Migration of cations induces reversible performance los perovskite solar cells

Energy and Environmental Science 10, 604-613 DOI: 10.1039/c6ee03352k

Citation Report

#	Article	IF	CITATIONS
2	Changes from Bulk to Surface Recombination Mechanisms between Pristine and Cycled Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 681-688.	8.8	122
3	Surface Polarization Model for the Dynamic Hysteresis of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 915-921.	2.1	122
4	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
5	Self-Assembled Lead Halide Perovskite Nanocrystals in a Perovskite Matrix. ACS Energy Letters, 2017, 2, 769-775.	8.8	15
6	Metal Halide Perovskites as Mixed Electronic–Ionic Conductors: Challenges and Opportunities—From Hysteresis to Memristivity. Journal of Physical Chemistry Letters, 2017, 8, 3106-3114.	2.1	188
7	All solution processed perovskite solar cells with Ag@Au nanowires as top electrode. Solar Energy Materials and Solar Cells, 2017, 171, 43-49.	3.0	26
8	The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach. Angewandte Chemie, 2017, 129, 7863-7867.	1.6	18
9	The Nature of Ion Conduction in Methylammonium Lead Iodide: A Multimethod Approach. Angewandte Chemie - International Edition, 2017, 56, 7755-7759.	7.2	213
10	Direct Experimental Evidence of Halide Ionic Migration under Bias in CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} -Based Perovskite Solar Cells Using GD-OES Analysis. ACS Energy Letters, 2017, 2, 943-949.	8.8	60
11	Photovoltage Behavior in Perovskite Solar Cells under Light-Soaking Showing Photoinduced Interfacial Changes. ACS Energy Letters, 2017, 2, 950-956.	8.8	83
12	Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 2017, 5, 11483-11500.	5.2	319
13	Modelling and loss analysis of meso-structured perovskite solar cells. Journal of Applied Physics, 2017, 122, .	1.1	24
14	Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 26859-26866.	4.0	114
15	Updating the road map to metal-halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17135-17150.	5.2	33
16	Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1702090.	7.8	79
17	Light-Independent Ionic Transport in Inorganic Perovskite and Ultrastable Cs-Based Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 4122-4128.	2.1	231
18	Improved Carrier Transport in Perovskite Solar Cells Probed by Femtosecond Transient Absorption Spectroscopy. ACS Applied Materials & amp; Interfaces, 2017, 9, 43910-43919.	4.0	90
19	Promises and challenges of perovskite solar cells. Science, 2017, 358, 739-744.	6.0	1,510

#	Article	IF	Citations
20	Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery. Journal of Materials Chemistry C, 2017, 5, 7799-7805.	2.7	34
21	Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces, 2017, 9, 30197-30246.	4.0	453
22	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
23	Interfacial Kinetics of Efficient Perovskite Solar Cells. Crystals, 2017, 7, 252.	1.0	24
24	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	11.1	54
25	Switching Off Hysteresis in Perovskite Solar Cells by Fineâ€Tuning Energy Levels of Extraction Layers. Advanced Energy Materials, 2018, 8, 1703376.	10.2	46
26	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	4.0	89
27	Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994.	1.5	50
28	Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. Nano Energy, 2018, 46, 356-364.	8.2	67
29	Reconsidering figures of merit for performance and stability of perovskite photovoltaics. Energy and Environmental Science, 2018, 11, 739-743.	15.6	79
30	Luminescence Imaging Characterization of Perovskite Solar Cells: A Note on the Analysis and Reporting the Results. Advanced Energy Materials, 2018, 8, 1702256.	10.2	16
31	Dynamics of Photoinduced Degradation of Perovskite Photovoltaics: From Reversible to Irreversible Processes. ACS Applied Energy Materials, 2018, 1, 799-806.	2.5	85
32	Research progress on organic–inorganic halide perovskite materials and solar cells. Journal Physics D: Applied Physics, 2018, 51, 093001.	1.3	56
33	Device Physics of Hybrid Perovskite Solar cells: Theory and Experiment. Advanced Energy Materials, 2018, 8, 1702772.	10.2	186
34	Perovskite solar cells must come of age. Science, 2018, 359, 388-389.	6.0	134
35	Chemical Stabilization of Perovskite Solar Cells with Functional Fulleropyrrolidines. ACS Central Science, 2018, 4, 216-222.	5.3	12
36	Lowâ€Temperature Processed Nanostructured Rutile TiO ₂ Array Films for Perovskite Solar Cells With High Efficiency and Stability. Solar Rrl, 2018, 2, 1700164.	3.1	18
37	Topological distribution of reversible and non-reversible degradation in perovskite solar cells. Nano Energy, 2018, 45, 94-100.	8.2	46

#	Article	IF	CITATIONS
38	Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy, 2018, 3, 61-67.	19.8	544
39	Selfâ€Healing Inside APbBr ₃ Halide Perovskite Crystals. Advanced Materials, 2018, 30, 1706273.	11.1	149
40	Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy, 2018, 3, 68-74.	19.8	722
41	Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A, 2018, 6, 2219-2230.	5.2	229
42	Concentrated Sunlight for Materials Synthesis and Diagnostics. Advanced Materials, 2018, 30, e1800444.	11.1	12
43	Global Control of CH ₃ NH ₃ PbI ₃ Formation with Multifunctional Ionic Liquid for Perovskite Hybrid Photovoltaics. Journal of Physical Chemistry C, 2018, 122, 10699-10705.	1.5	26
44	Analysis of the Influence of Selective Contact Heterojunctions on the Performance of Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 13920-13925.	1.5	20
45	Overcoming Bulk Recombination Limits of Layered Perovskite Solar Cells with Mesoporous Substrates. Journal of Physical Chemistry C, 2018, 122, 14177-14185.	1.5	20
46	What Remains Unexplained about the Properties of Halide Perovskites?. Advanced Materials, 2018, 30, e1800691.	11.1	231
47	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund Leistungsfäigkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	1.6	37
48	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	7.2	413
49	Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy and Environmental Science, 2018, 11, 151-165.	15.6	586
50	Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, 3083-3100.	1.7	118
51	Perovskite solar cells: Materials, configurations and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 2471-2489.	8.2	109
52	Deep insights into the advancements and applications of perovskite based photovoltaic cells. Journal of Energy Chemistry, 2018, 27, 753-763.	7.1	1
53	Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 163-169.	8.8	44
54	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	11.1	162
55	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	2.5	209

#	Article	IF	CITATIONS
56	Fabrication of fully non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact. Sustainable Energy and Fuels, 2018, 2, 2778-2787.	2.5	27
57	Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23787-23796.	5.2	21
58	First-Principles Insight into the Degradation Mechanism of CH ₃ NH ₃ PbI ₃ Perovskite: Light-Induced Defect Formation and Water Dissociation. Journal of Physical Chemistry C, 2018, 122, 27340-27349.	1.5	28
59	Performance loss analysis and design space optimization of perovskite solar cells. Journal of Applied Physics, 2018, 124, .	1.1	21
61	The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, e1802573.	5.2	42
62	Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared Annealing. Advanced Energy Materials, 2018, 8, 1802060.	10.2	98
63	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	2.1	56
64	Pressure-Induced Locking of Methylammonium Cations versus Amorphization in Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry C, 2018, 122, 22073-22082.	1.5	42
65	In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nature Communications, 2018, 9, 3806.	5.8	227
66	Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Joule, 2018, 2, 1866-1878.	11.7	187
67	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
68	A full overview of international standards assessing the long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 21794-21808.	5.2	134
69	Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990.	11.7	181
70	Improved Charge Carrier Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Films Synthesized by Means of Laser-Assisted Crystallization. ACS Applied Energy Materials, 2018, 1, 5101-5111.	2.5	31
71	Slow CH ₃ NH ₃ ⁺ Diffusion in CH ₃ NH ₃ PbI ₃ under Light Measured by Solid-State NMR and Tracer Diffusion. Journal of Physical Chemistry C, 2018, 122, 21803-21806.	1.5	46
72	Boosting the performance and stability of quasi-two-dimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive. Journal of Materials Chemistry A, 2018, 6, 18173-18182.	5.2	149
73	Direct Observation and Quantitative Analysis of Mobile Frenkel Defects in Metal Halide Perovskites Using Scanning Kelvin Probe Microscopy. Journal of Physical Chemistry C, 2018, 122, 12633-12639.	1.5	58
74	Lightâ€Induced Degradation of Perovskite Solar Cells: The Influence of 4â€Tertâ€Butyl Pyridine and Gold. Advanced Energy Materials, 2018, 8, 1800554.	10.2	62

ARTICLE IF CITATIONS # <i>In situ</i> XPS study of the surface chemistry of MAPI solar cells under operating conditions in 1.3 59 75 vacuum. Physical Chemistry Chemical Physics, 2018, 20, 17180-17187. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nature Communications, 5.8 2018, 9, 3021. Reduced Graphene Oxide as a Stabilizing Agent in Perovskite Solar Cells. Advanced Materials 78 1.9 45 Interfaces, 2018, 5, 1800416. Strategies toward Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800264. 79 1.9 24 Multimodal noncontact atomic force microscopy and Kelvin probe force microscopy investigations 80 of organolead tribromide perovskite single crystals. Beilstein Journal of Nanotechnology, 2018, 9, 1.5 25 1695-1704. Transient Photovoltage in Perovskite Solar Cells: Interaction of Trap-Mediated Recombination and Migration of Multiple Ionic Species. Journal of Physical Chemistry C, 2018, 122, 11270-11281. 1.5 Interplay of Mobile Ions and Injected Carriers Creates Recombination Centers in Metal Halide 82 106 8.8 Perovskites under Bias. ACS Energy Letters, 2018, 3, 1279-1286. Probing the origins of photodegradation in organic–inorganic metal halide perovskites with 2.5 84 time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467. 84 From Exceptional Properties to Stability Challenges of Perovskite Solar Cells. Small, 2018, 14, e1802385. 5.2 58 A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy 2.2 motion in perovskite solar cells. Applied Mathematical Modelling, 2018, 63, 329-348. Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under 11.1 86 92 Biasing. Advanced Materials, 2018, 30, e1802769. Measuring Aging Stability of Perovskite Solar Cells. Joule, 2018, 2, 1019-1024. 87 11.7 115 Formamidiniumâ€Based Lead Halide Perovskites: Structure, Properties, and Fabrication Methodologies. 88 4.6 48 Small Methods, 2018, 2, 1700387. Outdoor performance monitoring of perovskite solar cell mini-modules: Diurnal performance, observance of reversible degradation and variation with climatic performance. Solar Energy, 2018, 89 170, 549-556. Thermal Degradation Analysis of Sealed Perovskite Solar Cell with Porous Carbon Electrode at 100 °C 90 1.8 29 for 7000â€...h. Energy Technology, 2019, 7, 245-252. Systematic derivation of a surface polarisation model for planar perovskite solar cells. European 1.4 Journal of Applied Mathematics, 2019, 30, 427-457. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. 92 6.0 723 Science, 2019, 365, 473-478. Bidirectional Halide Ion Exchange in Paired Lead Halide Perovskite Films with Thermal Activation. ACS 8.8 Energy Letters, 2019, 4, 1961-1969.

#	ARTICLE	IF	CITATIONS
94	Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901642.	10.2	69
95	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	13.7	1,103
96	Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science, 2019, 106, 100580.	16.0	95
97	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	7.8	89
98	Extending the Photovoltaic Response of Perovskite Solar Cells into the Nearâ€Infrared with a Narrowâ€Bandgap Organic Semiconductor. Advanced Materials, 2019, 31, e1904494.	11.1	71
99	Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability. ACS Energy Letters, 2019, 4, 2683-2688.	8.8	56
100	The use of ion-selective membranes to study cation transport in hybrid organic–inorganic perovskites. Physical Chemistry Chemical Physics, 2019, 21, 20720-20726.	1.3	4
101	Reversible Removal of Intermixed Shallow States by Light Soaking in Multication Mixed Halide Perovskite Films. ACS Energy Letters, 2019, 4, 2360-2367.	8.8	41
102	Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate. Nature Communications, 2019, 10, 3919.	5.8	76
103	<i>In situ</i> monitoring of the charge carrier dynamics of CH ₃ NH ₃ Pbl ₃ perovskite crystallization process. Journal of Materials Chemistry C, 2019, 7, 12170-12179.	2.7	10
104	Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells. Nano Energy, 2019, 66, 104098.	8.2	31
105	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	5.2	27
106	Surface Defect Dynamics in Organic–Inorganic Hybrid Perovskites: From Mechanism to Interfacial Properties. ACS Nano, 2019, 13, 12127-12136.	7.3	56
107	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
108	Multivariate approach for studying the degradation of perovskite solar cells. Solar Energy, 2019, 193, 12-19.	2.9	4
109	Intensity-Modulated Photocurrent Spectroscopy and Its Application to Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 24995-25014.	1.5	52
110	How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy and Environmental Science, 2019, 12, 396-409.	15.6	184
111	Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy and Environmental Science, 2019, 12, 550-558.	15.6	84

#	Article	IF	CITATIONS
112	Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 2019, 10, 520.	5.8	405
113	Fatigue stability of CH3NH3PbI3 based perovskite solar cells in day/night cycling. Nano Energy, 2019, 58, 687-694.	8.2	46
114	Enhancement in lifespan of halide perovskite solar cells. Energy and Environmental Science, 2019, 12, 865-886.	15.6	143
115	Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions. Nature Energy, 2019, 4, 568-574.	19.8	186
116	Ferroelectricity-free lead halide perovskites. Energy and Environmental Science, 2019, 12, 2537-2547.	15.6	80
117	Perovskite solar cells. , 2019, , 417-446.		9
118	Defect site engineering for charge recombination and stability via polymer surfactant incorporation with an ultra-small amount in perovskite solar cells. Organic Electronics, 2019, 73, 87-93.	1.4	14
119	Alkali Salts as Interface Modifiers in nâ€iâ€p Hybrid Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900088.	3.1	47
120	Thermal degradation of formamidinium based lead halide perovskites into <i>sym</i> -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. Journal of Materials Chemistry A, 2019, 7, 16912-16919.	5.2	163
121	Analysis of light-induced degradation in inverted perovskite solar cells under short-circuited conditions. Organic Electronics, 2019, 71, 123-130.	1.4	22
122	Solid-State Ionics of Hybrid Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 8382-8396.	6.6	64
123	Halide Heterogeneity Affects Local Charge Carrier Dynamics in Mixed-Ion Lead Perovskite Thin Films. Chemistry of Materials, 2019, 31, 3712-3721.	3.2	27
124	Kinetic and material properties of interfaces governing slow response and long timescale phenomena in perovskite solar cells. Energy and Environmental Science, 2019, 12, 2054-2079.	15.6	158
125	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
126	Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics. Nano Energy, 2019, 61, 126-131.	8.2	35
127	Insights into operational stability and processing of halide perovskite active layers. Energy and Environmental Science, 2019, 12, 1341-1348.	15.6	125
128	Visualizing Nonradiative Mobile Defects in Organic–Inorganic Perovskite Materials. Small Methods, 2019, 3, 1900110.	4.6	17
129	Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 2019, 7, 12191-12200.	5.2	109

#	Article	IF	CITATIONS
130	Identifying Dominant Recombination Mechanisms in Perovskite Solar Cells by Measuring the Transient Ideality Factor. Physical Review Applied, 2019, 11, .	1.5	107
131	Verification and mitigation of ion migration in perovskite solar cells. APL Materials, 2019, 7, .	2.2	179
132	Supramolecular Engineering for Formamidiniumâ€Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solidâ€State NMR Spectroscopy. Advanced Energy Materials, 2019, 9, 1900284.	10.2	89
133	Interface and Defect Engineering for Metal Halide Perovskite Optoelectronic Devices. Advanced Materials, 2019, 31, e1803515.	11.1	315
134	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	7.8	64
135	Waterâ€Soluble Triazolium Ionicâ€Liquidâ€Induced Surface Selfâ€Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900417.	7.8	145
136	Perovskite Solar Cell Modeling Using Light- and Voltage-Modulated Techniques. Journal of Physical Chemistry C, 2019, 123, 6444-6449.	1.5	61
137	Mixed-cation perovskite solar cells in space. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	116
138	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
139	Role of Ionic Charge Accumulation in Perovskite Solar Cell: Carrier Transfer in Bulk and Extraction at Interface. Journal of Physical Chemistry C, 2019, 123, 5312-5320.	1.5	6
140	Performance of Organic Solar Cells with Recovery. , 2019, , .		0
141	Bulk recrystallization for efficient mixed-cation mixed-halide perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 25511-25520.	5.2	27
142	Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy. RSC Advances, 2019, 9, 33436-33445.	1.7	29
143	Modeling of Intensity-Modulated Photocurrent/Photovoltage Spectroscopy: Effect of Mobile Ions on the Dynamic Response of Perovskite Solar Cells. Journal of Physical Chemistry C, 2019, 123, 30077-30087.	1.5	15
144	Outdoor performance of perovskite solar technology: Silicon comparison and competitive advantages at different irradiances. Solar Energy Materials and Solar Cells, 2019, 191, 15-20.	3.0	32
145	Organohalide Lead Perovskites: More Stable than Glass under Gammaâ€Ray Radiation. Advanced Materials, 2019, 31, e1805547.	11.1	92
146	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	23.0	1,131
147	Substrate-Dependent Photoconductivity Dynamics in a High-Efficiency Hybrid Perovskite Alloy. Journal of Physical Chemistry C, 2019, 123, 3402-3415.	1.5	10

#	Article	IF	CITATIONS
148	Reliable Performance Comparison of Perovskite Solar Cells Using Optimized Maximum Power Point Tracking. Solar Rrl, 2019, 3, 1800287.	3.1	24
149	Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics, 2019, 67, 19-25.	1.4	44
150	Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion–Jacobson Two-Dimensional Perovskite Solar Cells. Nano Letters, 2019, 19, 150-157.	4.5	218
151	Machine Learning for Perovskites' Reap-Rest-Recovery Cycle. Joule, 2019, 3, 325-337.	11.7	62
152	Effect of Crystal Grain Orientation on the Rate of Ionic Transport in Perovskite Polycrystalline Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 2490-2499.	4.0	29
153	Stability Enhancement in Perovskite Solar Cells with Perovskite/Silver–Graphene Composites in the Active Layer. ACS Energy Letters, 2019, 4, 235-241.	8.8	61
154	Recent Advances in Energetics and Stability of Metal Halide Perovskites for Optoelectronic Applications. Advanced Materials Interfaces, 2019, 6, 1801351.	1.9	29
155	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
156	Verringerung schÃ d licher Defekte für leistungsstarke Metallhalogenidâ€Perowskitâ€ S olarzellen. Angewandte Chemie, 2020, 132, 6740-6764.	1.6	16
157	Initial Stages of Photodegradation of MAPbI ₃ Perovskite: Accelerated Aging with Concentrated Sunlight. Solar Rrl, 2020, 4, 1900270.	3.1	17
158	Reducing Detrimental Defects for Highâ€Performance Metal Halide Perovskite Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 6676-6698.	7.2	334
159	Perovskite solar cells. , 2020, , 163-228.		8
160	Halide perovskite materials as light harvesters for solar energy conversion. EnergyChem, 2020, 2, 100026.	10.1	24
161	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	6.6	132
162	Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures. Advanced Functional Materials, 2020, 30, 1907481.	7.8	33
163	Influence of morphology on photoluminescence properties of methylammonium lead tribromide films. Journal of Luminescence, 2020, 220, 117033.	1.5	8
164	Supramolecular Modulation of Hybrid Perovskite Solar Cells via Bifunctional Halogen Bonding Revealed by Two-Dimensional ¹⁹ F Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 1645-1654.	6.6	69
165	<i>In situ</i> investigation of perovskite solar cells' efficiency and stability in a mimic stratospheric environment for high-altitude pseudo-satellites. Journal of Materials Chemistry C, 2020, 8, 1715-1721.	2.7	19

#	Article	IF	CITATIONS
166	Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing. Materials Today, 2020, 35, 9-15.	8.3	35
167	Theory of light-induced degradation in perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 208, 110383.	3.0	25
168	Interfacial Mechanism for Efficient Resistive Switching in Ruddlesden–Popper Perovskites for Non-volatile Memories. Journal of Physical Chemistry Letters, 2020, 11, 463-470.	2.1	90
169	Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903249.	10.2	132
170	Surfaceâ€2D/Bulkâ€3D Heterophased Perovskite Nanograins for Longâ€Termâ€Stable Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1905674.	11.1	59
171	Novel test scenarios needed to validate outdoor stability of perovskite solar cells. JPhys Energy, 2020, 2, 021003.	2.3	12
172	Reduction of Methylammonium Cations as a Major Electrochemical Degradation Pathway in MAPbl ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 221-228.	2.1	33
173	Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902653.	10.2	52
174	Microscopic insight into the reversibility of photodegradation in MAPbI3 thin films. Journal of Luminescence, 2020, 219, 116916.	1.5	7
175	Current-voltage analysis: lessons learned from hysteresis. , 2020, , 81-108.		9
176	Stability of materials and complete devices. , 2020, , 197-215.		1
177	Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation Platform for Halide Perovskite Solar Cells. Joule, 2020, 4, 109-127.	11.7	117
178	Ion Migration: A "Doubleâ€Edged Sword―for Halideâ€Perovskiteâ€Based Electronic Devices. Small Methods, 2020, 4, 1900552.	4.6	127
179	Photoluminescence kinetics for monitoring photoinduced processes in perovskite solar cells. Solar Energy, 2020, 195, 114-120.	2.9	17
180	Imaging Metal Halide Perovskites Material and Properties at the Nanoscale. Advanced Energy Materials, 2020, 10, 1903161.	10.2	21
181	Shallow Iodine Defects Accelerate the Degradation of α-Phase Formamidinium Perovskite. Joule, 2020, 4, 2426-2442.	11.7	173
182	Interfacial 2-hydrozybenzophenone passivation for highly efficient and stable perovskite solar cells. Journal of Power Sources, 2020, 475, 228665.	4.0	2
183	lodine Vacancy Formation Energy in CH3NH3PbI3 Perovskite. IEEE Journal of Photovoltaics, 2020, 10, 1750-1756.	1.5	3

#	Article	IF	CITATIONS
184	Stabilizing Perovskite Solar Cells to IEC61215:2016 Standards with over 9,000-h Operational Tracking. Joule, 2020, 4, 2646-2660.	11.7	218
185	Study of the effect of temperature on light-induced degradation in methylammonium lead iodine perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 218, 110770.	3.0	11
186	Improving the stability of MAPbI3 films by using a new synthesis route. Journal of Materials Research and Technology, 2020, 9, 13759-13769.	2.6	8
187	Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy and Environmental Science, 2020, 13, 4291-4300.	15.6	124
188	External Field-Tunable Internal Orbit–Orbit Interaction in Flexible Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 10323-10328.	2.1	2
189	Alloy CsCd <i>_x</i> Pb _{1–<i>x</i>} Br ₃ Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emission. Chemistry of Materials, 2020, 32, 10641-10652.	3.2	45
190	Hybrid Perovskites with Larger Organic Cations Reveal Autocatalytic Degradation Kinetics and Increased Stability under Light. Inorganic Chemistry, 2020, 59, 12176-12186.	1.9	12
191	Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 2001610.	10.2	84
192	Suppressing Cation Migration in Triple-Cation Lead Halide Perovskites. ACS Energy Letters, 2020, 5, 2802-2810.	8.8	51
193	Effect of Additives AX (A = FA, MA, Cs, Rb, NH ₄ , X = Cl, Br, I) in FAPbI _{3Photovoltaic Parameters of Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000331.})> on 3.1	55
194	Photo-Induced Black Phase Stabilization of CsPbI3 QDs Films. Nanomaterials, 2020, 10, 1586.	1.9	8
195	Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nature Communications, 2020, 11, 5514.	5.8	71
196	CIGS and perovskite solar cells $\hat{a} \in $ an overview. Emerging Materials Research, 2020, 9, 812-824.	0.4	9
197	A study on optoelectronic performance of perovskite solar cell under different stress testing conditions. Optical Materials, 2020, 109, 110377.	1.7	8
198	In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.	3.6	15
199	Defect Dynamics in MAPbI ₃ Polycrystalline Films: The Trapping Effect of Grain Boundaries. Helvetica Chimica Acta, 2020, 103, e2000110.	1.0	10
200	Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications, 2020, 11, 4237.	5.8	106
201	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.4	4

#	Article	IF	CITATIONS
202	Hysteretic Ion Migration and Remanent Field in Metal Halide Perovskites. Advanced Science, 2020, 7, 2001176.	5.6	29
203	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
204	The effect of current density–voltage measurement conditions on the operational stability of hybrid perovskite solar cells. Applied Physics Letters, 2020, 117, .	1.5	1
205	Insights into the interparticle mixing of CsPbBr ₃ and CsPbI ₃ nanocubes: halide ion migration and kinetics. Nanoscale, 2020, 12, 20840-20848.	2.8	12
206	Towards commercialization: the operational stability of perovskite solar cells. Chemical Society Reviews, 2020, 49, 8235-8286.	18.7	371
207	Chemical anti-corrosion strategy for stable inverted perovskite solar cells. Science Advances, 2020, 6,	4.7	88
208	Deducing transport properties of mobile vacancies from perovskite solar cell characteristics. Journal of Applied Physics, 2020, 128, .	1.1	25
209	Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Letters, 2020, 20, 8880-8889.	4.5	114
210	Photoemission Spectroscopy Characterization of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1904007.	10.2	66
211	An Interlaboratory Study on the Stability of Allâ€Printable Hole Transport Material–Free Perovskite Solar Cells. Energy Technology, 2020, 8, 2000134.	1.8	18
212	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Đimensional Perovskites. Angewandte Chemie - International Edition, 2020, 59, 13977-13983.	7.2	36
213	Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2020, 142, 11428-11433.	6.6	107
214	Thiophene Cation Intercalation to Improve Bandâ€Edge Integrity in Reducedâ€Đimensional Perovskites. Angewandte Chemie, 2020, 132, 14081-14087.	1.6	16
215	Ion Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.	10.2	103
216	Inch-Size OD-Structured Lead-Free Perovskite Single Crystals for Highly Sensitive Stable X-Ray Imaging. Matter, 2020, 3, 180-196.	5.0	202
217	Nonâ€Uniform Chemical Corrosion of Metal Electrode of p–i–n Type of Perovskite Solar Cells Caused by the Diffusion of CH ₃ NH ₃ I. Energy Technology, 2020, 8, 2000250.	1.8	13
218	Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Advanced Energy Materials, 2020, 10, 2000454.	10.2	86
219	Incorporation of Vanadium(V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5563-5568.	2.1	28

#	Article	IF	CITATIONS
220	Ion Migration-Induced Degradation and Efficiency Roll-off in Quasi-2D Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 33004-33013.	4.0	68
221	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
222	Secondary Ion Mass Spectrometry (SIMS) for Chemical Characterization of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 2002201.	7.8	29
223	Latticeâ€Matching Structurallyâ€Stable 1D@3D Perovskites toward Highly Efficient and Stable Solar Cells. Advanced Energy Materials, 2020, 10, 1903654.	10.2	50
224	Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells. Applied Physics Letters, 2020, 116, 113502.	1.5	16
225	Reviewing and understanding the stability mechanism of halide perovskite solar cells. InformaÄnÃ- Materiály, 2020, 2, 1034-1056.	8.5	55
226	Methylammonium Lead Tribromide Single Crystal Detectors towards Robust Gammaâ€Ray Photon Sensing. Advanced Optical Materials, 2020, 8, 2000233.	3.6	18
227	Reverse Manufacturing Enables Perovskite Photovoltaics to Reach the Carbon Footprint Limit of a Glass Substrate. Joule, 2020, 4, 882-901.	11.7	23
228	Light-induced degradation and self-healing inside CH3NH3PbI3-based solar cells. Applied Physics Letters, 2020, 116, .	1.5	12
229	Exploiting Electrical Transients to Quantify Charge Loss in Solar Cells. Joule, 2020, 4, 472-489.	11.7	53
230	Detrimental Effect of Unreacted PbI ₂ on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905035.	11.1	256
231	Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches. Solar Energy, 2020, 199, 136-142.	2.9	33
232	Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization. Energy and Environmental Science, 2020, 13, 840-847.	15.6	44
233	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
234	Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies. Journal of Physical Chemistry C, 2020, 124, 3448-3458.	1.5	42
235	Engineering Multiphase Metal Halide Perovskites Thin Films for Stable and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 1903221.	10.2	16
236	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1â~'xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5, 79-88.	19.8	412
237	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	13.3	328

#	Article	IF	CITATIONS
238	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
239	A Crossâ€Linked PCBM Interlayer for Efficient and UVâ€Stable Methylammoniumâ€Free Perovskite Solar Cells. Energy Technology, 2020, 8, 2000224.	1.8	9
240	Suppression of Ag migration by low-temperature sol-gel zinc oxide in the Ag nanowires transparent electrode-based flexible perovskite solar cells. Organic Electronics, 2020, 82, 105714.	1.4	22
241	Development of a New Maximum Power Point Tracking Method for Power Conversion Efficiency Measurement of Metastable Perovskite Solar Cells. Electrochemistry, 2020, 88, 218-223.	0.6	9
242	Coexistence of light-induced photoluminescence enhancement and quenching in CH ₃ NH ₃ PbBr ₃ perovskite films. RSC Advances, 2020, 10, 11054-11059.	1.7	5
243	The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903735.	10.2	117
244	Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy and Environmental Science, 2021, 14, 224-261.	15.6	94
245	Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Science Bulletin, 2021, 66, 536-544.	4.3	10
246	Kilogramâ€Scale Crystallogenesis of Halide Perovskites for Gammaâ€Rays Dose Rate Measurements. Advanced Science, 2021, 8, 2001882.	5.6	21
247	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
248	The impact of spiro-OMeTAD photodoping on the reversible light-induced transients of perovskite solar cells. Nano Energy, 2021, 82, 105658.	8.2	28
249	Role of cation-mediated recombination in perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 221, 110912.	3.0	16
250	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Antiâ€Aging Perovskite Solar Cells. Small, 2021, 17, e2004778.	5.2	9
251	Reconfigurable Perovskite LEC: Effects of Ionic Additives and Dual Function Devices. Advanced Optical Materials, 2021, 9, 2001715.	3.6	33
252	Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220, 110854.	3.0	12
253	Stability of the CsPbI ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	5.2	78
254	Multifunctional layered hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 11428-11443.	2.7	35
255	Beneficial effects of cesium acetate in the sequential deposition method for perovskite solar cells. Nanoscale, 2021, 13, 11478-11487.	2.8	20

#	Article	IF	CITATIONS
256	Rapid degradation behavior of encapsulated perovskite solar cells under light, bias voltage or heat fields. Nanoscale Advances, 2021, 3, 6128-6137.	2.2	15
257	Research progress of light irradiation stability of functional layers in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 098402.	0.2	2
258	When photoluminescence, electroluminescence, and open-circuit voltage diverge – light soaking and halide segregation in perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13967-13978.	5.2	8
259	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	5.2	32
260	Nanoscale light- and voltage-induced lattice strain in perovskite thin films. Nanoscale, 2021, 13, 746-752.	2.8	12
261	Interfacial Passivation of Perovskite Solar Cells by Reactive Ion Scavengers. ACS Applied Energy Materials, 2021, 4, 1078-1084.	2.5	9
262	Photoluminescence of Boundâ€Exciton Complexes and Assignment to Shallow Defects in Methylammonium/Formamidinium Lead Iodide Mixed Crystals. Advanced Optical Materials, 2021, 9, 2001969.	3.6	11
263	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	4.7	81
264	The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied Sciences (Switzerland), 2021, 11, 1453.	1.3	11
265	Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light. ACS Energy Letters, 2021, 6, 934-940.	8.8	90
266	lon Transport, Defect Chemistry, and the Device Physics of Hybrid Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1566-1576.	8.8	53
267	Grain Size Influences Activation Energy and Migration Pathways in MAPbBr ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 2423-2428.	2.1	71
268	Diffusive and Drift Halide Perovskite Memristive Barristors as Nociceptive and Synaptic Emulators for Neuromorphic Computing. Advanced Materials, 2021, 33, 2007851.	11.1	83
269	Suppressing the δ-Phase and Photoinstability through a Hypophosphorous Acid Additive in Carbon-Based Mixed-Cation Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 6585-6592.	1.5	9
270	Mixed Conductivity of Hybrid Halide Perovskites: Emerging Opportunities and Challenges. Frontiers in Energy Research, 2021, 9, .	1.2	26
271	Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495.	5.2	61
272	Ion Movement Explains Huge <i>V</i> _{OC} Increase despite Almost Unchanged Internal Quasiâ€Fermi‣evel Splitting in Planar Perovskite Solar Cells. Energy Technology, 2021, 9, 2001104.	1.8	18
273	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48

	CHATOWR	LFUILI	
# 274	ARTICLE Dielectric screening in perovskite photovoltaics. Nature Communications. 2021, 12, 2479.	IF 5.8	CITATIONS
275	Review on persistent challenges of perovskite solar cells' stability. Solar Energy, 2021, 218, 469-491.	2.9	80
276	Tailoring the Interface in FAPbI ₃ Planar Perovskite Solar Cells by Imidazoleâ€Grapheneâ€Quantumâ€Dots. Advanced Functional Materials, 2021, 31, 2101438.	7.8	51
277	Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7, .	4.7	165
278	Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals. Energies, 2021, 14, 2005.	1.6	3
279	Role of Decomposition Product Ions in Hysteretic Behavior of Metal Halide Perovskite. ACS Nano, 2021, 15, 9017-9026.	7.3	13
280	Durable Defect Passivation of the Grain Surface in Perovskite Solar Cells with π-Conjugated Sulfamic Acid Additives. ACS Applied Materials & Interfaces, 2021, 13, 26013-26022.	4.0	35
281	Enhanced Efficiency of Inorganic CsPbI _{3â^} <i>_x</i> Br <i>_x</i> Perovskite Solar Cell via Selfâ€Regulation of Antisite Defects. Advanced Energy Materials, 2021, 11, 2100403.	10.2	45
282	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
283	Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nature Energy, 2021, 6, 633-641.	19.8	215
284	Subcell Operation and Longâ€Term Stability Analysis of Perovskiteâ€Based Tandem Solar Cells Using a Bichromatic Light Emitting Diode Light Source. Solar Rrl, 2021, 5, 2100311.	3.1	9
285	Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design. Advanced Energy Materials, 2021, 11, 2003877.	10.2	49
286	Reducing Defects in Organic-Lead Halide Perovskite Film by Delayed Thermal Annealing Combined with KI/I2 for Efficient Perovskite Solar Cells. Nanomaterials, 2021, 11, 1607.	1.9	6
287	Carbon-based all-inorganic perovskite solar cells: Progress, challenges and strategies toward 20% efficiency. Materials Today, 2021, 50, 239-258.	8.3	33
288	And the stability enhancement in organo-metallic halide perovskite photovoltaics-a review. Materials Today Communications, 2021, 27, 102159.	0.9	12
289	In-Operando Characterization of P-I-N Perovskite Solar Cells Under Reverse Bias. , 2021, , . Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5%	10	3
290	on a 15.7 cm ² Active Area. ACS Applied Materials & amp; Interfaces, 2021, 13, 29576-29584. Surface Defect Passivation of Pb–Snâ€Alloyed Perovskite Film by 1,3â€Propanediammonium lodide toward	4.0	22
- 291	Highâ€Performance Photovoltaic Devices. Solar Rrl, 2021, 5, 2100299.		

#	Article	IF	CITATIONS
292	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. ACS Energy Letters, 2021, 6, 2944-2951.	8.8	42
293	Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules. Nano-Micro Letters, 2021, 13, 155.	14.4	40
294	Bias-Dependent Dynamics of Degradation and Recovery in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 6562-6573.	2.5	11
295	Perovskitoidâ€Templated Formation of a 1D@3D Perovskite Structure toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101018.	10.2	85
296	Revealing the Mechanism behind the Catastrophic Failure of nâ€iâ€p Type Perovskite Solar Cells under Operating Conditions and How to Suppress It. Advanced Functional Materials, 2021, 31, 2103820.	7.8	22
297	Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter, 2021, 4, 2490-2507.	5.0	47
298	Beyond the Limit of Goldschmidt Tolerance Factor: Crystal Surface Engineering to Boost the αâ€Phase Stability of Formamidiniumâ€Only Hybrid Inorganic–Organic Perovskites. Solar Rrl, 2021, 5, 2100188.	3.1	8
299	Ion mobility independent large signal switching of perovskite devices. Applied Physics Letters, 2021, 119,	1.5	5
300	Probing the Origin of Light-Enhanced Ion Diffusion in Halide Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 33609-33617.	4.0	8
301	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75
302	Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.	10.2	44
303	Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy, 2021, 224, 1369-1395.	2.9	43
304	The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors. , 2022, , 55-79.		0
305	Material, Phase, and Interface Stability of Photovoltaic Perovskite: A Perspective. Journal of Physical Chemistry C, 2021, 125, 19088-19096.	1.5	7
306	Analysis of the Oxygen Passivation Effects on MAPbl ₃ and MAPbBr ₃ in Fresh and Aged Solar Cells by the Transient Photovoltage Technique. ChemPlusChem, 2021, 86, 1316-1321.	1.3	8
307	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
308	Robust, High-Performing Maize–Perovskite-Based Solar Cells with Improved Stability. ACS Applied Energy Materials, 2021, 4, 11194-11203.	2.5	11
309	Defects in CsPbX ₃ Perovskite: From Understanding to Effective Manipulation for Highâ€Performance Solar Cells. Small Methods, 2021, 5, e2100725.	4.6	37

#	Article	IF	CITATIONS
310	Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. ACS Applied Materials & (1), 10, 43505-43515.	4.0	17
311	Imaging Real-Time Amorphization of Hybrid Perovskite Solar Cells under Electrical Biasing. ACS Energy Letters, 2021, 6, 3530-3537.	8.8	12
312	Influence of charge transporting layers on ion migration and interfacial carrier recombination in CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2021, 784, 139094.	1.2	3
313	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. Advanced Energy Materials, 2021, 11, 2102281.	10.2	58
314	Highly efficient and stable perovskite solar cells enabled by a fluoro-functionalized TiO2 inorganic interlayer. Matter, 2021, 4, 3301-3312.	5.0	21
315	MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069.	1.9	27
316	Repair Strategies for Perovskite Solar Cells. Chemical Research in Chinese Universities, 2021, 37, 1055-1066.	1.3	3
317	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	8.2	28
318	Recent advances in carbon nanomaterial-optimized perovskite solar cells. Materials Today Energy, 2021, 21, 100769.	2.5	14
319	Photoinduced Dynamic Defects Responsible for the Giant, Reversible, and Bidirectional Light-Soaking Effect in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 9328-9335.	2.1	13
320	In Situ Management of Ions Migration to Control Hysteresis Effect for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2108417.	7.8	28
321	Profiling photo-induced degradation for operationally perovskite solar cells in space environment. Journal of Power Sources, 2021, 512, 230520.	4.0	1
322	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	2.5	5
323	High-throughput analysis of the ideality factor to evaluate the outdoor performance of perovskite solar minimodules. Nature Energy, 2021, 6, 54-62.	19.8	40
324	Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography. Journal of the American Chemical Society, 2021, 143, 1529-1538.	6.6	55
325	Progress in blade-coating method for perovskite solar cells toward commercialization. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	17
326	Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. Journal of Materials Chemistry A, 2021, 9, 12684-12689.	5.2	44
327	Cation optimization for <i>burn-in loss-free</i> perovskite solar devices. Journal of Materials Chemistry A, 2021, 9, 5374-5380.	5.2	6

ARTICLE IF CITATIONS # Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and 328 2.7 24 prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092. Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on 11.1 332 Interfacial Engineering. Advanced Materials, 2018, 30, e1800455. Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar 330 11.1 142 Cells. Advanced Materials, 2020, 32, e1906995. High Efficiency Perovskiteâ€Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite. Advanced Energy Materials, 2020, 10, 1903553. Efficient Slantwise Aligned Dionâ€"Jacobson Phase Perovskite Solar Cells Based on 332 5.2 33 Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098. Composite Encapsulation Enabled Superior Comprehensive Stability of Perovskite Solar Cells. ACS 4.0 Applied Materials & amp; Interfaces, 2020, 12, 27277-27285. Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer. Communications 334 2.9 91 Materials, 2020, 1, . Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, . 2.2 336 Perovskite solar cell performance assessment. JPhys Energy, 2020, 2, 044002. 2.3 12 Perovskite solar cells from lab to fab: the main challenges to access the market. Oxford Open Materials Science, 2020, 1, . Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite 338 3 0.2 solar cells. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 158801. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society 339 18.7 Reviews, 2021, 50, 12915-12984. Host-guest complexation in hybrid perovskite optoelectronics. JPhys Materials, 2021, 4, 042011. 340 1.8 8 Presence of Maximal Characteristic Time in Photoluminescence Blinking of MAPbl₃ 341 10.2 Perovskite. Advanced Energy Materials, 2021, 11, 2102449. Halide Ion Migration and its Role at the Interfaces in Perovskite Solar Cells. European Journal of 342 1.0 8 Inorganic Chemistry, 2021, 2021, 4781-4789. A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064. 343 19 Recent advances in photo-stability of lead halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 346 0.2 4 157102. From the lab to roof top applications: outdoor performance, temperature behavior and energy yield 347 of perovskite solar cells. , 2020, , .

#	Article	IF	CITATIONS
348	Peculiarities of perovskite photovoltaics degradation and how to account for them in stability studies. , 2020, , .		2
349	Are Defects in Lead-Halide Perovskites Healed, Tolerated, or Both?. ACS Energy Letters, 2021, 6, 4108-4114.	8.8	31
350	Perovskite Quantum Dots for Photovoltaic Applications. Springer Series in Materials Science, 2020, , 243-254.	0.4	1
351	The Impact of Detection Volume on Hybrid Halide Perovskite-Based Radiation Detectors. , 0, , .		0
352	Optimization of a SnO ₂ -Based Electron Transport Layer Using Zirconium Acetylacetonate for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 54579-54588.	4.0	11
354	Interface charge accumulation dynamics in 3D and quasi-2D perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 014004.	1.3	1
357	Light-induced performance increase of carbon-based perovskite solar module for 20-year stability. Cell Reports Physical Science, 2021, 2, 100648.	2.8	25
358	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	3.1	8
359	Recent Advances and Perspectives of Photostability for Halide Perovskite Solar Cells. Advanced Optical Materials, 2022, 10, 2101822.	3.6	41
360	Exploring the Ruddlesden–Popper layered organic–inorganic hybrid semiconducting perovskite for visible-blind ultraviolet photodetection. CrystEngComm, 2022, 24, 2258-2263.	1.3	2
361	Electronic Doping Strategy in Perovskite Solar Cells. , 2021, , 1-56.		1
362	Encapsulation and Outdoor Testing of Perovskite Solar Cells: Comparing Industrially Relevant Process with a Simplified Lab Procedure. ACS Applied Materials & Interfaces, 2022, 14, 5159-5167.	4.0	43
363	Toward stable lead halide perovskite solar cells: A knob on the A/X sites components. IScience, 2022, 25, 103599.	1.9	13
364	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbI ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	11.1	71
365	Ion-driven nanograin formation in early-stage degradation of tri-cation perovskite films. Nanoscale, 2022, 14, 2605-2616.	2.8	6
366	Non-selective adsorption of organic cations enables conformal surface capping of perovskite grains for stabilized photovoltaic operation. Cell Reports Physical Science, 2022, 3, 100760.	2.8	4
367	Postâ€Treatment Passivation by Quaternary Ammonium Chloride Zwitterion for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
368	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	11.5	44

#	Article	IF	CITATIONS
369	Evidence for polarization-induced phase transformations and degradation in CH ₃ NH ₃ PbI ₃ . SSRN Electronic Journal, 0, , .	0.4	0
370	Realization of Ultra-Flat Perovskite Films with Surprisingly Large-Grain Distribution Using High-Pressure Cooking. SSRN Electronic Journal, 0, , .	0.4	0
371	Method for studying the photostability of solar cells based on organic-inorganic perovskites using a confocal spectrometer. Journal of the Belarusian State University Physics, 2022, , 88-97.	0.1	0
372	Negative capacitance and hysteresis in encapsulated MAPbI3 and lead–tin (Pb–Sn) perovskite solar cells. Journal of Materials Research, 2022, 37, 1357-1372.	1.2	4
373	Stability-limiting heterointerfaces of perovskite photovoltaics. Nature, 2022, 605, 268-273.	13.7	229
374	Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber. , 2022, 165, 207207.		3
375	Ligand engineering of perovskite quantum dots for efficient and stable solar cells. Journal of Energy Chemistry, 2022, 69, 626-648.	7.1	16
376	Improving thermal stability of perovskite solar cell through interface modification by PbS quantum dots. , 2021, , .		0
377	Reduced Barrier for Ion Migration in Mixed-Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 13431-13437.	2.5	16
378	Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials, 2021, 4, 13696-13705.	2.5	24
379	Surface fluoride management for enhanced stability and efficiency of halide perovskite solar cells <i>via</i> a thermal evaporation method. Journal of Materials Chemistry A, 2022, 10, 12882-12889.	5.2	5
380	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
381	Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6, 1032-1048.	11.7	72
382	Round-Robin Inter-Comparison of Maximum Power Measurement for Metastable Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2022, 11, 055008.	0.9	1
383	Pulsatile therapy for perovskite solar cells. Joule, 2022, 6, 1087-1102.	11.7	12
384	Realization of ultra-flat perovskite films with surprisingly large-grain distribution using high-pressure cooking. Chemical Engineering Journal, 2022, 445, 136803.	6.6	8
385	Degradation and Self-Healing in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 24073-24088.	4.0	20
386	Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 2022, 44, 101503.	6.2	41

#	Article	IF	CITATIONS
387	The degradation and recovery behavior of mixed-cation perovskite solar cells in moisture and a gas mixture environment. Journal of Materials Chemistry A, 2022, 10, 13519-13526.	5.2	10
388	Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100905.	2.8	17
389	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
390	Accurate Adjusting the Lattice Strain of Triple-Cation and Mixed-Halide Perovskites for High-Performance Photodetector. ACS Applied Materials & Interfaces, 2022, 14, 28154-28162.	4.0	16
391	Thermally-induced drift of A-site cations at solid–solid interface in physically paired lead halide perovskites. Scientific Reports, 2022, 12, .	1.6	2
393	Single-step-fabricated perovskite quantum dot photovoltaic absorbers enabled by surface ligand manipulation. Chemical Engineering Journal, 2022, 448, 137672.	6.6	10
394	Recent Progress in Mixed Aâ€Site Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	47
395	Transient Analysis of Ion-Migration Current for Degradation Diagnostics of Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2022, 12, 1170-1174.	1.5	4
396	Molecular design for perovskite solar cells. International Journal of Energy Research, 2022, 46, 14740-14765.	2.2	3
397	Hole Trapping in Halide Perovskites Induces Phase Segregation. Accounts of Materials Research, 2022, 3, 761-771.	5.9	38
398	Hotâ€Castingâ€Assisted Liquid Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	21
399	Aerosol-Prepared Microcrystals as Amplifiers to Learn about the Facet and Point Defect-Dependent Lability and Stabilization of Hybrid Perovskite Semiconductors against Humidity and Light. Crystal Growth and Design, 0, , .	1.4	1
400	Atomistic Mechanism of Surface-Defect Passivation: Toward Stable and Efficient Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6686-6693.	2.1	12
401	Visualization of Ion Migration in an Inorganic Mixed Halide Perovskite by One-Photon and Multiphoton Absorption: Effect of Guanidinium A-Site Cation Incorporation. Journal of Physical Chemistry Letters, 2022, 13, 6944-6955.	2.1	2
402	Photoprotection in metal halide perovskites by ionic defect formation. Joule, 2022, 6, 2152-2174.	11.7	16
403	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	4.0	34
404	The effect of multiple ion substitutions on halide ion migration in perovskite solar cells. Materials Advances, 2022, 3, 7918-7924.	2.6	9
405	Defect-Polaron and Enormous Light-Induced Fermi-Level Shift at Halide Perovskite Surface. Journal of Physical Chemistry Letters, 2022, 13, 6711-6720.	2.1	8

#	Article	IF	CITATIONS
406	Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy, 2022, 244, 516-535.	2.9	76
407	High-throughput screening of perovskite inspired bismuth halide materials: toward lead-free photovoltaic cells and light-emitting diodes. Nanotechnology, 2022, 33, 485706.	1.3	3
408	A roadmap for the commercialization of perovskite light emitters. Nature Reviews Materials, 2022, 7, 757-777.	23.3	96
409	Intensity modulated photocurrent spectroscopy to investigate hidden kinetics at hybrid perovskite–electrolyte interface. Scientific Reports, 2022, 12, .	1.6	4
410	Inverted Hysteresis in n–i–p and p–i–n Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	13
411	Photoelectron spectroscopic studies on metal halide perovskite materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	1
412	Emerging Metal-Halide Perovskite Materials for Enhanced Solar Cells and Light-Emitting Applications. Engineering Materials, 2022, , 45-85.	0.3	1
413	Encapsulation against Extrinsic Degradation Factors and Stability Testing of Perovskite Solar Cells. , $0,,$		0
414	Recent Advances in the Combined Elevated Temperature, Humidity, and Light Stability of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	12
415	Lead Halide Perovskite Quantum Dots for Photovoltaics and Photocatalysis: A Review. ACS Applied Nano Materials, 2022, 5, 14092-14132.	2.4	18
416	Temperature-Dependent Carrier Extraction and the Effects of Excitons on Emission and Photovoltaic Performance in Cs _{0.05} FA _{0.79} MA _{0.16} Pb(I _{0.83} Br _{0.17}) _{3< Solar Cells, ACS Applied Materials & amp; Interfaces, 2022, 14, 44358-44366.}	4.0 /sub>	5
417	Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. ACS Energy Letters, 2022, 7, 3401-3414.	8.8	46
418	Electrochemical Preparation of Novel Perovskite Solar Cells. E3S Web of Conferences, 2022, 358, 02051.	0.2	0
419	Probing charge carrier dynamics in metal halide perovskite solar cells. EcoMat, 2023, 5, .	6.8	8
420	Manipulating the Migration of Iodine Ions via Reverseâ€Biasing for Boosting Photovoltaic Performance of Perovskite Solar Cells. Advanced Science, 2022, 9, .	5.6	13
421	Boosting Perovskite Solar Cells Efficiency and Stability: Interfacial Passivation of Crosslinked Fullerene Eliminates the "Burnâ€inâ€iDecay. Advanced Materials, 2023, 35,	11.1	18
422	Defect formation and healing at grain boundaries in lead-halide perovskites. Journal of Materials Chemistry A, 2022, 10, 24854-24865.	5.2	12
423	Lateral ion migration accelerates degradation in halide perovskite devices. Energy and Environmental Science, 2022, 15, 5324-5339.	15.6	19

#	Article	IF	CITATIONS
424	Negligible Ion Migration in Tinâ€Based and Tinâ€Doped Perovskites. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
425	Dimethylammonium Cation-Induced 1D/3D Heterostructure for Efficient and Stable Perovskite Solar Cells. Molecules, 2022, 27, 7566.	1.7	1
426	Negligible Ion Migration in Tinâ \in Based and Tinâ \in Doped Perovskites. Angewandte Chemie, 2023, 135, .	1.6	6
427	Near-Ultraviolet Indoor Black Light-Harvesting Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 14669-14679.	2.5	6
428	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	8.2	9
429	Supramolecular control in hybrid perovskite photovoltaics. Photochemistry, 2022, , 346-370.	0.2	0
430	Factors Limiting the Operational Stability of Tin–Lead Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 259-273.	8.8	12
431	Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 1348-1357.	4.0	3
432	Hole-Transporting Self-Assembled Monolayer Enables Efficient Single-Crystal Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters, 2023, 8, 950-956.	8.8	24
433	Light-Induced Phase Segregation Evolution of All-Inorganic Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2023, 14, 267-272.	2.1	5
434	Study of bias-induced degradation mechanism in perovskite CH3NH3PbI3-xClx solar cells by electroluminescence spectroscopy. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	0
435	Perovskite Solar Cells in the Shadow: Understanding the Mechanism of Reverseâ€Bias Behavior toward Suppressed Reverseâ€Bias Breakdown and Reverseâ€Bias Induced Degradation. Advanced Energy Materials, 2023, 13, .	10.2	13
436	Metal Halide Perovskite Surfaces with Mixed Aâ€6ite Cations: Atomic Structure and Device Stability. Advanced Functional Materials, 2023, 33, .	7.8	6
437	Radiation-Tolerant Proton Detector Based on the MAPbBr ₃ Single Crystal. ACS Applied Electronic Materials, 2023, 5, 381-387.	2.0	1
438	Recycling of halide perovskites. , 2023, , 385-446.		0
439	Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nature Communications, 2023, 14, .	5.8	56
440	Thermal degradation of the bulk and interfacial traps at 85 °C in perovskite photovoltaics. Nanoscale, 2023, 15, 4334-4343.	2.8	5
441	Avoiding Ionic Interference in Computing the Ideality Factor for Perovskite Solar Cells and an Analytical Theory of Their Impedance-Spectroscopy Response. Physical Review Applied, 2023, 19, .	1.5	10

#	Article	IF	CITATIONS
442	Slot-die coating fabrication of perovskite solar cells toward commercialization. Journal of Alloys and Compounds, 2023, 942, 169104.	2.8	7
443	Roadmap on commercialization of metal halide perovskite photovoltaics. JPhys Materials, 2023, 6, 032501.	1.8	16
444	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	2.6	1
445	Insight into structure defects in high-performance perovskite solar cells. Journal of Power Sources, 2023, 570, 233011.	4.0	4
446	Inhibited Crack Development by Compressive Strain in Perovskite Solar Cells with Improved Mechanical Stability. Advanced Materials, 2023, 35, .	11.1	18
447	Allâ€Inorganic Perovskiteâ€Based Monolithic Perovskite/Organic Tandem Solar Cells with 23.21% Efficiency by Dualâ€Interface Engineering. Advanced Energy Materials, 2023, 13, .	10.2	21
448	Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science, 2023, 379, 690-694.	6.0	147
449	Perovskite-Sensitized Upconversion under Operando Conditions. Journal of Physical Chemistry C, 2023, 127, 4773-4783.	1.5	5
450	Review of the role of ionic liquids in two-dimensional materials. Frontiers of Physics, 2023, 18, .	2.4	1
451	Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives. Energies, 2023, 16, 2608.	1.6	0
452	Simultaneous Interface Amelioration and Energy Level Modulation Using <i>In Situ</i> Polymerized Molecules for Efficient and Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2023, 11, 4860-4870.	3.2	1
453	Stable Tin-Based Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 1896-1899.	8.8	23
454	Highly stable CsFAPbIBr perovskite solar cells with dominant bulk recombination at real operating temperatures. Sustainable Energy and Fuels, 0, , .	2.5	0
455	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	5.8	15
456	Pyrrolidinium induced templated growth of 1D-3D halide perovskite heterostructure for solar cell applications. Materials Chemistry and Physics, 2023, 303, 127668.	2.0	3
457	Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule, 2023, 7, 1033-1050.	11.7	13
478	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21
479	Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Communications Materials, 2023, 4, .	2.9	9

#	Article	IF	CITATIONS
484	Secondary ion mass spectrometry study of organic and inorganic interfaces in methylammonium lead triiodide solar cells. , 2023, , .		0
485	The rise of quasi-2D Dion–Jacobson perovskites for photovoltaics. Nanoscale Horizons, 2023, 8, 1628-1651.	4.1	1
512	The way to predict outdoor lifetime. Nature Energy, 0, , .	19.8	0