Molecular Biology, 2024, , 421-449.	0.4	1
354	Single-Molecule Fluorescence Microscopy in Sensory Cilia of Living Caenorhabditis elegans. Methods in Molecular Biology, 2024, , 133-150.	0.4	0
379	Sampling-Based Two-Dimensional Temporal Imaging. , 2024, , 437-451.		0
380	Dipole-Spread Function Engineering for Six-Dimensional Super-Resolution Microscopy. , 2024, , 207-223.		0