Direct Conversion of Methane to Methanol under Mild beyond

Accounts of Chemical Research

50, 418-425

DOI: 10.1021/acs.accounts.6b00534

Citation Report

#	Article	IF	CITATIONS
1	Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 2017, 356, 523-527.	12.6	646
2	Methane to Methanol: Structure–Activity Relationships for Cu-CHA. Journal of the American Chemical Society, 2017, 139, 14961-14975.	13.7	277
3	Electronic Structure of the [Cu ₃ (μ-O) ₃] ²⁺ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation. Journal of Physical Chemistry C, 2017, 121, 22295-22302.	3.1	74
4	Computational Screening of Bimetal-Functionalized Zr ₆ O ₈ MOF Nodes for Methane C–H Bond Activation. Inorganic Chemistry, 2017, 56, 8739-8743.	4.0	46
5	Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chemical Science, 2017, 8, 6836-6851.	7.4	163
6	Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. Journal of the American Chemical Society, 2017, 139, 17694-17699.	13.7	297
7	Electronic Effects on Room-Temperature, Gas-Phase C–H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge. Journal of the American Chemical Society, 2017, 139, 17201-17212.	13.7	149
8	Applications of Zeolites in Sustainable Chemistry. CheM, 2017, 3, 928-949.	11.7	518
9	Aerobic Electrochemical Oxygenation of Light Hydrocarbons Catalyzed by an Iron–Tungsten Oxide Molecular Capsule. ACS Catalysis, 2018, 8, 3232-3236.	11.2	16
10	Methanol-essential growth of Escherichia coli. Nature Communications, 2018, 9, 1508.	12.8	119
11	Synthese von Zeolithen aus vorkristallisierten Bausteinen: Architektur im Nanomaßstab. Angewandte Chemie, 2018, 130, 15554-15578.	2.0	14
12	Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 2018, 118, 4981-5079.	47.7	3,103
13	Chemistry in Confinement: Copper and Palladium Catalyzed Ecofriendly Organic Transformations within Porous Frameworks. Chemical Record, 2018, 18, 506-526.	5.8	4
14	General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. Structure and Bonding, 2018, , 53-90.	1.0	7
15	A high performance catalyst for methane conversion to methanol: graphene supported single atom Co. Chemical Communications, 2018, 54, 2284-2287.	4.1	57
16	Building Zeolites from Precrystallized Units: Nanoscale Architecture. Angewandte Chemie - International Edition, 2018, 57, 15330-15353.	13.8	126
17	Performance of Density Functional Theory for Predicting Methane-to-Methanol Conversion by a Tri-Copper Complex. Journal of Physical Chemistry C, 2018, 122, 1024-1036.	3.1	23
18	Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chemical Reviews, 2018, 118, 2718-2768.	47.7	263

#	Article	IF	CITATIONS
19	Effects of methylating agent and BrÃ,nsted acidity on methylation activity of olefins in CHA-structured zeolites: A periodic DFT study. Molecular Catalysis, 2018, 446, 106-114.	2.0	4
20	Cation-exchanged zeolites for the selective oxidation of methane to methanol. Catalysis Science and Technology, 2018, 8, 114-123.	4.1	135
21	Immobilization of Molecular Catalysts for Enhanced Redox Catalysis. ChemCatChem, 2018, 10, 1686-1702.	3.7	35
22	Synthesis of New Microporous Zincosilicates with CHA Zeolite Topology as Efficient Platforms for Ionâ€Exchange of Divalent Cations. Chemistry - A European Journal, 2018, 24, 808-812.	3.3	15
23	Separation of C2 hydrocarbons from methane in a microporous metal-organic framework. Journal of Solid State Chemistry, 2018, 258, 346-350.	2.9	41
24	5. CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol. , 2018, , 125-182.		0
25	Room-Temperature Conversion of Methane Becomes True. Joule, 2018, 2, 1399-1401.	24.0	14
28	Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N ₃ Sites for Selective Oxidation of Benzene to Phenol. Journal of the American Chemical Society, 2018, 140, 16936-16940.	13.7	156
29	Reaction of Methane with MO <i>_x</i> /CeO ₂ (M = Fe, Ni, and Cu) Catalysts: In Situ Studies with Time-Resolved X-ray Diffraction. Journal of Physical Chemistry C, 2018, 122, 28739-28747.	3.1	15
30	Methane Activation by Gas Phase Atomic Clusters. Accounts of Chemical Research, 2018, 51, 2603-2610.	15.6	94
31	Performance of density functional theory for describing heteroâ€metallic activeâ€site motifs for methaneâ€toâ€methanol conversion in metalâ€exchanged zeolites. Journal of Computational Chemistry, 2018, 39, 2667-2678.	3.3	8
32	The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society, 2018, 140, 15270-15278.	13.7	177
33	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie - International Edition, 2018, 57, 16672-16677.	13.8	129
34	Achieving Atomic Dispersion of Highly Loaded Transition Metals in Smallâ€Pore Zeolite SSZâ€13: Highâ€Capacity and Highâ€Efficiency Lowâ€Temperature CO and Passive NO _{<i>x</i>} Adsorbers. Angewandte Chemie, 2018, 130, 16914-16919.	2.0	34
35	Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews, 2018, 118, 10840-11022.	47.7	166
36	An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu ₁₂ (μ ₂ -OH) ₁₂ (Pz) ₁₂] nodes for separation of C ₂ H ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2018, 6, 19681-19688.	10.3	21
37	Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal–Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. Journal of the American Chemical Society, 2018, 140, 7681-7687.	13.7	141
38	Direct Stepwise Oxidation of Methane to Methanol over Cu–SiO ₂ . ACS Catalysis, 2018, 8, 5721-5731.	11.2	61

#	Article	IF	CITATIONS
39	Stepwise Methaneâ€ŧoâ€Methanol Conversion on CuO/SBAâ€15. Chemistry - A European Journal, 2018, 24, 12592-12599.	3.3	41
40	Direct Methane to Methanol: The Selectivity–Conversion Limit and Design Strategies. ACS Catalysis, 2018, 8, 6894-6907.	11.2	211
41	Trace mono-atomically dispersed rhodium on zeolite-supported cobalt catalyst for the efficient methane oxidation. Communications Chemistry, 2018, 1, .	4.5	25
42	Cu-CHA – a model system for applied selective redox catalysis. Chemical Society Reviews, 2018, 47, 8097-8133.	38.1	215
43	On the Mechanism Underlying the Direct Conversion of Methane to Methanol by Copper Hosted in Zeolites; Braiding Cu K-Edge XANES and Reactivity Studies. Journal of the American Chemical Society, 2018, 140, 10090-10093.	13.7	95
44	CO2-based hydrogen storage – hydrogen liberation from methanol/water mixtures and from anhydrous methanol. Physical Sciences Reviews, 2018, 3, .	0.8	2
45	Effect of BrÃ,nsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catalysis Science and Technology, 2018, 8, 4141-4150.	4.1	56
46	The Effect of the Active‧ite Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Angewandte Chemie, 2018, 130, 9044-9048.	2.0	29
47	The Effect of the Activeâ€Site Structure on the Activity of Copper Mordenite in the Aerobic and Anaerobic Conversion of Methane into Methanol. Angewandte Chemie - International Edition, 2018, 57, 8906-8910.	13.8	130
48	Selective Câ^'O Coupling Hidden in the Thermal Reaction of [Al ₂ CuO ₅] ⁺ with Methane. Chemistry - A European Journal, 2018, 24, 14649-14653.	3.3	8
49	Conversion of Methane to Methanol on Copper Mordenite: Redox Mechanism of Isothermal and High-Temperature-Activation Procedures. Industrial & Engineering Chemistry Research, 2018, 57, 12036-12039.	3.7	26
50	Property–Activity Relations for Methane Activation by Dualâ€Metal Cu–Oxo Trimers in ZSMâ€5 Zeolite. Small Methods, 2018, 2, 1800266.	8.6	21
51	Determining Cu–Speciation in the Cu–CHA Zeolite Catalyst: The Potential of Multivariate Curve Resolution Analysis of In Situ XAS Data. Topics in Catalysis, 2018, 61, 1396-1407.	2.8	28
52	Aerobic oxidation of alkanes on icosahedron gold nanoparticle Au55. Journal of Catalysis, 2018, 364, 141-153.	6.2	9
53	Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. CheM, 2018, 4, 1902-1910.	11.7	350
54	Preparation of SSZ-13 zeolites from beta zeolite and their application in the conversion of ethylene to propylene. Chemical Engineering Journal, 2019, 377, 119546.	12.7	23
55	Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS. Catalysis Today, 2019, 333, 17-27.	4.4	61
56	The Key Role of Support Surface Hydrogenation in the CH ₄ to CH ₃ OH Selective Oxidation by a ZrO ₂ -Supported Single-Atom Catalyst. ACS Catalysis, 2019, 9, 8903-8909.	11.2	65

#	Article	IF	CITATIONS
57	Mechanistic Insights on the Direct Conversion of Methane into Methanol over Cu/Na–ZSM-5 Zeolite: Evidence from EPR and Solid-State NMR. ACS Catalysis, 2019, 9, 8677-8681.	11.2	29
58	Tuning the C2/C1 Hydrocarbon Separation Performance in a BioMOF by Surface Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 4205-4210.	2.0	21
59	Aqueousâ€Phase Selective Oxidation of Methane with Oxygen over Iron Salts and Pd/C in the Presence of Hydrogen. ChemCatChem, 2019, 11, 4247-4251.	3.7	18
60	Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Frontiers in Chemistry, 2019, 7, 514.	3.6	67
61	Mo6S8-based single-metal-atom catalysts for direct methane to methanol conversion. Journal of Chemical Physics, 2019, 151, 024304.	3.0	13
62	Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. CheM, 2019, 5, 2296-2325.	11.7	331
63	lsothermal cyclic conversion of methane to methanol using copper-exchanged ZSM-5 zeolite materials under mild conditions. Applied Catalysis A: General, 2019, 587, 117272.	4.3	13
64	Selective Photoâ€Oxygenation of Light Alkanes Using Iodine Oxides and Chloride. ChemCatChem, 2019, 11, 5045-5054.	3.7	14
65	Thermal C–O coupling reactions of Ta methylene clusters [Ta _n CH ₂] ⁺ (<i>n</i> = 1, 4) with O ₂ . Physical Chemistry Chemical Physics, 2019, 21, 20743-20749.	2.8	8
66	Comparative performance of Cu-zeolites in the isothermal conversion of methane to methanol. Chemical Communications, 2019, 55, 11794-11797.	4.1	25
67	Water Molecules Facilitate Hydrogen Release in Anaerobic Oxidation of Methane to Methanol over Cu/Mordenite. ACS Catalysis, 2019, 9, 10365-10374.	11.2	34
68	Increasing the activity of copper exchanged mordenite in the direct isothermal conversion of methane to methanol by Pt and Pd doping. Chemical Science, 2019, 10, 167-171.	7.4	17
69	In Situ X-ray Photoelectron Spectroscopy Detects Multiple Active Sites Involved in the Selective Anaerobic Oxidation of Methane in Copper-Exchanged Zeolites. ACS Catalysis, 2019, 9, 6728-6737.	11.2	38
70	Dicopper μ-Oxo, μ-Nitrosyl Complex from the Activation of NO or Nitrite at a Dicopper Center. Journal of the American Chemical Society, 2019, 141, 10159-10164.	13.7	21
71	Low-temperature selective oxidation of methane over distant binuclear cationic centers in zeolites. Communications Chemistry, 2019, 2, .	4.5	31
72	Direct conversion of methane to methanol with zeolites: towards understanding the role of extra-framework d-block metal and zeolite framework type. Dalton Transactions, 2019, 48, 10364-10384.	3.3	27
73	Activating and Converting CH ₄ to CH ₃ OH via the CuPdO ₂ /CuO Nanointerface. ACS Catalysis, 2019, 9, 6938-6944.	11.2	47
74	Direct Oxidation of Methane to Methanol Enabled by Electronic Atomic Monolayer–Metal Support Interaction. ACS Catalysis, 2019, 9, 6073-6079.	11.2	36

			_
#	ARTICLE	IF	CITATIONS
75	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	13.7	131
76	Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials. ACS Catalysis, 2019, 9, 6293-6304.	11.2	71
77	Methane removal and atmospheric restoration. Nature Sustainability, 2019, 2, 436-438.	23.7	96
78	Zeolite acidity strongly influences hydrogen peroxide activation and oxygenate selectivity in the partial oxidation of methane over M,Fe-MFI (M: Ga, Al, B) zeolites. Catalysis Science and Technology, 2019, 9, 2945-2951.	4.1	20
79	Reactivity descriptors of diverse copper-oxo species on ZSM-5 zeolite towards methane activation. Catalysis Today, 2019, 338, 108-116.	4.4	20
80	The influence of zeolite morphology on the conversion of methane to methanol on copper-exchanged omega zeolite (MAZ). Catalysis Science and Technology, 2019, 9, 2806-2811.	4.1	18
81	Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catalysis Science and Technology, 2019, 9, 1744-1768.	4.1	148
82	Formation of Active Cu-oxo Clusters for Methane Oxidation in Cu-Exchanged Mordenite. Journal of Physical Chemistry C, 2019, 123, 8759-8769.	3.1	60
83	Room Temperature Methane Capture and Activation by Ni Clusters Supported on TiC(001): Effects of Metal–Carbide Interactions on the Cleavage of the C–H Bond. Journal of the American Chemical Society, 2019, 141, 5303-5313.	13.7	57
84	Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. Topics in Catalysis, 2019, 62, 712-723.	2.8	9
85	Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chemistry, 2019, 21, 2709-2719.	9.0	61
86	Simultaneous Formation of <i>cis</i> - and <i>trans</i> -CH ₃ OCu(OH) Intermediates in Methane Activation by Cu in Solid Ar. Inorganic Chemistry, 2019, 58, 3237-3246.	4.0	1
87	Selective mild oxidation of methane to methanol or formic acid on Fe–MOR catalysts. Catalysis Science and Technology, 2019, 9, 6946-6956.	4.1	29
88	Fuels and energy carriers from single-site catalysts prepared via surface organometallic chemistry. Nature Energy, 2019, 4, 1018-1024.	39.5	34
89	The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem, 2019, 11, 134-156.	3.7	96
90	Understanding and Optimizing the Performance of Cuâ€FER for The Direct CH ₄ to CH ₃ OH Conversion. ChemCatChem, 2019, 11, 621-627.	3.7	29
91	The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study. Catalysis Today, 2019, 336, 99-108.	4.4	26
92	Intrinsic Reactivity of Diatomic 3d Transition-Metal Carbides in the Thermal Activation of Methane: Striking Electronic Structure Effects. Journal of the American Chemical Society, 2019, 141, 599-610.	13.7	39

#	Article	IF	CITATIONS
93	Room-Temperature Activation of the C–H Bond in Methane over Terminal Zn ^{II} –Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorganic Chemistry, 2019, 58, 327-338.	4.0	25
94	An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Metals, 2020, 39, 751-766.	7.1	52
95	Direct conversion of methane to methanol over Cu exchanged mordenite: Effect of counter ions. Chinese Chemical Letters, 2020, 31, 235-238.	9.0	11
96	The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews, 2020, 120, 734-813.	47.7	201
97	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	21.0	76
98	B, Nâ€coâ€doped grapheneâ€supported Ir and Pt clusters for methane activation and C─C coupling: A density functional theory study. Journal of Computational Chemistry, 2020, 41, 194-202.	3.3	9
99	Quasicatalytic and catalytic selective oxidation of methane to methanol over solid materials: a review on the roles of water. Catalysis Reviews - Science and Engineering, 2020, 62, 313-345.	12.9	14
100	Pathways of Methane Transformation over Copperâ€Exchanged Mordenite as Revealed by Inâ€Situ NMR and IR Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 910-918.	13.8	50
101	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie - International Edition, 2020, 59, 1216-1219.	13.8	98
102	Pathways of Methane Transformation over Copperâ€Exchanged Mordenite as Revealed by Inâ€Situ NMR and IR Spectroscopy. Angewandte Chemie, 2020, 132, 920-928.	2.0	34
103	Single Chromium Atoms Supported on Titanium Dioxide Nanoparticles for Synergic Catalytic Methane Conversion under Mild Conditions. Angewandte Chemie, 2020, 132, 1232-1235.	2.0	25
104	Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367, 193-197.	12.6	470
105	Kinetic study and effect of water on methane oxidation to methanol over copper-exchanged mordenite. Catalysis Science and Technology, 2020, 10, 382-390.	4.1	30
106	Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe ₂ M MOF Nodes. ACS Catalysis, 2020, 10, 1460-1469.	11.2	53
107	Insight into the active site and reaction mechanism for selective oxidation of methane to methanol using H ₂ O ₂ on a Rh ₁ /ZrO ₂ catalyst. New Journal of Chemistry, 2020, 44, 1632-1639.	2.8	20
108	The Catalyzed Conversion of Methane to Valueâ€Added Products. Energy Technology, 2020, 8, 1900665.	3.8	13
109	Framework Effects on Activation and Functionalisation of Methane in Zincâ€Exchanged Zeolites. ChemPhysChem, 2020, 21, 673-679.	2.1	9
110	Oxidative Methane Conversion to Ethane on Highly Oxidized Pd/CeO ₂ Catalysts Below 400 °C. ChemSusChem, 2020, 13, 677-681.	6.8	16

	CITATION	REPORT	
#	Article	IF	CITATIONS
111	Catalysis for Selected C1 Chemistry. CheM, 2020, 6, 2497-2514.	11.7	148
112	Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. Advanced Materials, 2020, 32, e2002927.	21.0	165
113	Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Accounts of Chemical Research, 2020, 53, 1488-1497.	15.6	66
114	Methane Activation on Metal-Doped (111) and (100) Ceria Surfaces with Charge-Compensating Oxygen Vacancies. Journal of Physical Chemistry C, 2020, 124, 17578-17585.	3.1	13
115	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	47.7	325
116	Catalytic Oxidation of Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and Photocatalytic Conversion at Low Temperatures. Advanced Science, 2020, 7, 2001946.	11.2	85
117	Mechanistic insights of selective syngas conversion over Zn grafted on ZSM-5 zeolite. Catalysis Science and Technology, 2020, 10, 8173-8181.	4.1	6
118	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	47.7	486
119	Direct Hydroxylation of Methane. , 2020, , .		6
120	In-Exchanged CHA Zeolites for Selective Dehydrogenation of Ethane: Characterization and Effect of Zeolite Framework Type. Catalysts, 2020, 10, 807.	3.5	14
121	Spectral Decomposition of X-ray Absorption Spectroscopy Datasets: Methods and Applications. Crystals, 2020, 10, 664.	2.2	22
122	Cu oxo nanoclusters for direct oxidation of methane to methanol: formation, structure and catalytic performance. Catalysis Science and Technology, 2020, 10, 7124-7141.	4.1	23
123	CO ₂ Hydrogenation to Methanol and Methane over Carbon-Supported Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 15393-15423.	3.7	22
124	Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts. ACS Catalysis, 2020, 10, 15033-15047.	11.2	30
125	Methane Utilization to Methanol by a Hybrid Zeolite@Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 23812-23821.	8.0	32
126	Dioxygen dissociation over man-made system at room temperature to form the active α-oxygen for methane oxidation. Science Advances, 2020, 6, eaaz9776.	10.3	35
127	Thermodynamics of Water–Cationic Species–Framework Guest–Host Interactions within Transition Metal Ion-Exchanged Mordenite Relevant to Selective Anaerobic Oxidation of Methane to Methanol. Journal of Physical Chemistry Letters, 2020, 11, 4774-4784.	4.6	8
128	Revealing the effect of N-content in Fe doped graphene on its catalytic performance for direct oxidation of methane to methanol. Applied Surface Science, 2020, 527, 146833.	6.1	20

#	Article	IF	CITATIONS
129	Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC. Research on Chemical Intermediates, 2020, 46, 2481-2496.	2.7	12
130	Unwanted effects of X-rays in surface grafted copper(<scp>ii</scp>) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Physical Chemistry Chemical Physics, 2020, 22, 6826-6837.	2.8	18
131	Partial oxidation of methane to methanol by isolated Pt catalyst supported on a CeO2 nanoparticle. Journal of Chemical Physics, 2020, 152, 054715.	3.0	14
132	Water Is the Oxygen Source for Methanol Produced in Partial Oxidation of Methane in a Flow Reactor over Cu-SSZ-13. Journal of the American Chemical Society, 2020, 142, 11962-11966.	13.7	74
133	Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. Kinetics and Catalysis, 2020, 61, 339-359.	1.0	9
134	Direct synthesis of oxygenates via partial oxidation of methane in the presence of O2 and H2 over a combination of Fe-ZSM-5 and Pd supported on an acid-functionalized porous polymer. Applied Catalysis A: General, 2020, 602, 117711.	4.3	19
135	Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chemical Society Reviews, 2020, 49, 1449-1486.	38.1	170
136	Advanced Xâ€ray Absorption Spectroscopy Analysis to Determine Structureâ€Activity Relationships for Cuâ€Zeolites in the Direct Conversion of Methane to Methanol. ChemCatChem, 2020, 12, 2385-2405.	3.7	17
137	Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Inorganic Chemistry, 2020, 59, 2037-2050.	4.0	25
138	Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials, 2020, 32, 1448-1453.	6.7	33
139	Selective Oxidation of Methane over Fe-Zeolites by In Situ Generated H2O2. Catalysts, 2020, 10, 299.	3.5	18
140	Water-promoted interfacial pathways in methane oxidation to methanol on a CeO ₂ -Cu ₂ O catalyst. Science, 2020, 368, 513-517.	12.6	182
141	Oxidation of methane to methanol over Cu-exchanged zeolites: Scientia gratia scientiae or paradigm shift in natural gas valorization?. Journal of Catalysis, 2020, 385, 238-245.	6.2	35
142	Selective activation of methane C H bond in the presence of methanol. Journal of Catalysis, 2020, 386, 12-18.	6.2	6
143	Multiple Methane Activation Pathways on Gaâ€modified ZSMâ€5 Zeolites Revealed by Solidâ€State NMR Spectroscopy. ChemCatChem, 2020, 12, 3880-3889.	3.7	7
144	Recent Advances of Precise Cu Nanoclusters in Microporous Materials. Chemistry - an Asian Journal, 2020, 15, 1819-1828.	3.3	8
145	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5811-5815.	13.8	66
146	Feâ€O Clusters Anchored on Nodes of Metal–Organic Frameworks for Direct Methane Oxidation. Angewandte Chemie, 2021, 133, 5875-5879.	2.0	3

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
147	Catalytic conversion of C1 molecules under mild conditions. EnergyChem, 2021, 3, 100050.	19.1	42
148	Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H2O2. Scientific Reports, 2021, 11, 2067.	3.3	15
149	Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Inorganic Chemistry, 2021, 60, 1149-1159.	4.0	10
150	Catalytic oxidation of methane to methanol over Cu-CHA with molecular oxygen. Catalysis Science and Technology, 2021, 11, 6217-6224.	4.1	16
151	Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made Core–Shell Catalysts. Nanostructure Science and Technology, 2021, , 105-120.	0.1	0
152	Investigating the innate selectivity issues of methane to methanol: consideration of an aqueous environment. Chemical Science, 2021, 12, 4443-4449.	7.4	17
153	DFT study of H ₂ adsorption at a Cu-SSZ-13 zeolite: a cluster approach. Physical Chemistry Chemical Physics, 2021, 23, 9980-9990.	2.8	16
154	Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water. Catalysis Science and Technology, 2021, 11, 3493-3500.	4.1	23
155	One step catalytic oxidation process of methane to methanol at low reaction temperature : A Brief Review. IOP Conference Series: Materials Science and Engineering, 2021, 1053, 012056.	0.6	4
156	The activation of methane by Ni-Cu/MoOx for the synthesis of ethanol. Journal of Chemical Sciences, 2021, 133, 1.	1.5	2
157	Design and tailoring of advanced catalytic process for light alkanes upgrading. EcoMat, 2021, 3, e12095.	11.9	10
158	Understanding Methanol Synthesis on Inverse ZnO/CuO _{<i>x</i>} /Cu Catalysts: Stability of CH ₃ O Species and Dynamic Nature of the Surface. Journal of Physical Chemistry C, 2021, 125, 6673-6683.	3.1	21
159	Active oxygen species in heterogeneously catalyzed oxidation reactions. Applied Catalysis A: General, 2021, 614, 118057.	4.3	23
160	Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. Nano Energy, 2021, 82, 105718.	16.0	47
161	Facile synthesis of N-doped carbon supported iron species for highly efficient methane conversion with H2O2 at ambient temperature. Applied Catalysis A: General, 2021, 615, 118052.	4.3	5
162	Methane C–H Activation by [Cu ₂ O] ²⁺ and [Cu ₃ O ₃] ²⁺ in Copper-Exchanged Zeolites: Computational Analysis of Redox Chemistry and X-ray Absorption Spectroscopy. Inorganic Chemistry, 2021, 60, 6218-6227.	4.0	5
163	Methane Overâ€Oxidation by Extraâ€Framework Copperâ€Oxo Active Sites of Copperâ€Exchanged Zeolites Crucial Role of Traps for the Separated Methyl Group. ChemPhysChem, 2021, 22, 1101-1109.		7
164	Lowâ€Temperature H 2 Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8410-8410.	3.3	1

#	Article	IF	Citations
165	Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis. Catalysts, 2021, 11, 590.	3.5	13
166	Modeling and Experiment for Oxygen Isotope Exchange over Copper-Containing Mordenite. Journal of Physical Chemistry C, 2021, 125, 12366-12373.	3.1	3
167	Methane Oxidation to Methanol in Water. Accounts of Chemical Research, 2021, 54, 2614-2623.	15.6	69
168	Lowâ€Temperature H ₂ Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8452-8456.	3.3	16
169	Batch Conversion of Methane to Methanol Using Copper Loaded Mordenite: Influence of the Main Variables of the Process. Ingenieria E Investigacion, 2021, 41, e87537.	0.4	1
170	Low-temperature conversion of methane to oxygenates by supported metal catalysts: From nanoparticles to single atoms. Chinese Journal of Chemical Engineering, 2021, 38, 18-29.	3.5	16
171	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie - International Edition, 2021, 60, 15944-15953.	13.8	33
172	Critical Role of Al Pair Sites in Methane Oxidation to Methanol on Cu-Exchanged Mordenite Zeolites. Catalysts, 2021, 11, 751.	3.5	4
173	Defect Engineering in Graphene-Confined Single-Atom Iron Catalysts for Room-Temperature Methane Conversion. Journal of Physical Chemistry C, 2021, 125, 12628-12635.	3.1	22
174	Copper-Oxo Active Sites for Methane C–H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV–Vis Spectra. Inorganic Chemistry, 2021, 60, 8489-8499.	4.0	11
175	Identification of Kinetic and Spectroscopic Signatures of Copper Sites for Direct Oxidation of Methane to Methanol. Angewandte Chemie, 2021, 133, 16080-16089.	2.0	0
176	Major routes in the photocatalytic methane conversion into chemicals and fuels under mild conditions. Applied Catalysis B: Environmental, 2021, 286, 119913.	20.2	78
177	Promoting the Methane Oxidation on Pd/CeO ₂ Catalyst by Increasing the Surface Oxygen Mobility via Defect Engineering. ChemCatChem, 2021, 13, 3706-3712.	3.7	8
178	Conversion of Methane to Methanol on Cobalt-Embedded Graphene: A Theoretical Perspective. Catalysis Letters, 0, , 1.	2.6	5
179	Synthesis of Methanesulfonic Acid Directly from Methane: The Cation Mechanism or the Radical Mechanism?. Journal of Physical Chemistry Letters, 2021, 12, 6486-6491.	4.6	2
180	Continuous methane to ethane conversion using gaseous oxygen on ceria-based Pd catalysts at low temperatures. Applied Catalysis A: General, 2021, 623, 118245.	4.3	6
181	Supercritical ion exchange: A new method to synthesize copper exchanged zeolites. Journal of Supercritical Fluids, 2022, 179, 105417.	3.2	6
182	Dioxygen Activation Kinetics over Distinct Cu Site Types in Cu-Chabazite Zeolites. ACS Catalysis, 2021, 11, 11873-11884.	11.2	27

TION

#	ARTICLE	IF	CITATIONS
183	Quadruple C–H Bond Activations of Methane by Dinuclear Rhodium Carbide Cation [Rh ₂ C ₃] ⁺ . Jacs Au, 2021, 1, 1631-1638.	7.9	6
184	Methane Transformation over Copper-Exchanged Zeolites: From Partial Oxidation to C–C Coupling and Formation of Hydrocarbons. ACS Catalysis, 2021, 11, 12543-12556.	11.2	17
185	DFT Analysis of Methane Câ^'H Activation and Overâ€Oxidation by [Cu ₂ O] ²⁺ and [Cu ₂ O ₂] ²⁺ Sites in Zeolite Mordenite: Intra―versus Interâ€site Overâ€Oxidation. ChemPhysChem, 2021, 22, 2517-2525.	2.1	2
186	Selective oxidation of methane to methanol using AuPd@ZIF-8. Catalysis Communications, 2021, 158, 106338.	3.3	13
187	Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling. Applied Catalysis B: Environmental, 2021, 296, 120384.	20.2	32
188	Direct oxidation of CH4 to HCOOH over extra-framework stabilized Fe@MFI catalyst at low temperature. Fuel, 2021, 305, 121624.	6.4	5
189	Tunable microstructure of \hat{I}_{\pm} -Ni(OH)2 for highly-efficient surface adsorbates activation to promote catalytic NO oxidation. Chemical Engineering Journal, 2021, 425, 130663.	12.7	8
190	Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Applied Catalysis B: Environmental, 2022, 300, 120742.	20.2	18
191	CH ₄ activation and C–C coupling on the Ti ₂ C(100) surface in the presence of intrinsic C-vacancies: is excess good?. Journal of Materials Chemistry A, 2021, 9, 23703-23713.	10.3	2
192	Continuous Synthesis of Methanol from Methane and Steam over Copper-Mordenite. ACS Catalysis, 2021, 11, 1065-1070.	11.2	28
193	Identifying promising metal–organic frameworks for heterogeneous catalysis via highâ€ŧhroughput periodic density functional theory. Journal of Computational Chemistry, 2019, 40, 1305-1318.	3.3	87
194	Mechanistic Understanding of Methane Hydroxylation by Cu-Exchanged Zeolites. , 2020, , 75-86.		1
195	Oxidative Activation of Metal-Exchanged Zeolite Catalysts for Methane Hydroxylation. , 2020, , 87-100.		2
196	Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge. Applied Energy, 2017, 202, 399-407.	10.1	5
197	Methane-selective oxidation to methanol and ammonia selective catalytic reduction of NOx over monolithic Cu/SSZ-13 catalysts: Are hydrothermal stability and active sites same?. Fuel, 2022, 309, 122178.	6.4	13
199	Challenges for the utilization of methane as a chemical feedstock. Mendeleev Communications, 2021, 31, 584-592.	1.6	18
200	Identifying the crucial role of water and chloride for efficient mild oxidation of methane to methanol over a [Cu2(μ-O)]2+-ZSM-5 catalyst. Journal of Catalysis, 2022, 405, 1-14.	6.2	19
201	Indirect Electrooxidation of Methane to Methyl Bisulfate on a Boronâ€Doped Diamond Electrode. ChemElectroChem, 2022, 9, e202101253.	3.4	4

# 202	ARTICLE Comparable catalytic activity of a low-cost catalyst IrO2/TiO2 for methane conversion – A density functional theory study. Applied Surface Science, 2022, 577, 151938.	IF 6.1	CITATIONS 9
203	Photoelectrochemical Conversion of Methane into Value-Added Products. Catalysts, 2021, 11, 1387.	3.5	15
204	Oxygen Isotope Exchange over Copper-Containing Mordenite: The Effect of Copper Loading and Si/Al Ratio. Journal of Physical Chemistry C, 0, , .	3.1	5
205	Introducing Methane Activation. , 2022, , 23-41.		3
206	Mechanistic Insights into Direct Methane Oxidation to Methanol on Single-Atom Transition-Metal-Modified Graphyne. ACS Applied Nano Materials, 2021, 4, 12006-12016.	5.0	17
207	Oxidation of Methane to Methanol by Water Over Cu/SSZâ€┨3: Impact of Cu Loading and Formation of Active Sites. ChemCatChem, 2022, 14, .	3.7	17
208	Activation and catalytic transformation of methane under mild conditions. Chemical Society Reviews, 2022, 51, 376-423.	38.1	45
209	Rational design of ZSM-5 zeolite containing a high concentration of single Fe sites capable of catalyzing the partial oxidation of methane with high turnover frequency. Catalysis Science and Technology, 2022, 12, 542-550.	4.1	11
210	Selective Oxidation of Methane into Methanol Under Mild Conditions. Chemical Research in Chinese Universities, 2022, 38, 671-676.	2.6	11
211	Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism. Journal of Biotechnology, 2022, 343, 128-137.	3.8	12
212	Copper-bismuth Binary Oxide Clusters: An Efficient Catalyst for Selective Styrene Bisperoxidation. Chemistry Letters, 2022, 51, 317-320.	1.3	0
213	Theoretical Understanding and Brief Insight into Heterogeneous Single Atom Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
214	A Pilot Demonstration of Flaring Gas Recovery During Shale Gas Well Completion in China. , 2022, , .		0
215	Partial Methane Oxidation in Fuel Cell-Type Reactors for Co-Generation of Energy and Chemicals: A Short Review. Catalysts, 2022, 12, 217.	3.5	14
216	Oxidative Coupling of Methane: Examining the Inactivity of the MnO _{<i>x</i>} â€Na ₂ WO ₄ /SiO ₂ Catalyst at Low Temperature. Angewandte Chemie, 2022, 134, .	2.0	8
217	Oxidative Coupling of Methane: Examining the Inactivity of the MnO _{<i>x</i>} â€Na ₂ WO ₄ /SiO ₂ Catalyst at Low Temperature. Angewandte Chemie - International Edition, 2022, 61, e202117201.	13.8	23
218	Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO ₂ . Angewandte Chemie, 0, , .	2.0	3
219	Gas-Phase Selective Oxidation of Methane into Methane Oxygenates. Catalysts, 2022, 12, 314.	3.5	8

#	Article	IF	CITATIONS
220	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	47.7	118
221	Selective Catalytic Oxidation of Methane to Methanol in Aqueous Medium over Copper Cations Promoted by Atomically Dispersed Rhodium on TiO ₂ . Angewandte Chemie - International Edition, 2022, 61, e202201540.	13.8	29
222	Dynamic Evolution of Zeolite Framework and Metal-Zeolite Interface. ACS Catalysis, 2022, 12, 5060-5076.	11.2	36
223	Insights into Fe Species Structureâ€Performance Relationship for Direct Methane Conversion toward Oxygenates over Feâ€MOR Catalysts. ChemCatChem, 2022, 14, .	3.7	4
224	Sulfoneâ€Decorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie, 0, , .	2.0	1
225	Sulfoneâ€Decorated Conjugated Organic Polymers Activate Oxygen for Photocatalytic Methane Conversion. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
226	Effect of ZSM–5 with different active centers on methane partial oxidation. Molecular Catalysis, 2022, 524, 112308.	2.0	1
227	Role of magnetization on catalytic pathways of non-oxidative methane activation on neutral iron carbide clusters. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
229	New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. Jacs Au, 2022, 2, 1200-1213.	7.9	23
230	Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects. Catalysts, 2022, 12, 465.	3.5	9
231	Upgrading of methane emissions via chemical looping over copper-zeolites: Experiments and modelling. Chemical Engineering Science, 2022, 259, 117818.	3.8	3
232	Stepwise Direct Conversion of Methane to Methanol Over Cu-Mordenite Prepared by Supercritical and Aqueous Ion Exchange Routes and Quantification of Active Cu Species by H2-Tpr. SSRN Electronic Journal, 0, , .	0.4	0
233	Zrâ€oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angewandte Chemie, 0, , .	2.0	0
234	Zirconiumâ€oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective â‹OH Species for Enhanced Methane Hydroxylation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	21
235	Ga speciation and ethane dehydrogenation catalysis of Ga-CHA and MOR: Comparative investigation with Ga-MFI. Catalysis Today, 2023, 411-412, 113824.	4.4	5
236	Mechanisms for direct methane conversion to oxygenates at low temperature. Coordination Chemistry Reviews, 2022, 470, 214691.	18.8	1
237	Exploration of single Fe atom supported on anatase TiO2(001) for methane oxidation: A DFT study. ChemPhysMater, 2023, 2, 90-96.	2.8	2
238	A comprehensive study on heterogeneous single atom catalysis: Current progress, and challengesâ~†. Coordination Chemistry Reviews, 2022, 470, 214710.	18.8	27

#	Article	IF	Citations
239	Understanding and tackling the activity and selectivity issues for methane to methanol using single atom alloys. Chemical Communications, 2022, 58, 9622-9625.	4.1	4
240	Covalent Organic Frameworks Composites Containing Bipyridine Metal Complex for Oxygen Evolution and Methane Conversion. Molecules, 2022, 27, 5193.	3.8	6
241	Highly efficient CO-assisted conversion of methane to acetic acid over Rh-encapsulated MFI zeolite prepared using RhCl ₃ molten salt. Catalysis Science and Technology, 2022, 12, 5488-5494.	4.1	2
242	Bond activation and formation on inorganic surfaces. , 2022, , .		Ο
243	The remarkable performance of a single iridium atom supported on hematite for methane activation: a density functional theory study. RSC Advances, 2022, 12, 23736-23746.	3.6	3
244	Selective oxidation of CH ₄ to valuable HCHO over a defective rTiO ₂ /GO metal-free photocatalyst. Catalysis Science and Technology, 2022, 12, 5869-5878.	4.1	0
245	Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 6039-6106.	47.7	95
246	Highly Selective Methane to Methanol Conversion on Inverse SnO ₂ /Cu ₂ O/Cu(111) Catalysts: Unique Properties of SnO ₂ Nanostructures and the Inhibition of the Direct Oxidative Combustion of Methane. ACS Catalysis, 2022, 12, 11253-11262.	11.2	10
247	Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nature Communications, 2022, 13, .	12.8	37
248	Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. Frontiers in Nanotechnology, 0, 4, .	4.8	0
249	Plasma-Assisted Cu/PCN for the Reforming of CH ₄ and O ₂ into C ₂₊ Liquid Chemicals. Industrial & Engineering Chemistry Research, 2022, 61, 16635-16642.	3.7	0
250	Breaking the scaling relationship in selective oxidation of methane via dynamic Metal-Intermediate Coordination-Induced modulation of reactivity descriptors on an atomically dispersed Rh/ZrO2 catalyst. Journal of Catalysis, 2022, 416, 68-84.	6.2	3
251	Exploring the potential use of Fe-decorated B40 borospherene as a prospective catalyst for oxidation of methane to methanol. Journal of Molecular Graphics and Modelling, 2023, 118, 108369.	2.4	0
252	NiO/ZnO heterojunction nanorod catalyst for high-efficiency electrochemical conversion of methane. Applied Catalysis B: Environmental, 2023, 323, 122129.	20.2	12
253	High-Throughput Experimentation for Resource-Efficient Discovery of Methane Functionalization Catalysts. ACS Symposium Series, 0, , 123-145.	0.5	0
254	Possible Fine-Tuning of Methane Activation toward C2 Oxygenates by 3d-Transition Metal-Ions Doped Nano-Ceria-Zirconia. Inorganic Chemistry, 2022, 61, 19577-19587.	4.0	0
255	Stepwise conversion of methane to methanol over Cu-mordenite prepared by supercritical and aqueous ion exchange routes and quantification of active Cu species by H2-TPR. Catalysis Communications, 2023, 174, 106574.	3.3	5
256	Computational study of surface orientation effect of wurtzite GaN on CH4 and CO sensing mechanism. Vacuum, 2023, 208, 111724.	3.5	2

#	Article	IF	CITATIONS
257	Structure of Selective and Nonselective Dicopper (II) Sites in CuMFI for Methane Oxidation to Methanol. ACS Catalysis, 2022, 12, 15626-15637.	11.2	13
258	Methane Oxidation to Methanol. Chemical Reviews, 2023, 123, 6359-6411.	47.7	50
259	Integrated <i>in situ</i> spectroscopic studies on syngas production from partial oxidation of methane catalyzed by atomically dispersed rhodium cations on ceria. Physical Chemistry Chemical Physics, 0, , .	2.8	1
260	Design of SA-FLP Dual Active Sites for Nonoxidative Coupling of Methane. ACS Catalysis, 2023, 13, 1299-1309.	11.2	10
261	Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire?. Physical Chemistry Chemical Physics, 2023, 25, 5313-5326.	2.8	9
262	Heterogeneous selective oxidation over supported metal catalysts: From nanoparticles to single atoms. Applied Catalysis B: Environmental, 2023, 325, 122384.	20.2	20
263	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	47.7	50
264	Photo-assisted thermal catalysis for methanol synthesis from methane oxidation on Cu-MOR/g-C3N4. Fuel, 2023, 340, 127525.	6.4	3
265	Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles. Angewandte Chemie, 2023, 135, .	2.0	5
266	Insights into the role of sensitive surface lattice oxygen species on promoting methane conversion. Chemical Engineering Science, 2023, 272, 118613.	3.8	3
267	Recent advance of atomically dispersed catalysts for direct methane oxidation under mild aqueous conditions. Materials Today Sustainability, 2023, 22, 100351.	4.1	2
268	Density Functional Theory Studies of the Direct Conversion of Methane to Methanol Using O ₂ on Graphitic MN ₄ C-BN (M = Fe, Co, Cu) and CuN ₄ G-PN Single-Atom Catalysts. ACS Applied Nano Materials, 0, , .	5.0	3
269	Change in the Nature of ZSM-5 Zeolite Depending on the Type of Metal Adsorbent—The Analysis of DOS and Orbitals for Iron Species. International Journal of Molecular Sciences, 2023, 24, 3374.	4.1	1
270	Insights into elusive and cooperative multi-oxidant mechanisms in enabling catalytic methane-to-methanol conversion over atomically dispersed metals. Inorganic Chemistry Frontiers, 2023, 10, 1838-1851.	6.0	2
271	Stepwise conversion of methane to methanol on Cu and Fe/zeolites prepared in solid state: the effect of zeolite type and activation temperature. Journal of Chemical Technology and Biotechnology, 2023, 98, 2716-2725.	3.2	2
272	Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics. Nature Communications, 2023, 14, .	12.8	12
273	Understanding the direct methane conversion to oxygenates on graphene-supported single 3d metal atom catalysts. Chemical Papers, 0, , .	2.2	0
274	A Pilot Demonstration of Flaring Gas Recovery during Shale Gas Well Completion in Sichuan, China. SPE Production and Operations, 2023, , 1-9.	0.6	1

#	Article	IF	CITATIONS
275	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	47.7	62
276	Selective, Aerobic Oxidation of Methane to Formaldehyde over Platinum ―a Perspective. ChemCatChem, 2023, 15, .	3.7	2
277	Selective Cleavage of Chemical Bonds in Targeted Intermediates for Highly Selective Photooxidation of Methane to Methanol. Journal of the American Chemical Society, 0, , .	13.7	2
278	Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
279	PdxNiy/TiO2 Electrocatalysts for Converting Methane to Methanol in An Electrolytic Polymeric Reactor—Fuel Cell Type (PER-FC). Methane, 2023, 2, 137-147.	2.2	1
280	Synergetic C–H bond activation and C–O formation on CuOx facilities facile conversion of methane to methanol. Applied Surface Science, 2023, 627, 157283.	6.1	1
282	Structural Evolution of Copper-Oxo Sites in Zeolites upon the Reaction with Methane Investigated by Means of Cu K-edge X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2023, 127, 9603-9615.	3.1	4
283	Boosting electrochemical methane conversion by oxygen evolution reactions on Fe–N–C single atom catalysts. Energy and Environmental Science, 2023, 16, 3158-3165.	30.8	8
284	Methane Activation by [OsC ₃] ⁺ : Implications for Catalyst Design. Journal of Physical Chemistry Letters, 2023, 14, 5236-5240.	4.6	1
285	Zeolite-based catalysts for oxidative upgrading of methane: design and control of active sites. Catalysis Science and Technology, 0, , .	4.1	1
286	Multi-radicals mediated one-step conversion of methane to acetic acid via photocatalysis. Applied Catalysis B: Environmental, 2023, 337, 122983.	20.2	4
287	Highly dispersed Cu-anchored nanoparticles based mordenite zeolite catalyst (Cu-MOR): Influence of the different preparation methods for direct methane oxidation (DMTM) to methanol. Journal of the Energy Institute, 2023, 109, 101269.	5.3	1
288	Structural Evolution of Iron-Loaded Metal–Organic Framework Catalysts for Continuous Gas-Phase Oxidation of Methane to Methanol. ACS Applied Materials & Interfaces, 2023, 15, 26700-26709.	8.0	8
289	Microcalorimetry on Cu-MCM-22 Reveals Structure–Activity Relationships for the Methane-to-Methanol Reaction. Industrial & Engineering Chemistry Research, 2023, 62, 10939-10950.	3.7	0
290	Recent advances on methane partial oxidation toward oxygenates under mild conditions. Renewable and Sustainable Energy Reviews, 2023, 184, 113561.	16.4	2
291	Theoretical Perspective of Promoting Direct Methane-to-Methanol Conversion at Complex Metal Oxide–Metal Interfaces. Journal of Physical Chemistry Letters, 2023, 14, 6556-6563.	4.6	2
292	Cu and Zn Bimetallic Co-Modified H-MOR Catalyst for Direct Oxidation of Low-Concentration Methane to Methanol. ACS Omega, 0, , .	3.5	2
293	Bioinspired microenvironment modulation of metal–organic framework-based catalysts for selective methane oxidation. Science Bulletin, 2023, 68, 1886-1893.	9.0	8

ARTICLE IF CITATIONS Modulating the microenvironment of AuPd nanoparticles using metalâ€"organic frameworks for 294 10.3 2 selective methane oxidation. Journal of Materials Chemistry A, 2023, 11, 18733-18739. MOF-based catalysts: insights into the chemical transformation of greenhouse and toxic gases. 4.1 Chemical Communications, 2023, 59, 10226-10242. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis. Accounts of 296 15.6 4 Chemical Research, 2023, 56, 2341-2353. Anion Capture at the Open Core of a Geometrically Flexible Dicopper(II,II) Macrocycle Complex. Inorganics, 2023, 11, 348. Rational Design of the Catalysts for the Direct Conversion of Methane to Methanol Based on a 298 3.5 0 Descriptor Approach. Catalysts, 2023, 13, 1226. Direct conversion of methane with O2 at room temperature over edge-rich MoS2. Nature Catalysis, 299 34.4 2023, 6, 1052-1061. Catalytic technologies for direct oxidation of methane to methanol: A critical tutorial on current 300 trends, future perspectives, and techno-feasibility assessment. Coordination Chemistry Reviews, 2023, 18.8 0 497, 215438. Chemistry of coordinatively unsaturated centers in zeolites. Trends in Chemistry, 2023, , . 8.5 Full Spectroscopic Characterization of the Molecular Oxygen-Based Methane to Methanol 302 Conversion over Open Fe(II) Sites in a Metalâ€"Organic Framework. Journal of the American Chemical 13.7 3 Society, 2023, 145, 21040-21052. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. Nanomaterials, 4.1 2023, 13, 2754. Activation of Methane by Rhodium Clusters on a Model Support C₂₀H₁₀. 304 1 4.6 Journal of Physical Chemistry Letters, 2023, 14, 9192-9199. The Role of <i>In Situ</i>/operando</i> IR Spectroscopy in Unraveling Adsorbate-Induced 47.7 Structural Changes in Heterogeneous Catalysis. Chemical Reviews, 2023, 123, 12135-12169. Emergent methane mitigation and removal approaches: A review. Atmospheric Environment: X, 2024, 21, 306 1.4 1 100223. 転写法ã«ã,ĩã,ãfã,ã,ãfãªä,«MFlåž<ã,¼ã,ªãf©ã,ãfćé‴æ¼äã«ãŠãªã,«Alãfšã,¢ã,µã,ãfã®æ§<ç⁻‰. Journal of the Jaman Petroleum Ins Mechanistic Insight into the Direct Nonoxidative Conversion of Methane to Ethylene over 308 Structure-Sensitive RhO₂/TiO₂ Catalysts. Journal of Physical Chemistry C, 0 3.12023, 127, 22557-22569. Surface hydrophobic MIL-100(Fe) MOFs to boost methane oxidation with nearly total selectivity to C1 309 oxygenates under mild conditions. Journal of Catalysis, 2024, 429, 115243. 310 Molecular Orbital Insights into Plasmon-Induced Methane Photolysis. Nano Letters, 0, , . 9.1 1 High-Efficiency Electrochemical Methane Conversion Using Fe2O3-based Catalysts Assisted by Thermochemical Active Oxygen. Applied Catalysis B: Environmental, 2023, , 123633.

#	Article	IF	CITATIONS
313	Research progress in single-atom catalysts for the selective oxidation of methane. Scientia Sinica Chimica, 2024, 54, 309-337.	0.4	0
314	Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. Jacs Au, 2024, 4, 197-215.	7.9	1
315	Activation and Transformation of Methane on Boron-Doped Cobalt Oxide Cluster Cations CoBO ₂ ⁺ . Inorganic Chemistry, 2024, 63, 1537-1542.	4.0	0
316	Intermetallic Ni ₃ Ga ₁ Catalyst for Efficient Ammonia Reforming of Light Alkane. Journal of the American Chemical Society, 2024, 146, 2646-2653.	13.7	0
317	Partially Bonded Aluminum Site on the External Surface of Post-treated Au/ZSM-5 Enhances Methane Oxidation to Oxygenates. ACS Catalysis, 2024, 14, 1797-1807.	11.2	0
318	Photocatalytic oxidation of methane to methanol over zinc titanate supported silver catalysts. Journal of Rare Earths, 2024, 42, 899-906.	4.8	0
319	Formation of ethane by activation of methane on B, N co-doped graphene surface decorated by Ir13 cluster: A first principle study. Applied Surface Science, 2024, 654, 159524.	6.1	0
320	Computational Discovery of Codoped Single-Atom Catalysts for Methane-to-Methanol Conversion. ACS Catalysis, 2024, 14, 2992-3005.	11.2	0
321	A computational strategy to improved methane activation single-atom catalysts toward ethylene formation. Computational Materials Science, 2024, 236, 112855.	3.0	0
322	A survey of interventions to actively conserve the frozen North. Climatic Change, 2024, 177, .	3.6	0