Fluorinated Compounds in U.S. Fast Food Packaging

Environmental Science and Technology Letters 4, 105-111 DOI: 10.1021/acs.estlett.6b00435

Citation Report

#	Article	IF	CITATIONS
1	Recycling and Delivery of Homogeneous Fluorous Rhodium Catalysts Using Poly(tetrafluoroethylene): "Catalyst-on-a-Tape― ACS Sustainable Chemistry and Engineering, 2017, 5, 10875-10888.	3.2	8
2	Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food and Chemical Toxicology, 2017, 109, 1-18.	1.8	46
3	Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC–TOF–MSE high-resolution parent ion search. Analytica Chimica Acta, 2017, 988, 41-49.	2.6	75
4	¹⁹ F NMR Characterization of the Encapsulation of Emerging Perfluoroethercarboxylic Acids by Cyclodextrins. Journal of Physical Chemistry B, 2017, 121, 8359-8366.	1.2	27
5	Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies. Environmental Monitoring and Assessment, 2017, 189, 402.	1.3	29
6	Closing the Mass Balance on Fluorine on Papers and Textiles. Environmental Science & Technology, 2017, 51, 9022-9032.	4.6	110
7	<i>In Vitro</i> Toxicity Testing of Food Contact Materials: Stateâ€ofâ€theâ€Art and Future Challenges. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1123-1150.	5.9	47
8	Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Science of the Total Environment, 2017, 607-608, 243-252.	3.9	93
9	Biotransformation of 8:2 polyfluoroalkyl phosphate diester in gilthead bream (Sparus aurata). Science of the Total Environment, 2017, 609, 1085-1092.	3.9	23
10	Towards rapid and simultaneous quantification of F, Li and Na in "as received―geological samples using PIGE technique. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 1885-1895.	0.7	1
11	An effect-directed strategy for characterizing emerging chemicals in food contact materials made from paper and board. Food and Chemical Toxicology, 2017, 106, 250-259.	1.8	38
12	PIGE as a screening tool for Per- and polyfluorinated substances in papers and textiles. Nuclear Instruments & Methods in Physics Research B, 2017, 407, 47-54.	0.6	68
13	β-Cyclodextrin Attenuates Perfluorooctanoic Acid Toxicity in the Zebrafish Embryo Model. Toxics, 2017, 5, 31.	1.6	15
14	Shifting Global Exposures to Poly- and Perfluoroalkyl Substances (PFASs) Evident in Longitudinal Birth Cohorts from a Seafood-Consuming Population. Environmental Science & Technology, 2018, 52, 3738-3747.	4.6	64
15	Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 2018, 30, 13.	2.6	438
16	Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources?. Environmental Health, 2018, 17, 11.	1.7	58
17	β-Cyclodextrin Reverses Binding of Perfluorooctanoic Acid to Human Serum Albumin. Chemical Research in Toxicology, 2018, 31, 277-284.	1.7	18
18	Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Science of the Total Environment, 2018, 616-617, 1089-1100.	3.9	202

		TION REPORT	
#	Article	IF	Citations
			Children
19	Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 2018, 90, 398-428.	3.2	465
20	Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: implications for environmental emissions and human exposure. Environmental Sciences: Processes and Impacts, 2018, 20, 1680-1690.	1.7	104
21	Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environmental Science and Technology Letters, 2018, 5, 764-769.	3.9	99
22	Determinants of prenatal exposure to perfluoroalkyl substances in the Slovak birth cohort. Environment International, 2018, 121, 1304-1310.	4.8	15
23	Migration of perfluorinated compounds from paperbag to Tenax® and lyophilised milk at different temperatures. International Journal of Environmental Analytical Chemistry, 2018, 98, 1423-1433.	1.8	21
24	Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances in Wastewater from a Fluorochemical Manufacturing Park. Environmental Science & Technology, 2018, 52, 11007-11016	5. 4.6	149
25	Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Adiposity. JAMA Network Open, 2018, 1, e181493.	2.8	54
26	High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environmental Science & Technology, 2018, 52, 7279-7288.	4.6	218
27	Perfluorinated compounds in food simulants after migration from fluorocarbon resin-coated frying pans, baking utensils, and non-stick baking papers on the Korean market. Food Additives and Contaminants: Part B Surveillance, 2018, 11, 264-272.	1.3	25
28	Developmental Origins of Disease: Emerging Prenatal Risk Factors and Future Disease Risk. Current Epidemiology Reports, 2018, 5, 293-302.	1.1	23
29	Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study. PLoS Medicine, 2018, 15, e1002502.	3.9	117
30	Evaluation of treatment options for well water contaminated with perfluorinated alkyl substances using life cycle assessment. International Journal of Life Cycle Assessment, 2019, 24, 117-128.	2.2	15
31	Fluoride Content in Foods and Beverages From Mexico City Markets and Supermarkets. Food and Nutrition Bulletin, 2019, 40, 514-531.	0.5	22
32	Dietary Habits Related to Food Packaging and Population Exposure to PFASs. Environmental Health Perspectives, 2019, 127, 107003.	2.8	94
33	Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. International Journal of Environmental Research and Public Health, 2019, 16, 4361.	1.2	214
34	Environmental exposures during windows of susceptibility for breast cancer: a framework for prevention research. Breast Cancer Research, 2019, 21, 96.	2.2	143
35	Research progress on the removal of hazardous perfluorochemicals: A review. Journal of Environmental Management, 2019, 250, 109488.	3.8	33
36	Hand Wipes: A Useful Tool for Assessing Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) through Hand-to-Mouth and Dermal Contacts. Environmental Science & Technology, 2019 53, 1985-1993.	9, 4.6	49

#	Article	IF	CITATIONS
37	Total Fluorine Measurements in Food Packaging: How Do Current Methods Perform?. Environmental Science and Technology Letters, 2019, 6, 73-78.	3.9	84
38	The role of analytical chemistry in exposure science: Focus on the aquatic environment. Chemosphere, 2019, 222, 564-583.	4.2	87
39	Physico-chemical properties and gestational diabetes predict transplacental transfer and partitioning of perfluoroalkyl substances. Environment International, 2019, 130, 104874.	4.8	60
40	Analysis of GenX and Other Per- and Polyfluoroalkyl Substances in Environmental Water Samples. Separation Science and Technology, 2019, , 355-370.	0.0	5
41	Perfluoroalkyl Acid Characterization in U.S. Municipal Organic Solid Waste Composts. Environmental Science and Technology Letters, 2019, 6, 372-377.	3.9	58
42	Determinants of per- and polyfluoroalkyl substances (PFAS) in midlife women: Evidence of racial/ethnic and geographic differences in PFAS exposure. Environmental Research, 2019, 175, 186-199.	3.7	102
43	Identifying Per- and Polyfluorinated Chemical Species with a Combined Targeted and Non-Targeted-Screening High-Resolution Mass Spectrometry Workflow. Journal of Visualized Experiments, 2019, , .	0.2	11
44	Hydrophobic polymerized ionic liquids for trace metal solid phase extraction: thallium transfer from hydrochloric acid media. New Journal of Chemistry, 2019, 43, 8958-8969.	1.4	6
45	Guiding Communities Affected by PFASs: Tools for Tackling Contaminated Drinking Water. Environmental Health Perspectives, 2019, 127, 24003.	2.8	1
47	PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Additives and Contaminants: Part B Surveillance, 2019, 12, 191-198.	1.3	31
48	Multi-compartment distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in an urban catchment system. Water Research, 2019, 154, 227-237.	5.3	65
49	Contaminants of Emerging Concern: Occurrence, Fate, and Remediation. , 2019, , 67-114.		17
50	High-Sensitivity Elemental Mass Spectrometry of Fluorine by Ionization in Plasma Afterglow. Analytical Chemistry, 2019, 91, 3773-3777.	3.2	15
51	Implementing PIXE and PIGE at the Texas A&M University cyclotron institute. AIP Conference Proceedings, 2019, , .	0.3	1
52	Measuring total PFASs in water: The tradeoff between selectivity and inclusivity. Current Opinion in Environmental Science and Health, 2019, 7, 13-18.	2.1	76
53	Oil- and Water-Resistant Coatings for Porous Cellulosic Substrates. ACS Applied Polymer Materials, 2019, 1, 103-111.	2.0	50
54	Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends in Food Science and Technology, 2019, 85, 44-54.	7.8	43
55	A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 131-147.	1.8	1,219

#	Article	IF	CITATIONS
56	Serum concentrations of PFASs and exposure-related behaviors in African American and non-Hispanic white women. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 206-217.	1.8	90
57	Distribution, Toxic Potential, and Influence of Land Use on Conventional and Emerging Contaminants in Urban Stormwater Pond Sediments. Archives of Environmental Contamination and Toxicology, 2019, 76, 265-294.	2.1	17
58	Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environment International, 2019, 124, 58-65.	4.8	68
59	Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydrate Polymers, 2019, 206, 281-288.	5.1	92
60	How Do We Measure Poly- and Perfluoroalkyl Substances (PFASs) at the Surface of Consumer Products?. Environmental Science and Technology Letters, 2019, 6, 38-43.	3.9	46
61	Fluorine in the environment, a review of its sources and geochemistry. Applied Geochemistry, 2019, 100, 393-406.	1.4	122
62	Associations between sociodemographic characteristics and exposures to PBDEs, OH-PBDEs, PCBs, and PFASs in a diverse, overweight population of pregnant women. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 42-55.	1.8	12
63	Associations of Exposure to Perfluoroalkyl Substances With Thyroid Hormone Concentrations and Birth Size. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 735-745.	1.8	39
64	Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 2020, 18, e06223.	0.9	255
65	Reductive Defluorination and Mechanochemical Decomposition of Per- and Polyfluoroalkyl Substances (PFASs): From Present Knowledge to Future Remediation Concepts. International Journal of Environmental Research and Public Health, 2020, 17, 7242.	1.2	16
66	Global Biogeochemical Cycle of Fluorine. Global Biogeochemical Cycles, 2020, 34, e2020GB006722.	1.9	25
67	A forensic approach for distinguishing PFAS materials. Environmental Forensics, 2020, 21, 319-333.	1.3	20
68	Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere, 2020, 260, 127659.	4.2	116
69	Perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction and altered offspring physiological functions in Caenorhabditis elegans. Food and Chemical Toxicology, 2020, 145, 111695.	1.8	30
70	Inventory and action plan for PFOS and related substances in Suriname as basis for Stockholm Convention implementation. Emerging Contaminants, 2020, 6, 421-431.	2.2	7
71	Sorption and desorption behavior of PFOS and PFOA onto a Gram-positive and a Gram-negative bacterial species measured using particle-induced gamma-ray emission (PIGE) spectroscopy. Chemical Geology, 2020, 552, 119778.	1.4	27
72	Theoretical evaluation of chemical and physical feasibility of an in situ ultrasonic reactor for remediation of groundwater contaminated with per―and polyfluoroalkyl substances. Remediation, 2020, 31, 45-58.	1.1	3
73	Structure-based virtual screening of perfluoroalkyl and polyfluoroalkyl substances (PFASs) as endocrine disruptors of androgen receptor activity using molecular docking and machine learning. Environmental Research, 2020, 190, 109920.	3.7	21

#	Article	IF	CITATIONS
74	Binding of Per- and Polyfluoroalkyl Substances to the Human Pregnane X Receptor. Environmental Science & Technology, 2020, 54, 15986-15995.	4.6	24
75	The Confounder-Mediator Dilemma: Should We Control for Obesity to Estimate the Effect of Perfluoroalkyl Substances on Health Outcomes?. Toxics, 2020, 8, 125.	1.6	20
76	Outcome of a public consultation on the draft risk assessment of perfluoroalkyl substances in food. EFSA Supporting Publications, 2020, 17, 1931E.	0.3	5
77	Per- and Polyfluoroalkyl Substances in Dust Collected from Residential Homes and Fire Stations in North America. Environmental Science & Technology, 2020, 54, 14558-14567.	4.6	58
78	Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Human Reproduction Update, 2020, 26, 724-752.	5.2	147
80	Facile synthesis of fluorine-free cellulosic paper with excellent oil and grease resistance. Cellulose, 2020, 27, 7009-7022.	2.4	20
81	PFAS in Food Packaging: A Hot, Greasy Exposure. Environmental Health Perspectives, 2020, 128, 54002.	2.8	16
82	Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women's Health Across the Nation. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3169-e3182.	1.8	25
83	Starch and Zein Biopolymers as a Sustainable Replacement for PFAS, Silicone Oil, and Plastic-Coated Paper. Industrial & Engineering Chemistry Research, 2020, 59, 12075-12084.	1.8	36
84	Consumer Skepticism about Quick Service Restaurants' Corporate Social Responsibility Activities. Journal of Foodservice Business Research, 2020, 23, 417-441.	1.3	17
85	Polyâ€and perfluoroalkyl substances in water and wastewater: A comprehensive review from sources to remediation. Journal of Water Process Engineering, 2020, 36, 101393.	2.6	118
86	Plasmon-driven carbon–fluorine (C(sp3)–F) bond activation with mechanistic insights into hot-carrier-mediated pathways. Nature Catalysis, 2020, 3, 564-573.	16.1	81
87	Impacts of food contact chemicals on human health: a consensus statement. Environmental Health, 2020, 19, 25.	1.7	100
88	A framework to model exposure to per- and polyfluoroalkyl substances in indoor environments. Environmental Sciences: Processes and Impacts, 2020, 22, 500-511.	1.7	12
89	Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science and Technology Letters, 2020, 7, 532-543.	3.9	278
90	Separation of perfluoroalkyl substances by using nonaqueous capillary electrophoresis with conductivity detection. Separation Science Plus, 2020, 3, 313-320.	0.3	1
91	Occurrence, fate, sources and toxicity of PFAS: What we know so far in Florida and major gaps. TrAC - Trends in Analytical Chemistry, 2020, 130, 115976.	5.8	69
92	Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications. Surface and Coatings Technology, 2020, 399, 126166.	2.2	21

#	ARTICLE	IF	CITATIONS
93	Perfluoroalkyl substances in the Lingang hybrid constructed wetland, Tianjin, China: occurrence, distribution characteristics, and ecological risks. Environmental Science and Pollution Research, 2020, 27, 38580-38590.	2.7	15
94	Assessing the Effectiveness of Point-of-Use Residential Drinking Water Filters for Perfluoroalkyl Substances (PFASs). Environmental Science and Technology Letters, 2020, 7, 178-184.	3.9	63
95	Non-target and suspected-target screening for potentially hazardous chemicals in food contact materials: investigation of paper straws. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 649-664.	1.1	15
96	Metal–Organic Framework-Based Microfluidic Impedance Sensor Platform for Ultrasensitive Detection of Perfluorooctanesulfonate. ACS Applied Materials & Interfaces, 2020, 12, 10503-10514.	4.0	77
97	Field Sampling Materials Unlikely Source of Contamination for Perfluoroalkyl and Polyfluoroalkyl Substances in Field Samples. Environmental Science and Technology Letters, 2020, 7, 156-163.	3.9	22
98	The case for environmentally-informed occupational therapy: Clinical and educational applications to promote personal wellness, public health and environmental sustainability. World Federation of Occupational Therapists Bulletin, 2020, 76, 32-39.	0.9	7
99	Response Surface Methodology Design for Biobased and Sustainable Coatings for Water- and Oil-Resistant Paper. ACS Applied Polymer Materials, 2020, 2, 1378-1387.	2.0	32
100	LC-MS screening of poly- and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis. Analytical and Bioanalytical Chemistry, 2020, 412, 4797-4805.	1.9	57
101	Benchtop ¹⁹ F NMR spectroscopy as a practical tool for testing of remedial technologies for the degradation of perfluorooctanoic acid, a persistent organic pollutant. Magnetic Resonance in Chemistry, 2020, 58, 1160-1167.	1.1	13
102	Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. Journal of Hazardous Materials, 2020, 389, 122124.	6.5	63
103	Transplacental Transfer of Per- and Polyfluoroalkyl Substances Identified in Paired Maternal and Cord Sera Using Suspect and Nontarget Screening. Environmental Science & Technology, 2020, 54, 3407-3416.	4.6	88
104	Polyfluoroalkyl substances in Danjiangkou Reservoir, China: Occurrence, composition, and source appointment. Science of the Total Environment, 2020, 725, 138352.	3.9	32
105	Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates. Waste Management, 2020, 107, 191-200.	3.7	67
106	Thyroid-Disrupting Effects of 6:2 and 8:2 Polyfluoroalkyl Phosphate Diester (diPAPs) at Environmentally Relevant Concentrations from Integrated <i>In Silico</i> and <i>In Vivo</i> Studies. Environmental Science and Technology Letters, 2020, 7, 330-336.	3.9	13
107	Food-Safe Chitosan–Zein Dual-Layer Coating for Water- and Oil-Repellent Paper Substrates. ACS Sustainable Chemistry and Engineering, 2020, 8, 6887-6897.	3.2	50
108	A combined current density technique for the electrochemical oxidation of perfluorooctanoic acid (PFOA) with boronâ€doped diamond. Water and Environment Journal, 2021, 35, 158-165.	1.0	14
109	Drinking water pollutants may affect the immune system: concerns regarding COVID-19 health effects. Environmental Science and Pollution Research, 2021, 28, 1235-1246.	2.7	45
110	Microplastics and other harmful substances released from disposable paper cups into hot water. Journal of Hazardous Materials, 2021, 404, 124118.	6.5	120

#	Article	IF	CITATIONS
111	Bioaccumulation of Per- and polyfluoroalkyl substances (PFASs) in a tropical estuarine food web. Science of the Total Environment, 2021, 754, 142146.	3.9	88
112	Significance of Perfluoroalkyl Substances (PFAS) in Food Packaging. Integrated Environmental Assessment and Management, 2021, 17, 7-12.	1.6	48
113	Consumption of freshwater fish: A variable but significant risk factor for PFOS exposure. Environmental Research, 2021, 192, 110284.	3.7	39
114	Characteristics, pollution patterns and risks of Perfluoroalkyl substances in drinking water sources of Taiwan. Chemosphere, 2021, 264, 128579.	4.2	24
115	Paper product production identified as the main source of per- and polyfluoroalkyl substances (PFAS) in a Norwegian lake: Source and historic emission tracking. Environmental Pollution, 2021, 273, 116259.	3.7	47
116	An evaluation of health-based federal and state PFOA drinking water guidelines in the United States. Science of the Total Environment, 2021, 761, 144107.	3.9	18
117	Nanocellulose in food packaging: A review. Carbohydrate Polymers, 2021, 255, 117479.	5.1	166
118	Effects of ionic strength and cation type on the transport of perï¬,uorooctanoic acid (PFOA) in unsaturated sand porous media. Journal of Hazardous Materials, 2021, 403, 123688.	6.5	44
119	Prenatal exposure and transplacental transfer of perfluoroalkyl substance isomers in participants from the upper and lower reaches of the Yangtze River. Environmental Pollution, 2021, 270, 116202.	3.7	12
120	From Waste Collection Vehicles to Landfills: Indication of Per- and Polyfluoroalkyl Substance (PFAS) Transformation. Environmental Science and Technology Letters, 2021, 8, 66-72.	3.9	39
121	Fabrication of oil―and <scp>waterâ€resistant</scp> paper without creating microplastics on disposal. Journal of Applied Polymer Science, 2021, 138, 49692.	1.3	11
122	Trends of Perfluoroalkyl Acids in Water Bodies: A Case Study of the Taihu Lake, China (2009-2021). SSRN Electronic Journal, 0, , .	0.4	0
123	Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602040.	2.0	74
124	The curious world of fluorinated molecules fluorine in the ecosphere. , 2021, , 277-294.		1
125	Evaluation, optimization, and application of three independent suspect screening workflows for the characterization of PFASs in water. Environmental Sciences: Processes and Impacts, 2021, 23, 1554-1565.	1.7	13
126	Oil―and <scp>water―esistant</scp> paper substrate using blends of <scp>chitosanâ€<i>graft</i>â€polydimethylsiloxane</scp> and poly(vinyl alcohol). Journal of Applied Polymer Science, 2021, 138, 50494.	1.3	15
127	Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust. Journal of Exposure Science and Environmental Epidemiology, 2021, 31, 930-942.	1.8	40
128	Contaminação de alimentos pela migração de componentes de embalagens: Casos de ocorrência. Research, Society and Development, 2021, 10, e39710211411.	0.0	2

#	Article	IF	CITATIONS
129	Per―and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2596-2625.	5.9	55
130	High-Efficiency Capture and Recovery of Anionic Perfluoroalkyl Substances from Water Using PVA/PDDA Nanofibrous Membranes with Near-Zero Energy Consumption. Environmental Science and Technology Letters, 2021, 8, 350-355.	3.9	17
131	Investigating Molecular Mechanisms of Immunotoxicity and the Utility of ToxCast for Immunotoxicity Screening of Chemicals Added to Food. International Journal of Environmental Research and Public Health, 2021, 18, 3332.	1.2	17
132	A review of chemical and microbial contamination in food: What are the threats to a circular food system?. Environmental Research, 2021, 194, 110635.	3.7	55
133	Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. Environmental Research, 2021, 194, 110733.	3.7	17
134	Towards a cellulose-based society: opportunities and challenges. Cellulose, 2021, 28, 4511-4543.	2.4	27
135	Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption. Polymer, 2021, 222, 123659.	1.8	2
136	Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. Chinese Chemical Letters, 2021, 32, 3342-3354.	4.8	79
137	Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environmental Science & Technology, 2021, 55, 7510-7520.	4.6	124
138	The fluorine-free coating has excellent hydrophobic and oleophobic properties for porous cellulose-based materials. Cellulose, 2021, 28, 6133.	2.4	12
139	Chitosan/Montmorillonite Coatings for the Fabrication of Food-Safe Greaseproof Paper. Polymers, 2021, 13, 1607.	2.0	17
140	Fluorinated Compounds in North American Cosmetics. Environmental Science and Technology Letters, 2021, 8, 538-544.	3.9	120
141	Dietary patterns and PFAS plasma concentrations in childhood: Project Viva, USA. Environment International, 2021, 151, 106415.	4.8	37
142	The Hidden Danger of Environmental Chemicals during the "Windows of Susceptibility―in a Woman's Life – How can we use Intermediate Biomarkers to Improve Breast Cancer Prevention?. Open Biomarkers Journal, 2021, 11, 54-62.	0.1	0
143	Considering environmental exposures to per- and polyfluoroalkyl substances (PFAS) as risk factors for hypertensive disorders of pregnancy. Environmental Research, 2021, 197, 111113.	3.7	40
144	Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods, 2021, 10, 1443.	1.9	48
145	Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles. Environmental Pollution, 2021, 278, 116839.	3.7	29
146	Binding of Per- and Polyfluoro-alkyl Substances to Peroxisome Proliferator-Activated Receptor Gamma. ACS Omega, 2021, 6, 15103-15114.	1.6	19

#	Article	IF	CITATIONS
147	Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community. Water Research, 2021, 197, 117080.	5.3	55
148	Risk assessment of per- and polyfluoroalkyl substances (PFAS) in food: Symposium proceedings. Trends in Food Science and Technology, 2021, 116, 1203-1211.	7.8	18
149	Quantification of per―and polyfluoroalkyl substances with a modified total organic carbon analyzer and ion chromatography. AWWA Water Science, 2021, 3, e1235.	1.0	6
150	Review of foam fractionation as a water treatment technology. Separation Science and Technology, 2022, 57, 929-958.	1.3	41
151	A facile method to prepare fluorine-free film transfer paper with excellent oil resistance. Cellulose, 2021, 28, 8601-8609.	2.4	6
152	Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China. Science of the Total Environment, 2021, 776, 145731.	3.9	41
153	Environmental Sources, Chemistry, Fate, and Transport of Per―and Polyfluoroalkyl Substances: State of the Science, Key Knowledge Gaps, and Recommendations Presented at the August 2019 SETAC Focus Topic Meeting. Environmental Toxicology and Chemistry, 2021, 40, 3234-3260.	2.2	49
154	Effect of granular activated carbon and other porous materials on thermal decomposition of per- and polyfluoroalkyl substances: Mechanisms and implications for water purification. Water Research, 2021, 200, 117271.	5.3	48
155	A Critical Review of Challenges Faced by Converting Food Waste to Bioenergy Through Anaerobic Digestion and Hydrothermal Liquefaction. Waste and Biomass Valorization, 2022, 13, 781-796.	1.8	8
156	Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. Chemical Engineering Journal, 2021, 417, 129133.	6.6	50
157	Behavioural Mechanisms of Microplastic Pollutants in Marine Ecosystem: Challenges and Remediation Measurements. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	9
158	Lower Critical Solution Temperature-Driven Catch and Release of Perfluoroalkyl Substances from Water: Remediation and Sampling. ACS Applied Polymer Materials, 2021, 3, 4139-4146.	2.0	4
159	Excellent coating of collagen fiber/chitosan-based materials that is water- and oil-resistant and fluorine-free. Carbohydrate Polymers, 2021, 266, 118173.	5.1	21
160	Rapid release of heavy metals and anions from polyethylene laminated paper cups into hot water. Environmental Chemistry Letters, 2022, 20, 35-40.	8.3	6
161	Planktonic microbial responses to perfluorinated compound (PFC) pollution: Integrating PFC distributions with community coalescence and metabolism. Science of the Total Environment, 2021, 788, 147743.	3.9	21
162	Occurrence and ecotoxicological risk assessment of perfluoroalkyl substances in water of lakes along the middle reach of Yangtze River, China. Science of the Total Environment, 2021, 788, 147765.	3.9	16
163	Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends in Food Science and Technology, 2021, 115, 461-485.	7.8	122
164	Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environment International, 2021, 155, 106600.	4.8	74

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
165	Assessment of exposure to perfluoroalkyl substances (PFASs) in dogs by fur analysis. Environmental Pollution, 2021, 286, 117435.	3.7	7
166	Incidence of Pfas in soil following long-term application of class B biosolids. Science of the Total Environment, 2021, 793, 148449.	3.9	41
167	Perfluoroalkyl acids in surface sediments from the lower Yangtze River: Occurrence, distribution, sources, inventory, and risk assessment. Science of the Total Environment, 2021, 798, 149332.	3.9	14
168	Dietary fluoride intake during pregnancy and neurodevelopment in toddlers: A prospective study in the progress cohort. NeuroToxicology, 2021, 87, 86-93.	1.4	13
169	PFAS soil and groundwater contamination <i>via</i> industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environmental Sciences: Processes and Impacts, 2021, 23, 291-301.	1.7	38
170	Target and Nontarget Analysis of Per- and Polyfluoralkyl Substances in Wastewater from Electronics Fabrication Facilities. Environmental Science & Technology, 2021, 55, 2346-2356.	4.6	76
171	Sources, Fate, and Plant Uptake in Agricultural Systems of Per- and Polyfluoroalkyl Substances. Current Pollution Reports, 0, , 1.	3.1	53
172	Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. Environmental Science & Technology, 2022, 56, 6056-6068.	4.6	70
173	Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e421.	1.9	13
174	Dietary predictors of prenatal per- and poly-fluoroalkyl substances exposure. Journal of Exposure Science and Environmental Epidemiology, 2023, 33, 32-39.	1.8	16
175	Per-Âand polyfluoroalkyl substances, epigenetic ageÂand DNA methylation: aÂcross-sectional study of firefighters. Epigenomics, 2021, 13, 1619-1636.	1.0	23
176	Toxicity and Toxins. , 2018, , 163-208.		0
177	Optimization of coating with water-based barriers. Tappi Journal, 2019, 18, 111-118.	0.2	3
178	远离饮甓水ä,çš" PFASs. Environmental Health Perspectives (Chinese), 2019, 127, 014009.	0.0	0
179	食å"åŒè£çš" PFAS 暴露. Environmental Health Perspectives (Chinese), 2020, 128, 034002.	0.0	0
180	Expanding the definition of healthy eating: Incorporating food packaging, kitchen equipment, and food storage. Explore: the Journal of Science and Healing, 2021, 18, 129-129.	0.4	0
181	Engineering human liver fatty acid binding protein for detection of poly―and perfluoroalkyl substances. Biotechnology and Bioengineering, 2022, 119, 513-522.	1.7	9
182	Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. Journal of Environmental Management, 2022, 301, 113879.	3.8	53

#	Article	IF	CITATIONS
183	Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. Journal of Hazardous Materials, 2022, 424, 127695.	6.5	17
184	Per- and polyfluoroalkyl substances exposure science: current knowledge, information needs, future directions. International Journal of Environmental Science and Technology, 2022, 19, 10393-10408.	1.8	2
185	Recent advances in cellulose-based hydrophobic food packaging. Emergent Materials, 2022, 5, 703-718.	3.2	22
186	Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging. Environmental Pollution, 2022, 293, 118505.	3.7	10
187	Spatial and temporal trends of perfluoroalkyl acids in water bodies: A case study in Taihu Lake, China (2009–2021). Environmental Pollution, 2022, 293, 118575.	3.7	17
188	Screening for Per- and Polyfluoroalkyl Substances in Water with Particle Induced Gamma-Ray Emission Spectroscopy. ACS ES&T Water, 2021, 1, 2477-2484.	2.3	7
189	Investigation of per- and polyfluoroalkyl substances (PFAS) in soils and sewage sludges by fluorine K-edge XANES spectroscopy and combustion ion chromatography. Environmental Science and Pollution Research, 2022, 29, 26889-26899.	2.7	8
190	Degradable collagen/sodium alginate/polyvinyl butyral high barrier coating with water/oil-resistant in a facile and effective approach. Carbohydrate Polymers, 2022, 278, 118962.	5.1	15
191	Developing innovative treatment technologies for PFAS-containing wastes. Journal of the Air and Waste Management Association, 2022, 72, 540-555.	0.9	23
192	Association between per- and polyfluoroalkyl substances and risk of gestational diabetes mellitus. International Journal of Hygiene and Environmental Health, 2022, 240, 113904.	2.1	14
193	Surface confinement of per-fluoroalkyl substances on an iron-decorated clay-cyclodextrin composite enables rapid oxidation by hydroxyl radicals. Chemical Engineering Journal, 2022, 431, 134187.	6.6	9
194	A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environmental Research, 2022, 206, 112595.	3.7	30
195	Increased levels of perfluorooctanesulfonic acid (PFOS) during Hurricane Dorian on the east coast of Florida. Environmental Research, 2022, 208, 112635.	3.7	4
196	Revealing the Molecular-Level Interactions between Cationic Fluorinated Polymer Sorbents and the Major PFAS Pollutant PFOA. Macromolecules, 2022, 55, 1077-1087.	2.2	17
197	Characterization of Per- and Polyfluorinated Alkyl Substances Present in Commercial Anti-fog Products and Their <i>In Vitro</i> Adipogenic Activity. Environmental Science & Technology, 2022, 56, 1162-1173.	4.6	28
198	The impact of legacy and novel perfluoroalkyl substances on human cytochrome P450: An in vitro study on the inhibitory potential and underlying mechanisms. Toxicology, 2022, 468, 153116.	2.0	19
199	Physical, chemical, and microbial contaminants in food waste management for soil application: A review. Environmental Pollution, 2022, 300, 118860.	3.7	34
200	Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand. Journal of Hazardous Materials, 2022, 428, 128257.	6.5	24

#	Article	IF	CITATIONS
201	Effect of mono- and di-valent cations on PFAS removal from water using foam fractionation – A modelling and experimental study. Separation and Purification Technology, 2022, 286, 120508.	3.9	28
202	Pyrolysis processing of PFAS-impacted biosolids, a pilot study. Journal of the Air and Waste Management Association, 2022, 72, 309-318.	0.9	30
203	Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems – A review. Journal of Environmental Management, 2022, 308, 114655.	3.8	20
204	Extraction and Matrix Cleanup Method for Analyzing Novel Per- and Polyfluoroalkyl Ether Acids and Other Per- and Polyfluoroalkyl Substances in Fruits and Vegetables. Journal of Agricultural and Food Chemistry, 2022, 70, 4792-4804.	2.4	21
205	Perfluoroalkyl Substances and Incident Natural Menopause in Midlife Women: The Mediating Role of Sex Hormones. American Journal of Epidemiology, 2022, 191, 1212-1223.	1.6	4
206	Determination of perfluoroalkyl substances in food packaging in Taiwan using ultrasonic extraction and ultra-performance liquid chromatography/tandem mass spectrometry. Journal of Food and Drug Analysis, 2022, 30, 11-25.	0.9	4
207	Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials. Nanomaterials, 2022, 12, 970.	1.9	11
208	Per- and Polyfluoroalkyl Substances (PFAS) in Facemasks: Potential Source of Human Exposure to PFAS with Implications for Disposal to Landfills. Environmental Science and Technology Letters, 2022, 9, 320-326.	3.9	36
209	Persistent organic pollutants in foods, their interplay with gut microbiota and resultant toxicity. Science of the Total Environment, 2022, 832, 155084.	3.9	23
210	Assessing explicit models of per- and polyfluoroalkyl substances adsorption on anion exchange resins by rapid small-scale column tests. Chemosphere, 2022, 300, 134547.	4.2	5
211	Enhancement of oil resistance of cellulose packaging paper for food application by coating with materials derived from natural polymers. Journal of Food Engineering, 2022, 332, 111039.	2.7	15
212	Cellulosic fraction from agricultural biomass as a viable alternative for plastics and plastic products. Industrial Crops and Products, 2022, 179, 114692.	2.5	27
213	Municipal solid waste incineration (MSWI) ash co-disposal: Influence on per- and polyfluoroalkyl substances (PFAS) concentration in landfill leachate. Waste Management, 2022, 144, 49-56.	3.7	24
214	Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment. Environment International, 2022, 163, 107219.	4.8	32
215	Ecotoxicological responses and removal of submerged macrophyte Hydrilla verticillate to multiple perfluoroalkyl acid (PFAA) pollutants in aquatic environments. Science of the Total Environment, 2022, 825, 153919.	3.9	7
216	Interactions between dissolved organic matter and perfluoroalkyl acids in natural rivers and lakes: A case study of the northwest of Taihu Lake Basin, China. Water Research, 2022, 216, 118324.	5.3	18
217	The transplacental transfer efficiency of per- and polyfluoroalkyl substances (PFAS): a first meta-analysis. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2022, 25, 23-42.	2.9	27
218	Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust. Current Environmental Health Reports, 2021, 8, 323-335.	3.2	25

#	Article	IF	CITATIONS
219	Characterizing firefighter's exposure to over 130 SVOCs using silicone wristbands: A pilot study comparing on-duty and off-duty exposures. Science of the Total Environment, 2022, 834, 155237.	3.9	14
220	Critical Review of Thermal Decomposition of Per- and Polyfluoroalkyl Substances: Mechanisms and Implications for Thermal Treatment Processes. Environmental Science & Technology, 2022, 56, 5355-5370.	4.6	61
221	Fluorinated Covalent-Organic Polymers as Stationary Phase for Analysis of Organic Fluorides by Open-Tubular Capillary Electrochromatography. SSRN Electronic Journal, 0, , .	0.4	0
222	Inclusion of Montmorillonite Clays in Environmental Barrier Formulations to Reduce Skin Exposure to Water-Soluble Chemicals from Polluted Water. ACS Applied Materials & Interfaces, 2022, 14, 23232-23244.	4.0	7
223	Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. Water Research, 2022, 219, 118542.	5.3	12
224	Occurrence, source apportionment, and pollution assessment of per- and polyfluoroalkyl substances in a river across rural and urban areas. Science of the Total Environment, 2022, 835, 155505.	3.9	12
225	Per- and polyfluoroalkyl substances (PFASs) in groundwater from a contaminated site in the North China Plain: Occurrence, source apportionment, and health risk assessment. Chemosphere, 2022, 302, 134873.	4.2	10
226	Per and Polyfluoroalkyl Substances in Matched Serum and Breast Milk: Maternal Transfer and Exposure Factors. SSRN Electronic Journal, 0, , .	0.4	0
227	Per- and polyfluoroalkyl substances (PFAS) exposure in women seeking in vitro fertilization-embryo transfer treatment (IVF-ET) in China: Blood-follicular transfer and associations with IVF-ET outcomes. Science of the Total Environment, 2022, 838, 156323.	3.9	13
228	The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes. Journal of Hazardous Materials, 2022, 436, 129313.	6.5	17
229	Background per- and polyfluoroalkyl substances (PFAS) in laboratory fish diet: Implications for zebrafish toxicological studies. Science of the Total Environment, 2022, 842, 156831.	3.9	3
230	Prenatal Perfluorooctanoic Acid (PFOA) Exposure Is Associated With Lower Infant Birthweight Within the MADRES Pregnancy Cohort. , 0, 2, .		7
231	Moulded pulp fibers for disposable food packaging: A state-of-the-art review. Food Packaging and Shelf Life, 2022, 33, 100908.	3.3	31
232	Vermont-wide assessment of anthropogenic background concentrations of perfluoroalkyl substances in surface soils. Journal of Hazardous Materials, 2022, 438, 129479.	6.5	6
233	Adsorption of per- and polyfluoroalkyl substances (PFAS) to containers. Journal of Hazardous Materials Advances, 2022, 7, 100130.	1.2	13
234	Occurrence of Perfluoroalkyl and Polyfluoroalkyl Substances in Ice Cream, Instant Noodles, and Bubble Tea. Journal of Agricultural and Food Chemistry, 2022, 70, 10836-10846.	2.4	8
235	Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL. Heliyon, 2022, 8, e10239.	1.4	6
236	Detection methods for sub-nanogram level of emerging pollutants – Per and polyfluoroalkyl substances. Food and Chemical Toxicology, 2022, 168, 113377.	1.8	12

#	Article	IF	CITATIONS
237	Fast food consumption value: examining the moderating role of process value. International Journal of Contemporary Hospitality Management, 2022, 34, 4729-4747.	5.3	5
238	Detected prenatal perfluorooctanoic acid (PFOA) exposure is associated with decreased fetal head biometric parameters in participants experiencing higher perceived stress during pregnancy in the MADRES cohort. Environmental Advances, 2022, 9, 100286.	2.2	4
239	Optimization and validation of a fast supercritical fluid chromatography tandem mass spectrometry method for the quantitative determination of a large set of PFASs in food matrices and human milk. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1210, 123455.	1.2	4
240	Concentrations of perfluoroalkyl and polyfluoroalkyl substances before and after full-scale landfill leachate treatment. Waste Management, 2022, 153, 110-120.	3.7	18
241	Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: An overview on the advances. Science of the Total Environment, 2022, 852, 158362.	3.9	13
242	Removal of Per-, Poly-fluoroalkyl substances (PFASs) and multi-biosphere community dynamics in a bacteria-algae symbiotic aquatic ecosystem. Environmental Pollution, 2022, 314, 120266.	3.7	5
243	Per- and poly-fluoroalkyl substances (PFASs) in water and wastewater. , 2022, , 299-333.		0
244	Highlight the Important Role of Proteins in Bioaccumulation and Biomagnification of Pfass in Aquatic Organisms Based on Comparison with Opes. SSRN Electronic Journal, 0, , .	0.4	0
246	Phytoremediation of soils contaminated with poly- and per-fluoroalkyl substances (PFAS). , 2022, , 275-290.		2
247	Poly/Perfluorinated Alkyl Substances (PFASs) – Synthetic Methods, Properties and Applications. , 2022, , 22-65.		1
248	Use and release of per- and polyfluoroalkyl substances (PFASs) in consumer food packaging in U.S. and Canada. Environmental Sciences: Processes and Impacts, 2022, 24, 2032-2042.	1.7	11
249	Maternal Offloading of Per- and Polyfluoroalkyl Substances to Eggs by Lake Michigan Salmonids. Environmental Science and Technology Letters, 2022, 9, 937-942.	3.9	3
250	PFAS and Precursor Bioaccumulation in Freshwater Recreational Fish: Implications for Fish Advisories. Environmental Science & amp; Technology, 2022, 56, 15573-15583.	4.6	22
251	Plasma concentrations of perfluoroalkyl acids and their determinants in youth and adults from Nunavik, Canada. Chemosphere, 2023, 310, 136797.	4.2	3
252	Associations between dietary profiles and perfluoroalkyl acids in Inuit youth and adults. Science of the Total Environment, 2023, 857, 159557.	3.9	1
253	Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids. Chemical Engineering Journal, 2023, 453, 139964.	6.6	25
254	Bioaccumulation of perfluoroalkyl substances in the Lake Erie food web. Environmental Pollution, 2023, 317, 120677.	3.7	2
255	Association between per- and polyfluoroalkyl substances and semen quality. Environmental Science and Pollution Research, 2023, 30, 27884-27894.	2.7	3

#	Article	IF	CITATIONS
256	Insights into the per- and polyfluoroalkyl substances-contaminated paper mill processing discharge: Detection, phytotoxicity, bioaccumulative profiling, and health risk verification. Journal of Cleaner Production, 2023, 384, 135478.	4.6	4
257	PFAS in municipal solid waste landfills: Sources, leachate composition, chemical transformations, and future challenges. Current Opinion in Environmental Science and Health, 2023, 31, 100418.	2.1	7
258	Food simulants and real food – What do we know about the migration of PFAS from paper based food contact materials?. Food Packaging and Shelf Life, 2023, 35, 100992.	3.3	10
259	Direct evidence of the important role of proteins in bioconcentration and biomagnification of PFASs in benthic organisms based on comparison with OPEs. Science of the Total Environment, 2023, 863, 161012.	3.9	4
260	Ultra-Sensitive and Rapid Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Water. LC-GC North America, 2021, , 74-83.	0.1	0
261	What Happens In Utero Does Not Stay In Utero: a Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Current Environmental Health Reports, 2023, 10, 35-44.	3.2	7
262	Improvements in oil and grease resistance (OGR) test methodology for waterborne barrier coatings. Tappi Journal, 2022, 21, 645-651.	0.2	0
263	¹ Hâ€Nuclear Magnetic Resonance Metabolomics Analysis of <i>Arabidopsis thaliana</i> Exposed to Perfluorooctanoic Acid and Perfluoroctanesulfonic Acid. Environmental Toxicology and Chemistry, 2023, 42, 663-672.	2.2	1
264	Preparation and characterization of paper-based high barrier material based on heterogeneous graft polymerization. Cellulose, 2023, 30, 1811-1822.	2.4	1
265	Characterization and properties of nanocellulose-enhanced pulp-molded lunch boxes. Journal of Physics: Conference Series, 2022, 2393, 012006.	0.3	0
266	Characterization of different contaminants and current knowledge for defining chemical mixtures in human milk: A review. Environment International, 2023, 171, 107717.	4.8	10
267	Rapid and Simultaneous Quantification of Short- and Ultrashort-Chain Perfluoroalkyl Substances in Water and Wastewater. ACS ES&T Water, 2023, 3, 118-128.	2.3	7
268	PFAS-induced lipidomic dysregulations and their associations with developmental toxicity in zebrafish embryos. Science of the Total Environment, 2023, 861, 160691.	3.9	12
269	Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation. Water Research, 2023, 230, 119532.	5.3	19
270	Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere, 2023, 318, 137903.	4.2	3
271	PFAS Biotransformation Pathways: A Species Comparison Study. Toxics, 2023, 11, 74.	1.6	12
272	Characterizing changes in behaviors associated with chemical exposures during the COVID-19 pandemic. PLoS ONE, 2023, 18, e0277679.	1.1	1
273	Occurrence and implications of per and polyfluoroalkyl substances in animal feeds used in laboratory toxicity testing. Science of the Total Environment, 2023, 867, 161583.	3.9	8

#	Article	IF	CITATIONS
274	Triple-stage Quadrupole Mass Spectrometer to Determine Ubiquitously Present Per- and Polyfluorinated Alkyl Substances in Drinking Water at Part Per Trillion Levels Using Solid Phase Extraction Approach. Bulletin of Environmental Contamination and Toxicology, 2023, 110, .	1.3	2
275	Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. Journal of Exposure Science and Environmental Epidemiology, 2023, 33, 710-724.	1.8	9
276	Characteristics, source apportionment and health risk assessment of perfluoroalkyl acids in typical drinking water sources of eastern China. Environmental Science: Water Research and Technology, 0, ,	1.2	0
277	Calibration of Perfluorinated Alkyl Acid Uptake Rates by a Tube Passive Sampler in Water. ACS ES&T Water, 2023, 3, 332-341.	2.3	6
278	Ion Selective Electrode (ISE) Method for Determination of Total Fluorine and Total Organic Fluorine in Packaging Substrates. Methods and Protocols, 2023, 6, 10.	0.9	2
279	Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environmental Science and Technology Letters, 2023, 10, 343-349.	3.9	19
280	Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere, 2023, 320, 138089.	4.2	55
281	Photochemical degradation of perfluorooctanoic acid under UV irradiation in the presence of Fe (III)-saturated montmorillonite. Science of the Total Environment, 2023, 876, 162760.	3.9	6
282	Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Science of the Total Environment, 2023, 878, 163123.	3.9	21
283	Ratiometric fluorescence probe for fluoride ion detection based on di-catechol substituted naphthalene scaffold. Dyes and Pigments, 2023, 213, 111156.	2.0	3
284	Fate of Per- and Polyfluoroalkyl Substances in Postconsumer Products during Waste Management. Journal of Environmental Engineering, ASCE, 2023, 149, .	0.7	2
285	A general Metal-Ion-Modification route for preparing hydrophobic paper and tableware from lignocellulose fibers. Chemical Engineering Journal, 2023, 459, 141596.	6.6	3
286	Litter Decomposition Is Not Affected by Perfluorobutane Sulfonate (PFBS) in Experimental Soil Microcosms. Soil Systems, 2023, 7, 13.	1.0	0
287	Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends in Environmental Analytical Chemistry, 2023, 37, e00198.	5.3	16
288	Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review. Frontiers in Environmental Science, 0, 11, .	1.5	7
289	Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: Sources, fate, and remediation. , 2023, 1, 100004.		15
290	Interaction between per- and polyfluoroalkyl substances and microorganisms. Chinese Science Bulletin, 2023, 68, 872-885.	0.4	1
291	PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 2023, 35, .	11.0	25

#	Article	IF	CITATIONS
292	Ultrastructural Alterations of the Glomerular Filtration Barrier in Fish Experimentally Exposed to Perfluorooctanoic Acid. International Journal of Environmental Research and Public Health, 2023, 20, 5253.	1.2	1
293	Mediation effects of DNA methylation and hydroxymethylation on birth outcomes after prenatal per- and polyfluoroalkyl substances (PFAS) exposure in the Michigan mother–infant Pairs cohort. Clinical Epigenetics, 2023, 15, .	1.8	10
294	Associations of perfluoroalkyl substances (PFAS) with lipid and lipoprotein profiles. Journal of Exposure Science and Environmental Epidemiology, 2023, 33, 757-765.	1.8	6
295	Degradation of Perfluorooctanoic Acid on Aluminum Oxide Surfaces: New Mechanisms from <i>Ab Initio</i> Molecular Dynamics Simulations. Environmental Science & Technology, 2023, 57, 6695-6702.	4.6	11
305	Advances in Biosensors for Detection of Foodborne Microorganisms, Toxins, and Chemical Contaminants. , 2024, , 372-384.		2
306	Electrochemical C–F bond activation of trifluoromethylarenes using silylium ions. Chemical Communications, 2023, 59, 6694-6697.	2.2	6
322	Revisiting the "forever chemicalsâ€, PFOA and PFOS exposure in drinking water. Npj Clean Water, 2023, 6, .	3.1	10
329	A Review of the International Management Practice and Treatment Technology of Solid Waste Containing Perfluorooctane Sulfonic Acid. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	0
330	The wide presence of fluorinated compounds in common chemical products and the environment: a review. Environmental Science and Pollution Research, O, , .	2.7	0
346	Alternatives to PFASs in Molded Fiber Fast Food Packaging. , 2023, , 34-61.		0
362	Poly- and Perfluorinated Alkyl Substances in Food Packaging Materials. , 2024, , 99-114.		0