Materials learning from life: concepts for active, adaptive systems

Chemical Society Reviews 46, 5588-5619

DOI: 10.1039/c6cs00738d

Citation Report

#	Article	IF	CITATIONS
1	Mapping the structural boundaries of quasiracemate fractional crystallization using 2-substituted diarylamides. Chemical Communications, 2017, 53, 4601-4604.	2.2	7
2	Systems chemistry. Chemical Society Reviews, 2017, 46, 2543-2554.	18.7	415
3	Programmierbare transiente Thermogele vermittelt durch eine pH―und Redoxâ€regulierte supramolekulare Polymerisation. Angewandte Chemie, 2017, 129, 15664-15669.	1.6	30
4	Stimulated Transitions of Directed Nonequilibrium Selfâ€Assemblies. Advanced Materials, 2017, 29, 1703495.	11.1	25
5	Tuneable Transient Thermogels Mediated by a pH―and Redoxâ€Regulated Supramolecular Polymerization. Angewandte Chemie - International Edition, 2017, 56, 15461-15465.	7.2	101
6	Dynamic Chemistry-Based Sensing: A Molecular System for Detection of Saccharide, Formaldehyde, and the Silver Ion. Analytical Chemistry, 2017, 89, 9360-9367.	3.2	19
7	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie - International Edition, 2017, 56, 12581-12585.	7.2	66
8	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie, 2017, 129, 12755-12759.	1.6	22
9	Temporal switching of an amphiphilic self-assembly by a chemical fuel-driven conformational response. Chemical Science, 2017, 8, 6030-6036.	3.7	69
10	Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles. Nano Letters, 2017, 17, 4989-4995.	4.5	136
11	Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. Journal of the American Chemical Society, 2017, 139, 16568-16575.	6.6	139
12	Microsphere-to-nanotube transition via <i>in situ</i> sonication triggered in a supramolecular self-assembly system based on triphenylamine derivative. Supramolecular Chemistry, 2018, 30, 674-680.	1.5	3
13	Application of novel nanocomposite-modified electrodes for identifying rice wines of different brands. RSC Advances, 2018, 8, 13333-13343.	1.7	3
14	Spatially controlled clustering of nucleotide-stabilized vesicles. Chemical Communications, 2018, 54, 4818-4821.	2.2	10
15	Feedback-Induced Temporal Control of "Breathing―Polymersomes To Create Self-Adaptive Nanoreactors. Journal of the American Chemical Society, 2018, 140, 5356-5359.	6.6	176
16	Dissipative Synthetic DNAâ€Based Receptors for the Transient Loading and Release of Molecular Cargo. Angewandte Chemie - International Edition, 2018, 57, 10489-10493.	7.2	82
17	Complex dynamics in a two-enzyme reaction network with substrate competition. Nature Catalysis, 2018, 1, 276-281.	16.1	66
18	Networking switches for smart functions using copper signaling and dynamic heteroleptic complexation. Dalton Transactions, 2018, 47, 6654-6659.	1.6	7

#	Article	IF	CITATIONS
19	Exploitation of Feedback in Enzymeâ€catalysed Reactions. Israel Journal of Chemistry, 2018, 58, 706-713.	1.0	3
20	Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. Journal of the American Chemical Society, 2018, 140, 2869-2874.	6.6	117
21	Temporally Controlled Supramolecular Polymerization. Bulletin of the Chemical Society of Japan, 2018, 91, 687-699.	2.0	106
22	Dissipative disassembly of colloidal microgel crystals driven by a coupled cyclic reaction network. Soft Matter, 2018, 14, 910-915.	1.2	27
23	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie - International Edition, 2018, 57, 1611-1615.	7.2	50
24	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie, 2018, 130, 1627-1631.	1.6	30
25	Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 2018, 47, 1044-1097.	18.7	549
26	Dissipative Synthetic DNAâ€Based Receptors for the Transient Loading and Release of Molecular Cargo. Angewandte Chemie, 2018, 130, 10649-10653.	1.6	35
27	Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches. European Polymer Journal, 2018, 99, 117-133.	2.6	179
28	Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays. ACS Central Science, 2018, 4, 1551-1558.	5.3	42
29	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie - International Edition, 2018, 57, 16469-16474.	7.2	76
30	Supramolecular Electropolymerization. Angewandte Chemie, 2018, 130, 15975-15979.	1.6	14
31	Supramolecular Electropolymerization. Angewandte Chemie - International Edition, 2018, 57, 15749-15753.	7.2	38
32	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie, 2018, 130, 16707-16712.	1.6	33
33	Energy consumption in chemical fuel-driven self-assembly. Nature Nanotechnology, 2018, 13, 882-889.	15.6	306
34	Bioinspired temporal supramolecular polymerization. RSC Advances, 2018, 8, 18913-18925.	1.7	45
35	Dissipative assemblies that inhibit their deactivation. Soft Matter, 2018, 14, 4852-4859.	1,2	53
36	Selfâ€sustained actuation from heat dissipation in liquid crystal polymer networks. Journal of Polymer Science Part A, 2018, 56, 1331-1336.	2.5	33

#	Article	IF	CITATIONS
37	Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. Journal of the American Chemical Society, 2018, 140, 8027-8036.	6.6	137
38	Time programmable hydrogels: regulating the onset time of network dissociation by a reaction relay. Chemical Communications, 2018, 54, 5899-5902.	2.2	14
39	3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bioâ€)Nanosciences. Angewandte Chemie - International Edition, 2018, 57, 10436-10448.	7.2	41
40	Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nature Nanotechnology, 2018, 13, 730-738.	15.6	85
41	Reversible Social Self-Sorting of Colloidal Cell-Mimics with Blue Light Switchable Proteins. ACS Synthetic Biology, 2018, 7, 1817-1824.	1.9	18
42	Dissipative Selfâ€Assembly of Photoluminescent Silicon Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 14608-14612.	7.2	80
43	Dissipative Selbstassemblierung photolumineszierender Siliciumnanokristalle. Angewandte Chemie, 2018, 130, 14817-14822.	1.6	18
44	Temporally Programmed Disassembly and Reassembly of C3Ms. Small, 2018, 14, e1802089.	5.2	25
45	3Dâ€DNAâ€Origamiâ€Nanopartikel: von grundlegenden Designprinzipien hin zu neuartigen Anwendungen in der weichen Materie und den (Bioâ€)Nanowissenschaften. Angewandte Chemie, 2018, 130, 10594-10607.	1.6	7
46	Self-Assembly of Soft Nanoparticles. , 2019, , 217-254.		2
47	Xâ€rayâ€Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. Advanced Materials, 2019, 31, e1903443.	11.1	51
48	Programmable responsive hydrogels inspired by classical conditioning algorithm. Nature Communications, 2019, 10, 3267.	5.8	47
49	Light-responsive block copolymers with a spiropyran located at the block junction. European Polymer Journal, 2019, 119, 83-93.	2.6	4
50	ATPâ€Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie - International Edition, 2019, 58, 13113-13118.	7.2	50
51	ATPâ∈Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie, 2019, 131, 13247-13252.	1.6	23
52	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	2.6	21
53	Chaotic Signatures Exhibited by Plasmonic Effects in Au Nanoparticles with Cells. Sensors, 2019, 19, 4728.	2.1	10
54	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie, 2019, 131, 15930-15934.	1.6	15

#	Article	IF	Citations
55	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie - International Edition, 2019, 58, 15783-15787.	7.2	53
56	A self-sustained soft actuator able to rock and roll. Chemical Communications, 2019, 55, 11029-11032.	2.2	28
57	Nonlinear Chemical Dynamics and Its Interdisciplinary Impact: Dedicated to Ken Showalter on the Occasion of his 70th Birthday. Chaos, 2019, 29, 080401.	1.0	1
58	Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Science Advances, 2019, 5, eaaw0590.	4.7	134
59	Self-assembled micro-fibres by oxime connection of linear peptide amphiphiles. Organic and Biomolecular Chemistry, 2019, 17, 1984-1991.	1.5	11
60	Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews, 2019, 48, 1342-1361.	18.7	339
61	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie - International Edition, 2019, 58, 5582-5586.	7.2	86
62	Photoresponsive Structural Color in Liquid Crystalline Materials. Advanced Optical Materials, 2019, 7, 1900429.	3.6	34
63	Self-organizing motors divide active liquid droplets. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11125-11130.	3.3	44
64	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie - International Edition, 2019, 58, 9876-9880.	7.2	116
65	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie, 2019, 131, 9981-9985.	1.6	37
66	Independent Blue and Red Light Triggered Narcissistic Selfâ€6orting Selfâ€Assembly of Colloidal Particles. Small, 2019, 15, e1901801.	5.2	18
67	Dynamic Synthetic Cells Based on Liquid–Liquid Phase Separation. ChemBioChem, 2019, 20, 2553-2568.	1.3	99
68	Bio-inspired temporal regulation of ion-transport in nanochannels. Nanoscale Advances, 2019, 1, 1847-1852.	2.2	12
69	Dynamic Functional Molecular Systems: From Supramolecular Structures to Multi omponent Machinery and to Molecular Cybernetics. Israel Journal of Chemistry, 2019, 59, 197-208.	1.0	21
70	Chiral Metamolecules with Active Plasmonic Transition. ACS Nano, 2019, 13, 4826-4833.	7.3	51
71	Temperature-controlled repeatable scrambling and induced-sorting of building blocks between cubic assemblies. Nature Communications, 2019, 10, 1440.	5.8	11
72	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie, 2019, 131, 5638-5642.	1.6	31

#	Article	IF	Citations
73	DNA-based long-lived reaction–diffusion patterning in a host hydrogel. Soft Matter, 2019, 15, 9343-9351.	1.2	13
74	High-efficiency and integrable DNA arithmetic and logic system based on strand displacement synthesis. Nature Communications, 2019, 10, 5390.	5.8	64
75	Towards feedback-controlled nanomedicines for smart, adaptive delivery. Experimental Biology and Medicine, 2019, 244, 283-293.	1.1	10
76	Access to Metastable Gel States Using Seeded Selfâ€Assembly of Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie - International Edition, 2019, 58, 3800-3803.	7.2	47
77	Access to Metastable Gel States Using Seeded Selfâ€Assembly of Lowâ€Molecularâ€Weight Gelators. Angewandte Chemie, 2019, 131, 3840-3843.	1.6	9
78	Allosteric DNAzyme-based DNA logic circuit: operations and dynamic analysis. Nucleic Acids Research, 2019, 47, 1097-1109.	6.5	42
79	Functional Macromolecular Systems: Kinetic Pathways to Obtain Tailored Structures. Macromolecular Chemistry and Physics, 2019, 220, 1800334.	1,1	29
80	Active structuring of colloids through field-driven self-assembly. Current Opinion in Colloid and Interface Science, 2019, 40, 25-41.	3.4	48
81	Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates. European Polymer Journal, 2019, 110, 90-96.	2.6	20
82	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Angewandte Chemie, 2019, 131, 250-253.	1.6	45
83	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Angewandte Chemie - International Edition, 2019, 58, 244-247.	7.2	138
84	Thermodynamic costs of dynamic function in active soft matter. Current Opinion in Solid State and Materials Science, 2019, 23, 28-40.	5.6	13
85	Deconvolution of Transient Species in a Multivalent Fuelâ€Driven Multistep Assembly under Dissipative Conditions. ChemSystemsChem, 2020, 2, e1900040.	1.1	10
86	Dynamic Vesicles Formed By Dissipative Selfâ€Assembly. ChemSystemsChem, 2020, 2, e1900044.	1.1	53
87	Nonâ€Equilibrium, Lightâ€Adaptive, Steadyâ€State Reconfiguration of Mechanical Patterns in Bioinspired Nanocomposites. Advanced Functional Materials, 2020, 30, 1905309.	7.8	15
88	Evaluation of Chargeâ€Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of l²â€Sheet Comonomers. Macromolecular Rapid Communications, 2020, 41, 1900476.	2.0	6
89	Viewpoint: Homeostasis as Inspirationâ€"Toward Interactive Materials. Advanced Materials, 2020, 32, e1905554.	11.1	35
90	Monodisperse Porous Microspheres with pH-Responsive Permeability and Reactivity. ACS Applied Polymer Materials, 2020, 2, 932-938.	2.0	7

#	ARTICLE	IF	CITATIONS
91	ATP-fuelled self-assembly to regulate chemical reactivity in the time domain. Chemical Science, 2020, 11 , $1518-1522$.	3.7	36
92	Pathway Complexity in Fuel-Driven DNA Nanostructures with Autonomous Reconfiguration of Multiple Dynamic Steady States. Journal of the American Chemical Society, 2020, 142, 685-689.	6.6	59
93	Designing logic gates based on 3-way DNAzyme complex. Analytical Methods, 2020, 12, 693-700.	1.3	3
94	Biocatalytic Feedbackâ€Controlled Nonâ€Newtonian Fluids. Angewandte Chemie, 2020, 132, 4344-4349.	1.6	8
95	Biocatalytic Feedbackâ€Controlled Nonâ€Newtonian Fluids. Angewandte Chemie - International Edition, 2020, 59, 4314-4319.	7.2	17
96	Redoxâ€Mediated Transient Reconfiguration of a Supramolecular Assembly. ChemSystemsChem, 2020, 2, e1900042.	1.1	20
97	Light and chemical oscillations: Review and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 43, 100321.	5.6	26
98	Recent advances in soft functional materials: preparation, functions and applications. Nanoscale, 2020, 12, 1281-1306.	2.8	56
99	The Design of Dissipative Molecular Assemblies Driven by Chemical Reaction Cycles. CheM, 2020, 6, 552-578.	5.8	157
100	From Molecular Machines to Stimuliâ€Responsive Materials. Advanced Materials, 2020, 32, e1906036.	11.1	155
101	Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators. Matter, 2020, 2, 194-206.	5.0	51
102	Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. Advanced Materials, 2020, 32, e1905111.	11.1	177
103	Redox Chemicalâ€Fueled Dissipative Selfâ€Assembly of Active Materials. ChemSystemsChem, 2020, 2, e1900030.	1.1	45
104	The Importance of Cell–Cell Interaction Dynamics in Bottom-Up Tissue Engineering: Concepts of Colloidal Self-Assembly in the Fabrication of Multicellular Architectures. Nano Letters, 2020, 20, 2257-2263.	4.5	30
105	Transient supramolecular hydrogels formed by catalytic control over molecular self-assembly. Soft Matter, 2020, 16, 9406-9409.	1.2	8
106	Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 2020, 53, 2622-2635.	7.6	41
107	ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nature Communications, 2020, 11, 3658.	5.8	47
108	Dynamic and Modular Formation of a Synergistic Transphosphorylation Catalyst. ACS Catalysis, 2020, 10, 8395-8401.	5.5	13

#	Article	IF	CITATIONS
109	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	5.8	24
110	DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews, 2020, 120, 9420-9481.	23.0	313
111	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie, 2020, 132, 12182-12190.	1.6	15
112	Switchable supracolloidal 3D DNA origami nanotubes mediated through fuel/antifuel reactions. Nanoscale, 2020, 12, 16995-17004.	2.8	14
113	Disulfideâ€Linked Allosteric Modulators for Multiâ€cycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie - International Edition, 2020, 59, 21058-21063.	7.2	22
114	Disulfideâ€Linked Allosteric Modulators for Multiâ€cycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie, 2020, 132, 21244-21249.	1.6	9
115	Lightâ€Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors. Small, 2020, 16, e2002135.	5.2	34
116	Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. Langmuir, 2020, 36, 10639-10656.	1.6	43
117	Regulating Chemically Fueled Peptide Assemblies by Molecular Design. Journal of the American Chemical Society, 2020, 142, 14142-14149.	6.6	50
118	ATPâ€Responsive and ATPâ€Fueled Selfâ€Assembling Systems and Materials. Advanced Materials, 2020, 32, e2002629.	11.1	87
119	Scalable One-Pot-Liquid-Phase Oligonucleotide Synthesis for Model Network Hydrogels. Journal of the American Chemical Society, 2020, 142, 16610-16621.	6.6	22
120	Transient DNAâ€Based Nanostructures Controlled by Redox Inputs. Angewandte Chemie, 2020, 132, 13340-13347.	1.6	15
121	pH Tuning of Waterâ€Soluble Arylazopyrazole Photoswitches. Chemistry - A European Journal, 2020, 26, 13203-13212.	1.7	27
122	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie, 2020, 132, 13608-13612.	1.6	8
123	Chemicalâ€Fuelâ€Driven Assembly in Macromolecular Science: Recent Advances and Challenges. ChemPlusChem, 2020, 85, 1190-1199.	1.3	13
124	Driving Smart Molecular Systems by Artificial Molecular Machines. Advanced Intelligent Systems, 2020, 2, 1900169.	3.3	17
125	Lasing Properties Activation by Constitutional Isomerism of an Electron-Accepting Group. Journal of Physical Chemistry C, 2020, 124, 13845-13857.	1.5	0
126	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie - International Edition, 2020, 59, 17250-17255.	7.2	37

#	Article	IF	CITATIONS
127	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie, 2020, 132, 17403-17408.	1.6	2
128	Towards Active Self-Assembly Through DNA Nanotechnology. Topics in Current Chemistry, 2020, 378, 33.	3.0	15
129	Dissipative Self-Assembly of Dynamic Multicompartmentalized Microsystems with Light-Responsive Behaviors. CheM, 2020, 6, 1160-1171.	5.8	37
130	Lightâ€Driven Flipping of Azobenzene Assembliesâ€"Sparse Crystal Structures and Responsive Behaviour to Polarised Light. Chemistry - A European Journal, 2020, 26, 10759-10768.	1.7	27
131	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	7.2	176
132	Nanoarchitektonik als ein Ansatz zur Erzeugung bioÄĦnlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	1.6	16
133	DNA-Templated Timer Probes for Multiplexed Sensing. Nano Letters, 2020, 20, 2688-2694.	4.5	13
134	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie - International Edition, 2020, 59, 18161-18165.	7.2	16
135	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie, 2020, 132, 18318-18322.	1.6	7
136	Efficiency range of the Belousov–Zhabotinsky reaction to induce the self-organization of transient bonds in metallo-supramolecular polymeric systems. Physical Chemistry Chemical Physics, 2020, 22, 14965-14975.	1.3	11
137	Templateâ€Dependent (Ir)reversibility of Noncovalent Synthesis Pathways. ChemSystemsChem, 2020, 2, e1900063.	1.1	2
138	Multiresponsive Microgels with Phase-Separated Nanodomains and Self-Regulating Properties via Incorporation of Anthraquinone Moieties. Langmuir, 2020, 36, 2427-2438.	1.6	4
139	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€time Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	0.9	39
140	Vision Statement: Interactive Materialsâ€"Drivers of Future Robotic Systems. Advanced Materials, 2020, 32, e1905953.	11.1	10
141	An Autonomous Soft Actuator with Lightâ€Driven Selfâ€Sustained Wavelike Oscillation for Phototactic Selfâ€Locomotion and Power Generation. Advanced Functional Materials, 2020, 30, 1908842.	7.8	100
142	Nonâ€Equilibrium Polymerization of Crossâ€Î² Amyloid Peptides for Temporal Control of Electronic Properties. Angewandte Chemie - International Edition, 2020, 59, 13506-13510.	7.2	38
143	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie - International Edition, 2020, 59, 12084-12092.	7.2	62
144	Transient DNAâ€Based Nanostructures Controlled by Redox Inputs. Angewandte Chemie - International Edition, 2020, 59, 13238-13245.	7.2	60

#	ARTICLE	IF	CITATIONS
145	Capillarity-Induced Propagation Reversal of Chemical Waves in a Self-oscillating Gel. Journal of Physical Chemistry A, 2020, 124, 3530-3534.	1.1	3
146	ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756.	7.2	84
147	ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie, 2021, 133, 2772-2788.	1.6	25
148	Active Bicomponent Nanoparticle Assembly with Temporal, Microstructural, and Functional Control. Chemistry - A European Journal, 2021, 27, 705-711.	1.7	7
149	Towards synergistic oscillations in enzymatically active hydrogel spheres. Soft Matter, 2021, 17, 592-599.	1.2	8
150	The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angewandte Chemie - International Edition, 2021, 60, 12648-12658.	7.2	52
151	The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angewandte Chemie, 2021, 133, 12756-12766.	1.6	13
152	Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angewandte Chemie - International Edition, 2021, 60, 7117-7125.	7.2	47
153	Self-Oscillating Membranes with Polymer Interface Synchronized with Chemical Oscillator to Reproduce Lifelike Pulsatile Flow. Chemistry of Materials, 2021, 33, 998-1005.	3.2	4
154	The Dynamics of an Oscillating Enzymatic Reaction Network is Crucially Determined by Side Reactions. ChemSystemsChem, 2021, 3, e2000033.	1.1	9
155	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3619-3624.	7.2	37
156	A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the Stateâ€ofâ€theâ€Art. Advanced Healthcare Materials, 2021, 10, e2001236.	3.9	45
157	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie, 2021, 133, 3663-3668.	1.6	17
158	Temporal Changes in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates. Langmuir, 2021, 37, 1843-1849.	1.6	16
159	Developing three-input cascade DNA logic gate based on biological characteristics of metal ion-GO combined with the analysis and verification. Analytical Methods, 2021, 13, 4955-4963.	1.3	2
160	Spinodal decomposition of chemically fueled polymer solutions. Soft Matter, 2021, 17, 5401-5409.	1.2	17
161	Dissipative operation of pH-responsive DNA-based nanodevices. Chemical Science, 2021, 12, 11735-11739.	3.7	33
162	Time-programmable pH: decarboxylation of nitroacetic acid allows the time-controlled rising of pH to a definite value. Chemical Science, 2021, 12, 7460-7466.	3.7	20

#	ARTICLE	IF	CITATIONS
163	Chemically fueled materials with a self-immolative mechanism: transient materials with a fast on/off response. Chemical Science, 2021, 12, 9969-9976.	3.7	13
164	Parasitic behavior in competing chemically fueled reaction cycles. Chemical Science, 2021, 12, 7554-7560.	3.7	17
165	Evolution of catalytic machinery: three-component nanorotor catalyzes formation of four-component catalytic machinery. Chemical Communications, 2021, 57, 7180-7183.	2,2	2
166	Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angewandte Chemie, 2021, 133, 7193-7201.	1.6	11
167	Fast and Ample Light Controlled Actuation of Monodisperse Allâ€DNA Microgels. Advanced Functional Materials, 2021, 31, 2010396.	7.8	11
168	Synthetic Biology: Emerging Concepts to Design and Advance Adenoâ€Associated Viral Vectors for Gene Therapy. Advanced Science, 2021, 8, 2004018.	5.6	27
169	Coupled liquid crystalline oscillators in Huygens' synchrony. Nature Materials, 2021, 20, 1702-1706.	13.3	44
170	Simultaneous Nanolocal Polymer and <i>In Situ</i> Readout Unit Placement in Mesoporous Separation Layers. Analytical Chemistry, 2021, 93, 5394-5402.	3.2	4
172	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie, 2021, 133, 20280-20303.	1.6	24
175	pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angewandte Chemie - International Edition, 2021, 60, 11398-11405.	7.2	42
176	Chemically Fueled Block Copolymer Selfâ€Assembly into Transient Nanoreactors**. ChemSystemsChem, 2021, 3, e2100015.	1.1	40
177	Interconnectivity between Surface Reactivity and Selfâ€Assembly of Kemp Elimination Catalyzing Nanorods. Chemistry - A European Journal, 2021, 27, 7831-7836.	1.7	8
178	Onâ∈Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Systems, 0, , 2000233.	3.3	10
179	pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angewandte Chemie, 2021, 133, 11499-11506.	1.6	11
183	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie - International Edition, 2021, 60, 20120-20143.	7.2	160
184	Phototunable self-oscillating system driven by a self-winding fiber actuator. Nature Communications, 2021, 12, 3211.	5.8	85
185	Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nature Communications, 2021, 12, 2994.	5.8	13
186	One-Component DNA Mechanoprobes for Facile Mechanosensing in Photopolymerized Hydrogels and Elastomers. ACS Macro Letters, 2021, 10, 671-678.	2.3	15

#	Article	IF	CITATIONS
187	Direct Evidence of Heteroleptic Complexation in the Macroscopic Dynamics of Metallo-supramolecular Polymer Networks. Macromolecules, 2021, 54, 7113-7124.	2.2	21
188	Ureaâ€Urease Reaction in Controlling Properties of Supramolecular Hydrogels: Pros and Cons. Chemistry - A European Journal, 2021, 27, 8928-8939.	1.7	24
189	Dictating Catalytic Preference and Activity of a Nanoparticle by Modulating Its Multivalent Engagement. ACS Catalysis, 2021, 11, 8504-8509.	5.5	13
190	The rise of intelligent matter. Nature, 2021, 594, 345-355.	13.7	228
191	Dynamics of Meso–Chiral Interconversion in a Butterflyâ€Shape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angewandte Chemie, 2021, 133, 16602-16607.	1.6	2
192	Dynamics of Meso–Chiral Interconversion in a Butterflyâ€ 5 hape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angewandte Chemie - International Edition, 2021, 60, 16466-16471.	7.2	10
193	Selfâ€Sustained Marangoni Flows Driven by Chemical Reactions**. ChemSystemsChem, 2021, 3, .	1.1	4
194	Understanding the Molecular Origin of the Collective Movement in a Diaryletheneâ€based Photoâ€Responsive Actuator. ChemPhysChem, 2021, 22, 1658-1661.	1.0	1
195	How Was Nature Able to Discover Its Own Laws—Twice?. Life, 2021, 11, 679.	1.1	3
196	Out of equilibrium coil-helix transition driven by chemical fuels. Giant, 2021, 7, 100067.	2.5	6
197	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie, 2021, 133, 20674-20680.	1.6	3
198	Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angewandte Chemie - International Edition, 2021, 60, 22537-22546.	7.2	34
199	Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nature Communications, 2021, 12, 5132.	5.8	40
200	Lightâ€Driven Selfâ€Oscillating Actuators with Phototactic Locomotion Based on Black Phosphorus Heterostructure. Angewandte Chemie - International Edition, 2021, 60, 20511-20517.	7.2	82
201	A dissipative pathway for the structural evolution of DNA fibres. Nature Chemistry, 2021, 13, 843-849.	6.6	60
202	Chemoadaptive Polymeric Assemblies by Integrated Chemical Feedback in Self-Assembled Synthetic Protocells. ACS Central Science, 2021, 7, 1543-1550.	5.3	15
203	Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angewandte Chemie, 2021, 133, 22711-22720.	1.6	5
204	Outâ€ofâ€equilibrium supramolecular selfâ€assembling systems driven by chemical fuel. Aggregate, 2021, 2, e110.	5.2	31

#	Article	IF	CITATIONS
205	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
206	Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromolecular Rapid Communications, 2022, 43, e2100473.	2.0	2
207	Unveiling electron transfer in a supramolecular aggregate for adaptive and autonomous photochromic response. IScience, 2021, 24, 102956.	1.9	5
208	Fe ₃ O ₄ Nanoparticle-Decorated Graphene Oxide Nanosheets for Magnetic Assembly of Artificial Nacre. ACS Applied Nano Materials, 2021, 4, 9689-9696.	2.4	6
209	Chemical micro-oscillators based on the Belousov–Zhabotinsky reaction. Russian Chemical Reviews, 2021, 90, 1263-1286.	2.5	11
210	Dissipative Self-Assembly: Fueling with Chemicals versus Light. CheM, 2021, 7, 23-37.	5.8	112
211	Viewpoint: Pavlovian Materials—Functional Biomimetics Inspired by Classical Conditioning. Advanced Materials, 2020, 32, e1906619.	11.1	21
212	Transient Supramolecular Hydrogels Formed by Agingâ€Induced Seeded Selfâ€Assembly of Molecular Hydrogelators. Advanced Science, 2020, 7, 1902487.	5.6	30
213	Self-regulating photochemical Rayleigh-B \tilde{A} @nard convection using a highly-absorbing organic photoswitch. Nature Communications, 2020, 11, 2599.	5.8	26
214	Artificial Oscillating Membrane Systems. RSC Smart Materials, 2019, , 329-361.	0.1	1
215	Seeking to uncover biology's chemical roots. Emerging Topics in Life Sciences, 2019, 3, 435-443.	1.1	10
216	Selfâ€Sustained Marangoni Flows Driven by Chemical Reactions. ChemSystemsChem, 0, , .	1.1	1
217	Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nature Nanotechnology, 2021, 16, 1057-1067.	15.6	70
218	Crown Etherâ€Functionalized Complex Emulsions as an Artificial Adaptive Material Platform. Advanced Functional Materials, 2022, 32, 2107688.	7.8	11
220	Über den Trend vom Molekül zum System. Nachrichten Aus Der Chemie, 2019, 67, 62-65.	0.0	0
222	Selfâ€Propulsion of Droplets via Lightâ€Stimuli Rapid Control of Their Surface Tension. Advanced Materials Interfaces, 2021, 8, 2100751.	1.9	13
223	Substrate induced generation of transient self-assembled catalytic systems. Chemical Science, 2021, 12, 14674-14685.	3.7	16
224	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	23.0	32

#	Article	IF	CITATIONS
225	Dissipative control of the fluorescence of a 1,3-dipyrenyl calix[4] arene in the cone conformation. Organic and Biomolecular Chemistry, 2021, 20, 132-138.	1.5	15
226	Morphological transitions in chemically fueled self-assembly. Nanoscale, 2021, 13, 19864-19869.	2.8	4
227	Self-evolving materials based on metastable-to-stable crystal transition of a polymorphic polyolefin. Materials Horizons, 2022, 9, 756-763.	6.4	6
228	Spontaneous Reorganization of DNA-Based Polymers in Higher Ordered Structures Fueled by RNA. Journal of the American Chemical Society, 2021, 143, 20296-20301.	6.6	21
229	Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies. Science Advances, 2021, 7, eabj5827.	4.7	11
230	Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity. Journal of Physical Chemistry B, 2021, 125, 13542-13551.	1.2	4
231	Concurrent base and silver(<scp>i</scp>) catalysis pulsed by fuel acid. Chemical Communications, 2022, 58, 1728-1731.	2.2	9
232	Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chemical Communications, 2022, 58, 1284-1297.	2.2	25
233	Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. Advanced Materials, 2022, 34, e2106816.	11.1	22
234	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
235	Nonequilibrium Catalytic Supramolecular Assemblies of Melamine- and Imidazole-Based Dynamic Building Blocks. Journal of the American Chemical Society, 2022, 144, 673-678.	6.6	14
236	Chemical Fuel Mediated Selfâ∈Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromolecular Rapid Communications, 2022, 43, e2100878.	2.0	4
237	Dynamic and reconfigurable materials from reversible network interactions. Nature Reviews Materials, 2022, 7, 541-556.	23.3	105
238	Predicting the Supramolecular Assembly of Amphiphilic Peptides from Comprehensive Coarse-Grained Simulations. ACS Applied Polymer Materials, 2022, 4, 822-831.	2.0	3
239	Electro-assembly of a dynamically adaptive molten fibril state for collagen. Science Advances, 2022, 8, eabl7506.	4.7	15
240	Soft Actuators Based On Carbon Nanomaterials. ChemPlusChem, 2022, 87, e202100437.	1.3	13
241	Recent Advances in Stimuli-Responsive DNA-Based Hydrogels. ACS Applied Bio Materials, 2022, 5, 1934-1953.	2.3	20
242	Coordination Geometry in Metallo-Supramolecular Polymer Networks. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	Citations
243	pH Oscillator-Driven Jellyfish-like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Letters, 2022, 11, 347-353.	2.3	25
244	Allâ€Flexible Artificial Reflex Arc Based on Thresholdâ€Switching Memristor. Advanced Functional Materials, 2022, 32, .	7.8	30
245	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€Structural Feedback. Angewandte Chemie, 0, , .	1.6	0
246	Who's gonna use this? Acceptance prediction of emerging technologies with Cognitive-Affective Mapping and transdisciplinary considerations in the Anthropocene. Infrastructure Asset Management, 0, , 205301962210789.	1.2	1
247	History Dependence in a Chemical Reaction Network Enables Dynamic Switching. Small, 2022, 18, e2107523.	5.2	1
249	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€Structural Feedback. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
250	Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chemical Reviews, 2022, 122, 4887-4926.	23.0	288
251	An Approach to the De Novo Synthesis of Life. Accounts of Chemical Research, 2022, 55, 145-155.	7.6	29
252	Magnetic Micro- and Nanoagents for Monitoring Enzymatic Activity In Vivo. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 311-333.	7.5	2
253	Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS Applied Materials & Diterfaces, 2022, 14, 20073-20082.	4.0	5
254	Molecular communications in complex systems of dynamic supramolecular polymers. Nature Communications, 2022, 13, 2162.	5.8	14
255	Biomacromoleculeâ€Fueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
256	Biomacromoleculeâ€fueled Transient Volume Phase Transition of a Hydrogel. Angewandte Chemie, 0, , .	1.6	1
257	1D Colloidal chains: recent progress from formation to emergent properties and applications. Chemical Society Reviews, 2022, 51, 4023-4074.	18.7	15
258	Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. Soft Matter, 2022, 18, 3856-3866.	1.2	4
259	DNAâ€Based Dissipative Assembly toward Nanoarchitectonics. Advanced Functional Materials, 2022, 32, .	7.8	26
260	Photochemically Sequestered Off-Pathway Dormant States of Peptide Amphiphiles for Predictive On-Demand Piezoresponsive Nanostructures. Chemistry of Materials, 2022, 34, 4456-4470.	3.2	17
261	Dissipative biocatalytic cascades and gated transient biocatalytic cascades driven by nucleic acid networks. Science Advances, 2022, 8, eabn3534.	4.7	23

#	Article	IF	Citations
262	Out-of-equilibrium chemical logic systems: Light- and sound-controlled programmable spatiotemporal patterns and mechanical functions. CheM, 2022, 8, 2192-2203.	5.8	5
263	Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. Journal of Colloid and Interface Science, 2022, 623, 674-684.	5.0	13
265	Backbone Polarity Tunes Sticker Clustering in Hydrogen-Bonded Supramolecular Polymer Networks. Macromolecules, 2022, 55, 5514-5526.	2.2	15
266	Dissipative Formation of Covalent Basket Cages. Angewandte Chemie, 2022, 134, .	1.6	4
267	Dissipative Formation of Covalent Basket Cages. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
268	Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond. Chinese Chemical Letters, 2023, 34, 107639.	4.8	6
269	Kinetic and energetic insights into the dissipative non-equilibrium operation of an autonomous light-powered supramolecular pump. Nature Nanotechnology, 2022, 17, 746-751.	15.6	40
270	Chemical fuels for molecular machinery. Nature Chemistry, 2022, 14, 728-738.	6.6	53
271	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie, 0, , .	1.6	1
272	Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water. Science, 2022, 377, 213-218.	6.0	47
273	In situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Non ovalent Synthesis. Angewandte Chemie, 2022, 134, .	1.6	4
274	Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. Journal of the American Chemical Society, 2022, 144, 13039-13043.	6.6	9
275	Regulating Spatial Localization and Reactivity Biasness of DNAzymes by Metal Ions and Oligonucleotides. ChemBioChem, 2022, 23, .	1.3	2
276	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
277	In situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Non ovalent Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
278	Ultra-specific fluorescence detection of DNA modifying enzymes by dissipation system. Biosensors and Bioelectronics, 2022, 215, 114561.	5.3	7
279	Perovskite Plasticity: Exploiting Instability for Selfâ€Optimized Performance. Advanced Functional Materials, 0, , 2203771.	7.8	1
280	Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. Journal of Physical Chemistry B, 2022, 126, 6331-6337.	1.2	1

#	Article	IF	Citations
281	Reversed spin of a ratchet motor on a vibrating water bed. Scientific Reports, 2022, 12, .	1.6	2
282	Coordination geometry in metallo-supramolecular polymer networks. Coordination Chemistry Reviews, 2022, 471, 214733.	9.5	19
283	A chemically fueled supramolecular glue for self-healing gels. Chemical Science, 2022, 13, 11411-11421.	3.7	13
284	Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Physical Chemistry Chemical Physics, 2022, 24, 23980-24001.	1.3	11
285	Dynamic Timing Control of Molecular Photoluminescent Systems. Chemistry - A European Journal, 2022, 28, .	1.7	3
286	Chemical Cascading Between Polymersomal Nanoreactor Populations. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
287	Amyloidâ€inspired Peptide Selfâ€assembly/Disassembly as Intervened by Gold Nanoparticles and Polydopamine Coating to Dictate Spatiotemporal Organization. ChemNanoMat, 2022, 8, .	1.5	7
288	Tuning the Kinetic Trapping in Chemically Fueled Selfâ€Assembly**. ChemSystemsChem, 2023, 5, .	1.1	7
289	Trade-off between carbohydrates and metal ions regulates the chemotactic directionality of alkaline phosphatase. Chemical Communications, 2022, 58, 12851-12854.	2.2	4
290	Engineering strategies for sustainable synthetic cells. Trends in Chemistry, 2022, 4, 1106-1120.	4.4	7
291	Nonequilibrium Amyloid Polymers Exploit Dynamic Covalent Linkage to Temporally Control Charge-Selective Catalysis. Journal of the American Chemical Society, 2022, 144, 19248-19252.	6.6	8
292	Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. Journal of the American Chemical Society, 2022, 144, 19791-19798.	6.6	20
293	Construction of Transient Supramolecular Polymers Controlled by Mass Transfer in Biphasic System. Chemical Science, 0, , .	3.7	0
294	Photoswitchable gating of non-equilibrium enzymatic feedback in chemically communicating polymersome nanoreactors. Nature Chemistry, 2023, 15, 110-118.	6.6	26
295	Exploring the theoretical foundation of molecular assembly: current status and opportunities. Scientia Sinica Chimica, 2023, 53, 145-173.	0.2	2
296	Self-healing cyclic peptide hydrogels. Journal of Materials Chemistry B, 2023, 11, 606-617.	2.9	2
297	Responses to single and multiple temperature-, medium-, and pH-stimuli triggering reversible shape shifts in hydrogel actuators. Materials and Design, 2023, 225, 111511.	3.3	6
298	Light-driven autonomous swing of multi-layered hydrogel. RSC Advances, 2022, 12, 33612-33616.	1.7	0

#	Article	IF	CITATIONS
299	Autonomous Soft Robots Empowered by Chemical Reaction Networks. Advanced Materials, 2023, 35, .	11.1	25
300	Persistent ATPâ€Concentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angewandte Chemie, 0, , .	1.6	1
301	Persistent ATPâ€Concentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
302	On the Chemical Origin of Biological Cognition. Life, 2022, 12, 2016.	1.1	6
303	Functional Rhythmic Chemical Systems Governed by pHâ€Driven Kinetic Feedback. ChemSystemsChem, 2023, 5, .	1.1	4
304	Chemically Driven Multimodal Locomotion of Active, Flexible Sheets. Langmuir, 2023, 39, 780-789.	1.6	5
305	pH-feedback systems to program autonomous self-assembly and material lifecycles. Chemical Communications, 2023, 59, 1125-1144.	2.2	14
306	Formation of Catalytic Hotspots in ATP-Templated Assemblies. Journal of the American Chemical Society, 2023, 145, 898-904.	6.6	10
307	Autonomic self-regulating systems based on polyelectrolyte microcapsules and microgel particles. Journal of Colloid and Interface Science, 2023, 638, 403-411.	5.0	1
308	Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials, 2023, 13, 855.	1.9	5
309	A Dissipative Reaction Network Drives Transient Solidâ€Liquid and Liquidâ€Liquid Phase Cycling of Nanoparticles. Angewandte Chemie, 0, , .	1.6	2
310	Transient Biomacromolecular Nanoparticles for Labels with Selfâ€Erasable and Rewritable Ability. ChemSystemsChem, 2023, 5, .	1.1	3
311	Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. Journal of the American Chemical Society, 2023, 145, 3727-3735.	6.6	8
312	A Hydrolyzable Supraâ€amphiphile as a Marangoni Selfâ€Propulsion Fuel for Efficient Macroscopic Supramolecular Selfâ€Assembly. Angewandte Chemie, 2023, 135, .	1.6	0
313	A Hydrolyzable Supraâ€amphiphile as a Marangoni Selfâ€Propulsion Fuel for Efficient Macroscopic Supramolecular Selfâ€Assembly. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
314	Orbiting Selfâ€Organization of Filamentâ€Tethered Surfaceâ€Active Droplets. Small, 2023, 19, .	5.2	2
315	A subwoofer separates chiral fibers. CheM, 2023, 9, 551-554.	5.8	0
316	Lightâ€Fueled Nonequilibrium and Adaptable Hydrogels for Highly Tunable Autonomous Selfâ€Oscillating Functions. Advanced Functional Materials, 2023, 33, .	7.8	11

#	Article	IF	CITATIONS
317	Darwinian evolution as a dynamical principle. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120 , .	3.3	6
318	Temporally programmed switching of functional states in polyaniline film. APL Materials, 2023, 11, .	2.2	1
319	A Dissipative Reaction Network Drives Transient Solid–Liquid and Liquid–Liquid Phase Cycling of Nanoparticles. Angewandte Chemie - International Edition, 0, , .	7.2	1
320	Chemically Fueled Supramolecular Materials. Accounts of Materials Research, 2023, 4, 416-426.	5.9	12
321	Dynamical Behaviors of Oscillating Metallosurfactant Coacervate Microdroplets under Redox Stress. Advanced Materials, 2023, 35, .	11.1	3
322	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie, 0, , .	1.6	O
324	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
340	Engineering metabolic cycle-inspired hydrogels with enzyme-fueled programmable transient volume changes. Journal of Materials Chemistry B, 2023, 11, 8136-8141.	2.9	0
343	From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nature Reviews Chemistry, 2023, 7, 673-691.	13.8	4
345	The entropy-controlled strategy in self-assembling systems. Chemical Society Reviews, 2023, 52, 6806-6837.	18.7	9
359	Dynamic monitoring of an enzymatically driven dissipative toehold-mediated strand displacement reaction. Chemical Communications, 0, , .	2.2	O