Surface-Initiated Controlled Radical Polymerization: St Challenges in Surface and Interface Engineering with Po

Chemical Reviews 117, 1105-1318

DOI: 10.1021/acs.chemrev.6b00314

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Nuclear Polarization Signal Amplification as a Sensitive Probe for Specific Functionalization of Complex Paper Substrates. Journal of Physical Chemistry C, 2017, 121, 3896-3903.	3.1	27
2	Drug releasing nanoplatforms activated by alternating magnetic fields. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1617-1641.	2.4	84
3	Hierarchical Porous Carbon Doped with Iron/Nitrogen/Sulfur for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20963-20973.	8.0	103
4	A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization. Chemistry of Materials, 2017, 29, 4963-4969.	6.7	55
5	Photoactive Surfaceâ€Grafted Polymer Brushes with Phthalocyanine Bridging Groups as an Advanced Architecture for Lightâ€Harvesting. Chemistry - A European Journal, 2017, 23, 11239-11243.	3.3	11
6	SaBOX/Copper Catalysts for Highly Syndio-Specific Atom Transfer Radical Polymerization of Methyl Methacrylate. ACS Catalysis, 2017, 7, 4692-4696.	11.2	29
7	Polymer brush decorated nanoparticles immobilised on polymer monoliths for enhanced biopolymer elution. RSC Advances, 2017, 7, 19976-19981.	3.6	4
8	"Mobile―polymer brushes with self-adjusting tethering density – A theoretical treatment of thermodynamically stable single crystals of amorphous-crystalline diblock copolymers in various solvents. Polymer, 2017, 116, 334-341.	3.8	5
9	2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY. Nanoscale, 2017, 9, 16908-16914.	5.6	5
10	Bottle-Brush Brushes: Surface-Initiated Rare Earth Metal Mediated Group Transfer Polymerization from a Poly(3-((2,6-dimethylpyridin-4-yl)oxy)propyl methacrylate) Backbone. Macromolecules, 2017, 50, 8456-8463.	4.8	13
11	Controlling Enzymatic Polymerization from Surfaces with Switchable Bioaffinity. Biomacromolecules, 2017, 18, 4261-4270.	5.4	31
12	Self-assembly in densely grafted macromolecules with amphiphilic monomer units: diagram of states. Soft Matter, 2017, 13, 8525-8533.	2.7	13
13	Preparation and evaluation of surface-grafted block copolymers and random copolymers via surface-initiated atom transfer radical polymerization for hydrophilic/ion-exchange stationary phases. RSC Advances, 2017, 7, 46812-46822.	3.6	5
14	Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS Applied Materials & Description (2017), 9, 37511-37523.	8.0	308
15	Metal nanoarchitecture fabrication using DNA as a biotemplate. Polymer Journal, 2017, 49, 815-824.	2.7	16
16	Smart pH-Responsive Polymer-Tethered and Pd NP-Loaded NMOF as the Pickering Interfacial Catalyst for One-Pot Cascade Biphasic Reaction. ACS Applied Materials & Interfaces, 2017, 9, 36438-36446.	8.0	76
17	Growth of polymer brushes by "grafting from―via ATRP – Monte Carlo simulations. Polymer, 2017, 130, 267-279.	3.8	27
18	Enhanced Stability of Surface-Tethered Diblock Copolymer Brushes with a Neutral Polymer Block and a Weak Polyelectrolyte Block: Effects of Molecular Weight and Hydrophobicity of the Neutral Block. Macromolecules, 2017, 50, 8580-8587.	4.8	21

#	Article	IF	Citations
19	Integration of polymers in the pore space of mesoporous nanocarriers for drug delivery. Journal of Materials Chemistry B, 2017, 5, 8891-8903.	5. 8	10
20	Monomer Protonationâ€Dependent Surface Polymerization to Achieve Oneâ€Step Grafting Crossâ€Linked Poly(4â€Vinylpyridine) Onto Core–Shell Fe ₃ O ₄ @SiO ₂ Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700494.	3.9	8
21	Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. Polymer, 2017, 126, 224-230.	3.8	28
22	Development of an indicator for the direct visualization of radical intermediates in organic reactions. Chemical Communications, 2017, 53, 11225-11228.	4.1	10
23	The grafting density and thickness of polythiophene-based brushes determine the orientation, conjugation length and stability of the grafted chains. Polymer Chemistry, 2017, 8, 6250-6262.	3.9	28
24	Modulation of Surface-Initiated ATRP by Confinement: Mechanism and Applications. Macromolecules, 2017, 50, 5711-5718.	4.8	21
25	Solvent-Selective Reactions of Alkyl Iodide with Sodium Azide for Radical Generation and Azide Substitution and Their Application to One-Pot Synthesis of Chain-End-Functionalized Polymers. Journal of the American Chemical Society, 2017, 139, 10551-10560.	13.7	69
26	Cellulose Nanocrystals with Tethered Polymer Chains: Chemically Patchy versus Uniform Decoration. ACS Macro Letters, 2017, 6, 892-897.	4.8	47
27	Synthesis and characterization of gibbsite nanoplatelet brushes by surface-initiated atom transfer radical polymerization. Polymer, 2017, 126, 126-132.	3.8	11
29	Photoactivated Molecular Layer Deposition through Iodoâ^'Ene Coupling Chemistry. Chemistry of Materials, 2017, 29, 9897-9906.	6.7	9
30	Polymer brushes for antibiofouling and lubrication. Biosurface and Biotribology, 2017, 3, 97-114.	1.5	57
31	Synthesis of Cellulose- <i>graft</i> -Polypropionic Acid Nanofiber Cation-Exchange Membrane Adsorbers for High-Efficiency Separations. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41055-41065.	8.0	28
32	Functional patterned coatings by thin polymer film dewetting. Journal of Colloid and Interface Science, 2017, 507, 453-469.	9.4	26
33	Thiol-reactive (co)polymer scaffolds comprising organic arsenical acrylamides. Chemical Communications, 2017, 53, 8447-8450.	4.1	9
34	Surface-initiated atom transfer radical polymerization of electrochemically responsive cobalt-methacrylates. Polymer, 2017, 122, 303-311.	3.8	7
35	Optimisation of Surface-Initiated Photoiniferter-Mediated Polymerisation under Confinement, and the Formation of Block Copolymers in Mesoporous Films. Polymers, 2017, 9, 539.	4.5	23
36	Reversible Surface Engineering via Nitrone-Mediated Radical Coupling. Langmuir, 2018, 34, 3244-3255.	3.5	3
37	Polymer on Top: Current Limits and Future Perspectives of Quantitatively Evaluating Surface Grafting. Advanced Materials, 2018, 30, e1706321.	21.0	70

#	ARTICLE	IF	CITATIONS
38	Coassembly of Linear Diblock Copolymer Chains and Homopolymer Brushes on Silica Particles: A Combined Computer Simulation and Experimental Study. Macromolecules, 2018, 51, 1894-1904.	4.8	30
39	Facile synthesis of optically active helical poly(phenyl isocyanide) brushes on a silicon surface and their chiral resolution ability. Polymer Chemistry, 2018, 9, 1379-1384.	3.9	5
40	Microsphere-to-nanotube transition via <i>in situ</i> sonication triggered in a supramolecular self-assembly system based on triphenylamine derivative. Supramolecular Chemistry, 2018, 30, 674-680.	1.2	3
41	From Homogeneous to Heterogeneous: A Simple Approach to Prepare Polymer Brush Modified Surfaces for Anti-Adhesion of Bacteria. Colloids and Interface Science Communications, 2018, 23, 21-28.	4.1	22
42	Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity. Journal of Materials Chemistry B, 2018, 6, 3531-3540.	5.8	80
43	Counterion Specificity of Polyelectrolyte Brushes: Role of Specific Ionâ€Pairing Interactions. ChemPhysChem, 2018, 19, 1404-1413.	2.1	19
44	Critical Domain Sizes of Heterogeneous Nanopattern Surfaces with Optimal Protein Resistance. Journal of Physical Chemistry C, 2018, 122, 9918-9928.	3.1	9
45	Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system. Journal of Chromatography A, 2018, 1538, 94-103.	3.7	8
46	Strategic Advances in Formation of Cellâ€inâ€Shell Structures: From Syntheses to Applications. Advanced Materials, 2018, 30, e1706063.	21.0	102
47	From a ureidopyrimidinone containing organic precursor to excavated iron-nitrogen codoped hierarchical mesoporous carbon (Ex-FeN-MC) as an efficient bifunctional electrocatalyst. Nanoscale, 2018, 10, 5658-5666.	5.6	21
48	Self-assembled polymer nanocomposites for biomedical application. Current Opinion in Colloid and Interface Science, 2018, 35, 36-41.	7.4	49
49	From neutral to zwitterionic poly (\hat{l}_{\pm} -amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation. Biomaterials, 2018, 178, 728-737.	11.4	57
50	Phototriggered Growth and Detachment of Polymer Brushes with Wavelength Selectivity. ACS Macro Letters, 2018, 7, 239-243.	4.8	19
51	Covalent Immobilization of (â^')â€Riboflavin on Polymer Functionalized Silica Particles: Application in the Photocatalytic <i>E</i> â†' <i>Z</i> Isomerization of Polarized Alkenes. Chemistry - A European Journal, 2018, 24, 4228-4233.	3.3	31
52	Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. Journal of Colloid and Interface Science, 2018, 518, 92-101.	9.4	20
53	Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS Applied Materials & Diterfaces, 2018, 10, 6253-6261.	8.0	28
54	Verdazyl Radical Building Blocks: Synthesis, Structure, and Sonogashira Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2018, 2018, 4802-4811.	2.4	23
55	Polymers and biopolymers at interfaces. Reports on Progress in Physics, 2018, 81, 036601.	20.1	26

#	Article	IF	CITATIONS
56	Substrate-Independent Approach to Dense Cleavable Polymer Brushes by Nitroxide-Mediated Polymerization. ACS Macro Letters, 2018, 7, 100-104.	4.8	21
57	The Taming of the Maleimide: Fabrication of Maleimideâ€Containing â€~Clickable' Polymeric Materials. Chemical Record, 2018, 18, 570-586.	5.8	33
58	2D laser lithography on silicon substrates <i>via</i> photoinduced copper-mediated radical polymerization. Chemical Communications, 2018, 54, 751-754.	4.1	12
59	Lewis Pair-Mediated Surface-Initiated Polymerization. ACS Macro Letters, 2018, 7, 65-69.	4.8	10
60	Polypeptide Polymer Brushes by Lightâ€Induced Surface Polymerization of Amino Acid <i>N</i> â€Carboxyanhydrides. Macromolecular Rapid Communications, 2018, 39, e1700743.	3.9	13
61	Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3470-3478.	8.0	77
62	Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Progress in Polymer Science, 2018, 82, 34-91.	24.7	159
63	Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chemical Society Reviews, 2018, 47, 4357-4387.	38.1	313
64	Hybrid Nanoparticle–Polymer Brush Composites for Detection of Low‣evel Radiostrontium in Water. Macromolecular Materials and Engineering, 2018, 303, 1700651.	3.6	7
65	Counteranion-Specific Hydration States of Cationic Polyelectrolyte Brushes. Industrial & amp; Engineering Chemistry Research, 2018, 57, 5268-5275.	3.7	23
66	Boronic acids as molecular inks for surface functionalization of polyvinyl alcohol substrates. New Journal of Chemistry, 2018, 42, 7392-7398.	2.8	8
67	En Route to Practicality of the Polymer Grafting Technology: One-Step Interfacial Modification with Amphiphilic Molecular Brushes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13941-13952.	8.0	15
68	Recent Trends in Metallopolymer Design: Redoxâ€Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferroceneâ€Containing Polymers. Chemistry - A European Journal, 2018, 24, 10006-10021.	3.3	89
69	Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules, 2018, 19, 1602-1613.	5.4	38
70	Photochemical tuning of materials: A click chemistry perspective. Materials Today Chemistry, 2018, 8, 56-84.	3.5	49
71	Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chemical Society Reviews, 2018, 47, 2837-2872.	38.1	586
72	Design and characterization of ultrastable, biopassive and lubricious cyclic poly(2-alkyl-2-oxazoline) brushes. Polymer Chemistry, 2018, 9, 2580-2589.	3.9	56
73	Sweet Switch: Sugar-Responsive Bioactive Surfaces Based on Dynamic Covalent Bonding. ACS Applied Materials & Dynamic Covalent Bonding. ACS Applied	8.0	41

#	ARTICLE	IF	CITATIONS
74	"Smart―Polymers: Physicochemical Characteristics and Applications in Bio-Separation Strategies. Separation and Purification Reviews, 2018, 47, 199-213.	5 . 5	11
75	A Versatile Method for the Distance-Dependent Structural Characterization of Interacting Soft Interfaces by Neutron Reflectometry. Langmuir, 2018, 34, 789-800.	3 . 5	17
76	Direct polymer brush grafting to polymer fibers and films by surface-initiated polymerization. Polymer Journal, 2018, 50, 101-108.	2.7	15
77	Solid state vibrational circular dichroism towards molecular recognition: chiral metal complexes intercalated in a clay mineral. Physical Chemistry Chemical Physics, 2018, 20, 3141-3147.	2.8	25
78	Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Progress in Polymer Science, 2018, 78, 56-91.	24.7	57
79	Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomaterials Science and Engineering, 2018, 4, 2018-2025.	5. 2	18
80	Telechelic polymers from reversible-deactivation radical polymerization for biomedical applications. Chemical Communications, 2018, 54, 228-240.	4.1	26
81	Laccaseâ€Mediated Grafting on Biopolymers and Synthetic Polymers: A Critical Review. ChemBioChem, 2018, 19, 288-311.	2.6	64
83	POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation. Coatings, 2018, 8, 446.	2.6	1
84	Controllable preparation of a reverse-phase/hydrophilic interaction mixed-mode chromatographic stationary phase with adjustable selectivity. Analytical Methods, 2018, 10, 5387-5397.	2.7	5
85	Photo-selective chain end transformation of polyacrylate-iodide using cysteamine and its application to facile single-step preparation of patterned polymer brushes. Chemical Communications, 2018, 54, 13738-13741.	4.1	16
86	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie, 2018, 130, 13692-13696.	2.0	6
87	Quantitative Analysis of Thickness and pH Actuation of Weak Polyelectrolyte Brushes. Journal of Physical Chemistry C, 2018, 122, 27516-27527.	3.1	21
88	A Nanoconfinement Effect Imposed by the Limited End-to-End Distance of the Grafted Chains on a Molecular Aggregation of Polymer Brushes with Crystalline Side Groups. Macromolecules, 2018, 51, 9192-9202.	4.8	14
89	Facile Preparation of Functional Group Gradient Surfaces by Desorption and ⟨i⟩Re⟨/i⟩â€Adsorption of Alkanethiols on Gold. Bulletin of the Korean Chemical Society, 2018, 39, 1344-1347.	1.9	1
90	Anti-(bio)Fouling. Biologically-inspired Systems, 2018, , 239-257.	0.2	1
91	Practical guide to characterize biomolecule adsorption on solid surfaces (Review). Biointerphases, 2018, 13, 06D303.	1.6	45
92	Nanostructured Thermoresponsive Surfaces Engineered via Stable Immobilization of Smart Nanogels with Assistance of Polydopamine. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44092-44101.	8.0	20

#	ARTICLE	IF	CITATIONS
93	Surface-Initiated Metal-Free Photoinduced ATRP of 4-Vinylpyridine from SiO ₂ via Visible Light Photocatalysis for Self-Healing Hydrogels. Industrial & Engineering Chemistry Research, 2018, 57, 17417-17429.	3.7	39
94	Parking Garage Bicontinuous Structures of Densely Grafted Layers of Amphiphilic Homopolymers. Polymer Science - Series C, 2018, 60, 56-65.	1.7	3
95	Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect, 2018, 3, 13234-13270.	1.5	13
96	Sol–Gel Preparation of Initiator Layers for Surface-Initiated ATRP: Large-Scale Formation of Polymer Brushes Is Not a Dream. Macromolecules, 2018, 51, 10065-10073.	4.8	38
97	Nanoporous Anodic Alumina Photonic Crystals for Optical Chemo- and Biosensing: Fundamentals, Advances, and Perspectives. Nanomaterials, 2018, 8, 788.	4.1	56
98	A highly efficient bactericidal surface based on the co-capture function and photodynamic sterilization. Journal of Materials Chemistry B, 2018, 6, 6831-6841.	5.8	11
99	Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Sideâ€Chain Iron and Cobalt Sandwich Complexes. Macromolecular Chemistry and Physics, 2018, 219, 1800384.	2.2	14
100	Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host–Guest Interactions. ACS Applied Materials & Interfaces, 2018, 10, 36585-36601.	8.0	58
101	Polymerization driven monomer passage through monolayer chemical vapour deposition graphene. Nature Communications, 2018, 9, 4051.	12.8	20
102	Catalyst-Free Selective Photoactivation of RAFT Polymerization: A Facile Route for Preparation of Comblike and Bottlebrush Polymers. Macromolecules, 2018, 51, 7776-7784.	4.8	67
103	Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€Interface Engineering. Advanced Materials, 2018, 30, e1805091.	21.0	65
104	Growth of Nano-/Microcolloidal Architectures from Janus Seeds by ATRP. Chemistry of Materials, 2018, 30, 7664-7671.	6.7	8
105	Control of lengths and densities of surface-attached chains on polymer particles prepared by dispersion polymerization using macromonomer stabilizer. Polymer, 2018, 158, 158-165.	3.8	4
106	Lamellaeâ€"Parking Garage Structureâ€"Lamellae Transition in Densely Grafted Layers of Amphiphilic Homopolymers: Impact of Polymerization Degree. ACS Omega, 2018, 3, 12967-12974.	3.5	6
107	Direct Hydrophilic Modification of Polymer Surfaces via Surface-Initiated ATRP. ACS Symposium Series, 2018, , 157-168.	0.5	3
108	Thermoresponsive Membranes from Electrospun Mats with Switchable Wettability for Efficient Oil/Water Separations. Macromolecules, 2018, 51, 8435-8442.	4.8	43
109	Preceramic core-shell particles for the preparation of hybrid colloidal crystal films by melt-shear organization and conversion into porous ceramics. Materials and Design, 2018, 160, 926-935.	7.0	12
110	Stability of Agarose Film on Glass Slides under Biochemically Relevant Conditions. Bulletin of the Korean Chemical Society, 2018, 39, 1109-1112.	1.9	1

#	ARTICLE	IF	CITATIONS
111	Stereoselective interactions as manifested by vibrational circular dichroism spectra: the interplay between chiral metal complexes co-adsorbed in a montmorillonite clay. Physical Chemistry Chemical Physics, 2018, 20, 25421-25427.	2.8	10
112	Equilibrium and Kinetic Study of Lead and Copper Ion Adsorption on Chitosan-Grafted-Polyacrylic Acid Synthesized by Surface Initiated Atomic Transfer Polymerization. Molecules, 2018, 23, 2218.	3.8	14
113	Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31965-31976.	8.0	8
114	Thermally Switchable Liquid Crystals Based on Cellulose Nanocrystals with Patchy Polymer Grafts. Small, 2018, 14, e1802060.	10.0	34
115	Repurposing Biocatalysts to Control Radical Polymerizations. ACS Macro Letters, 2018, 7, 1111-1119.	4.8	50
116	Optimisation of grafting of low fouling polymers from three-dimensional scaffolds <i>via</i> surface-initiated Cu(0) mediated polymerisation. Journal of Materials Chemistry B, 2018, 6, 5896-5909.	5.8	6
117	Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures. Journal of Colloid and Interface Science, 2018, 526, 429-450.	9.4	33
118	Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sensors, 2018, 3, 1210-1216.	7.8	89
119	Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews, 2018, 118, 5392-5487.	47.7	61
120	Development of hierarchical Fe ₃ O ₄ magnetic microspheres as solid substrates for high sensitive immunoassays. Journal of Materials Chemistry B, 2018, 6, 3762-3769.	5.8	9
121	Visualization of Mechanochemically-Assisted Degrafting of Surface-Tethered Poly(Acrylic Acid) Brushes. ACS Macro Letters, 2018, 7, 609-613.	4.8	8
122	An Acid Test: Facile Slâ€ARGETâ€ATRP of Methacrylic Acid. Macromolecular Chemistry and Physics, 2018, 219, 1800182.	2.2	2
123	Preparation of dual-function chelating resin with high capacity and adjustable adsorption selectivity to variety of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 532-538.	5.3	20
124	Facile preparation of superhydrophobic and oleophobic surfaces via the combination of Cu(0)â€mediated reversibleâ€deactivation radical polymerization and click chemistry. Journal of Polymer Science Part A, 2018, 56, 1684-1694.	2.3	12
125	Surface-initiated RAFT polymerization from vapor-based polymer coatings. Polymer, 2018, 150, 26-34.	3.8	10
126	Surface Functionalization of Nanocellulose-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	2
127	Magnetically Responsive Assemblies of Polymer-Brush-Decorated Nanoparticle Clusters That Exhibit Structural Color. Langmuir, 2018, 34, 9532-9539.	3.5	13
128	Highly efficient access to well-defined linear polymers with substantial vinyl pendants <i>via</i> ATRP of divinyl monomers. Polymer Chemistry, 2018, 9, 4309-4315.	3.9	15

#	Article	IF	CITATIONS
129	Surface-initiated ATRP from polydopamine-modified TiO2 nanoparticles. European Polymer Journal, 2018, 106, 291-296.	5.4	24
130	Grafting Polymers <i>from</i> Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules, 2018, 51, 6157-6189.	4.8	175
131	Enabling the synthesis of homogeneous or Janus hairy nanoparticles through surface photoactivation. Nanoscale, 2018, 10, 14492-14498.	5.6	13
132	Cellulose- <i>graft</i> -polyethyleneamidoamine Anion-Exchange Nanofiber Membranes for Simultaneous Protein Adsorption and Virus Filtration. ACS Applied Nano Materials, 2018, 1, 3321-3330.	5.0	27
134	Low Friction, Lubricity, and Durability of Polymer Brush Coatings, Characterized Using the Relaxation Tribometer Technique â€. Lubricants, 2018, 6, 52.	2.9	11
135	Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers, 2018, 10, 527.	4.5	62
136	Chemical Design of Functional Polymer Structures for Biosensors: From Nanoscale to Macroscale. Polymers, 2018, 10, 551.	4.5	37
137	Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Progress in Polymer Science, 2018, 87, 1-33.	24.7	210
138	How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles. Langmuir, 2018, 34, 9477-9488.	3.5	14
139	Surface-initiated atom transfer radical polymerization grafting from nanoporous cellulose gels to create hydrophobic nanocomposites. RSC Advances, 2018, 8, 27045-27053.	3.6	12
140	Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017. ACS Symposium Series, 2018, , 1-39.	0.5	7
141	Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective. Chemistry - an Asian Journal, 2018, 13, 3411-3436.	3.3	23
142	Single-Step Metal-Free Grafting of Cationic Polymer Brushes on Fluorescent Nanodiamonds. Materials, 2018, 11, 1479.	2.9	10
143	Facile Fabrication of Concentrated Polymer Brushes with Complex Patterning by Photocontrolled Organocatalyzed Living Radical Polymerization. Angewandte Chemie - International Edition, 2018, 57, 13504-13508.	13.8	41
144	Diblock Polymer Brush (PHEAA- <i>b</i> -PFMA): Microphase Separation Behavior and Anti-Protein Adsorption Performance. Langmuir, 2018, 34, 11101-11109.	3.5	24
145	Nanopatterning of Solvent between Apposing Planar Brushes under Pressure. Macromolecules, 2018, 51, 6387-6394.	4.8	2
146	Simultaneous polymer chain growth with the coexistence of bulk and surface initiators: insight from computer simulations. Physical Chemistry Chemical Physics, 2018, 20, 22576-22584.	2.8	4
147	Recent advances in polymerizations in dispersed media. Advances in Colloid and Interface Science, 2018, 260, 24-31.	14.7	16

#	Article	lF	Citations
148	<i>In situ</i> monitoring of SI-ATRP throughout multiple reinitiations under flow by means of a quartz crystal microbalance. RSC Advances, 2018, 8, 20048-20055.	3.6	9
149	Preparation and evaluation of maltose modified polymer-silica composite based on cross-linked poly glycidyl methacrylate as high performance liquid chromatography stationary phase. Analytica Chimica Acta, 2018, 1036, 179-186.	5.4	24
150	Iron Oxide Nanoparticles with Grafted Polymeric Analogue of Dimethyl Sulfoxide as Potential Magnetic Resonance Imaging Contrast Agents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21901-21908.	8.0	21
151	Janus polymer membranes prepared by single-side polydopamine deposition for dye adsorption and fine bubble aeration. Materials Chemistry Frontiers, 2019, 3, 2102-2109.	5.9	16
152	Spontaneous Degrafting of Weak and Strong Polycationic Brushes in Aqueous Buffer Solutions. Macromolecules, 2019, 52, 6192-6200.	4.8	17
153	Solvent-Free Graft-From Polymerization of Polyvinylpyrrolidone Imparting Ultralow Bacterial Fouling and Improved Biocompatibility. ACS Applied Bio Materials, 2019, 2, 3983-3991.	4.6	15
154	Evaluation of Surface-initiated Polymer brush as Anti-scaling Coating for Plate Heat Exchangers. Progress in Organic Coatings, 2019, 136, 105196.	3.9	12
155	Surface Reconstruction by a Coassembly Approach. Angewandte Chemie, 2019, 131, 10687-10691.	2.0	4
156	Graft modification of methyl acrylate onto chicken feather via surface initiated Cu(0)â€mediated reversibleâ€deactivation radical polymerization. Journal of Applied Polymer Science, 2019, 136, 48246.	2.6	3
157	Computer Simulation of Surfaceâ€Initiated Controlled Radical Polymerization: Effect of Freeâ€Monomer Model on Brush Properties. Macromolecular Theory and Simulations, 2019, 28, 1900033.	1.4	8
158	Synthesis of Conjugated Main-Chain Ferrocene-Containing Polymers through Melt-State Polymerization. Organometallics, 2019, 38, 2972-2978.	2.3	9
159	Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation. Lab on A Chip, 2019, 19, 2651-2662.	6.0	34
160	Photophysical and Electrochemical Studies of Anchored Chromium (III) Complex on Reduced Graphene Oxide via Diazonium Chemistry. Applied Organometallic Chemistry, 2019, 33, e5063.	3.5	13
161	Interface design for high energy density polymer nanocomposites. Chemical Society Reviews, 2019, 48, 4424-4465.	38.1	531
162	Reusable Chemically Micropatterned Substrates via Sequential Photoinitiated Thiol–Ene Reactions as a Template for Perovskite Thin-Film Microarrays. ACS Applied Electronic Materials, 2019, 1, 2279-2286.	4.3	2
163	Steering charge kinetics boost the photocatalytic activity of graphitic carbon nitride: heteroatom-mediated spatial charge separation and transfer. Journal Physics D: Applied Physics, 2019, 53, 015502.	2.8	28
164	Controlled-Height Brush Polymer Patterns via Surface-Initiated Thiol-Methacrylate Photopolymerizations. ACS Macro Letters, 2019, 8, 1474-1478.	4.8	21
165	Combining Soft Polysilazanes with Melt-Shear Organization of Core–Shell Particles: On the Road to Polymer-Templated Porous Ceramics. Molecules, 2019, 24, 3553.	3.8	15

#	Article	IF	CITATIONS
166	Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38531-38536.	8.0	16
167	Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules, 2019, 20, 4171-4179.	5.4	101
168	Synthesis of Loop Poly(Methyl Methacrylate) Brushes via Chain-End Postpolymerization Modification. Macromolecules, 2019, 52, 8394-8403.	4.8	10
170	Screening Platform for Identification of Suitable Monomer Mixtures Able To Form Thin-Film Coatings on Polyurethanes by UV-Initiated Free Radical Polymerization. ACS Applied Polymer Materials, 2019, 1, 3295-3303.	4.4	1
171	Surface Nanostructures Fabricated by Polymerization-Induced Surface Self-Assembly. Macromolecules, 2019, 52, 8404-8414.	4.8	19
173	Multidentate boronate magnetic adsorbent assembled with polyhedral oligomeric silsesquioxanes and intramolecular diboronic acid for improving the binding strength toward glycoproteins. Journal of Chromatography A, 2019, 1607, 460401.	3.7	9
174	Pushing the Limit: Synthesis of SiO ₂ - <i>g</i> -PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO ₂ â€"Br Nanoparticles. Macromolecules, 2019, 52, 8713-8723.	4.8	21
175	Layered Co-Immobilization of \hat{I}^2 -Glucosidase and Cellulase on Polymer Film by Visible-Light-Induced Graft Polymerization. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44913-44921.	8.0	25
176	Functional Macromoleculeâ€Enabled Colloidal Synthesis: From Nanoparticle Engineering to Multifunctionality. Advanced Materials, 2019, 31, e1902733.	21.0	25
177	Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie, 2019, 131, 17318-17322.	2.0	5
178	Control of surface forces through hydrated boundary layers. Current Opinion in Colloid and Interface Science, 2019, 44, 94-106.	7.4	44
179	Discovery of a Potent GLUT Inhibitor from a Library of Rapafucins by Using 3D Microarrays. Angewandte Chemie - International Edition, 2019, 58, 17158-17162.	13.8	22
180	Alkaloid purification using rosinâ€based polymerâ€bonded silica stationary phase in HPLC. Journal of Separation Science, 2019, 42, 3646-3652.	2.5	10
181	Influence of Chain Architecture on Nanopore Accessibility in Polyelectrolyte Blockâ€Coâ€Oligomer Functionalized Mesopores. Small, 2019, 15, e1902710.	10.0	18
182	Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chemical Science, 2019, 10, 8724-8734.	7.4	145
183	Swellingâ€Induced Chain Stretching Enhances Hydrolytic Degrafting of Hydrophobic Polymer Brushes in Organic Media. Angewandte Chemie, 2019, 131, 10094-10098.	2.0	1
184	pMAIRS Analysis on Chain-End Functionalization of Densely Grafted, Concentrated Polymer Brushes. Macromolecules, 2019, 52, 6673-6682.	4.8	7
185	Magnetic crosslinked polystyrene with hydrophilic nature prepared through surface-initiated ATRP technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123866.	4.7	3

#	Article	IF	CITATIONS
186	Polymer grafting on graphene layers by controlled radical polymerization. Advances in Colloid and Interface Science, 2019, 273, 102021.	14.7	54
187	PPEGMEMA-based cationic copolymers designed for layer-by-layer assembly. RSC Advances, 2019, 9, 26915-26926.	3.6	5
188	Hydration lubrication of polyzwitterionic brushes leads to nearly friction- and adhesion-free droplet motion. Communications Physics, 2019, 2, .	5.3	39
189	Conversion from a natural mineral to a novel effective adsorbent: Utilization of pumice grafted with polymer brush for methylene blue decolorization from aqueous environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123961.	4.7	24
190	Dual-Functional Implants with Antibacterial and Osteointegration-Promoting Performances. ACS Applied Materials & Distribution (2019), 11, 36449-36457.	8.0	43
191	Mechanochemical Degrafting of a Surface-Tethered Poly(acrylic acid) Brush Promoted Etching of Its Underlying Silicon Substrate. Langmuir, 2019, 35, 13693-13699.	3.5	1
192	Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. Langmuir, 2019, 35, 13268-13274.	3.5	24
193	Printing "Smart―Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37060-37068.	8.0	10
194	Light-Induced Structuring of Photosensitive Polymer Brushes. ACS Applied Polymer Materials, 2019, 1, 3017-3026.	4.4	11
195	Guided assembly, nanostructuring and functionalization with brushes of microscale polymer cubes for tailored 3-D cell microenvironments. European Polymer Journal, 2019, 113, 47-51.	5.4	7
196	Solid-phase extraction of nerve agent degradation products using poly[(2-(methacryloyloxy)ethyl)trimethylammonium chloride] thin films. Talanta, 2019, 197, 500-508.	5.5	8
197	Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring. Journal of the American Chemical Society, 2019, 141, 3100-3109.	13.7	69
198	Fluorescent Patterns by Selective Grafting of a Telechelic Polymer. ACS Applied Polymer Materials, 2019, 1, 136-140.	4.4	17
199	Combined Experimental and Theoretical Study of Weak Polyelectrolyte Brushes in Salt Mixtures. Langmuir, 2019, 35, 2709-2718.	3.5	17
200	Nonflammable and Magnetic Sponge Decorated with Polydimethylsiloxane Brush for Multitasking and Highly Efficient Oil–Water Separation. Advanced Functional Materials, 2019, 29, 1902488.	14.9	162
201	Surface Reconstruction by a Coassembly Approach. Angewandte Chemie - International Edition, 2019, 58, 10577-10581.	13.8	16
202	Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydrate Polymers, 2019, 220, 79-85.	10.2	42
203	Quantifying Solvent Effects on Polymer Surface Grafting. ACS Macro Letters, 2019, 8, 800-805.	4.8	16

#	Article	IF	CITATIONS
204	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	8.2	256
205	Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration. ACS Macro Letters, 2019, 8, 859-864.	4.8	72
206	Spontaneous Microalgae Dewatering Directed by Retrievable, Recyclable, and Reusable Nanoparticle-Pinched Polymer Brushes. Chemistry of Materials, 2019, 31, 4657-4672.	6.7	12
207	Microfluidically mediated atom-transfer radical polymerization. Chemical Communications, 2019, 55, 7554-7557.	4.1	12
209	Syntheses and applications of dendronized polymers. Progress in Polymer Science, 2019, 96, 43-105.	24.7	55
210	Photoiniferter surface grafting of poly(methyl acrylate) using xanthates. Journal of Polymer Science Part A, 2019, 57, 2002-2007.	2.3	4
211	Swellingâ€Induced Chain Stretching Enhances Hydrolytic Degrafting of Hydrophobic Polymer Brushes in Organic Media. Angewandte Chemie - International Edition, 2019, 58, 9989-9993.	13.8	34
212	Polymer Brush Graft-Modified Starch-Based Nanoparticles as Pickering Emulsifiers. Langmuir, 2019, 35, 7222-7230.	3.5	26
213	Self-healing nanocomposite hydrogels based on modified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP. Cellulose, 2019, 26, 5305-5319.	4.9	43
214	Reversible Switching of the Dirac Point in Graphene Field-Effect Transistors Functionalized with Responsive Polymer Brushes. Langmuir, 2019, 35, 8038-8044.	3.5	15
215	cAMP-modulated biomimetic ionic nanochannels based on a smart polymer. Journal of Materials Chemistry B, 2019, 7, 3710-3715.	5.8	14
216	Ultrasensitive aptamer fluorometric detection of IFN- \hat{l}^3 by dual atom transfer radical polymerization amplification. Sensors and Actuators B: Chemical, 2019, 295, 40-48.	7.8	14
217	Polymer-brush-decorated colloidal platelets: precision synthesis and self-assembly. Polymer Chemistry, 2019, 10, 2686-2696.	3.9	5
218	Synthesis of Novel bis â€√riazolinedione Crosslinked Amphiphilic Polypept(o)ide Nanostructures. Macromolecular Chemistry and Physics, 2019, 220, 1900067.	2.2	8
219	Grafting antibacterial polymer brushes from titanium surface via polydopamine chemistry and activators regenerated by electron transfer ATRP. Reactive and Functional Polymers, 2019, 140, 48-55.	4.1	31
220	Polymer brush relaxation during and after polymerization – Monte Carlo simulation study. Polymer, 2019, 173, 190-196.	3.8	17
221	Bioactive Antifouling Surfaces by Visibleâ€Lightâ€Triggered Polymerization. Advanced Materials Interfaces, 2019, 6, 1900351.	3.7	18
222	Metal-free ATRP "grafting from―technique for renewable cellulose graft copolymers. Green Chemistry, 2019, 21, 2759-2770.	9.0	57

#	Article	IF	CITATIONS
223	A Kinetic Model of Oligonucleotide–Brush Interactions for the Rational Design of Gene Delivery Vectors. Biomacromolecules, 2019, 20, 2218-2229.	5.4	16
224	Visible lightâ€induced metalâ€free atom transfer radical polymerization: An efficient approach to polyacrylonitrile. Journal of Polymer Science Part A, 2019, 57, 1265-1269.	2.3	12
225	All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Biomacromolecules, 2019, 20, 1937-1943.	5.4	29
226	SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2019, 8, 374-380.	4.8	125
227	Aptamer-Based Sandwich Assay for Measurement of Thymidine Kinase 1 in Serum of Cancerous Patients. Biochemistry, 2019, 58, 2373-2383.	2.5	9
228	Homogeneous Embedding of Magnetic Nanoparticles into Polymer Brushes during Simultaneous Surface-Initiated Polymerization. Nanomaterials, 2019, 9, 456.	4.1	8
229	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	3.8	6
230	Self-Catalyzed Living Radical Polymerization Using Quaternary-Ammonium-lodide-Containing Monomers. Macromolecules, 2019, 52, 2712-2718.	4.8	28
231	Controlled Growth of Ultraâ€Thick Polymer Brushes via Surfaceâ€Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators. Macromolecular Rapid Communications, 2019, 40, e1900078.	3.9	40
232	Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry. Accounts of Chemical Research, 2019, 52, 1336-1346.	15.6	35
233	Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography. Journal of Chromatography A, 2019, 1597, 187-195.	3.7	18
234	Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polymer Chemistry, 2019, 10, 2925-2951.	3.9	45
235	Polymer Brushes on Hexagonal Boron Nitride. Small, 2019, 15, 1805228.	10.0	18
236	Unprecedented plasmon-induced nitroxide-mediated polymerization (PI-NMP): a method for preparation of functional surfaces. Journal of Materials Chemistry A, 2019, 7, 12414-12419.	10.3	42
237	Effective Synthesis of Patterned Polymer Brushes with Tailored Multiple Graft Densities. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14478-14484.	8.0	24
238	Stabilization of Ruthenium(II) Polypyridyl Chromophores on Mesoporous TiO ₂ Electrodes: Surface Reductive Electropolymerization and Silane Chemistry. ACS Central Science, 2019, 5, 506-514.	11.3	15
239	Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. Langmuir, 2019, 35, 3470-3478.	3.5	9
240	Precise growth of polymer brushes on silica-based nanocomposites <i>via</i> visible-light-regulated controlled radical polymerization. Journal of Materials Chemistry A, 2019, 7, 6173-6179.	10.3	21

#	Article	IF	CITATIONS
241	Grafting of amphiphilic block copolymers on lignocellulosic materials via SIâ€AGETâ€ATRP. Journal of Polymer Science Part A, 2019, 57, 885-897.	2.3	6
242	Improvement of surface hydrophilicity and biological sample-compatibility of molecularly imprinted polymer microspheres by facile surface modification with α-cyclodextrin. European Polymer Journal, 2019, 115, 12-21.	5.4	13
243	Polymer Dispersity Control by Organocatalyzed Living Radical Polymerization. Angewandte Chemie - International Edition, 2019, 58, 5598-5603.	13.8	63
244	Polymer Dispersity Control by Organocatalyzed Living Radical Polymerization. Angewandte Chemie, 2019, 131, 5654-5659.	2.0	20
245	Protein-resistant properties of poly(N-vinylpyrrolidone)-modified gold surfaces: The advantage of bottle-brushes over linear brushes. Colloids and Surfaces B: Biointerfaces, 2019, 177, 448-453.	5.0	25
246	A photo-selective chain-end modification of polyacrylate-iodide and its application in patterned polymer brush synthesis. Polymer Chemistry, 2019, 10, 5913-5919.	3.9	10
247	Understanding the Role of Shape and Composition of Star-Shaped Polymers and their Ability to Both Bind and Prevent Bacteria Attachment on Oral Relevant Surfaces. Journal of Functional Biomaterials, 2019, 10, 56.	4.4	9
248	A γ-cyclodextrin-based metal–organic framework embedded with graphene quantum dots and modified with PEGMA <i>via</i> SI-ATRP for anticancer drug delivery and therapy. Nanoscale, 2019, 11, 20956-20967.	5.6	84
249	Tailored multifunctional micellar brushes via crystallization-driven growth from a surface. Science, 2019, 366, 1095-1098.	12.6	84
250	Biocatalytic ATRP in solution and on surfaces. Methods in Enzymology, 2019, 627, 263-290.	1.0	1
251	Self-regenerating giant hyaluronan polymer brushes. Nature Communications, 2019, 10, 5527.	12.8	16
252	Porous silicon nanomaterials: recent advances in surface engineering for controlled drug-delivery applications. Nanomedicine, 2019, 14, 3213-3230.	3.3	31
253	Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion. Langmuir, 2019, 35, 1882-1894.	3.5	35
254	A Critical Survey of Dithiocarbamate Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. Journal of Polymer Science Part A, 2019, 57, 216-227.	2.3	58
255	Polymer brushes grafted from graphene via bioinspired polydopamine chemistry and activators regenerated by electron transfer atom transfer radical polymerization. Journal of Polymer Science Part A, 2019, 57, 689-698.	2.3	19
256	Computational Study of Pair Interactions between Functionalized Polymer Grafted Nanoparticles. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 7478-7488.	3.7	6
257	Continuously Variable Regulation of the Speed of Bubbleâ€Propelled Janus Microcapsule Motors Based on Saltâ€Responsive Polyelectrolyte Brushes. Chemistry - an Asian Journal, 2019, 14, 2450-2455.	3.3	16
258	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	47.7	299

#	Article	IF	CITATIONS
259	Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Advanced Healthcare Materials, 2019, 8, e1801381.	7.6	270
260	Chain Endâ€Functionalized Polymer Brushes with Switchable Fluorescence Response. Macromolecular Chemistry and Physics, 2019, 220, 1800537.	2.2	22
261	Stimuli-Responsive Poly(<i>N</i> -Vinyllactams) with Glycidyl Side Groups: Synthesis, Characterization, and Conjugation with Enzymes. Biomacromolecules, 2019, 20, 992-1006.	5.4	25
262	Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer grafting. Current Opinion in Solid State and Materials Science, 2019, 23, 74-91.	11.5	75
263	Fabrication of stable biomimetic coating on PDMS surface: Cooperativity of multivalent interactions. Applied Surface Science, 2019, 469, 720-730.	6.1	22
264	Surface Functionalization of Nanocellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 705-733.	0.6	2
265	Stable Molecular Surface Modification of Nanostructured, Mesoporous Metal Oxide Photoanodes by Silane and Click Chemistry. ACS Applied Materials & Silane and Click Chemistry.	8.0	18
266	Polymer brushes grafted from nanostructured zinc oxide layers – Spatially controlled decoration of nanorods. European Polymer Journal, 2019, 112, 186-194.	5.4	8
267	Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials, 2019, 8, e1801469.	7.6	15
268	Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5727-5739.	8.0	104
269	Romantic Surfaces: A Systematic Overview of Stable, Biospecific, and Antifouling Zwitterionic Surfaces. Langmuir, 2019, 35, 1072-1084.	3.5	95
270	Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Frontiers in Chemistry, 2018, 6, 645.	3.6	45
271	Enhancement of the growth of polymer brushes via ATRP initiated from ions-releasing indium tin oxide substrates. European Polymer Journal, 2019, 112, 817-821.	5.4	12
272	Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water Systems. Challenges and Advances in Computational Chemistry and Physics, 2019, , 223-271.	0.6	0
273	Radical Cation Initiated Surface Polymerization on Photothermal Rubber for Smart Antifouling Coatings. Chemistry - A European Journal, 2019, 25, 183-188.	3.3	17
274	Surface-immobilized plant-derived osteopontin as an effective platform to promote osteoblast adhesion and differentiation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 816-824.	5.0	7
275	Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chemical Society Reviews, 2019, 48, 814-849.	38.1	122
276	Controlling the Surface Properties of Binary Polymer Brush-Coated Colloids via Targeted Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 258-265.	2.6	2

#	Article	IF	CITATIONS
277	Towards mimicking biological function with responsive surface-grafted polymer brushes. Current Opinion in Solid State and Materials Science, 2019, 23, 1-12.	11.5	14
278	Controlled pore collapse to increase solute rejection of modified PES membranes. Journal of Membrane Science, 2020, 595, 117515.	8.2	15
279	Light-Activated, Bioadhesive, Poly(2-hydroxyethyl methacrylate) Brush Coatings. Biomacromolecules, 2020, 21, 240-249.	5.4	13
280	Tailoring the surface of attapulgite by combining redox-initiated RAFT polymerization with alkynyl-thiol click reaction for polycarbonate nanocomposites:Effect of polymer brush chain length on mechanical, thermal and rheological properties. Materials Chemistry and Physics, 2020, 241, 122334.	4.0	13
281	Ultrasensitive peptide-based electrochemical detection of protein kinase activity amplified by RAFT polymerization. Talanta, 2020, 206, 120173.	5.5	19
282	Synthesis of Ultra-high Molecular Weight SiO2-g-PMMA Particle Brushes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 174-181.	3.7	9
283	pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. Materials Science and Engineering C, 2020, 108, 110418.	7.3	73
284	Surface-grafted polyacrylonitrile brushes with aggregation-induced emission properties. Polymer Chemistry, 2020, 11, 669-674.	3.9	18
285	Making the best of it: nitroxide-mediated polymerization of methacrylates <i>via</i> the copolymerization approach with functional styrenics. Polymer Chemistry, 2020, 11, 593-604.	3.9	11
286	Surface-grafting polymers: from chemistry to organic electronics. Materials Chemistry Frontiers, 2020, 4, 692-714.	5.9	84
287	The physico-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues. Soft Matter, 2020, 16, 505-522.	2.7	12
288	Bacterial nanoencapsulation with cytocompatible atom transfer radical polymerization for improved Cr(VI) removal. Chemical Engineering Journal, 2020, 387, 124068.	12.7	6
289	Highly stable self-cleaning antireflection coatings from fluoropolymer brush grafted silica nanoparticles. Applied Surface Science, 2020, 507, 144836.	6.1	22
290	Controlled Supramolecular Complexation of Cyclodextrin-Functionalized Polymeric Ionic Liquid Brushes. ACS Applied Polymer Materials, 2020, 2, 751-757.	4.4	10
291	Controlled Synthesis of Concentrated Polymer Brushes with Ultralarge Thickness by Surface-Initiated Atom Transfer Radical Polymerization under High Pressure. Macromolecules, 2020, 53, 132-137.	4.8	17
292	Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Progress in Polymer Science, 2020, 100, 101180.	24.7	134
293	Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Progress in Polymer Science, 2020, 100, 101185.	24.7	42
294	Growing Patterned, Cross-linked Nanoscale Polymer Films from Organic and Inorganic Surfaces Using Ring-Opening Metathesis Polymerization. ACS Applied Materials & Early: Interfaces, 2020, 12, 4041-4051.	8.0	15

#	Article	IF	CITATIONS
295	Well-Defined Polymers for Nonchemistry Laboratories using Oxygen Tolerant Controlled Radical Polymerization. Journal of Chemical Education, 2020, 97, 549-556.	2.3	10
296	Facile Preparation of Well-Defined Uniform Hydrophilic Hairy Hollow Functional Polymer Micro- and Nanoparticles. ACS Applied Polymer Materials, 2020, 2, 220-233.	4.4	7
297	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	21.0	125
298	Inner Surface Design of Functional Microchannels for Microscale Flow Control. Small, 2020, 16, e1905318.	10.0	30
299	Investigation of Roughness Correlation in Polymer Brushes via X-ray Scattering. Polymers, 2020, 12, 2101.	4.5	5
300	Boosting or moderating surface-initiated Cu(0)-mediated controlled radical polymerization with external additives. Polymer Chemistry, 2020, 11, 6971-6977.	3.9	8
301	Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. Journal of Materials Chemistry B, 2020, 8, 10172-10181.	5.8	7
302	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science, 2020, 111, 101311.	24.7	555
303	Swelling of Poly(methyl acrylate) Brushes in Acetone Vapor. Langmuir, 2020, 36, 12053-12060.	3.5	16
304	Surface Engineering with Polymer Brush Photolithography. Macromolecular Rapid Communications, 2020, 41, e2000177.	3.9	39
305	Degrafting of Polymer Brushes by Exposure to Humid Air. ACS Applied Polymer Materials, 2020, 2, 3039-3043.	4.4	34
306	A low fouling electrochemical biosensor based on the zwitterionic polypeptide doped conducting polymer PEDOT for breast cancer marker BRCA1 detection. Bioelectrochemistry, 2020, 136, 107595.	4.6	49
307	Polymer Brush Coating and Adhesion Technology at Scale. Polymers, 2020, 12, 1475.	4.5	16
308	Hydration State Variation of Polyzwitterion Brushes through Interplay with Ions. Langmuir, 2020, 36, 9015-9024.	3.5	26
309	Surface-Initiated Passing-through Zwitterionic Polymer Brushes for Salt-Selective and Antifouling Materials. Macromolecules, 2020, 53, 10278-10288.	4.8	9
310	Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a <i>Pseudomonas</i> Biofilm. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55243-55254.	8.0	42
311	Effect of grafting density on local dynamics in functionalized polymer-grafted nanoparticle systems. Bulletin of Materials Science, 2020, 43, 1.	1.7	0
312	A scope at antifouling strategies to prevent catheter-associated infections. Advances in Colloid and Interface Science, 2020, 284, 102230.	14.7	55

#	Article	IF	CITATIONS
313	Comparison of Longâ€Term Stability of Initiating Monolayers in Surfaceâ€Initiated Controlled Radical Polymerizations. Macromolecular Rapid Communications, 2020, 41, 2000337.	3.9	14
314	Mixed Polymer Brushes for "Smart―Surfaces. Polymers, 2020, 12, 1553.	4.5	49
315	In the Limelight: 2D and 3D Materials via Photo-Controlled Radical Polymerization. Trends in Chemistry, 2020, 2, 689-706.	8.5	27
316	"Mist Polymerization―Method for Fabricating Superhydrophobic Cotton Fabrics. IOP Conference Series: Materials Science and Engineering, 2020, 774, 012007.	0.6	0
317	Oscillating Reactions Meet Polymers at Interfaces. Materials, 2020, 13, 2957.	2.9	9
318	The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers, 2020, 12, 1409.	4. 5	13
319	Photo-induced copper-mediated (meth)acrylate polymerization towards graphene oxide and reduced graphene oxide modification. European Polymer Journal, 2020, 134, 109810.	5.4	5
320	An enzymatic acetal/hemiacetal conversion for the physiological temperature activation of the alkoxyamine C–ON bond homolysis. Organic Chemistry Frontiers, 2020, 7, 2916-2924.	4.5	10
321	Direct fluorination as a one-step ATRP initiator immobilization for convenient surface grafting of phenyl ring-containing substrates. Polymer Chemistry, 2020, 11, 5693-5700.	3.9	10
322	Recent progress in creating complex and multiplexed surface-grafted macromolecular architectures. Soft Matter, 2020, 16, 8736-8759.	2.7	11
323	Polymer brushes in pores by ATRP: Monte Carlo simulations. Polymer, 2020, 211, 123124.	3.8	17
324	Convenient Synthesis of Very-Thick Concentrated Polymer Brushes by Atom Transfer Radical Polymerization in an Ionic Liquid. Macromolecules, 2020, 53, 7936-7943.	4.8	5
325	Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. International Journal of Molecular Sciences, 2020, 21, 6800.	4.1	12
326	Reactive Modification of Fiber Polymer Materials for Textile Applications. , 2020, , 21-41.		0
327	Radical Lifetimes in Atom Transfer Radical Polymerization: A Monte Carlo and Deterministic Investigation. Macromolecules, 2020, 53, 7224-7238.	4.8	10
328	Dual Action Antimicrobial Surfaces: Alternating Photopatterns Maintain Contactâ∈Killing Properties with Reduced Biofilm Formation. Macromolecular Materials and Engineering, 2020, 305, 2000371.	3.6	6
329	Open-to-Air RAFT Polymerization on a Surface under Ambient Conditions. Langmuir, 2020, 36, 11538-11545.	3.5	21
330	Real-Time Measurement of Polymer Brush Dynamics Using Silicon Photonic Microring Resonators: Analyte Partitioning and Interior Brush Kinetics. Langmuir, 2020, 36, 10351-10360.	3.5	6

#	Article	IF	CITATIONS
331	Recent development in halogen-bonding-catalyzed living radical polymerization. Polymer Chemistry, 2020, 11, 5559-5571.	3.9	51
332	Impact of the Solvent Quality on the Local Dynamics of Soft and Swollen Polymer Nanoparticles Functionalized with Polymer Chains. Macromolecules, 2020, 53, 7561-7569.	4.8	6
333	Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension. Polymers, 2020, 12, 1844.	4.5	5
334	Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers, 2020, 12, 1003.	4.5	20
335	Green sonochemical synthesis, kinetics and functionalization of nanoscale anion exchange resins and their performance as water purification membranes. Ultrasonics Sonochemistry, 2020, 67, 105163.	8.2	11
336	The search for enhanced dielectric strength of polymerâ€based dielectrics: A focused review on polymer nanocomposites. Journal of Applied Polymer Science, 2020, 137, 49379.	2.6	130
337	A Microfluidic Platform Equipped With Magnetic Nano Films for Organizing Bio-Particle Arrays and Long-Term Studies. IEEE Sensors Journal, 2020, 20, 9668-9676.	4.7	13
338	Recent trends in nanopore polymer functionalization. Current Opinion in Biotechnology, 2020, 63, 200-209.	6.6	31
339	Supramolecular Additive-Initiated Controlled Atom Transfer Radical Polymerization of Zwitterionic Polymers on Ureido-pyrimidinone-Based Biomaterial Surfaces. Macromolecules, 2020, 53, 4454-4464.	4.8	13
340	Fabrication of a Postfunctionalizable, Biorepellent, Electroactive Polyurethane Interface on a Gold Surface by Surface-Assisted Polymerization. Langmuir, 2020, 36, 6828-6836.	3.5	7
341	The recent advances in surface antibacterial strategies for biomedical catheters. Biomaterials Science, 2020, 8, 4095-4108.	5.4	49
342	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	3.9	32
343	Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules, 2020, 53, 4630-4648.	4.8	32
344	Tri-functional platform for the facile construction of dual-functional surfaces <i>via</i> a one-pot strategy. Journal of Materials Chemistry B, 2020, 8, 5602-5605.	5.8	4
345	Investigating the growth of hyperbranched polymers by self-condensing vinyl RAFT copolymerization from the surface of upconversion nanoparticles. Polymer Chemistry, 2020, 11, 4313-4325.	3.9	6
346	Fabrication of low-fouling, high-loading polymeric surfaces through pH-controlled RAFT. RSC Advances, 2020, 10, 20302-20312.	3.6	3
347	Multistimuli Responsive Reversible Cross-Linking–Decross-Linking of Concentrated Polymer Brushes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28711-28719.	8.0	32
348	Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 2020, 15, 031006.	1.6	4

#	Article	IF	CITATIONS
349	Polymer nanocomposites: Why their mechanical performance does not justify the expectation and a possible solution to the problem?. EXPRESS Polymer Letters, 2020, 14, 436-466.	2.1	20
350	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie - International Edition, 2020, 59, 10431-10435.	13.8	25
351	Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomaterials Science and Engineering, 2020, 6, 1836-1851.	5.2	19
352	Surface Initiated Polymer Thin Films for the Area Selective Deposition and Etching of Metal Oxides. ACS Nano, 2020, 14, 4276-4288.	14.6	25
353	Polymer single chain imaging, molecular forces, and nanoscale processes by Atomic Force Microscopy: The ultimate proof of the macromolecular hypothesis. Progress in Polymer Science, 2020, 104, 101232.	24.7	23
354	The Nitrile Imine 1,3-Dipole. , 2020, , .		22
355	Synthesis of a Smart Hybrid MXene with Switchable Conductivity for Temperature Sensing. ACS Applied Nano Materials, 2020, 3, 4069-4076.	5.0	26
356	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
357	Polymer brush hypersurface photolithography. Nature Communications, 2020, 11, 1244.	12.8	65
358	Surface forces and interaction mechanisms of soft thin films under confinement: a short review. Soft Matter, 2020, 16, 6697-6719.	2.7	16
359	Surface Modification of Nanocellulosics and Functionalities., 2020, , 17-63.		2
360	Fabrication of 2D Block Copolymer Brushes via a Polymerâ€Singleâ€Crystalâ€Assistedâ€Graftingâ€to Method. Macromolecular Rapid Communications, 2020, 41, e2000228.	3.9	7
361	A single-component, cross-linked, and surface-grafted polyelectrolyte film fabricated by the layer-by-layer assembly method. Polymer, 2020, 200, 122524.	3.8	1
362	Biologically interfaced nanoplasmonic sensors. Nanoscale Advances, 2020, 2, 3103-3114.	4.6	10
363	Self-assembly in amphiphilic spherical brushes. Journal of Chemical Physics, 2020, 152, 234903.	3.0	5
364	New Variants of Nitroxide Mediated Polymerization. Polymers, 2020, 12, 1481.	4.5	28
365	A novel approach to fabricate polyacrylate modified graphene oxide for improving the corrosion resistance of epoxy coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124627.	4.7	47
366	Grafting To of Bottlebrush Polymers: Conformation and Kinetics. Langmuir, 2020, 36, 4745-4756.	3.5	8

#	Article	IF	CITATIONS
367	Nanoporous thin films in optical waveguide spectroscopy for chemical analytics. Analytical and Bioanalytical Chemistry, 2020, 412, 3299-3315.	3.7	9
368	"Clickable―and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‧pecific Cell Attachment. Macromolecular Bioscience, 2020, 20, e1900354.	4.1	27
369	Influence of Nanoconfinement on the pKa of Polyelectrolyte Functionalized Silica Mesopores. Advanced Materials Interfaces, 2020, 7, 1901914.	3.7	28
370	Polymer-functionalized polymer nanoparticles and their behaviour in suspensions. Polymer Chemistry, 2020, 11, 2119-2128.	3.9	21
371	How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate. Langmuir, 2020, 36, 2339-2348.	3.5	18
372	Capillary Microfluidic-Assisted Surface Structuring. ACS Macro Letters, 2020, 9, 328-333.	4.8	12
373	Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymer Chemistry, 2020, 11, 1830-1844.	3.9	52
374	Versatile Surface Modification of Hydrogels by Surface-Initiated, Cu ⁰ -Mediated Controlled Radical Polymerization. ACS Applied Materials & Interfaces, 2020, 12, 6761-6767.	8.0	38
375	Multistimulus Responsive Biointerfaces with Switchable Bioadhesion and Surface Functions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5447-5455.	8.0	55
376	One-Component Nanocomposites Based on Polymer-Grafted Cellulose Nanocrystals. Macromolecules, 2020, 53, 821-834.	4.8	26
377	Compatibilities and properties of poly lactide/poly (methyl acrylate) grafted chicken feather composite: Effects of graft chain length. Journal of Applied Polymer Science, 2020, 137, 48981.	2.6	9
378	Reversibly Cross-Linking Polymer Brushes Using Interchain Disulfide Bonds. Macromolecules, 2020, 53, 731-740.	4.8	19
379	Coffee Melanoidinâ€Based Multipurpose Film Formation: Application to Single ell Nanoencapsulation. ChemNanoMat, 2020, 6, 379-385.	2.8	16
380	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie, 2020, 132, 10517-10521.	2.0	3
381	Geometrical Constraints of Poly(diethylene glycol methyl ether methacrylate) Brushes on Spherical Nanoparticles and Cylindrical Nanowires: Implications for Thermoresponsive Brushes on Nanoobjects. ACS Applied Nano Materials, 2020, 3, 3693-3705.	5.0	3
382	Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization. Analytical and Bioanalytical Chemistry, 2020, 412, 4155-4163.	3.7	7
383	Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Materials Today, 2020, 38, 84-98.	14.2	113
384	Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chemical Reviews, 2020, 120, 6009-6047.	47.7	107

#	Article	IF	CITATIONS
385	Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. Langmuir, 2020, 36, 4439-4446.	3.5	55
386	Novel antifouling polymer with self-cleaning efficiency as surface coating for protein analysis by electrophoresis. Talanta, 2021, 221, 121493.	5. 5	12
387	Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Advanced Healthcare Materials, 2021, 10, e2000953.	7.6	56
388	Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid and Polymer Science, 2021, 299, 363-383.	2.1	43
389	Using <i>In Vivo</i> Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS Applied Bio Materials, 2021, 4, 3811-3829.	4.6	16
390	Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polymer Testing, 2021, 93, 106986.	4.8	16
391	Evidence of Mechanochemical Control in "Grafting to―Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules, 2021, 54, 499-508.	4.8	11
392	Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules, 2021, 22, 330-339.	5.4	43
393	RAFT polymerization within high internal phase emulsions: Porous structures, mechanical behaviors, and uptakes. Polymer, 2021, 213, 123327.	3.8	22
394	Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydrate Polymers, 2021, 253, 117245.	10.2	16
395	Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. Macromolecular Chemistry and Physics, 2021, 222, 2000381.	2.2	10
396	TEMPO driven thiol–ene reaction for the preparation of polymer functionalized silicon wafers. New Journal of Chemistry, 2021, 45, 9118-9129.	2.8	3
397	Polymer–Inorganic Colloidal Nanocomposites. RSC Nanoscience and Nanotechnology, 2021, , 123-160.	0.2	0
398	Self-assembly of polymer-tethered nanoparticles with uniform and Janus surfaces in nanotubes. Soft Matter, 2021, 17, 4047-4058.	2.7	5
399	Brush-like polymers: design, synthesis and applications. Chemical Communications, 2021, 57, 10484-10499.	4.1	24
400	Recent Advances in the Design of Surface-initiated Polymer Brushes for Biomedical Applications. RSC Soft Matter, 2021, , 264-300.	0.4	0
402	Bioinspired nanochannels based on polymeric membranes. Science China Materials, 2021, 64, 1320-1342.	6.3	21
403	Emerging applications for living crystallization-driven self-assembly. Chemical Science, 2021, 12, 4661-4682.	7.4	126

#	Article	IF	CITATIONS
404	Plant-inspired quercetin thin films: universal coatings and their postfunctionalization for non-biofouling applications. New Journal of Chemistry, 2021, 45, 7533-7541.	2.8	5
405	The Use of Fibers in Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 141-159.	4.8	19
406	A pH-responsive polyelectrolyte multilayer film with tunable interfacial properties. Polymer, 2021, 214, 123367.	3.8	8
407	Surface-Initiated Ring-Opening Metathesis Polymerization (SI-ROMP): History, General Features, and Applications in Surface Engineering with Polymer Brushes. International Journal of Polymer Science, 2021, 2021, 1-15.	2.7	5
408	Surface Modification of Graphene Oxide with Crosslinked Polymethacrylamide via RAFT Polymerization Strategy: Effective Removal of Heavy Metals from Aqueous Solutions. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2959-2970.	3.7	11
409	Simple and Scalable Protocol for Producing Hydrophobic Polymer Brushes Beyond Wafer-Scale Dimensions toward Real-Life Applications. ACS Applied Polymer Materials, 2021, 3, 1395-1405.	4.4	12
410	Formation of Various Polymeric Films via Surfaceâ€Initiated ARGET ATRP on Silicon Substrates. Bulletin of the Korean Chemical Society, 2021, 42, 761-766.	1.9	9
411	Rapid Highâ€Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angewandte Chemie, 2021, 133, 8921-8932.	2.0	7
412	Rapid Highâ€Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization. Angewandte Chemie - International Edition, 2021, 60, 8839-8850.	13.8	92
413	Evolving scientific aptitude of poly(ethylene glycol) filled with carbonaceous nanofillers. Journal of Plastic Film and Sheeting, 2021, 37, 490-509.	2.2	4
414	New methods in polymer brush synthesis: Non-vinyl-based semiflexible and rigid-rod polymer brushes. Progress in Polymer Science, 2021, 114, 101361.	24.7	19
415	Recyclable Bioâ€Based Photoredox Catalyst in Metalâ€Free Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2021, 222, 2000406.	2.2	5
416	Poly(Vinyl Alcohol)â€Hydrogel Microparticles with Soft Barrier Shell for the Encapsulation of <i>Micrococcus luteus</i> . Macromolecular Bioscience, 2021, 21, e2000419.	4.1	3
417	Functionalization of stainless steel 316L with corrosion resistant polymer films. Thin Solid Films, 2021, 721, 138543.	1.8	3
418	Crucial Nonelectrostatic Effects on Polyelectrolyte Brush Behavior. Macromolecules, 2021, 54, 3388-3394.	4.8	6
419	Tuning the Thermoresponsive Behavior of Surface-Attached PNIPAM Networks: Varying the Crosslinker Content in SI-ATRP. Langmuir, 2021, 37, 3391-3398.	3.5	19
420	Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. European Polymer Journal, 2021, 147, 110298.	5.4	29
421	UV-Assisted Li ⁺ -Catalyzed Radical Grafting Polymerization of Vinyl Ethers: A New Strategy for Creating Hydrolysis-Resistant and Long-Lived Polymer Brushes as a "Smart―Surface Coating. Langmuir, 2021, 37, 4102-4111.	3. 5	7

#	Article	IF	CITATIONS
422	Modification of polystyrene cell-culture-dish surfaces by consecutive grafting of poly(acrylamide)/poly(N-isopropylacrylamide) via reversible addition-fragmentation chain transfer-mediated polymerization. European Polymer Journal, 2021, 147, 110330.	5 . 4	14
423	Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation. Langmuir, 2021, 37, 4943-4952.	3.5	11
424	One Reagent with Two Functions: Simultaneous Living Radical Polymerization and Chain-End Substitution for Tailoring Polymer Dispersity. ACS Macro Letters, 2021, 10, 584-590.	4.8	18
425	Orthogonal Images Concealed Within a Responsive 6â€Dimensional Hypersurface. Advanced Materials, 2021, 33, e2100803.	21.0	16
426	Free Radical Polymerization in a Confined System: An Analysis Based on a Kinetic Growth Model on Regular Graphs. Journal of the Physical Society of Japan, 2021, 90, 044802.	1.6	0
427	Tailoring adhesion characteristics of poly(L-lactic acid)/graphene nanocomposites by end-grafted polymer chains: An atomic-level study. European Polymer Journal, 2021, 148, 110351.	5.4	3
428	Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chemical Reviews, 2021, 121, 7059-7121.	47.7	75
429	Succinimidyl Carbonate-Based Amine-Reactive Polymer Brushes: Facile Fabrication of Functional Interfaces. ACS Applied Polymer Materials, 2021, 3, 2507-2517.	4.4	13
430	Cross-Linked Polymer Brushes Containing N-Halamine Groups for Antibacterial Surface Applications. Polymers, 2021, 13, 1269.	4.5	2
431	Functionalization of Single-Walled Carbon Nanotubes with End-Capped Polystyrene via a Single-Step Diels–Alder Cycloaddition. Polymers, 2021, 13, 1169.	4.5	4
433	Regulating the Interlayer Spacing of 2D Lamellar Polymeric Membranes via Molecular Engineering of 2D Nanosheets. Macromolecules, 2021, 54, 4423-4431.	4.8	7
434	Rheological Aspects of Cellulose Nanomaterials: Governing Factors and Emerging Applications. Advanced Materials, 2021, 33, e2006052.	21.0	143
435	Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum. Talanta, 2021, 226, 122142.	5 . 5	13
436	Surface Grafting "Bandâ€Aid―for "Everyone― Filter Paperâ€Assisted Surface―nitiated Polymerization i Presence of Air. Angewandte Chemie - International Edition, 2021, 60, 13621-13625.	n the 13.8	23
437	Surface Grafting "Bandâ€Aid―for "Everyone― Filter Paperâ€Assisted Surfaceâ€Initiated Polymerization i Presence of Air. Angewandte Chemie, 2021, 133, 13733-13737.	n the 2.0	1
438	Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules, 2021, 26, 2942.	3.8	13
439	Application of Polycarboxylic Acid Brushes on Polystyrene–Divinylbenzene Microbeads for the Removal of Lead from Water. Clean - Soil, Air, Water, 2021, 49, 2000215.	1.1	2
440	Study on preparation and properties of PVC/NBR/PVC-g-PMMA composite film. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 636-641.	2.2	2

#	Article	IF	CITATIONS
441	Precise positioning of enzymes within hierarchical polymer nanostructures for switchable bioelectrocatalysis. Biosensors and Bioelectronics, 2021, 179, 113045.	10.1	5
442	Surface Functionalization of Graphene Oxide with Polymer Brushes for Improving Thermal Properties of the Polymer Matrix. Advances in Polymer Technology, 2021, 2021, 1-11.	1.7	12
443	Polymer Coupling via Hetero-Disulfide Exchange and Its Applications to Rewritable Polymer Brushes. ACS Applied Materials & Exchange and Its Applications to Rewritable Polymer Brushes.	8.0	2
444	Halogen-bond-driven supramolecular assemblies of quaternary-ammonium-iodide-containing polymers in three phases. Cell Reports Physical Science, 2021, 2, 100469.	5.6	3
445	Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. Sensors, 2021, 21, 4300.	3.8	19
446	Photolabile Wellâ€Defined Polystyrene Grafted on Silica Nanoparticle via Nitroxideâ€Mediated Polymerization (NMP). Macromolecular Rapid Communications, 2021, 42, e2100181.	3.9	4
447	Construction of Chiroptical Switch on Silica Nanoparticle Surface via Chiral Self-assembly of Side-chain Azobenzene-containing Polymer. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1528-1537.	3.8	3
448	Imparting ultralow lubricity to double-network hydrogels by surface-initiated controlled radical polymerization under ambient conditions. Biotribology, 2021, 26, 100161.	1.9	11
449	Flowerlike Multipetal Structures of Nanoparticles Decorated by Amphiphilic Homopolymers. Macromolecules, 2021, 54, 6285-6295.	4.8	8
450	Light-triggered surface properties of a glycolized PolyEthylene Terephthalate film by surface-initiated ATRP of azobenzene monomer. European Polymer Journal, 2021, 156, 110608.	5.4	5
451	Double-stranded surface-grafted polymer brushes with ladder-like architecture. European Polymer Journal, 2021, 155, 110577.	5.4	12
452	Synthesis of uniform polymer microspheres with "living―character using ppm levels of copper catalyst: ARGET atom transfer radical precipitation polymerisation. Reactive and Functional Polymers, 2021, 163, 104891.	4.1	5
453	The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. Journal of Medical Engineering and Technology, 2021, 45, 511-531.	1.4	21
454	Hydrophobic modification of fir wood surface via low ppm ATRP strategy. Polymer, 2021, 228, 123942.	3.8	13
455	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	47.7	43
456	Liquid Crystalline Properties of Symmetric and Asymmetric End-Grafted Cellulose Nanocrystals. Biomacromolecules, 2021, 22, 3552-3564.	5.4	10
457	The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1110-1126.	3.8	17
458	Evaluation of 2-Bromoisobutyryl Catechol Derivatives for Atom Transfer Radical Polymerization-Functionalized Polydopamine Coatings. Langmuir, 2021, 37, 8811-8820.	3.5	3

#	Article	IF	CITATIONS
459	Advances in design and biomedical application of hierarchical polymer brushes. Progress in Polymer Science, 2021, 118, 101409.	24.7	43
460	Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS Applied Polymer Materials, 2021, 3, 4347-4374.	4.4	66
461	Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors. European Polymer Journal, 2021, 156, 110593.	5.4	7
462	Grafting polymers from cellulose nanocrystals via surfaceâ€initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2021, 138, 51458.	2.6	20
463	Dynamics of Opposing Polymer Brushes: A Computer Simulation Study. Polymers, 2021, 13, 2758.	4.5	10
464	Vapor sorption in binary polymer brushes: The effect of the polymer–polymer interface. Journal of Chemical Physics, 2021, 155, 054904.	3.0	4
465	Cononsolvency of Poly[2-(methacryloyloxy)ethyl phosphorylcholine] in Ethanol–Water Mixtures: A Neutron Reflectivity Study. Langmuir, 2022, 38, 5081-5088.	3.5	7
466	Photoredox Catalysis for the Fabrication of Water-Repellent Surfaces with Application for Oil/Water Separation. Langmuir, 2021, 37, 11592-11602.	3.5	0
467	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie - International Edition, 2021, 60, 26357-26362.	13.8	15
468	Nanoarchitectonics at surfaces using multifunctional initiators of surface-initiated radical polymerization for fabrication of the nanocomposites. Applied Surface Science Advances, 2021, 5, 100104.	6.8	19
469	Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules, 2021, 54, 8270-8288.	4.8	14
470	Versatile Polymer Nanocapsules via Redox Competition. Angewandte Chemie, 0, , .	2.0	4
471	User-friendly chemical patterning with digital light projection polymer brush photolithography. European Polymer Journal, 2021, 158, 110652.	5 . 4	10
472	Onâ€Surface RAFT Polymerization using Oxygen to form Triblock Copolymer Brushes. Macromolecular Chemistry and Physics, 2021, 222, 2100270.	2.2	5
473	Covalent grafting of functional oligo-isoprenes onto silica-based surfaces to achieve robust elastomeric monolayers, thin films and coatings. Progress in Organic Coatings, 2021, 159, 106375.	3.9	3
474	Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Progress in Polymer Science, 2021, 121, 101434.	24.7	11
475	Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Progress in Polymer Science, 2021, 121, 101433.	24.7	16
476	A nonionic polymer-brush-grafted PVDF membrane to analyse fouling during the filtration of oil/water emulsions. Journal of Membrane Science, 2021, 637, 119644.	8.2	25

#	Article	IF	CITATIONS
477	Designing of desired nanocomposite pressure-sensitive adhesives through tailoring the structural characteristics of polysilsesquioxane-acrylic core-shell nanoparticles. International Journal of Adhesion and Adhesives, 2021, 111, 102973.	2.9	8
478	In situ conversion from crew-cut to hairy micelles by surface-initiated polymerization. Journal of Colloid and Interface Science, 2021, 603, 468-477.	9.4	0
479	Photoinduced atom transfer radical polymerization combined with click chemistry for highly sensitive detection of tobacco mosaic virus RNA. Talanta, 2021, 235, 122803.	5.5	11
480	Progress in surface-modified silicas for Cr(VI) adsorption: A review. Journal of Hazardous Materials, 2022, 423, 127041.	12.4	70
481	Electrochemically switchable polymerization from surface-anchored molecular catalysts. Chemical Science, 2021, 12, 9042-9052.	7.4	15
482	Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness. Polymer Journal, 2021, 53, 643-653.	2.7	6
483	Evolution and applications of polymer brush hypersurface photolithography. Polymer Chemistry, 2021, 12, 5724-5746.	3.9	8
484	Functionalization of liquid metal nanoparticles <i>via</i> the RAFT process. Polymer Chemistry, 2021, 12, 3015-3025.	3.9	24
485	A novel fluorous effect induced fluorescence sensor for Cu(<scp>ii</scp>) detection in the organic phase with high sensitivity. Materials Chemistry Frontiers, 2021, 5, 5361-5370.	5.9	4
486	Quantification of molecular weight discrimination in <i>grafting to</i> reactions from ultrathin polymer films by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst, The, 2021, 146, 6145-6155.	3.5	8
487	Synthesis of temperature and light sensitive mixed polymer brushes via combination of surface-initiated PET–ATRP and interface-mediated RAFT polymerization for cell sheet application. Applied Surface Science, 2020, 511, 145572.	6.1	18
488	Dynamics of Soft and Hairy Polymer Nanoparticles in a Suspension by NMR Relaxation. Macromolecules, 2020, 53, 844-851.	4.8	14
489	Phosphorus-containing polymers synthesised <i>via</i> nitroxide-mediated polymerisation and their grafting on chitosan by <i>grafting to</i> and <i>grafting from</i> approaches. Polymer Chemistry, 2020, 11, 4133-4142.	3.9	17
490	Polyglycidol of Linear or Branched Architecture Immobilized on a Solid Support for Biomedical Applications. Polymer Reviews, 2020, 60, 717-767.	10.9	11
491	Nanoengineering with RAFT polymers: from nanocomposite design to applications. Polymer Chemistry, 2021, 12, 6198-6229.	3.9	17
492	The structure of polymer brushes near the transition from dilute to dense systems. A computer simulation study. Soft Matter, 2021, 17, 10516-10526.	2.7	1
493	Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomaterials Science, 2021, 9, 7379-7391.	5.4	12
494	A role of visible light–mediated surface grafting on nano-SiO2 in Pickering emulsions. Colloid and Polymer Science, 2021, 299, 1819-1831.	2.1	1

#	Article	IF	CITATIONS
495	Tuning the Properties of Surface-Anchored Polymer Networks by Varying the Concentration of a Thermally Activated Cross-Linker, Annealing Time, and Temperature in a One-Pot Reaction. ACS Applied Polymer Materials, 2021, 3, 5568-5577.	4.4	1
496	Light-promoted synthesis of surface-grafted polymers bearing pyridine groups by metal-free ATRP in microliter volumes. Polymer, 2021, 234, 124244.	3.8	14
498	Effects of Plasma Surface Treatment on Cell Adhesion to Biocompatible Polymer Brushes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 529-533.	0.3	1
499	Effects of photoswitching in complex partially ordered systems. Liquid Crystals Reviews, 2020, 8, 29-43.	4.1	4
500	Graft-Then-Shrink: Simultaneous Generation of Antifouling Polymeric Interfaces and Localized Surface Plasmon Resonance Biosensors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52362-52373.	8.0	7
501	Adhesion strategies for heterogeneous soft materials – A review. Engineering Research Express, 0, , .	1.6	1
503	Polymer Brush-Based Thin Films via Cu(0)-Mediated Surface-Initiated Atom Transfer Radical Polymerization for Sensing Applications. ACS Applied Polymer Materials, 2021, 3, 5339-5354.	4.4	7
505	Analysis of the Interaction between a Protein and Polymer Membranes Using Steered Molecular Dynamics Simulation to Interpret the Fouling Behavior. Bulletin of the Chemical Society of Japan, 2020, 93, 1443-1448.	3. 2	4
506	Applications of Nitrile Imine Derivatives. , 2020, , 99-150.		0
507	Analytical strong-stretching theory of polyelectrolyte brushes loaded with charged nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 148201.	0.5	0
508	Magnetic Gold Nanoparticles with Idealized Coating for Enhanced Pointâ€Ofâ€Care Sensing. Advanced Healthcare Materials, 2022, 11, e2102035.	7.6	13
509	Synthesis of Polymer Brushes by Surface-Initiated Controlled/Living Free Radical Polymerization Techniques. Hacettepe Journal of Biology and Chemistry, 2020, 48, 395-405.	0.9	1
510	Electrostatic Potential Analysis in Polyelectrolyte Brush-Grafted Microchannels Filled with Polyelectrolyte Dispersion. Micromachines, 2021, 12, 1475.	2.9	1
511	Polymethylene Brushes via Surface-Initiated C1 Polyhomologation. Journal of the American Chemical Society, 2021, 143, 19873-19880.	13.7	8
512	On Demand Sequential Release of (Sub)Micron Particles Controlled by Size and Temperature. Small, 2022, 18, e2104621.	10.0	2
513	Porous silicon-polymer composites for cell culture and tissue engineering. , 2021, , 447-492.		1
514	Polymer brush growth by oxygen-initiated RAFT polymerization on various substrates. Polymer Chemistry, 2021, 12, 7023-7030.	3.9	10
515	Layer-by-layer coating and chemical cross-linking of multilayer polysaccharides on silica for mixed-mode HPLC application. Chemical Communications, 2021, 57, 12956-12959.	4.1	7

#	Article	IF	CITATIONS
516	Recent advances in externally controlled ring-opening polymerisations. Dalton Transactions, 2022, 51, 1241-1256.	3.3	18
517	Cell Adhesion and Migration on Thickness Gradient Bilayer Polymer Brush Surfaces: Effects of Properties of Polymeric Materials of the Underlayer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2605-2617.	8.0	3
518	Polymer-grafted-carbon assembled via an electrochemically-aided atom transfer radical polymerization: Towards improved energy storage electrode. Electrochemistry Communications, 2022, 135, 107198.	4.7	3
519	Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnology Advances, 2022, 55, 107901.	11.7	20
520	Effect of atom transfer radical polymerization reaction time on PCB binding capacities of Styrene-CMA/QMA Core-Shell iron oxide nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 277, 115577.	3.5	1
521	Inside the brush: partition by molecular weight in grafting to reactions from melt. Polymer Chemistry, 2021, 12, 6538-6547.	3.9	6
522	Difunctional ligands assist a facile scalable strategy for the synthesis of spherical polymer brushes. Journal of Nanoparticle Research, 2022, 24, 1.	1.9	0
523	Protein Patterning on Microtextured Polymeric Nanobrush Templates Obtained by Nanosecond Fiber Laser. Macromolecular Bioscience, 2022, 22, e2100454.	4.1	7
524	Facile Method to Determine the Molecular Weight of Polymer Grafts Grown from Cellulose Nanocrystals. Biomacromolecules, 2022, 23, 699-707.	5.4	4
525	A Simple and Robust Method to Prepare Polyelectrolyte Brushes on Polymer Surfaces. Advanced Materials Interfaces, 2022, 9, .	3.7	4
526	Thermoresponsive, Pyrrolidoneâ€Based Antifouling Polymer Brushes. Advanced Materials Interfaces, 2022, 9, .	3.7	11
527	Fundamentals and Applications of Polymer Brushes in Air. ACS Applied Polymer Materials, 2022, 4, 3062-3087.	4.4	44
528	Industrial-scale fabrication and functionalization of nanocellulose., 2022,, 21-42.		2
529	The Galapagos Chip Platform for Highâ€Throughput Screening of Cell Adhesive Chemical Micropatterns. Small, 2022, 18, e2105704.	10.0	4
530	Chemical Fuel Mediated Selfâ€Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromolecular Rapid Communications, 2022, 43, e2100878.	3.9	4
531	In Situ Photocatalyzed Polymerization to Stabilize Perovskite Nanocrystals in Protic Solvents. ACS Energy Letters, 2022, 7, 610-616.	17.4	33
532	One-step surface modification strategy with composition-tunable microgels: From bactericidal surface to cell-friendly surface. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112372.	5.0	5
533	Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. Environmental Pollution, 2022, 298, 118836.	7.5	33

#	Article	IF	CITATIONS
534	Progress for the development of antibacterial surface based on surface modification technology. , $2022, 1, 100008.$		2
535	Materials Nanoarchitectonics Here, There, Everywhere: Looking Back and Leaping Forward. RSC Nanoscience and Nanotechnology, 2022, , 546-578.	0.2	1
536	Visible lightâ€driven acridone catalysis for atom transfer radical polymerization. Journal of Polymer Science, 2022, 60, 1588-1594.	3.8	4
537	Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers, 2022, 14, 608.	4.5	9
538	Dopamine Assisted Self-Cleaning, Antifouling, and Antibacterial Coating <i>via</i> Dynamic Covalent Interactions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9557-9569.	8.0	37
539	Isolation and label-free detection of circulating tumour cells by fluidic diffraction chips with a reflective laser beam system. Chemical Engineering Journal, 2022, 436, 135206.	12.7	6
540	PMMA Nanocomposites Based on PMMA-Grafted \hat{l} ±-Zirconium Phosphate Nanoplatelets. Macromolecules, 2022, 55, 1165-1177.	4.8	13
541	Nanocapsules: An Emerging Drug Delivery System. Recent Patents on Nanotechnology, 2023, 17, 190-207.	1.3	5
542	Highâ€efficient surface tailoring via reverse atom transfer radical polymerization and reversible additionâ€fragmentation chainâ€transfer polymerization in an aqueous system initiated by a monocenter redox pair. Journal of Polymer Science, 0, , .	3.8	0
543	Detection of heavy metal ion using photonic crystals of polymer brushes with reflective laser beam system. Applied Surface Science, 2022, 585, 152718.	6.1	6
544	Pushing the limits of nanopore transport performance by polymer functionalization. Chemical Communications, 2022, 58, 5188-5204.	4.1	18
545	Reversible complexation mediated polymerization: an emerging type of organocatalytically controlled radical polymerization. Polymer Chemistry, 2022, 13, 2402-2419.	3.9	16
546	Synthetic strategies to enhance the long-term stability of polymer brush coatings. Journal of Materials Chemistry B, 2022, 10, 2430-2443.	5.8	12
547	Surface engineering on segmented copper-iron nanowires arrays. Chinese Chemical Letters, 2022, , .	9.0	0
548	Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments**. Angewandte Chemie, 0, , .	2.0	0
549	Electrically Switchable Polymer Brushes for Protein Capture and Release in Biological Environments**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
550	2â€(<scp>Nâ€3â€Sulfopropylâ€N</scp> ,Nâ€dimethyl ammonium)ethyl methacrylate modified graphene oxide embedded into cellulose acetate ultrafiltration membranes for improved performance. Journal of Applied Polymer Science, 2022, 139, .	2.6	1
551	Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology?. ACS Macro Letters, 2022, 11, 415-421.	4.8	28

#	Article	IF	CITATIONS
552	Monte Carlo Simulation of Surface-Initiated Polymerization: Heterogeneous Reaction Environment. Macromolecules, 2022, 55, 1970-1980.	4.8	8
553	Porous ZnO Microspheres Grafted with Polyâ€(<i>N</i> à€isopropylacrylamide) via Slâ€ATRP: Reversible Temperatureâ€Controlled Switching of Photocatalysis**. ChemistrySelect, 2022, 7, .	1.5	2
554	Monolayer nanoarchitecture of crystalline metallopolymers by electrochemical iterative growth. Cell Reports Physical Science, 2022, 3, 100852.	5.6	5
555	Luminescent Surfaceâ€Tethered Polymer Brush Materials. Chemistry - A European Journal, 2022, 28, .	3.3	6
556	Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS Applied Bio Materials, 2022, 5, 1364-1390.	4.6	18
557	Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules, 2022, 23, 424-430.	5.4	21
558	Facile Molecular Weight Determination of Polymer Brushes Grafted from One-Dimensional Diffraction Grating by SI-ATRP Using Reflective Laser System. Polymers, 2021, 13, 4270.	4.5	1
559	Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers, 2021, 13, 4458.	4.5	4
560	Flexible, Biocompatible PET Sheets: A Platform for Attachment, Proliferation and Differentiation of Eukaryotic Cells. Surfaces, 2021, 4, 306-322.	2.3	2
561	Diblock and Random Antifouling Bioactive Polymer Brushes on Gold Surfaces by Visibleâ€Lightâ€Induced Polymerization (Slâ€PETâ€RAFT) in Water. Advanced Materials Interfaces, 2022, 9, .	3.7	32
562	Polymerization and Structure of Opposing Polymer Brushes Studied by Computer Simulations. Polymers, 2021, 13, 4294.	4.5	7
563	Versatile, Oxygen-Insensitive Surface-Initiated Anionic Polymerization to Prepare Functional Polymer Brushes in Aqueous Solutions. Langmuir, 2022, 38, 1001-1010.	3.5	6
564	Polyglycerol/Polydopamine-Coated Nanoparticles for Biomedical Applications. Frontiers in Materials, 2022, 9, .	2.4	5
565	Polymer Grafting to Polydopamine Free Radicals for Universal Surface Functionalization. Journal of the American Chemical Society, 2022, 144, 6992-7000.	13.7	28
566	Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry - A European Journal, 2022, 28, .	3.3	6
567	Precision polymer synthesis by controlled radical polymerization: Fusing the progress from polymer chemistry and reaction engineering. Progress in Polymer Science, 2022, 130, 101555.	24.7	71
568	Polymer brush-based erasable and rewritable nanostructured particle surfaces. Materials Chemistry Frontiers, 2022, 6, 1788-1794.	5.9	3
569	SMN-based catalytic membranes for environmental catalysis. , 2022, , 171-196.		O

#	Article	IF	CITATIONS
570	Ladder-like Polymer Brushes Containing Conjugated Poly(Propylenedioxythiophene) Chains. International Journal of Molecular Sciences, 2022, 23, 5886.	4.1	8
571	Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces. International Journal of Molecular Sciences, 2022, 23, 6162.	4.1	4
572	Surface modification of nanoparticles to improve oil recovery Mechanisms: A critical review of the methods, influencing Parameters, advances and prospects. Journal of Molecular Liquids, 2022, 360, 119502.	4.9	21
573	Short <i>>vs.</i> long chains competition during " <i>grafting to</i> ―process from melt. Polymer Chemistry, 2022, 13, 3904-3914.	3.9	6
574	State-of-the-art, opportunities, and challenges in bottom-up synthesis of polymers with high thermal conductivity. Polymer Chemistry, 2022, 13, 4462-4483.	3.9	8
575	Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. Soft Matter, 2022, 18, 5138-5152.	2.7	5
576	Enhanced Interfacial Integrity for Chain Growth Polymer Carbon Fiber Composites via Surface-Initiated Polymerization. ACS Applied Materials & Surfaces, 2022, 14, 27157-27167.	8.0	3
577	Probing Liquid Drop Induced Deformation on Soft Solids Using Dual-Wavelength Reflection Interference Contrast Microscopy. Langmuir, 2022, 38, 7750-7758.	3.5	5
578	Hemoglobin-catalyzed atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Biosensors and Bioelectronics, 2022, 213, 114485.	10.1	3
580	Strong Polyelectrolyte Brushes via Alternating Copolymers of Styrene and Maleimides: Synthesis, Properties, and Stability. Macromolecules, 2022, 55, 5291-5300.	4.8	8
581	New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. Polymer Science - Series C, 2022, 64, 82-94.	1.7	3
582	Synthetic Route to Conjugated Donor–Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers. Polymers, 2022, 14, 2735.	4.5	1
583	A Reactive Superhydrophobic Platform for Living Photolithography. Advanced Materials, 2022, 34, .	21.0	12
584	Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chemistry of Materials, 2022, 34, 6210-6231.	6.7	10
585	Polymer brushes: Synthesis, characterization, properties and applications. Progress in Materials Science, 2022, 130, 101000.	32.8	26
586	Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. Chemosphere, 2022, 306, 135656.	8.2	9
587	Synthesis of biomass-based polymer brush-on-brush composite for adsorption of copper(II) from aqueous media. Cellulose, 2022, 29, 7901-7915.	4.9	5
588	Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules, 2022, 55, 6332-6340.	4.8	13

#	Article	IF	CITATIONS
589	Membrane surface zwitterionization for an efficient microalgal harvesting: A review. Algal Research, 2022, 66, 102797.	4.6	9
590	Controllable synthesis and structural design of novel all-organic polymers toward high energy storage dielectrics. Frontiers in Chemistry, 0, 10, .	3.6	4
591	Surface-Initiated Passing-Through Polymerization on a Rubber Substrate: Supplying Monomer from Swollen Substrates. Macromolecules, 2022, 55, 7265-7272.	4.8	0
593	SI-PET-RAFT Polymerization via Electrodeposited Macroinitiator Thin Films: Toward Biomedical and Sensing Applications. ACS Applied Polymer Materials, 2022, 4, 6449-6457.	4.4	9
594	Grafted polythiophene pendent polymer brushes and their electronanopatterning. Thin Solid Films, 2022, 758, 139453.	1.8	2
595	"Clickable―Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjugate Chemistry, 2022, 33, 1672-1684.	3.6	11
596	Fabrication of patterned polymer brushes using programmable modulated light-excited controllable radical polymerization. European Polymer Journal, 2022, 179, 111469.	5.4	2
597	Poly(acrylic acid) block copolymers as stabilizers for dispersion polymerization. Polymer, 2022, 256, 125265.	3.8	3
598	Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Topics in Current Chemistry, 2022, 380, .	5.8	11
599	One-step grafting reaction of thermoresponsive polymer brushes over silica nanoparticles. Colloid and Polymer Science, 2022, 300, 1087-1099.	2.1	1
600	Effect of functional anisotropy on the local dynamics of polymer grafted nanoparticles. Soft Matter, 2022, 18, 6209-6221.	2.7	3
601	Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Chemical Society Reviews, 2022, 51, 7238-7259.	38.1	22
602	Molecular dynamics study of the interactions between a hydrophilic polymer brush on graphene and amino acid side chain analogues in water. Physical Chemistry Chemical Physics, 2022, 24, 22877-22888.	2.8	3
603	Visible light induced RAFT for asymmetric functionalization of silica mesopores. RSC Advances, 2022, 12, 27109-27113.	3.6	8
604	Organic–Inorganic Nanohybrids in Medicine. Materials Horizons, 2022, , 77-106.	0.6	0
605	Recent advances on the construction of encapsulated catalyst for catalytic applications. Nano Research, 2023, 16, 3451-3474.	10.4	8
606	Bifunctionalization of Cellulose Fibers by One-Step Williamson's Etherification to Obtain Modified Microfibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2022, 10, 13415-13423.	6.7	3
607	Recent development and application of membrane chromatography. Analytical and Bioanalytical Chemistry, 2023, 415, 45-65.	3.7	15

#	Article	IF	CITATIONS
608	A-la-carte surface functionalization of organic materials via the combination of radiation-induced graft polymerization and multi-component reactions. MRS Communications, 2022, 12, 552-564.	1.8	1
609	Thermoresponsive Polymer Brushes for Switchable Protein Adsorption via Dopamineâ€Assisted Graftingâ€To Strategy. Advanced Materials Interfaces, 2022, 9, .	3.7	7
610	Functionalized <i>N</i> -Heterocyclic Carbene Monolayers on Gold for Surface-Initiated Polymerizations. ACS Applied Materials & Samp; Interfaces, 2022, 14, 44969-44980.	8.0	8
611	Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chemical Reviews, 2022, 122, 14594-14678.	47.7	74
612	Inflammation-Responsive Nanovalves of Polymer-Conjugated Dextran on a Hole Array of Silicon Substrate for Controlled Antibiotic Release. Polymers, 2022, 14, 3611.	4.5	1
613	Metallic and metal oxide-derived nanohybrid as a tool for biomedical applications. Biomedicine and Pharmacotherapy, 2022, 155, 113791.	5.6	21
614	Enhanced vapor sorption in block and random copolymer brushes. Soft Matter, 2022, 18, 8398-8405.	2.7	3
615	Mechanical response of networks formed by end-functionalised spherical polymer grafted nanoparticles. Soft Matter, 0, , .	2.7	0
616	Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating. ACS Omega, 2022, 7, 38371-38379.	3.5	4
617	Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS Nano, 2022, 16, 17041-17048.	14.6	8
618	Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers, 2022, 14, 4245.	4.5	34
619	Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	5
620	Hedgehog, Chamomile and Multipetal Polymeric Structures on the Nanoparticle Surface: Theoretical Insights. Polymers, 2022, 14, 4358.	4.5	2
621	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	13.7	33
622	Bio-inspired hydrogel-polymer brush bi-layered coating dramatically boosting the lubrication and wear-resistance. Tribology International, 2023, 177, 108000.	5.9	15
623	Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. Journal of Materials Chemistry B, 2022, 10, 9349-9368.	5.8	13
624	计算机模拟辅助设计èšå•̂物接æžçº³ç±³ç²'åçš"æž"ç£ Chinese Science Bulletin, 2022, , .	0.7	0
625	Design of microfluidic radionuclide sensors: Combining microscale 3D printing based on 2-photon polymerization with nanoscale polymer brush scintillators. Reactive and Functional Polymers, 2022, , 105455.	4.1	0

#	Article	IF	CITATIONS
626	Surface Coassembly of Binary Mixed Polymer Brushes and Linear Block Copolymer Chains. Langmuir, 2022, 38, 14217-14226.	3.5	1
627	Vapor Swelling of Polymer Brushes Compared to Nongrafted Films. Langmuir, 2022, 38, 13763-13770.	3.5	3
628	Glucose-responsive nanogate of poly(methacrylic acid) brush-glucosamine network capping on the holes of chips for controlled insulin release. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104592.	5.3	0
629	Soft hybrid elastomers containing polymer grafted nanoparticles. Giant, 2022, 12, 100133.	5.1	1
630	Elucidating Interfacial Chain Conformation of Superhydrophilic Polymer Brushes by Vibrational Sum Frequency Generation Spectroscopy. Langmuir, 2022, 38, 14704-14711.	3.5	4
631	Localized and structured growth of polymer brushes using ink jet printing approach. EPJ Web of Conferences, 2022, 273, 01002.	0.3	0
632	How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. European Polymer Journal, 2023, 183, 111735.	5.4	10
633	Structurally controllable anisotropic polymer brushes and their application in antifouling nanocoatings. European Polymer Journal, 2023, 184, 111795.	5.4	1
634	From Hofmeister to hydrotrope: Effect of anion hydrocarbon chain length on a polymer brush. Journal of Colloid and Interface Science, 2023, 634, 983-994.	9.4	4
635	Surface engineering of mixed conjugated/polyelectrolyte brushes – Tailoring interface structure and electrical properties. Journal of Colloid and Interface Science, 2023, 634, 209-220.	9.4	4
636	Polymer Brushes by Grafting to Reaction in Melt: New Insights into the Mechanism. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	4
637	Flame-retardant finishing of cotton fabric by surface-initiated photochemically induced atom transfer radical polymerization. Cellulose, 2023, 30, 2529-2550.	4.9	7
638	Strong Anchoring of Hydrogels through Superwettingâ€Assisted Highâ€Density Interfacial Grafting. Angewandte Chemie, 2023, 135, .	2.0	2
639	Interfacial microstructure of neutral and charged polymer brushes: A density functional theory study. Journal of Chemical Physics, 2022, 157, .	3.0	3
640	Strong Anchoring of Hydrogels through Superwettingâ€Assisted Highâ€Density Interfacial Grafting. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
641	Direct Quantitative Characterization of Polymer Brushes Obtained by Surface-Initiated ATRP on Silicon. ACS Applied Polymer Materials, 2023, 5, 517-528.	4.4	3
642	Novel targeted pH-responsive drug delivery systems based on PEGMA-modified bimetallic Prussian blue analogs for breast cancer chemotherapy. RSC Advances, 2023, 13, 1684-1700.	3.6	11
643	Synthesis of hyperbranched polymer films via electrodeposition and oxygen-tolerant surface-initiated photoinduced polymerization. Journal of Colloid and Interface Science, 2023, 637, 33-40.	9.4	3

#	Article	IF	Citations
644	Onâ€Demand Cell Sheet Release with Low Density Peptideâ€Functionalized Nonâ€LCST Polymer Brushes. Macromolecular Bioscience, 0, , 2200472.	4.1	1
645	Surface modification for improving immunoassay sensitivity. Lab on A Chip, 0, , .	6.0	1
646	Visualization of the pH Response through Autofluorescent Poly(styrene- <i>alt</i> - <i>N</i> -maleimide) Polyelectrolyte Brushes. ACS Applied Polymer Materials, 2023, 5, 1613-1623.	4.4	2
647	Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn ⁰ CRP) for Biocompatible Surface Engineering. ACS Macro Letters, 2023, 12, 71-76.	4.8	7
648	Self-assembled polymer nanocomposites in biomedical applications., 2023,, 343-361.		0
649	碳纳米管è;¨é¢æŽ¥æžèšå•̂物动力å¦çš"粗粒化模拟ç"ç©¶. Scientia Sinica Chimica, 2023, , .	0.4	0
650	Biomedical Silicones: Leveraging Additive Strategies to Propel Modern Utility. ACS Macro Letters, 2023, 12, 172-182.	4.8	5
652	The Influence of Constraints on Gelation in a Controlling/Living Copolymerization Process. International Journal of Molecular Sciences, 2023, 24, 2701.	4.1	0
653	Consistencies and contradictions in different polymer models of chromatin architecture. Computational and Structural Biotechnology Journal, 2023, 21, 1084-1091.	4.1	3
654	Surface modification and functionalization of ceramic composite using self-assembled monolayer and graft polymerization., 2023,, 21-44.		1
655	Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials, 2023, 13, 855.	4.1	5
656	Supramolecular Polymer Brushes. ACS Polymers Au, 2023, 3, 228-238.	4.1	7
657	Synthesis of mixed-mode based functionalized mesoporous silica through RAFT polymerization and its application for dye adsorption. Microporous and Mesoporous Materials, 2023, 350, 112462.	4.4	6
658	Temperature- and pH-Responsive Schizophrenic Copolymer Brush Coatings with Enhanced Temperature Response in Pure Water. ACS Applied Materials & Enterfaces, 2023, 15, 8676-8690.	8.0	8
659	Shaping the Structure and Response of Surface-Grafted Polymer Brushes via the Molecular Weight Distribution. Jacs Au, 2023, 3, 333-343.	7.9	12
660	Polymer Brushes on Silica Nanostructures Prepared by Aminopropylsilatrane Click Chemistry: Superior Antifouling and Biofunctionality. ACS Applied Materials & Samp; Interfaces, 2023, 15, 10228-10239.	8.0	3
661	Grafting-To and From for Multiplexed Chemical-Warfare-Agent Responsive Polymer Brushes. Chemistry of Materials, 2023, 35, 1674-1683.	6.7	2
662	Synthesis of Polymer Brushes and Removable Surface Nanostructures on Tannic Acid Coatings. Macromolecules, 2023, 56, 1643-1651.	4.8	2

#	Article	IF	CITATIONS
663	Facile and Universal Defect Engineering Toward Highly Stable Carbonâ€Based Polymer Brushes with High Grafting Density. Small, 2023, 19, .	10.0	1
664	Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications. Macromolecules, 2023, 56, 2070-2080.	4.8	4
665	Swelling-Activated, Soft Mechanochemistry in Polymer Materials. Langmuir, 2023, 39, 3546-3557.	3.5	19
666	Use of a Photocleavable Initiator to Characterize Polymer Chains Grafted onto a Metal Plate with the Grafting-from Method. Polymers, 2023, 15, 1265.	4.5	0
667	Metalloporphyrin-Based Biomimetic Catalysis: Applications, Modifications and Flexible Microenvironment Influences (A Review). Russian Journal of General Chemistry, 2023, 93, 189-214.	0.8	0
668	Fabrication of Surface Polymer Brushes Via Thin Film Crystallization and Solvent Annealing. Macromolecular Rapid Communications, 0, , .	3.9	0
669	Preparation of open tubular capillary column covalently coated with polystyrene sulfonate with 4,4â \in 2â \in Azobis(4â \in eyanopentanoyl chloride) as polymerization initiator for electrochromatographic separation of alkaloids, sulfonamides, and peptides. Journal of Separation Science, 2023, 46, .	2.5	1
671	Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
672	Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie, 2023, 135, .	2.0	3
673	Crosslinking and Gelation of Polymer Brushes and Free Polymer Chains in a Confined Space during Controlled Radical Polymerization─A Computer Simulation Study. Macromolecules, 2023, 56, 2608-2618.	4.8	1
674	Photocontrolled RAFT polymerization: past, present, and future. Chemical Society Reviews, 2023, 52, 3035-3097.	38.1	33
675	Laccase-catalyzed functionalization of phenol-modified carbon nanotubes: from grafting of metallopolyphenols to enzyme self-immobilization. Journal of Materials Chemistry A, 2023, 11, 10850-10856.	10.3	3
676	Ultrahigh magnetic resonance contrast switching with water gated polymer-silica nanoparticles. Chemical Communications, 0, , .	4.1	0
677	Surface-Initiated Controlled Radical Polymerization: Going beyond Laboratory Scale. ACS Applied Polymer Materials, 2023, 5, 3534-3541.	4.4	1
678	Molecular surface engineering via collision-induced-dissociation-assisted grafting of antimicrobial molecules on self-assembled-silanized glass. Surface and Coatings Technology, 2023, 465, 129499.	4.8	0
679	In Situ Surfaceâ€Initiated ATRP Mediated by Galliumâ€Based Liquid Metal Nanodroplets. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
680	Smart Temperatureâ€Gating and Ion Conductivity Control of Grafted Anodic Aluminum Oxide Membranes. Chemistry - A European Journal, 2023, 29, .	3.3	3
681	Facilely Control Grafting Density and Side Chain Composition of Bottlebrush Polymer. Macromolecular Rapid Communications, 2023, 44, .	3.9	1

#	Article	IF	CITATIONS
682	Modular and Substrate-Independent Grafting-To Procedure for Functional Polymer Coatings. Langmuir, 2023, 39, 7613-7622.	3.5	1
683	19Ânmâ€Thick Graftedâ€To Polymer Brushes onto Optimized Poly(Dopamine)â€Coated Surfaces. Advanced Materials Interfaces, 2023, 10, .	3.7	3
684	Chain End-Functionalized Dense Polymer Brushes from an Inimer Coating by SI-RAFT. Langmuir, 2023, 39, 8267-8278.	3.5	1
685	SI-PET-RAFT in flow: improved control over polymer brush growth. Polymer Chemistry, 2023, 14, 3357-3363.	3.9	3
688	Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. International Journal of Molecular Sciences, 2023, 24, 10312.	4.1	4
689	Performance of new nanocomposites based on graphene-grafted-poly(itaconic acid-co-TRIM) via photoiniferter, thermal vinyl functionalization, and physical mixture as electrochemical sensing platforms for illicit drug determination. Electrochimica Acta, 2023, 462, 142797.	5.2	0
690	A guide to functionalisation and bioconjugation strategies to surface-initiated polymer brushes. Chemical Communications, 2023, 59, 7534-7558.	4.1	5
691	Preparation of polyacrylamide hydrophilic stationary phases with adjustable performance. Journal of Chromatography A, 2023, 1702, 464065.	3.7	3
692	Rational Construction of Protein-Mimetic Nano-Switch Systems Based on Secondary Structure Transitions of Synthetic Polypeptides. Journal of the American Chemical Society, 2023, 145, 11206-11214.	13.7	11
693	Effects of Grafting Structure on 1D One-Component Composites: An Example of Surface-Grafted Cellulose Nanofibers. ACS Applied Polymer Materials, 2023, 5, 4316-4326.	4.4	1
694	Azeotropic Binary Solvent System Containing Nonfluorinated Polymer-Grafted Silica Nanoparticles for the Fabrication of a Superhydrophobic Surface. Langmuir, 2023, 39, 9841-9849.	3.5	1
695	Multifunctional coatings based on candle soot with photothermal bactericidal property and desired biofunctionality. Journal of Colloid and Interface Science, 2023, 649, 986-995.	9.4	10
696	Supramolecular Polymer Brushes Grown by Surfaceâ€Initiated Atom Transfer Radical Polymerization from Cucurbit[7]urilâ€based Nonâ€Covalent Initiators. Angewandte Chemie, 2023, 135, .	2.0	0
697	Supramolecular Polymer Brushes Grown by Surfaceâ€Initiated Atom Transfer Radical Polymerization from Cucurbit[7]urilâ€based Nonâ€Covalent Initiators. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
698	Interface Assembly of Polymer Networks on Metal–Organic Frameworks for the Engineering of Functional Nanoparticles. Chemistry of Materials, 2023, 35, 5593-5601.	6.7	4
699	Dynamic Covalent Bond: Modes of Activation of the C—ON Bond in Alkoxyamines. Progress in Polymer Science, 2023, 144, 101726.	24.7	1
700	Oxygen-Tolerant Photografting for Surface Structuring from Microliter Volumes. ACS Macro Letters, 2023, 12, 1100-1105.	4.8	1
701	Contact-Biocide TiO ₂ Surfaces by Surface-Initiated Atom Transfer Radical Polymerization with Chemically Stable Phosphonate Initiators. Langmuir, 0, , .	3.5	1

#	Article	IF	CITATIONS
702	Polymer brush inspired by ribosomal RNA transcription. European Physical Journal E, 2023, 46, .	1.6	1
703	2023 Highlights in Interface Science and Engineering: A Collection of Virtual Special Issues. Langmuir, 2023, 39, 10711-10714.	3 . 5	1
704	Nanostructure Explains the Behavior of Slippery Covalently Attached Liquid Surfaces. Angewandte Chemie, $2023,135,.$	2.0	0
705	Nanostructure Explains the Behavior of Slippery Covalently Attached Liquid Surfaces. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
706	Modification of 3Dâ€Printed PLA Structures Using Photoâ€Iniferter Polymerization: Toward Onâ€Demand Antimicrobial Water Filters. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
707	Solid-phase synthesis of iterative RAFT single unit monomer insertion adducts. Polymer Chemistry, 0, , .	3.9	0
708	Surface-Initiated Zerovalent Metal-Mediated Controlled Radical Polymerization (SI-Mt ^O CRP) for Brush Engineering. Accounts of Chemical Research, 2023, 56, 2329-2340.	15.6	5
709	Molecular Dynamics Simulations of Ideal Living Polymerization: Terminal Model and Kinetic Aspects. Journal of Physical Chemistry B, 0, , .	2.6	3
710	Surface-Initiated Living Anionic Polymerization of Functional Methacrylates from the Surface of Organic Particles. Macromolecules, 2023, 56, 7086-7101.	4.8	3
711	Polymer-based nanocarriers for biomedical and environmental applications. E-Polymers, 2023, 23, .	3.0	2
712	Oxygen Tolerance during Surface-Initiated Photo-ATRP: Tips and Tricks for Making Brushes under Environmental Conditions. ACS Macro Letters, 2023, 12, 1166-1172.	4.8	3
713	Core–shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Advances in Colloid and Interface Science, 2023, 321, 103007.	14.7	3
714	Synthesis and applications of a Yâ€inimer with two orthogonal controlled free radical polymerization initiators. Journal of Polymer Science, 2023, 61, 3295-3306.	3.8	0
715	Size Recognition of External Molecules on Polymer Brushes Using Aggregation-Induced Emission. ACS Applied Polymer Materials, 2023, 5, 8387-8395.	4.4	0
716	Photo-responsive polymers based on $\hat{l}_{\hat{c}}$ -Nitrobenzyl derivatives: from structural design to applications. Progress in Polymer Science, 2023, 146, 101741.	24.7	1
717	Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nature Communications, 2023, 14 , .	12.8	1
718	Strategies for Achieving Oxygen Tolerance in Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	4
719	Simultaneous Bulk- and Surface-initiated Living Polymerization Studied with a Heterogeneous Stochastic Reaction Model. Chinese Journal of Polymer Science (English Edition), 2024, 42, 364-372.	3.8	0

#	Article	IF	CITATIONS
720	Molecular Dynamics Study of the Antifouling Mechanism of Hydrophilic Polymer Brushes. Langmuir, 2023, 39, 13158-13168.	3.5	0
721	Covalent Functionalization of Carbon Nanostructures. , 2023, , 1-43.		0
722	Exploiting NIR Light-Mediated Surface-Initiated PhotoRAFT Polymerization for Orthogonal Control Polymer Brushes and Facile Postmodification of Complex Architecture through Opaque Barriers. Macromolecules, 2023, 56, 7898-7908.	4.8	0
723	Role of Surface-Grafted Polymers on Mechanical Reinforcement of Metal–Organic Framework–Polymer Composites. ACS Applied Polymer Materials, 2023, 5, 7947-7957.	4.4	0
724	Radical chemistry in polymer science: an overview and recent advances. Beilstein Journal of Organic Chemistry, 0, 19, 1580-1603.	2.2	0
725	Enabling High-Capacitance Supercapacitors by Polyelectrolyte Brushes. ACS Nano, 2023, 17, 17122-17130.	14.6	1
726	Scalable Air-Tolerant νL-Volume Synthesis of Thick Poly(SPMA) Brushes Using SI-ARGET-ATRP. ACS Applied Polymer Materials, 2023, 5, 7652-7657.	4.4	2
727	FADH2-mediated radical polymerization amplification for microRNA-21 detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 306, 123548.	3.9	0
728	Replacing organics with water: Macromolecular engineering of non-water miscible poly(meth)acrylates via interfacial and ion-pair catalysis SARA ATRP in miniemulsion. European Polymer Journal, 2023, 197, 112374.	5.4	2
729	Polyacrylamide Grafted Activated Carbon by Surfaceâ€Initiated AGET ATRP for the Flocculation of MFT. Macromolecular Chemistry and Physics, 0, , .	2.2	1
730	Silica Etching without HF in Particle Brushes. Journal of Chemical Health and Safety, 0, , .	2.1	0
731	Itaconate-Based Clickable Surface-Anchored Cross-Linked Polymeric Coatings. Macromolecules, 2023, 56, 7837-7846.	4.8	1
732	Modifying reaction rates and stimulus-responsive behavior of polymer-coated catalysts using aprotic solvents. Journal of Catalysis, 2023, 428, 115157.	6.2	0
733	Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Macromolecules, 0, , .	4.8	1
734	Fluorescence-readout as a powerful macromolecular characterisation tool. Chemical Science, 2023, 14, 12815-12849.	7.4	0
735	On-column modification for the creation of temperature-responsive stationary phases. Analytica Chimica Acta, 2023, , 341961.	5.4	1
736	Nanohybrid materials using gold nanoparticles and RAFT-synthesized polymers for biomedical applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2023, 60, 841-855.	2.2	1
737	Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chemical Reviews, 2023, 123, 12431-12470.	47.7	2

#	Article	IF	CITATIONS
738	GFNâ€xTBâ€Based Computations Provide Comprehensive Insights into Emulsion Radiationâ€Induced Graft Polymerization**. ChemPlusChem, 0, , .	2.8	0
739	Tailoring Thermoresponsive Polymer Architecture to Enhance Antifouling and Fouling Reversibility of Membranes. Environmental Science & Environmental S	10.0	0
740	Bactericidal Ability of Well-Controlled Cationic Polymer Brush Surfaces and the Interaction Analysis by Quartz Crystal Microbalance with Dissipation. Langmuir, 2023, 39, 16522-16531.	3.5	2
741	Suspension Photopolymerization of Methyl Methacrylate and ATRP Grafting of Thermoâ€Responsive Polymers Using a Perylediimide Derivative Photoinitiator. Macromolecular Materials and Engineering, 2024, 309, .	3.6	0
742	Effects of the Ionizable Monomer Fraction on the Swelling Behavior of Weak Polyelectrolyte Brushes. Macromolecules, 2023, 56, 9218-9228.	4.8	0
743	Grafting of Multifunctional Polymer Brushes from a Glass Surface: Surfaceâ€Initiated Atom Transfer Radical Polymerization as a Versatile Tool for Biomedical Materials Engineering. Macromolecular Chemistry and Physics, 2024, 225, .	2.2	0
744	Synthesis and specific biomedical applications of polymer brushes. Applied Surface Science Advances, 2023, 18, 100544.	6.8	0
745	Surface-Initiated PET-RAFT via the Z-Group Approach. ACS Polymers Au, 2023, 3, 428-436.	4.1	2
746	Composition-Orientation Induced Mechanical Synergy in Nanoparticle Brushes with Grafted Gradient Copolymers. Macromolecules, 2023, 56, 9626-9635.	4.8	0
747	Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomaterialia, 2024, 175, 76-105.	8.3	2
748	Recent Advances in Antifouling Surface Polymer Brushes. ACS Applied Polymer Materials, 0, , .	4.4	1
749	Pyroelectric Polyelectrolyte Brushes. Advanced Materials, 0, , .	21.0	0
750	Surface Forces Characterization of Concentrated PMMA Brush Layers under Applied Load and Shear. Langmuir, 0, , .	3.5	0
751	Threshold of Surface Initiator Concentration for Polymer Brush Growth by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 0, , .	3.5	0
752	Linear, Y- and $\hat{\Gamma}$ -shaped poly(2-(dimethylamino)ethyl methacrylate) and poly(methyl methacrylate) brushes prepared by surface-initiated polymerization from a homologous series of ATRP initiators. European Polymer Journal, 2023, , 112706.	5.4	0
753	Functionals nanoarchitectonics based on metallic, and carbon structures: A review. Journal of Molecular Liquids, 2023, , 123902.	4.9	0
754	Facile synthesis of cyclic RAFT agents and ring expansion radical polymerization of vinyl monomers having cyclic topology. Polymer Chemistry, 2024, 15, 754-766.	3.9	0
755	Iron–Gold Galvanic-Assisted Rapid Grafting of Polymer Brushes on <i>n</i> -Silicon for a Triboelectric Nanogenerator. ACS Applied Polymer Materials, 2024, 6, 927-934.	4.4	0

#	Article	IF	CITATIONS
756	Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by ppm of Cu ^{II} /Tris(2-pyridylmethyl)amine. Langmuir, 2024, 40, 2664-2671.	3.5	1
757	Partition by molecular weight of polymer brushes: A combined reactive grand canonical Monte Carlo and self-consistent field investigation of grafting to processes. Polymer, 2024, 294, 126737.	3.8	1
758	Polymer Brushes and Surface Nanostructures: Molecular Design, Precise Synthesis, and Self-Assembly. Langmuir, 2024, 40, 2439-2464.	3.5	1
759	Host-guest self-assembly grafts into silica sub-surface for shear-stable interfaces. Cell Reports Physical Science, 2024, 5, 101784.	5.6	0
760	External Fieldâ€Responsive Ternary Nonâ€Noble Metal Oxygen Electrocatalyst for Rechargeable Zincâ€Air Batteries. Advanced Materials, 2024, 36, .	21.0	0
761	Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications. , 2024, 4, 100091.		0
762	Antiâ€Fouling Polymer or Peptideâ€Modified Electrochemical Biosensors for Improved Biosensing in Complex Media. , 2024, 3, .		0
763	3D-printed Biphasic Calcium Phosphate Scaffold to augment cytocompatibility evaluation for load-bearing implant applications. Annals of 3D Printed Medicine, 2024, 14, 100148.	3.1	0
764	Tunable Cell-Adhesive Surfaces by Surface-Initiated Photoinduced Electron-Transfer-Reversible Addition–Fragmentation Chain-Transfer Polymerization. Langmuir, 0, , .	3.5	0
765	Synthesis of branched bottlebrushes by the combination of ATRP, Pd(<scp>ii</scp>)-initiated isocyanide polymerization, and ROMP. New Journal of Chemistry, 2024, 48, 4213-4217.	2.8	0
766	Investigation of the Impact of Chemical Modifications on the Photostability of Polymethyl Methacrylate. International Journal of Polymer Science, 2024, 2024, 1-14.	2.7	0
767	Photolabile SI-PET-RAFT Initiators for Wavelength-Selective Grafting and De-grafting of Polymer Brushes. ACS Applied Polymer Materials, 0, , .	4.4	0
768	A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules, 2024, 29, 913.	3.8	0
769	One-Component Nanocomposites Made from Diblock Copolymer Grafted Cellulose Nanocrystals. Biomacromolecules, 2024, 25, 1637-1648.	5.4	0
770	Balance of Hydrophilicity and Hydrophobicity of Stimuli-Responsive Metallopolymer-Decorated Organic Particles. ACS Applied Polymer Materials, 2024, 6, 2993-3002.	4.4	0
771	Nanopatterned Monolayers of Bioinspired, Sequence-Defined Polypeptoid Brushes for Semiconductor/Bio Interfaces. ACS Nano, 2024, 18, 7411-7423.	14.6	0
772	Photoinduced Metal-Free Atom Transfer Radical Polymerization for the Modification of Cellulose with Poly(N-isopropylacrylamide) to Create Thermo-Responsive Injectable Hydrogels. International Journal of Molecular Sciences, 2024, 25, 2867.	4.1	0
773	Facile fabrication of high thickness hydrophilic polymer brushes via Surface-Initiated Microliter-Scale copper mediated PhotoATRP toward antifouling surfaces. European Polymer Journal, 2024, 209, 112900.	5.4	0

#	Article	IF	CITATIONS
774	Grafting of Poly(ionic liquid) Brushes through Fe ⁰ -Mediated Surface-Initiated Atom Transfer Radical Polymerization for Marine Antifouling. Langmuir, 2024, 40, 8393-8399.	3.5	0
775	Progress in photocontrolled radical polymerization for the synthesis of nonlinear polymer architectures. Journal of Polymer Science, 0, , .	3.8	O
776	Corrosion Protective Coatings from Poly(heterocyclic diphenylamine): Polyaniline Analogues. ACS Applied Polymer Materials, 2024, 6, 3060-3072.	4.4	0