All-wood, low tortuosity, aqueous, biodegradable super capacitance

Energy and Environmental Science 10, 538-545 DOI: 10.1039/c6ee03716j

Citation Report

#	Article	IF	CITATIONS
1	Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors. ACS Applied Materials & amp; Interfaces, 2017, 9, 15470-15476.	8.0	11
2	A Metalâ€Free and Biotically Degradable Battery for Portable Singleâ€Use Applications. Advanced Energy Materials, 2017, 7, 1700275.	19.5	64
3	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	16.0	117
4	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	14.6	151
5	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	19.5	210
6	Porous carbon derived from Ailanthus altissima with unique honeycomb-like microstructure for high-performance supercapacitors. New Journal of Chemistry, 2017, 41, 4281-4285.	2.8	37
7	An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 13976-13982.	10.3	53
8	Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Materials, 2017, 8, 161-168.	18.0	408
9	Poly(p-phenylene)-based membrane materials with excellent cell efficiencies and durability for use in vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 12285-12296.	10.3	41
10	High Performance, Flexible, Solid‣tate Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. Advanced Energy Materials, 2017, 7, 1700739.	19.5	202
11	Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity. Electrochimica Acta, 2017, 246, 226-233.	5.2	27
12	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	21.0	584
13	Selfâ€Assembly Approach for Synthesis of Nanotubular Molybdenum Trioxide/Titania Composite Anode for Lithiumâ€ion Batteries. Energy Technology, 2017, 5, 2015-2025.	3.8	20
14	Phase control of TiO 2 nanobelts by microwave irradiation as anode materials with tunable Li-diffusion kinetics. Materials Research Bulletin, 2017, 96, 365-371.	5.2	14
15	Ternary Ni oâ€F Nanocrystalâ€Based Supercapacitors. Chemistry - A European Journal, 2017, 23, 6896-6904.	3.3	36
16	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	10.3	158
17	<i>In situ</i> encapsulated Fe ₃ O ₄ nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 24594-24601.	10.3	105
18	Tremella derived ultrahigh specific surface area activated carbon for high performance supercapacitor. Materials Chemistry and Physics, 2017, 201, 399-407.	4.0	61

#	Article	IF	CITATIONS
19	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie, 2017, 129, 13978-13982.	2.0	8
20	Mass Production and Pore Size Control of Holey Carbon Microcages. Angewandte Chemie - International Edition, 2017, 56, 13790-13794.	13.8	39
21	Evaluation of Redox Chemistries for Single-Use Biodegradable Capillary Flow Batteries. Journal of the Electrochemical Society, 2017, 164, A2448-A2456.	2.9	19
22	Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A, 2017, 5, 17705-17733.	10.3	464
23	A conductive wood membrane anode improves effluent quality of microbial fuel cells. Environmental Science: Water Research and Technology, 2017, 3, 940-946.	2.4	19
24	Wood-based straightway channel structure for high performance microwave absorption. Carbon, 2017, 124, 492-498.	10.3	178
25	A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19036-19045.	10.3	18
26	Natural sliced wood veneer as a universal porous lightweight substrate for supercapacitor electrode materials. RSC Advances, 2017, 7, 54806-54812.	3.6	35
27	Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule, 2017, 1, 588-599.	24.0	363
28	Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage. Nano Letters, 2017, 17, 7897-7907.	9.1	46
28 29	Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage. Nano Letters, 2017, 17, 7897-7907. Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i> . Journal of Materials Chemistry A, 2017, 5, 25282-25292.	9.1 10.3	46 85
	Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and		
29	Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i> . Journal of Materials Chemistry A, 2017, 5, 25282-25292. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy.	10.3	85
29 30	 Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i>. Journal of Materials Chemistry A, 2017, 5, 25282-25292. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. Journal of Power Sources, 2017, 372, 260-269. Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene 	10.3 7.8	85 59
29 30 31	 Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i>. Journal of Materials Chemistry A, 2017, 5, 25282-25292. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. Journal of Power Sources, 2017, 372, 260-269. Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density 	10.3 7.8 10.3	85 59 40
29 30 31 32	 Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i>. Journal of Materials Chemistry A, 2017, 5, 25282-25292. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. Journal of Power Sources, 2017, 372, 260-269. Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. Journal of Power Sources, 2017, 371, 148-155. 	10.3 7.8 10.3 7.8	85 59 40 104
29 30 31 32 33	 Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i>, Journal of Materials Chemistry A, 2017, 5, 25282-25292. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy. Journal of Power Sources, 2017, 372, 260-269. Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes. Journal of Materials Chemistry A, 2017, 5, 23887-23897. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors. Journal of Power Sources, 2017, 371, 148-155. Superflexible Wood. ACS Applied Materials & amp; Interfaces, 2017, 9, 23520-23527. Layered double hydroxides toward high-performance supercapacitors. Journal of Materials Chemistry 	10.3 7.8 10.3 7.8 8.0	 85 59 40 104 141

#	Article	IF	CITATIONS
37	Simple Synthesis of N-Doped Interconnected Porous Carbon from Chinese Tofu for High-Performance Supercapacitor and Lithium-Ion Battery Applications. Journal of the Electrochemical Society, 2017, 164, A3832-A3839.	2.9	22
38	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	31.8	182
39	Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 2018, 30, e1704285.	21.0	341
40	Boosting the electrochemical capacitive properties of polypyrrole using carboxylated graphene oxide as a new dopant. Journal of Materials Science: Materials in Electronics, 2018, 29, 7893-7903.	2.2	9
41	Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. CheM, 2018, 4, 544-554.	11.7	246
42	Novel egg white gel polymer electrolyte and a green solid-state supercapacitor derived from the egg and rice waste. Electrochimica Acta, 2018, 274, 316-325.	5.2	55
43	Structural engineering of N/S co-doped carbon material as high-performance electrode for supercapacitors. Electrochimica Acta, 2018, 274, 389-399.	5.2	46
44	Woodâ€inspired Highâ€Performance Ultrathick Bulk Battery Electrodes. Advanced Materials, 2018, 30, e1706745.	21.0	205
45	3D Printing Quasiâ€5olidâ€5tate Asymmetric Microâ€6upercapacitors with Ultrahigh Areal Energy Density. Advanced Energy Materials, 2018, 8, 1800408.	19.5	268
46	Flexural deformation and fracture behaviors of bamboo with gradient hierarchical fibrous structure and water content. Composites Science and Technology, 2018, 157, 126-133.	7.8	61
47	Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Applied Materials & Interfaces, 2018, 10, 5030-5037.	8.0	191
48	Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3367-3375.	10.3	28
49	Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly(3,4â€Ethylenedioxythiophene):Poly(Styrene Sulfonate) Electrodes. ChemSusChem, 2018, 11, 854-863.	6.8	115
50	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon, 2018, 130, 532-543.	10.3	164
51	Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance. Energy and Environmental Science, 2018, 11, 559-565.	30.8	119
52	Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. Journal of Power Sources, 2018, 377, 151-160.	7.8	152
53	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	14.6	364
54	Biomass-derived carbon materials with structural diversities and their applications in energy storage. Science China Materials, 2018, 61, 133-158.	6.3	210

#	ARTICLE	IF	CITATIONS
55	Facile synthesis of high-surface-area nanoporous carbon from biomass resources and its application in supercapacitors. RSC Advances, 2018, 8, 1857-1865.	3.6	16
56	Transparent wood for functional and structural applications. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170182.	3.4	85
57	Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. Journal of Materials Research, 2018, 33, 1058-1073.	2.6	33
58	Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor. Journal of Power Sources, 2018, 378, 248-254.	7.8	349
59	Flexible Micro‣upercapacitors Based on Naturally Derived Juglone. ChemPlusChem, 2018, 83, 423-430.	2.8	7
60	α-MoO3- by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy, 2018, 49, 555-563.	16.0	133
61	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. ACS Nano, 2018, 12, 3140-3148.	14.6	439
62	Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. Journal of Materials Chemistry A, 2018, 6, 6587-6594.	10.3	54
63	Three-dimensional flower-like MoS2-CoSe2 heterostructure for high performance superccapacitors. Journal of Colloid and Interface Science, 2018, 512, 282-290.	9.4	35
64	Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode. Journal of Materials Science, 2018, 53, 4527-4539.	3.7	21
65	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	21.0	359
66	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	19.5	255
67	pH-responsive chitosan-based flocculant for precise dye flocculation control and the recycling of textile dyeing effluents. RSC Advances, 2018, 8, 39334-39340.	3.6	20
68	Greener transformation of lignin into ultralight multifunctional materials. Journal of Materials Chemistry A, 2018, 6, 20973-20981.	10.3	22
69	Woodâ€Derived Hierarchically Porous Electrodes for Highâ€Performance Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2018, 28, 1806207.	14.9	170
70	Scientific worth of polymer and graphene foam-based nanomaterials. Journal of the Chinese Advanced Materials Society, 2018, 6, 779-800.	0.7	5
71	High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation. International Journal of Energy Research, 2018, 42, 4830-4839.	4.5	49
72	Yeast-derived N-doped carbon microsphere/polyaniline composites as high performance pseudocapacitive electrodes. Electrochimica Acta, 2018, 291, 256-266.	5.2	56

#	Article	IF	CITATIONS
73	Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents. ACS Nano, 2018, 12, 10365-10373.	14.6	473
74	Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Accounts of Chemical Research, 2018, 51, 3154-3165.	15.6	251
75	Interfacial Solar Steam Generation Enables Fastâ€Responsive, Energyâ€Efficient, and Low ost Offâ€Grid Sterilization. Advanced Materials, 2018, 30, e1805159.	21.0	208
76	Ultramicroporous Carbons Puzzled by Graphene Quantum Dots: Integrated High Gravimetric, Volumetric, and Areal Capacitances for Supercapacitors. Advanced Functional Materials, 2018, 28, 1805898.	14.9	152
77	Mesostructured Carbon Nanotube-on-MnO ₂ Nanosheet Composite for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 38963-38969.	8.0	65
78	3Dâ€Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li O ₂ Batteries. Advanced Functional Materials, 2018, 28, 1805899.	14.9	135
79	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1802398.	19.5	163
80	Magnetic-responsive Fe3O4 nanoparticle-impregnated cellulose paper actuators. Extreme Mechanics Letters, 2018, 25, 53-59.	4.1	16
81	Enhancing the Capacitive Performance of Carbonized Wood by Growing FeOOH Nanosheets and Poly(3,4-ethylenedioxythiophene) Coating. ACS Applied Materials & Interfaces, 2018, 10, 32192-32200.	8.0	50
82	Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Advances, 2018, 8, 31296-31302.	3.6	62
83	New Chemistry for New Material: Highly Dense Mesoporous Carbon Electrode for Supercapacitors with High Areal Capacitance. ACS Applied Materials & amp; Interfaces, 2018, 10, 33162-33169.	8.0	32
84	Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 2018, 6, 18839-18846.	10.3	208
85	Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon, 2018, 140, 465-476.	10.3	120
86	Cytotoxicity and in Vitro Degradation Kinetics of Foundry-Compatible Semiconductor Nanomembranes and Electronic Microcomponents. ACS Nano, 2018, 12, 9721-9732.	14.6	18
87	Nitrogen- and sulfur-enriched porous carbon from waste watermelon seeds for high-energy, high-temperature green ultracapacitors. Journal of Materials Chemistry A, 2018, 6, 17751-17762.	10.3	45
88	All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor. Journal of Colloid and Interface Science, 2018, 528, 349-359.	9.4	70
89	Multilayerâ€Folded Graphene Ribbon Film with Ultrahigh Areal Capacitance and High Rate Performance for Compressible Supercapacitors. Advanced Functional Materials, 2018, 28, 1800597.	14.9	149
90	High Volumetric Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor under High Mass Loading Conditions. Advanced Materials Interfaces, 2018, 5, 1800472.	3.7	35

#	Article	IF	CITATIONS
91	The way to improve the energy density of supercapacitors: Progress and perspective. Science China Materials, 2018, 61, 1517-1526.	6.3	102
92	Direct growth of CuCo ₂ S ₄ nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale, 2018, 10, 14304-14313.	5.6	119
93	Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy, 2018, 159, 929-936.	8.8	90
94	Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors. Journal of Materials Science, 2018, 53, 12374-12387.	3.7	59
95	Wood Derived Composites for High Sensitivity and Wide Linearâ€Range Pressure Sensing. Small, 2018, 14, e1801520.	10.0	79
96	High energy density aqueous asymmetric supercapacitors based on MnO2@C branch dendrite nanoarchitectures. Electrochimica Acta, 2018, 283, 603-610.	5.2	18
97	Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density. ACS Applied Materials & Interfaces, 2018, 10, 28597-28607.	8.0	73
98	Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochimica Acta, 2018, 284, 336-345.	5.2	130
99	Distinctive Construction of Chitin-Derived Hierarchically Porous Carbon Microspheres/Polyaniline for High-Rate Supercapacitors. ACS Applied Materials & amp; Interfaces, 2018, 10, 28918-28927.	8.0	78
100	Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 11397-11407.	6.7	118
101	Synthesis of Honeycomb-Like Carbon Foam from Larch Sawdust as Efficient Absorbents for Oil Spills Cleanup and Recovery. Materials, 2018, 11, 1106.	2.9	24
102	Converting Corncob to Activated Porous Carbon for Supercapacitor Application. Nanomaterials, 2018, 8, 181.	4.1	57
103	A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core–sheath structured MnO2 nanoribbons and cotton-derived carbon cloth. Electrochimica Acta, 2018, 285, 262-271.	5.2	63
104	Wood-inspired multi-channel tubular graphene network for high-performance lithium-sulfur batteries. Carbon, 2018, 139, 522-530.	10.3	24
105	Optically Transparent Wood: Recent Progress, Opportunities, and Challenges. Advanced Optical Materials, 2018, 6, 1800059.	7.3	135
106	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	19.5	196
107	Efficient Capacitive Deionization Using Natural Basswood-Derived, Freestanding, Hierarchically Porous Carbon Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 31260-31270.	8.0	81
108	Hierarchical 3D Allâ€Carbon Composite Structure Modified with Nâ€Doped Graphene Quantum Dots for Highâ€Performance Flexible Supercapacitors. Small, 2018, 14, e1801498.	10.0	105

#	Article	IF	CITATIONS
109	Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors. Applied Surface Science, 2018, 462, 444-452.	6.1	30
110	Synthesis of MnO2 nanowires and their capacitive behavior in aqueous electrolytes containing magnesium ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 539-545.	4.7	10
111	Mussel Adhesive-Inspired Design of Superhydrophobic Nanofibrillated Cellulose Aerogels for Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2018, 6, 9047-9055.	6.7	125
112	From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	21.0	121
113	Carbon-coated Ni(OH)2-NiAl LDH hierarchical nanostructures on Ni foam as a high areal capacitance electrode for supercapacitor application. Materials Letters, 2018, 228, 179-182.	2.6	18
114	Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Materials, 2019, 17, 349-357.	18.0	58
115	Highly Stable Three-Dimensional Nickel–Cobalt Hydroxide Hierarchical Heterostructures Hybridized with Carbon Nanotubes for High-Performance Energy Storage Devices. ACS Nano, 2019, 13, 11235-11248.	14.6	67
116	Activated Carbon in the Third Dimension—3D Printing of a Tuned Porous Carbon. Advanced Science, 2019, 6, 1901340.	11.2	28
117	A Fiber-Aligned Thermal-Managed Wood-Based Superhydrophobic Aerogel for Efficient Oil Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16428-16439.	6.7	65
118	Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488.	10.3	74
119	Carbonized wood-supported hollow NiCo2S4 eccentric spheres for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2019, 811, 151858.	5.5	20
120	Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors. Carbon, 2019, 153, 707-716.	10.3	61
121	Structural Rigging of Lignin Precursors for Customized Porous and Grapheneâ€Like Carbons towards Enhanced Supercapacitive Performance in Aqueous and Nonâ€Aqueous Electrolytes. ChemElectroChem, 2019, 6, 3949-3958.	3.4	4
122	A high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheets. New Journal of Chemistry, 2019, 43, 12623-12629.	2.8	16
123	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	14.9	75
124	Biomassâ€Derived Carbon: A Valueâ€Added Journey Towards Constructing Highâ€Energy Supercapacitors in an Asymmetric Fashion. ChemSusChem, 2019, 12, 4353-4382.	6.8	51
125	Nickel/woodceramics assembled with lignin-based carbon nanosheets and multilayer graphene as supercapacitor electrode. Journal of Alloys and Compounds, 2019, 805, 327-337.	5.5	20
126	<i>Cladophora</i> Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Accounts of Chemical Research, 2019, 52, 2232-2243.	15.6	76

#	Article	IF	CITATIONS
127	Atomistic Insights into the Layered Microstructure and Time-Dependent Stability of [BMIM][PF ₆] Confined within the Meso-Slit of Carbon. Journal of Physical Chemistry B, 2019, 123, 6857-6869.	2.6	12
128	Diffusion-determined assembly of all-climate supercapacitors <i>via</i> bioinspired aligned gels. Journal of Materials Chemistry A, 2019, 7, 19753-19760.	10.3	25
129	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie - International Edition, 2019, 58, 14152-14156.	13.8	19
130	Ultrafast, Controllable Synthesis of Sub-Nano Metallic Clusters through Defect Engineering. ACS Applied Materials & Interfaces, 2019, 11, 29773-29779.	8.0	28
131	MnO2@Corncob Carbon Composite Electrode and All-Solid-State Supercapacitor with Improved Electrochemical Performance. Materials, 2019, 12, 2379.	2.9	16
132	Versatile Nâ€Doped MXene Ink for Printed Electrochemical Energy Storage Application. Advanced Energy Materials, 2019, 9, 1901839.	19.5	301
133	Bioinspired Unidirectional Silk Fibroin–Silver Compound Nanowire Composite Scaffold via Interfaceâ€Mediated In Situ Synthesis. Angewandte Chemie, 2019, 131, 14290-14294.	2.0	7
134	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	4.3	38
135	Synthesis of Metal Oxide Nanoparticles by Rapid, Highâ€Temperature 3D Microwave Heating. Advanced Functional Materials, 2019, 29, 1904282.	14.9	65
136	Biomaterials for Highâ€Energy Lithiumâ€Based Batteries: Strategies, Challenges, and Perspectives. Advanced Energy Materials, 2019, 9, 1901774.	19.5	73
137	Thermally Durable Lithiumâ€lon Capacitors with High Energy Density from All Hydroxyapatite Nanowireâ€Enabled Fireâ€Resistant Electrodes and Separators. Advanced Energy Materials, 2019, 9, 1902497.	19.5	34
138	Seaweed biomass waste-derived carbon as an electrode material for supercapacitor. Energy and Environment, 2021, 32, 1117-1129.	4.6	11
139	Efficient H2O2 generation and electro-Fenton degradation of pollutants in microchannels of oxidized monolithic-porous-carbon cathode. Water Science and Technology, 2019, 80, 970-978.	2.5	8
140	Scalable Top-to-Bottom Design on Low Tortuosity of Anisotropic Carbon Aerogels for Fast and Reusable Passive Capillary Absorption and Separation of Organic Leakages. ACS Applied Materials & Interfaces, 2019, 11, 47846-47857.	8.0	38
141	N, S co-doped porous carbons from natural Juncus effuses for high performance supercapacitors. Diamond and Related Materials, 2019, 100, 107577.	3.9	34
142	Rendering Wood Veneers Flexible and Electrically Conductive through Delignification and Electroless Ni Plating. Materials, 2019, 12, 3198.	2.9	2
143	Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. Journal of Power Sources, 2019, 438, 227030.	7.8	50
144	A Highly Conductive Cationic Wood Membrane. Advanced Functional Materials, 2019, 29, 1902772.	14.9	79

#	ARTICLE	IF	CITATIONS
145	Breakthroughs in Designing Commercial-Level Mass-Loading Graphene Electrodes for Electrochemical Double-Layer Capacitors. Matter, 2019, 1, 596-620.	10.0	79
146	Poly(Ionic Liquid)-Derived Graphitic Nanoporous Carbon Membrane Enables Superior Supercapacitive Energy Storage. ACS Nano, 2019, 13, 10261-10271.	14.6	46
147	Binary tungsten-molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor. Electrochimica Acta, 2019, 322, 134759.	5.2	27
148	Yolk-shell Fe3O4 nanoparticles loaded on persimmon-derived porous carbon for supercapacitor assembly and As (V) removal. Journal of Alloys and Compounds, 2019, 810, 151887.	5.5	7
149	Beyond lotus: Plasma nanostructuring enables efficient energy and water conversion and use. Nano Energy, 2019, 66, 104125.	16.0	34
150	Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydrate Polymers, 2019, 226, 115286.	10.2	98
151	Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2019, 7, 4217-4229.	10.3	107
152	Facile one-pot synthesis of 2D vanadium-doped NiCl(OH) nanoplates assembled by 3D nanosheet arrays on Ni foam for supercapacitor application. Applied Surface Science, 2019, 478, 75-86.	6.1	12
153	Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. Journal of Materials Chemistry A, 2019, 7, 2981-2992.	10.3	90
154	Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802964.	19.5	121
155	One-step synthesis of nitrogen-doped wood derived carbons as advanced electrodes for supercapacitor applications. New Journal of Chemistry, 2019, 43, 3649-3652.	2.8	24
156	Porous Wood Monoliths Decorated with Platinum Nano-Urchins as Catalysts for Underwater Micro-Vehicle Propulsion via H ₂ O ₂ Decomposition. ACS Applied Nano Materials, 2019, 2, 4143-4149.	5.0	5
157	Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors. Nano Energy, 2019, 63, 103836.	16.0	178
158	Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A, 2019, 7, 16028-16045.	10.3	694
159	Ultrafast Laser Pulses Enable One‣tep Graphene Patterning on Woods and Leaves for Green Electronics. Advanced Functional Materials, 2019, 29, 1902771.	14.9	138
160	Dissolution–Crystallization Transition within a Polymer Hydrogel for a Processable Ultratough Electrolyte. Advanced Materials, 2019, 31, e1900248.	21.0	88
161	Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor. Nano-Micro Letters, 2019, 11, 46.	27.0	62
162	Woodâ€Đerived Materials for Advanced Electrochemical Energy Storage Devices. Advanced Functional Materials, 2019, 29, 1902255.	14.9	157

#	Article	IF	CITATIONS
163	Preparation of chrome-tanned leather shaving-based hierarchical porous carbon and its capacitance properties. RSC Advances, 2019, 9, 18333-18343.	3.6	15
164	High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochimica Acta, 2019, 314, 81-88.	5.2	44
165	Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon, 2019, 150, 311-318.	10.3	112
166	A Crosslinked Soybean Protein Isolate Gel Polymer Electrolyte Based on Neutral Aqueous Electrolyte for a High-Energy-Density Supercapacitor. Polymers, 2019, 11, 863.	4.5	26
167	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	8.0	33
168	Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors. Electrochimica Acta, 2019, 312, 1-10.	5.2	57
169	Mold-casting prepared free-standing activated carbon electrodes for capacitive deionization. Carbon, 2019, 149, 627-636.	10.3	32
170	Rational Design of Highly Conductive Nitrogenâ€Doped Hollow Carbon Microtubes Derived from Willow Catkin for Supercapacitor Applications. ChemElectroChem, 2019, 6, 2064-2073.	3.4	11
171	Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. Journal of Colloid and Interface Science, 2019, 545, 25-34.	9.4	30
172	Nitrogen-containing porous carbon/α-MnO2 nanowires composite electrode towards supercapacitor applications. Journal of Alloys and Compounds, 2019, 789, 910-918.	5.5	22
173	A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors. Nano Research, 2019, 12, 1061-1069.	10.4	62
174	High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps. Journal of Power Sources, 2019, 424, 1-7.	7.8	84
175	Nitrogenâ€Doped Hollow Carbonized Cotton Fully Covered with Trumpetâ€Like Nanocarbons for Highâ€Performance Supercapacitors. ChemElectroChem, 2019, 6, 1926-1929.	3.4	8
176	Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose, 2019, 26, 4495-4513.	4.9	75
177	Biomass-Derived Porous Carbon Materials for Supercapacitor. Frontiers in Chemistry, 2019, 7, 274.	3.6	162
178	Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon, 2019, 149, 105-116.	10.3	241
179	Block copolymers for supercapacitors, dielectric capacitors and batteries. Journal of Physics Condensed Matter, 2019, 31, 233001.	1.8	27
180	Controllable synthesis of aluminum doped peony-like α-Ni(OH) ₂ with ultrahigh rate capability for asymmetric supercapacitors. RSC Advances, 2019, 9, 10237-10244.	3.6	7

#	ARTICLE Carbon Fibers Encapsulated with Nano-Copper: A Core‒Shell Structured Composite for Antibacterial	IF 4.1	CITATIONS
181	and Electromagnetic Interference Shielding Applications. Nanomaterials, 2019, 9, 460. Polyhydroxyalkanoateâ€Modified Bacterium Regulates Biomass Structure and Promotes Synthesis of Carbon Materials for Highâ€Performance Supercapacitors. ChemSusChem, 2019, 12, 1732-1742.	6.8	22
183	Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nature Communications, 2019, 10, 675.	12.8	213
184	Engineering 3D Ion Transport Channels for Flexible MXene Films with Superior Capacitive Performance. Advanced Functional Materials, 2019, 29, 1900326.	14.9	214
185	Challenges and Opportunities for Solar Evaporation. Joule, 2019, 3, 683-718.	24.0	850
186	A Directional Strain Sensor Based on Anisotropic Microhoneycomb Cellulose Nanofiberâ€Carbon Nanotube Hybrid Aerogels Prepared by Unidirectional Freeze Drying. Small, 2019, 15, e1805363.	10.0	73
187	Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chemical Engineering Journal, 2019, 366, 62-71.	12.7	84
188	Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers, 2019, 3, 2543-2570.	5.9	130
189	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	10.3	68
190	2.5 V salt-in-water supercapacitors based on alkali type double salt/carbon composite anode. Journal of Materials Chemistry A, 2019, 7, 26011-26019.	10.3	16
191	Bioinspired networks consisting of spongy carbon wrapped by graphene sheath for flexible transparent supercapacitors. Communications Chemistry, 2019, 2, .	4.5	20
192	Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10, 5147.	12.8	335
193	Fabrication of 3D Expanded Graphite-Based (MnO2ÂNanowalls and PANI Nanofibers) Hybrid as Bifunctional Material for High-Performance Supercapacitor and Sensor. Journal of the Electrochemical Society, 2019, 166, A3965-A3971.	2.9	62
194	Multimodal porous and nitrogen-functionalized electrode based on graphite felt modified with carbonized porous polymer skin layer for all-vanadium redox flow battery. Materials Today Energy, 2019, 11, 159-165.	4.7	25
195	Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Advanced Materials, 2019, 31, e1804204.	21.0	69
196	Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials, 2019, 31, e1804826.	21.0	181
197	A Ternary Pt/Au/TiO ₂ â€Decorated Plasmonic Wood Carbon for Highâ€Efficiency Interfacial Solar Steam Generation and Photodegradation of Tetracycline. ChemSusChem, 2019, 12, 467-472.	6.8	88
198	Towards best practices for improving paper-based microfluidic fuel cells. Electrochimica Acta, 2019, 298, 389-399.	5.2	69

ARTICLE IF CITATIONS Rational Design of Hierarchically Openâ€Porous Spherical Hybrid Architectures for Lithiumâ€Ion 199 19.5 48 Batteries. Advanced Energy Materials, 2019, 9, 1802816. Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Applied Materials & amp; 8.0 Potassium gluconate-derived N/S Co-doped carbon nanosheets as superior electrode materials for 201 7.8 87 supercapacitors and sodium-ion batteries. Journal of Power Sources, 2019, 414, 308-316. All-Wood Composite Material by Partial Fiber Surface Dissolution with an Ionic Liquid. ACS 39 Sustainable Chemistry and Engineering, 2019, 7, 3195-3202. Efficient 3D Printed Pseudocapacitive Electrodes with Ultrahigh MnO2 Loading. Joule, 2019, 3, 459-470. 203 24.0 352 Review on Nanoarchitectured Current Collectors for Pseudocapacitors. Small Methods, 2019, 3, 204 8.6 1800341. Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur 205 6.7 71 Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3042-3051. Graphene oxide incorporated polypyrrole composite materials: optimizing the electropolymerization conditions for improved supercapacitive properties. Journal of Materials Science: Materials in 206 Electronics, 2019, 30, 1109-1116. Enabling high-areal-capacity all-solid-state lithium-metal batteries by tri-layer electrolyte 207 18.0 74 architectures. Energy Storage Materials, 2020, 24, 714-718. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO 208 nanoparticle/CuS micro-sphere. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 49 2020, 584, 124025. A strong, flame-retardant, and thermally insulating wood laminate. Chemical Engineering Journal, 209 12.7 69 2020, 383, 123109. Natural multi-channeled wood frameworks for electrocatalytic hydrogen evolution. Electrochimica 5.2 Acta, 2020, 330, 135274. Construction of a Microchannel Electrochemical Reactor with a Monolithic Porous-Carbon Cathode for Adsorption and Degradation of Organic Pollutants in Several Minutes of Retention Time. 211 10.0 30 Environmental Science & amp; Technology, 2020, 54, 1920-1928. Hierarchical Nanostructured Electrocatalysts for Oxygen Reduction Reaction. Journal of Nanoscience and Nanotechnology, 2020, 20, 1085-1097. Boosting gravimetric and volumetric energy density via engineering macroporous MXene films for 213 12.7 77 supercapacitors. Chemical Engineering Journal, 2020, 395, 124057. Ultra-thick electrodes based on activated wood-carbon towards high-performance quasi-solid-state 214 supercapacitors. Physical Chemistry Chemical Physics, 2020, 22, 2073-2080. Spraying carbon powder derived from mango wood biomass as high-performance anode in 215 9.6 37 bio-electrochemical system. Bioresource Technology, 2020, 300, 122623. Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy 5.2 storage performance in lithium-ion battery and supercapacitors. Electrochimica Acta, 2020, 331, 135262.

#	Article	IF	CITATIONS
217	3D nanoflower-like MoSe ₂ encapsulated with hierarchically anisotropic carbon architecture: a new and free-standing anode with ultra-high areal capacitance for asymmetric supercapacitors. Chemical Communications, 2020, 56, 340-343.	4.1	34
218	Hierarchical micro-reactor as electrodes for water splitting by metal rod tipped carbon nanocapsule self-assembly in carbonized wood. Applied Catalysis B: Environmental, 2020, 264, 118536.	20.2	25
219	2D Grapheneâ€Based Macroscopic Assemblies for Microâ€Supercapacitors. ChemSusChem, 2020, 13, 1255-1274.	6.8	16
220	Manganese dioxide anchored on hierarchical carbon nanotubes/graphene/diatomite conductive architecture for high performance asymmetric supercapacitor. Applied Surface Science, 2020, 508, 144777.	6.1	19
221	Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors. Applied Surface Science, 2020, 508, 145260.	6.1	21
222	Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochimica Acta, 2020, 363, 137262.	5.2	25
223	Hierarchical flower-like MnO2@nitrogen-doped porous carbon composite for symmetric supercapacitor: Constructing a 9.0ÂV symmetric supercapacitor cell. Electrochimica Acta, 2020, 364, 137291.	5.2	31
224	Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors. Matter, 2020, 3, 1196-1210.	10.0	120
225	Carbon materials for high mass-loading supercapacitors: filling the gap between new materials and practical applications. Journal of Materials Chemistry A, 2020, 8, 21930-21946.	10.3	94
226	Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode. Carbon Letters, 2021, 31, 879-886.	5.9	13
227	Pompon-like MnO2 and N/O doped nanoporous carbon composites with an ultrahigh capacity for energy storage. Electrochimica Acta, 2020, 363, 137240.	5.2	6
228	Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Materials and Design, 2020, 195, 108942.	7.0	24
229	Keratin-derived functional carbon with superior charge storage and transport for high-performance supercapacitors. Carbon, 2020, 168, 419-438.	10.3	103
230	3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Letters, 2020, 12, 143.	27.0	90
231	Monocrystalline FeMnO ₃ on Carbon Cloth for Extremely High-Areal-Capacitance Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11863-11872.	5.1	15
232	Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Applied Physics Reviews, 2020, 7, .	11.3	43
233	Sustainable wood-based composites for microwave absorption and electromagnetic interference shielding. Journal of Materials Chemistry A, 2020, 8, 24267-24283.	10.3	145
234	<i>In situ</i> synthesis of polyaniline/carbon nanotube composites in a carbonized wood scaffold for high performance supercapacitors. Nanoscale, 2020, 12, 17738-17745.	5.6	43

#	Article	IF	CITATIONS
235	Advanced Nanowood Materials for the Water–Energy Nexus. Advanced Materials, 2021, 33, e2001240.	21.0	59
236	Achieving High Voltage and Excellent Rate Capability Supercapacitor Electrodes Derived From Bioâ€renewable and Sustainable Resource. ChemistrySelect, 2020, 5, 8759-8772.	1.5	13
237	High-value utilization of biomass waste: from garbage floating on the ocean to high-performance rechargeable Zn–MnO ₂ batteries with superior safety. Journal of Materials Chemistry A, 2020, 8, 18198-18206.	10.3	22
238	Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. International Journal of Hydrogen Energy, 2020, 45, 27482-27491.	7.1	149
239	Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 25758-25768.	2.2	13
240	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	21.0	75
241	Processing Natural Wood into a High-Performance Flexible Pressure Sensor. ACS Applied Materials & Interfaces, 2020, 12, 46357-46365.	8.0	73
242	The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Advanced Science, 2020, 7, 2001116.	11.2	185
243	Three-Dimensional Ordered Porous Carbon for Energy Conversion and Storage Applications. Frontiers in Energy Research, 2020, 8, .	2.3	23
244	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	21.0	236
245	Nature-derived, structure and function integrated ultra-thick carbon electrode for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 20072-20081.	10.3	48
246	Advances in the application of manganese dioxide and its composites as electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 18492-18514.	10.3	47
247	Wood nanotechnology: a more promising solution toward energy issues: a mini-review. Cellulose, 2020, 27, 8513-8526.	4.9	14
248	Eco-Friendly Supercapacitors Based on Biodegradable Poly(3-Hydroxy-Butyrate) and Ionic Liquids. Nanomaterials, 2020, 10, 2062.	4.1	12
249	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	48.7	616
250	Biomass-derived multi-heteroatom-doped carbon materials for high-performance solid-state symmetric supercapacitors with superior long-term cycling stability. Ionics, 2020, 26, 4141-4151.	2.4	12
251	Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding. Chemistry of Materials, 2020, 32, 5280-5289.	6.7	117
252	Woodâ€Derived Carbon Materials and Lightâ€Emitting Materials. Advanced Materials, 2021, 33, e2000596.	21.0	75

#	Article	IF	CITATIONS
253	Antibacterial performance of Ag-doped TiO2/wood surface under visible light irradiation and its superior mould-resistance. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012012.	0.6	1
254	A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydrate Polymers, 2020, 244, 116472.	10.2	58
255	Two-dimensional β-MoO ₃ @C nanosheets as high-performance negative materials for supercapacitors with excellent cycling stability. RSC Advances, 2020, 10, 17497-17505.	3.6	21
256	Anisotropic, low-tortuosity and ultra-thick red P@C-Wood electrodes for sodium-ion batteries. Nanoscale, 2020, 12, 14642-14650.	5.6	40
257	Nanoporous Carbon Derived from Green Material by an Ordered Activation Method and Its High Capacitance for Energy Storage. Nanomaterials, 2020, 10, 1058.	4.1	18
258	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversibleâ€Compressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	11.2	64
259	Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework. Nano Letters, 2020, 20, 5504-5512.	9.1	64
260	Recent development in the synthesis of agricultural and forestry biomass-derived porous carbons for supercapacitor applications: a review. Ionics, 2020, 26, 3705-3723.	2.4	43
261	Benchmarked capacitive performance of a 330 μm-thick Na _x V ₂ O ₅ /CC monolithic electrode <i>via</i> synergism of a hierarchical pore structure and ultrahigh-mass-loading. Nanoscale, 2020, 12, 14290-14297.	5.6	3
262	A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO2 Capture. Nano-Micro Letters, 2020, 12, 58.	27.0	45
263	Blocky electrode prepared from nickel-catalysed lignin assembled woodceramics. Journal of Materials Science, 2020, 55, 7760-7774.	3.7	8
264	Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance. Energy & Fuels, 2020, 34, 5032-5043.	5.1	45
265	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material ^{â€} . Chinese Journal of Chemistry, 2020, 38, 823-829.	4.9	21
266	A holocellulose framework with anisotropic microchannels for directional assembly of copper sulphide nanoparticles for multifunctional applications. Chemical Engineering Journal, 2020, 393, 124637.	12.7	28
267	Biodegradable porous polylactic acid film as a separator for supercapacitors. Journal of Applied Polymer Science, 2020, 137, 49270.	2.6	10
268	Wood-Derived Hybrid Scaffold with Highly Anisotropic Features on Mechanics and Liquid Transport toward Cell Migration and Alignment. ACS Applied Materials & Interfaces, 2020, 12, 17957-17966.	8.0	18
269	Synthesis of natural nitrogen-rich soybean pod carbon with ion channels for low cost and large areal capacitance supercapacitor. Applied Surface Science, 2020, 516, 146162.	6.1	25
270	Functionalized Well-Aligned Channels Derived from Wood as a Convection-Enhanced Electrode for Aqueous Flow Batteries. ACS Applied Energy Materials, 2020, 3, 6249-6257.	5.1	19

#	Article	IF	CITATIONS
271	Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. Journal of Power Sources, 2020, 471, 228448.	7.8	97
272	A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chemical Engineering Journal, 2020, 396, 125318.	12.7	93
273	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	21.0	168
274	Dual-function ultrafiltration membrane constructed from pure activated carbon particles via facile nanostructure reconstruction for high-efficient water purification. Carbon, 2020, 168, 254-263.	10.3	7
275	Cu(II) and Gd(III) doped boehmite nanostructures: a comparative study of electrical property and thermal stability. Materials Research Express, 2020, 7, 025020.	1.6	8
276	A flexible and capsular polypyrrole nanotubular film-based pseudo-capacitive electrode with enhanced capacitive properties enabled by Au nanoparticle doping. Journal of Materials Chemistry C, 2020, 8, 3807-3813.	5.5	7
277	Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors. Carbon, 2020, 162, 114-123.	10.3	94
278	Substantial Improvement of the Dielectric Strength of Cellulose–Liquid Composites: Effects of Traps at the Nanoscale Interface. Journal of Physical Chemistry Letters, 2020, 11, 1881-1889.	4.6	32
279	Exploring the Hierarchical Structure and Alignment of Wood Cellulose Fibers for Bioinspired Anisotropic Polymeric Composites. ACS Applied Bio Materials, 2020, 3, 2193-2200.	4.6	11
280	Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Materials, 2020, 27, 327-332.	18.0	49
281	Three-dimensional cathode with periodically aligned microchannels for improving volumetric energy density of lithium-ion batteries. Journal of Power Sources, 2020, 451, 227764.	7.8	16
282	Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings. Carbon, 2020, 161, 89-96.	10.3	65
283	Solar vapor generation optimization of a carbonâ€black/woodâ€flour system with strength enhanced by polystyrene. International Journal of Energy Research, 2020, 44, 3687-3696.	4.5	17
284	Understanding Thickness-Dependent Transport Kinetics in Nanosheet-Based Battery Electrodes. Chemistry of Materials, 2020, 32, 1684-1692.	6.7	68
285	Woodâ€Inspired Morphologically Tunable Aligned Hydrogel for Highâ€Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Functional Materials, 2020, 30, 1909133.	14.9	62
286	Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. Journal of Alloys and Compounds, 2020, 834, 155115.	5.5	59
287	Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage. Energy, 2020, 202, 117636.	8.8	53
288	Pristine NiCo2O4 nanorods loaded rGO electrode as a remarkable electrode material for asymmetric supercapacitors. Materials Science in Semiconductor Processing, 2020, 114, 105078.	4.0	53

#	Article	IF	CITATIONS
289	Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials. ACS Applied Materials & Interfaces, 2020, 12, 23532-23542.	8.0	42
290	Water permeability of monolithic wood biocarbon. Microporous and Mesoporous Materials, 2020, 303, 110258.	4.4	13
291	Hierarchical Manganese–Nickel Sulfide Nanosheet Arrays as an Advanced Electrode for All-Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 21505-21514.	8.0	85
292	Ultrafast microwave synthesis of rambutan-like CMK-3/carbon nanotubes nanocomposites for high-performance supercapacitor electrode materials. Scientific Reports, 2020, 10, 6227.	3.3	15
293	The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Advanced Energy Materials, 2020, 10, 1903848.	19.5	152
294	A Highâ€Performance, Tailorable, Wearable, and Foldable Solidâ€State Supercapacitor Enabled by Arranging Pseudocapacitive Groups and MXene Flakes on Textile Electrode Surface. Advanced Functional Materials, 2021, 31, 2008185.	14.9	104
295	From wood to thin porous carbon membrane: Ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering. Energy Storage Materials, 2021, 35, 327-333.	18.0	25
296	Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives. Energy and Environmental Science, 2021, 14, 576-601.	30.8	166
297	Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 2021, 57, 247-280.	12.9	225
298	Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel. Cellulose, 2021, 28, 389-404.	4.9	17
299	Robust Highâ€Temperature Supercapacitors Based on SiC Nanowires. Advanced Functional Materials, 2021, 31, 2008901.	14.9	28
300	Edible Electronics: The Vision and the Challenge. Advanced Materials Technologies, 2021, 6, 2000757.	5.8	75
301	Monolithic wood biochar as functional material for sustainability. Canadian Journal of Chemical Engineering, 2021, 99, 640-656.	1.7	10
302	Three-dimensional electrode design with conductive fibers and ordered macropores for enhanced capacitive deionization performance. Desalination, 2021, 498, 114794.	8.2	22
303	Green anisotropic carbon-stabilized polylaminate copper oxide as a novel cathode for high-performance hybrid supercapacitors. Materials and Design, 2021, 198, 109309.	7.0	20
304	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	19.5	64
305	Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustainable Energy and Fuels, 2021, 5, 310-331.	4.9	14
306	Chickpea derived Co nanocrystal encapsulated in 3D nitrogen-doped mesoporous carbon: Pressure cooking synthetic strategy and its application in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 585, 328-336.	9.4	29

#	Article	IF	CITATIONS
307	Ultralight and robust carbon nanofiber aerogels for advanced energy storage. Journal of Materials Chemistry A, 2021, 9, 900-907.	10.3	23
308	Becoming Sustainable, The New Frontier in Soft Robotics. Advanced Materials, 2021, 33, e2004413.	21.0	107
309	Microtubule-based hierarchical porous carbon for lightweight and strong wideband microwave absorption. Journal of Materials Chemistry C, 2021, 9, 1649-1656.	5.5	13
310	In-situ preparation of Fe3O4/graphene nanocomposites and their electrochemical performances for supercapacitor. Materials Chemistry and Physics, 2021, 258, 123995.	4.0	24
311	A two step approach for making super capacitors from waste wood. Journal of Cleaner Production, 2021, 279, 123786.	9.3	30
312	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	3.7	474
313	Limitations and Recent Advances in High Mass Loading Asymmetric Supercapacitors Based on Pseudocapacitive Materials. Industrial & Engineering Chemistry Research, 2021, 60, 1096-1111.	3.7	25
314	Tailoring unique neural-network-type carbon nanofibers inserted in CoP/NC polyhedra for robust hydrogen evolution reaction. Nanoscale, 2021, 13, 14705-14712.	5.6	3
315	Alternativeâ€Ultrathin Assembling of Exfoliated Manganese Dioxide and Nitrogenâ€Doped Carbon Layers for Highâ€Massâ€Loading Supercapacitors with Outstanding Capacitance and Impressive Rate Capability. Advanced Functional Materials, 2021, 31, 2009632.	14.9	44
316	Air activation of charcoal monoliths for capacitive energy storage. RSC Advances, 2021, 11, 15118-15130.	3.6	5
317	Commercial-level mass-loading MnO ₂ with ion diffusion channels for high-performance aqueous energy storage devices. Journal of Materials Chemistry A, 2021, 9, 17945-17954.	10.3	13
318	The effects of vacuum pyrolysis conditions on wood biochar monoliths for electrochemical capacitor electrodes. Journal of Materials Science, 2021, 56, 8588-8599.	3.7	16
319	Cellulose/carbon nanotube/MnO2 composite electrodes with high mass loadings for symmetric supercapacitors. Cellulose, 2021, 28, 3549-3567.	4.9	33
320	Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Interfaces, 2021, 13, 8285-8293.	8.0	92
321	Recent Developments and Future Prospects for Zincâ€Ion Hybrid Capacitors: a Review. Advanced Energy Materials, 2021, 11, 2003994.	19.5	219
322	A dualâ€activation strategy to tailor the hierarchical porous structure of biomassâ€derived carbon for ultrahigh rate supercapacitor. International Journal of Energy Research, 2021, 45, 9284-9294.	4.5	15
323	Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochemical Energy Reviews, 2021, 4, 219-248.	25.5	118
324	Palladium Nanoparticles Supported on Basswood-Derived Porous Carbon Membrane as Free-Standing Cathodes for Efficient pH-Universal Electrocatalytic H2 Evolution. Electrocatalysis, 2021, 12, 340-349.	3.0	5

#	Article	IF	CITATIONS
325	Facile Preparation of Hierarchical Porous Carbon from Orange Peels for High-Performance Supercapacitor. International Journal of Electrochemical Science, 2021, 16, 210350.	1.3	3
326	High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochemical Energy Reviews, 2021, 4, 382-446.	25.5	181
327	Hierarchically porous carbon derived from renewable Chingma Abutilon Seeds for high-energy supercapacitors. Advanced Powder Technology, 2021, 32, 718-727.	4.1	13
328	Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage. Journal of Power Sources, 2021, 488, 229455.	7.8	61
329	Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair. Advanced Functional Materials, 2021, 31, 2010068.	14.9	107
330	Are activated carbon pore structure parameters linearly positively related to its mass-specific capacitance?. Journal of Materials Science, 2021, 56, 12336-12349.	3.7	7
331	Free-standing electrodes via coupling nanostructured Ni–NiO with hierarchical wood carbon for high-performance supercapacitors and Ni–Zn batteries. Journal of Power Sources, 2021, 491, 229618.	7.8	30
332	Lignin carbon aerogel/nickel binary network for cubic supercapacitor electrodes with ultra-high areal capacitance. Carbon, 2021, 174, 500-508.	10.3	46
333	Pomelo peel-derived lamellar carbon with surface oxygen functional groups for high-performance supercapacitors. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	9
334	Asymmetric flexural process and fracture behaviors of natural bamboo node with gradient discontinuous fibers. Composites Communications, 2021, 24, 100647.	6.3	22
335	High-Performance Supercapacitor Device with Ultrathick Electrodes Fabricated from All-Cellulose-Based Carbon Aerogel. Energy & Fuels, 2021, 35, 8295-8302.	5.1	27
336	Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Applied Energy, 2021, 289, 116734.	10.1	57
337	Polysulfide Filter and Dendrite Inhibitor: Highly Graphitized Wood Framework Inhibits Polysulfide Shuttle and Lithium Dendrites in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2102458.	14.9	42
338	Allâ€Printed Green Microâ€Supercapacitors Based on a Naturalâ€derived Ionic Liquid for Flexible Transient Electronics. Advanced Functional Materials, 2021, 31, 2102180.	14.9	38
339	Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983.	21.0	63
340	Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chemical Engineering Journal, 2021, 412, 128755.	12.7	80
341	Pyrolysis of Enzymolysisâ€Treated Wood: Hierarchically Assembled Porous Carbon Electrode for Advanced Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2101077.	14.9	109
342	A wood textile fiber made from natural wood. Journal of Materials Science, 2021, 56, 15122-15133.	3.7	10

#	Article	IF	CITATIONS
343	Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Metals, 2022, 41, 14-20.	7.1	48
344	Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. Chemical Engineering Journal, 2021, 414, 128767.	12.7	114
345	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	10.0	105
346	N-doped cellulose-based carbon aerogels with a honeycomb-like structure for high-performance supercapacitors. Journal of Energy Storage, 2021, 38, 102414.	8.1	17
347	Progress in carbon-based electrocatalyst derived from biomass for the hydrogen evolution reaction. Fuel, 2021, 293, 120440.	6.4	53
348	Threeâ€Dimensional Printed Mechanically Compliant Supercapacitor with Exceptional Areal Capacitance from a Selfâ€Healable Ink. Advanced Functional Materials, 2021, 31, 2102184.	14.9	22
349	Fabrication of carbonized flakes epoxy electrode using lemon rind for supercapacitor applications. Case Studies in Chemical and Environmental Engineering, 2021, 3, 100090.	6.1	2
350	Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization. Frontiers in Chemistry, 2021, 9, 682883.	3.6	26
351	NiX Layered Double Hydroxide Nanowire Arrays (X = Co, Fe, and Mn) Coated with Nanometer-Thick Films of NiOOH and Then NiO as Electrodes for Supercapacitors. ACS Applied Nano Materials, 2021, 4, 7017-7027.	5.0	10
352	Vertically aligned two-dimensional materials-based thick electrodes for scalable energy storage systems. Nano Research, 2021, 14, 3562-3575.	10.4	30
353	A multi-responsive healable supercapacitor. Nature Communications, 2021, 12, 4297.	12.8	135
354	Porous 3D Honeycomb Structure Biomass Carbon as a Supercapacitor Electrode Material to Achieve Efficient Energy Storage. Industrial & Engineering Chemistry Research, 2021, 60, 11079-11085.	3.7	22
355	Heteroatom-doped mesoporous carbon prepared from a covalent organic framework/α-MnO2 composite for high-performance supercapacitor. Carbon Letters, 2021, 31, 1309-1316.	5.9	22
356	<scp>Natureâ€inspired</scp> porous <scp>multichannel</scp> carbon monolith: Molecular cooperative enables sustainable production and <scp>highâ€performance</scp> capacitive energy storage. InformaÄnÃ-Materiály, 2021, 3, 1154-1170.	17.3	21
357	3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications. Energy Storage Materials, 2021, 39, 146-165.	18.0	66
358	Sustainable 3D Structural Binder for Highâ€Performance Supercapacitor by Biosynthesis Process. Advanced Functional Materials, 2021, 31, 2105070.	14.9	32
359	Nano-pom-pom multiphasic MoS2 grown on carbonized wood as electrode for efficient hydrogen evolution in acidic and alkaline media. International Journal of Hydrogen Energy, 2021, 46, 28087-28097.	7.1	22
360	Grafting polymers from cellulose nanocrystals via surfaceâ€initiated atom transfer radical polymerization. Journal of Applied Polymer Science, 2021, 138, 51458.	2.6	20

#	Article	IF	CITATIONS
361	Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Research, 2022, 15, 1415-1423.	10.4	22
362	Versatile zero―to threeâ€dimensional carbon for electrochemical energy storage. , 2021, 3, 895-915.		41
363	Hard Carbon Anodes for Nextâ€Generation Liâ€lon Batteries: Review and Perspective. Advanced Energy Materials, 2021, 11, 2101650.	19.5	213
364	Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. Advanced Materials, 2021, 33, e2103495.	21.0	62
365	Synthesis of Highly Ion-Conductive Lignin Eutectogels in a Ternary Deep Eutectic Solvent and Nitrogen-Doped 3D Hierarchical Porous Carbons for Supercapacitors. Biomacromolecules, 2021, 22, 4181-4190.	5.4	12
366	Implication of Wood-Derived Hierarchical Carbon Nanotubes for Micronutrient Delivery and Crop Biofortification. ACS Omega, 2021, 6, 23654-23665.	3.5	3
367	Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Composites Science and Technology, 2021, 213, 108931.	7.8	48
368	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	5.3	8
369	An Amorphous–Crystalline Nanosheet Arrays Structure for Ultrahigh Electrochemical Performance Supercapattery. Small, 2021, 17, e2102565.	10.0	22
370	Green synthesis of cellulose/graphene oxide/ZIF8 derived highly conductivity integrated film electrode for supercapacitor. Carbon, 2021, 185, 599-607.	10.3	17
371	Nickel-cobalt layered double hydroxide nanosheets anchored to the inner wall of wood carbon tracheids by nitrogen-doped atoms for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 70-78.	9.4	40
372	Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte. Nature Communications, 2021, 12, 5515.	12.8	13
373	Thermally activated epoxy-functionalized carbon as an electrocatalyst for efficient NOx reduction. Carbon, 2021, 182, 516-524.	10.3	16
374	Manganese oxides in-situ grown on carbon sphere and derived different crystal structures as high-performance pseudocapacitor electrode material. Journal of Alloys and Compounds, 2021, 878, 160384.	5.5	8
375	H3PO4-assisted preparation of precursor-derived porous carbon: Construction of precursor/precursor-derived porous carbon texture properties relationship. Diamond and Related Materials, 2021, 119, 108596.	3.9	9
376	Natural wood derived robust carbon sheets with perpendicular channels as gas diffusion layers in air-breathing proton exchange membrane fuel cells (PEMFCs). Catalysis Communications, 2021, 159, 106351.	3.3	13
377	High cycling performance electrodes of Co2+-doped sandwich structured woodceramics. Journal of Alloys and Compounds, 2021, 888, 161482.	5.5	4
378	Nickel-cobalt (oxy)hydroxide battery-type supercapacitor electrode with high mass loading. Chemical Engineering Journal, 2022, 429, 132423.	12.7	44

#	Article	IF	CITATIONS
379	Effect of physiochemical properties in biomass-derived materials caused by different synthesis methods and their electrochemical properties in supercapacitors. Journal of Materials Chemistry A, 2021, 9, 12521-12552.	10.3	43
380	<i>In situ</i> synthesis of Fe ₂ O ₃ nanosphere/Co ₃ O ₄ nanowire-connected reduced graphene oxide hybrid networks for high-performance supercapacitors. Nanoscale, 2021, 13, 15431-15444.	5.6	15
381	Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 2021, 23, 2198-2232.	9.0	48
382	Nature-inspired mineralization of a wood membrane as a sensitive electrochemical sensing device for <i>i>in situ</i> recognition of chiral molecules. Green Chemistry, 2021, 23, 8685-8693.	9.0	15
383	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	30.8	157
384	High performance fully paperâ€based allâ€solidâ€state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxideâ€modified pulp fibers. EcoMat, 2021, 3, e12076.	11.9	51
385	A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Science Advances, 2021, 7, .	10.3	89
386	A top-down approach making cellulose carbonaceous aerogel/MnO ₂ ultrathick bulk electrodes with high mass loading for supercapacitors. Materials Chemistry Frontiers, 2021, 5, 7892-7902.	5.9	10
387	Nanocelluloseâ€based polymer composites for energy applications—A review. Journal of Applied Polymer Science, 2020, 137, 48959.	2.6	96
388	Characteristics of Activated Carbon. Springer Series in Materials Science, 2020, , 125-154.	0.6	36
389	Self-support wood-derived carbon/polyaniline composite for high-performance supercapacitor electrodes. Bulletin of Materials Science, 2020, 43, 1.	1.7	9
390	Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochimica Acta, 2020, 352, 136452.	5.2	39
391	Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2, 042001.	12.7	96
392	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	5.7	7
393	Structure-Enhanced Mechanically Robust Graphite Foam with Ultrahigh MnO ₂ Loading for Supercapacitors. Research, 2020, 2020, 7304767.	5.7	24
394	Woodâ€Derived Monolithic Ultrathick Porous Carbon Electrodes Filled with Reduced Graphene Oxide for Highâ€Performance Supercapacitors with Ultrahigh Areal Capacitances. ChemElectroChem, 2021, 8, 4328-4336.	3.4	9
395	Green Electrochemical Energy Storage Devices Based on Sustainable Manganese Dioxides. ACS ES&T Engineering, 2022, 2, 20-42.	7.6	24
396	Highly efficient and biodegradable flexible supercapacitors fabricated with electrodes of coconut-fiber/graphene nanoplates. Journal Physics D: Applied Physics, 2022, 55, 035501.	2.8	3

# 397	ARTICLE Chemical Modification of Cellulose in Solvents for Functional Materials. , 2018, , 1-34.	IF	CITATIONS
398	Nanopolysaccharides in Energy Storage Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 137-169.	1.0	2
399	Chemical Modification of Cellulose in Solvents for Functional Materials. , 2019, , 427-460.		1
400	Cobalt Hydroxide Nanosheets Grown on Carbon Nanotubes Anchored in Wood Carbon Scaffolding for High-Performance Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 18815-18823.	5.1	15
401	A novel perspective on interfacial interactions between polypyrrole and carbon materials for improving performance of supercapacitors. Applied Surface Science, 2022, 573, 151626.	6.1	13
402	An electrochemically reduced ultra-high mass loading three-dimensional carbon nanofiber network: a high energy density symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V. Nanoscale, 2021, 13, 19537-19548.	5.6	27
403	Self-template bagasse-based porous carbons for high performance supercapacitors. Industrial Crops and Products, 2022, 176, 114291.	5.2	13
404	Hierarchical porous carbon derived from elm bark mucus for efficient energy storage and conversion. Materials Chemistry and Physics, 2022, 277, 125450.	4.0	2
405	"Porous and Yet Dense―Electrodes for Highâ€Volumetricâ€Performance Electrochemical Capacitors: Principles, Advances, and Challenges. Advanced Science, 2022, 9, e2103953.	11.2	9
406	<scp>Ultrahighâ€arealâ€capacitance</scp> aqueous supercapacitors enabled by soft <scp>biomassâ€derived</scp> porous carbon membrane. International Journal of Energy Research, 2022, 46, 4781-4793.	4.5	10
407	Advances in 3D Printing for Electrochemical Energy Storage Systems. Journal of Material Science and Technology Research, 0, 8, 50-69.	0.3	2
408	Wood for Application in Electrochemical Energy Storage Devices. Cell Reports Physical Science, 2021, 2, 100654.	5.6	12
409	Agarose-Based Hierarchical Porous Carbons Prepared with Gas-Generating Activators and Used in High-Power Density Supercapacitors. Energy & Fuels, 2021, 35, 19775-19783.	5.1	5
410	MXene-based O/Se-rich bimetallic nanocomposites for high performance solid-state symmetric supercapacitors. Journal of Solid State Chemistry, 2022, 306, 122727.	2.9	10
411	Dissolvable conducting polymer supercapacitor for transient electronics. Organic Electronics, 2022, 101, 106412.	2.6	10
412	Superhydrophobic STA@PF@Cu2O modified wood with photocatalytic degradation properties for efficiency oil/water separation. Journal of Environmental Chemical Engineering, 2021, 9, 106857.	6.7	5
413	Hydrophobic-barrier-assisted formation of vertically layered capacitive electrodes within a single sheet of paper. Journal of Materials Chemistry A, 2021, 9, 27672-27683.	10.3	7
414	Inâ€situ expansion strategy towards hierarchical mesoporousÂcarbon: Formation mechanism and applicationÂin supercapacitors. International Journal of Energy Research, 2022, 46, 7249-7260.	4.5	13

#	Article	IF	CITATIONS
415	Preparation of N-doped graphite oxide for supercapacitors by NH ₃ cold plasma. Plasma Science and Technology, 2022, 24, 044008.	1.5	1
416	Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming. Energy, 2022, 242, 122970.	8.8	17
417	A family of MOFs@Wood-Derived hierarchical porous composites as freestanding thick electrodes of solid supercapacitors with enhanced areal capacitances and energy densities. Materials Today Energy, 2022, 24, 100951.	4.7	28
418	Modulation of Water Dissociation Kinetics with a "Breathable―Wooden Electrode for Efficient Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6818-6827.	8.0	11
419	Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach. Energy and Environmental Science, 2022, 15, 1131-1143.	30.8	34
420	High-frequency electrochemical double layer capacitor based on carbon nanotubes ink coated eggshell membrane electrodes. Journal of Energy Storage, 2022, 45, 103799.	8.1	9
421	Hierarchically porous graphene/wood-derived carbon activated using ZnCl ₂ and decorated with <i>in situ</i> grown NiCo ₂ O ₄ for high–performance asymmetric supercapacitors. New Journal of Chemistry, 2022, 46, 533-541.	2.8	12
422	Enhanced electrochemical performance of a Li-O2 battery using Co and N co-doped biochar cathode prepared in molten salt medium. Electrochimica Acta, 2022, 410, 140002.	5.2	10
423	Microstructure modification of porous carbon induced by low-dosage manganese nitrate for high-performance supercapacitor electrode. Electrochimica Acta, 2022, 408, 139928.	5.2	8
424	Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. International Journal of Biological Macromolecules, 2022, 200, 574-582.	7.5	27
425	Functionalized wood as bio-based advanced materials: Properties, applications, and challenges. Renewable and Sustainable Energy Reviews, 2022, 157, 112074.	16.4	22
426	A wood-based fluid catalytic reactor with directional channels and porous inner walls for efficient degradation of 4-NP by immobilized laccase. Industrial Crops and Products, 2022, 178, 114589.	5.2	8
427	Wood-based micro-spring composite elastic material with excellent electrochemical performance, high elasticity and elastic recovery rate applied in supercapacitors and sensors. Industrial Crops and Products, 2022, 178, 114565.	5.2	23
428	Emerging smart design of electrodes for microâ€supercapacitors: A review. SmartMat, 2022, 3, 447-473.	10.7	16
429	Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 2022, 16, 3341-3350.	14.6	72
430	A Thick Electrode with High Conductivity, High Defectivity, and Hierarchically Low-Tortuous Aligned Channels for High-Rate and High-Energy Supercapacitor S. SSRN Electronic Journal, 0, , .	0.4	0
431	Unlocking Zinc-Ion Energy Storage Performance of Onion-Like Carbon by Promoting Heteroatom Doping Strategy. ACS Applied Materials & Interfaces, 2022, 14, 9013-9023.	8.0	27
432	Gradient Architecture Design in Scalable Porous Battery Electrodes. Nano Letters, 2022, 22, 2521-2528.	9.1	37

#	Article	IF	CITATIONS
433	Laser-Induced Graphene Supercapacitors by Direct Laser Writing of Cork Natural Substrates. ACS Applied Electronic Materials, 2022, 4, 1541-1551.	4.3	28
434	Highly fire-retardant optical wood enabled by transparent fireproof coatings. Advanced Composites and Hybrid Materials, 2022, 5, 1821-1829.	21.1	38
435	Recent advances in solid–liquid–gas threeâ€phase interfaces in electrocatalysis for energy conversion and storage. EcoMat, 2022, 4, .	11.9	25
436	Aramid Nanofibers Aerogelâ€filled Woodâ€based Carbon Material for Flexible Solid Supercapacitors. ChemNanoMat, 2022, 8, .	2.8	2
437	Sustainable Natural Bioâ€Origin Materials for Future Flexible Devices. Advanced Science, 2022, 9, e2200560.	11.2	43
438	Structurally modified V ₂ O ₅ based extrinsic pseudocapacitor. Nanotechnology, 2022, 33, 255402.	2.6	3
439	High yield hollow carbon cubes with excellent microwave absorption property at a low loading ratio. Carbon, 2022, 195, 101-111.	10.3	12
440	Potential of zero charge regulating highly selective removal of nitrate anions through capacitive deionization. Chemical Engineering Journal, 2022, 442, 136287.	12.7	14
441	NiCo-layered double hydroxide with cation vacancy defects for high-performance supercapacitors. Electrochimica Acta, 2022, 413, 140143.	5.2	18
442	Highly efficient, field-assisted water splitting enabled by a bifunctional Ni3Fe magnetized wood carbon. Chemical Engineering Journal, 2022, 439, 135722.	12.7	17
443	High performance supercapacitors assembled with hierarchical porous carbonized wood electrode prepared through self-activation. Industrial Crops and Products, 2022, 181, 114802.	5.2	26
444	Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano, 2021, 15, 18708-18741.	14.6	70
445	Directionally In Situ Selfâ€Assembled, Highâ€Density, Macroporeâ€Oriented, CoPâ€Impregnated, 3D Hierarchical Porous Carbon Sheet Nanostructure for Superior Electrocatalysis in the Hydrogen Evolution Reaction. Small, 2022, 18, e2103866.	10.0	24
446	Interface Engineering on Celluloseâ€Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density. Small, 2022, 18, e2106356.	10.0	23
447	Hiveâ€Inspired Multifunctional Woodâ€Nanotechnologyâ€Derived Membranes with a Doubleâ€Layer Conductive Network Structure for Flexible Electronics. Advanced Materials Interfaces, 2022, 9, .	3.7	7
448	Flexible and Alternately Layered Highâ€Loading Film Electrode based on 3D Carbon Nanocoils and PEDOT:PSS for Highâ€Energyâ€Density Supercapacitor. Advanced Functional Materials, 2022, 32, .	14.9	40
449	Water Evaporation Triggered Selfâ€Assembly of MXene on Nonâ€Carbonized Wood with Wellâ€Aligned Channels as Sizeâ€Customizable Freeâ€Standing Electrode for Supercapacitors. Energy and Environmental Materials, 2023, 6, .	12.8	4
450	High mechanical properties and excellent anisotropy of dually synergistic network wood fiber gel for human–computer interactive sensors. Cellulose, 2022, 29, 4495-4508.	4.9	10

#	Article	IF	CITATIONS
451	Fabrication of Graphene-Fe3O4-Polypyrrole based ternary material as an electrode for Pseudocapacitor application. Materials Today: Proceedings, 2022, , .	1.8	5
452	Macro―and Nanoâ€Porous 3Dâ€Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	25
453	Metal-organic frameworks-derived carbon modified wood carbon monoliths as three-dimensional self-supported electrodes with boosted electrochemical energy storage performance. Journal of Colloid and Interface Science, 2022, 620, 376-387.	9.4	23
454	Rational Design of Freestanding and High-Performance Thick Electrode from Carbon Foam Modified with Polypyrrole/Polydopamine for Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	ο
455	Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors. Carbon, 2022, 196, 532-539.	10.3	39
456	Lignin Isolated from Poplar Wood for Porous Carbons as Electrode for High-Energy Renewable Supercapacitor Driven by Lignin/Deep Eutectic Solvent Composite Gel Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 6393-6400.	5.1	22
457	Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels. Journal of Cleaner Production, 2022, 357, 131957.	9.3	15
458	Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. Journal of Bioresources and Bioproducts, 2022, 7, 245-269.	20.5	120
459	A Self-Detecting and Self-Cleaning Biomimetic Porous Metal-Based Hydrogel for Oil/Water Separation. ACS Applied Materials & Interfaces, 2022, 14, 26057-26067.	8.0	10
460	Catalytic conversion of toluene as a biomass tar model compound using monolithic biochar-based catalysts decorated with carbon nanotubes and graphic carbon covered Co-Ni alloy nanoparticles. Fuel, 2022, 324, 124585.	6.4	12
461	Sophora-like Nickel–Cobalt Sulfide and Carbon Nanotube Composites in Carbonized Wood Slice Electrodes for All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7400-7407.	5.1	25
462	Low-value wood for sustainable high-performance structural materials. Nature Sustainability, 2022, 5, 628-635.	23.7	72
463	Hierarchically porous wood aerogel/polypyrrole(PPy) composite thick electrode for supercapacitor. Chemical Engineering Journal, 2022, 446, 137331.	12.7	39
464	Design of wood-derived anisotropic structural carbon electrode for high-performance supercapacitor. Wood Science and Technology, 2022, 56, 1191-1203.	3.2	27
465	A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 26595-26603.	8.0	18
466	Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors. Applied Surface Science, 2022, 598, 153765.	6.1	20
467	Construction of 3d Porous Carbon Framework for Supercapacitors: Abundant Pore Structure and Proper Hydrophilicity. SSRN Electronic Journal, 0, , .	0.4	0
468	Multi-nanocomponent-assembled films with exceptional capacitance performance and electromagnetic interference shielding. Materials Chemistry Frontiers, 2022, 6, 2201-2210.	5.9	4

#	Article	IF	Citations
469	Nanocrystals for electrochemical energy storage devices. , 2022, , 409-426.		0
470	Wood Biochar Monolith-Based Approach to Increasing the Volumetric Energy Density of Supercapacitor. Industrial & Engineering Chemistry Research, 2022, 61, 7891-7901.	3.7	10
471	A 3Dâ€Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. Small, 2022, 18, .	10.0	22
472	Transient, Biodegradable Energy Systems as a Promising Power Solution for Ecofriendly and Implantable Electronics. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	8
473	Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chemical Engineering Journal, 2022, 447, 137562.	12.7	28
474	Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications. Journal of Materials Chemistry A, 2022, 10, 15677-15688.	10.3	11
475	Toward cleaner production of nanocellulose: a review and evaluation. Green Chemistry, 2022, 24, 6406-6434.	9.0	22
476	Rational Design of Woodâ€6tructured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	14.9	33
477	A sustainable avocado-peel based electrode for efficient graphene supercapacitors: Enhancement of capacitance by using Sr doped LaMnO3 perovskites. Ceramics International, 2022, 48, 30967-30977.	4.8	19
478	Construction of Ti3C2Tx/WOx heterostructures on carbon cloth for ultrahigh-mass loading flexible supercapacitor. Nano Research, 2022, 15, 8991-8999.	10.4	17
479	Asymmetric Supercapacitor Assembled by Wood-Based Monolithic Electrodes with Ultra-High Capacitance and Rate Performance. SSRN Electronic Journal, 0, , .	0.4	0
481	Water activated disposable paper battery. Scientific Reports, 2022, 12, .	3.3	10
482	Woodâ€Đerived Monolithic Catalysts with the Ability of Activating Water Molecules for Oxygen Electrocatalysis. Small, 2022, 18, .	10.0	17
483	Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar, 2022, 4, .	12.6	65
484	Low-tortuosity, hierarchical porous structure Co ₃ O ₄ @carbonized wood integrated electrode for lithium-ion battery. Applied Physics Letters, 2022, 121, 063901.	3.3	3
485	Natureâ€Inspired 3D Spiral Grass Structured Graphene Quantum Dots/MXene Nanohybrids with Exceptional Photothermalâ€Driven Pseudoâ€Capacitance Improvement. Advanced Science, 2022, 9, .	11.2	14
486	Sustainability and Technical Performance of An Allâ€Organic Aqueous Sodiumâ€Ion Hybrid Supercapacitor. Batteries and Supercaps, 2022, 5, .	4.7	5
487	Optically Transparent Bamboo: Preparation, Properties, and Applications. Polymers, 2022, 14, 3234.	4.5	Ο

ARTICLE IF CITATIONS Strong and flame-retardant wood-based triboelectric nanogenerators toward self-powered building 488 6.0 10 fire protection. Materials Today Physics, 2022, 27, 100798. 489 Nanocarbon-based electrode materials applied for supercapacitors. Rare Metals, 2022, 41, 3957-3975. 7.1 Preparation and characterization of vacuum insulation panels with hybrid composite core materials 490 5.26 of bamboo and glass fiber. Industrial Crops and Products, 2022, 188, 115691. Construction of Polyaniline/Mno2 Core-Shell Nanocomposites in Carbonized Wood Tracheids for High-Performance Áll-Solid-State Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , . High Performance Supercapacitors Based on Wood-Derived Thick Carbon Electrodes Synthesized Via 492 0.4 0 Green Activation Process. SSRN Electronic Journal, 0, , . Carbonizationâ€free wood electrode with <scp>MXene</scp>â€reconstructed porous structure for 493 11.9 allâ€wood ecoâ€supercapacitors. EcoMat, 2023, 5, . Carboxylated graphene oxide nanosheets as efficient electrodes for high-performance 494 3.6 0 supercapacitors. Frontiers in Chemistry, 0, 10, . Insight into Cellulose Nanosizing for Advanced Electrochemical Energy Storage and Conversion: A 25.5 Review. Electrochemical Energy Reviews, 2022, 5, . Interfacial solar steam generation by wood-based devices to produce drinking water: a review. 496 16.2 28 Environmental Chemistry Letters, 2023, 21, 285-318. Construction of 3D Porous Carbon Frameworks for Supercapacitors: Abundant Pore Structure and 5.1 Proper Hydrophilicity. ACS Applied Energy Materials, 2022, 5, 12456-12466. Transparent wood-based functional materials via a top-down approach. Progress in Materials Science, 498 32.8 38 2023, 132, 101025. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized 499 6.0 <i>via</i> green activation process. Inorganic Chemistry Frontiers, 2022, 9, 6108-6123. Electrostatic self-assembly of MXene and carbon nanotube@MnO₂ multilevel hybrids for 500 achieving fast charge storage kinetics in aqueous asymmetric supercapacitors. Journal of Materials 10.3 4 Chemistry A, 2022, 10, 23886-23895. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, 4.1 54 and Perspectives. Nanomaterials, 2022, 12, 3708. Threeâ€dimensional nanoporous activated carbon electrode derived from acacia wood for 502 3.6 6 highâ€performance supercapacitor. Frontiers in Chemistry, 0, 10, . Selfâ€Promoting Energy Storage in Balsa Woodâ€Converted Porous Carbon Coupled with Carbon Nanotubes. Small, 2022, 18, . 504 Energy Storage Applications. Nanoscience and Technology, 2023, , 237-265. 1.50 A carbon fiber lamina electrode based on macroporous epoxy with vertical ion channels for 5.8 structural battery composites. Composite Structures, 2023, 304, 116425.

#	Article	IF	CITATIONS
506	Low-tortuosity carbon electrode derived from Wood@ZIF-67 for supercapacitor applications. Chemical Engineering Journal, 2023, 454, 140410.	12.7	25
507	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 2311-2348.	47.7	22
508	Wood-derived scaffolds decorating with nickel cobalt phosphate nanosheets and carbon nanotubes used as monolithic electrodes for assembling high-performance asymmetric supercapacitor. Chemical Engineering Journal, 2023, 454, 140453.	12.7	20
509	Separator Design for High-Performance Supercapacitors: Requirements, Challenges, Strategies, and Prospects. ACS Energy Letters, 2023, 8, 56-78.	17.4	16
510	Wood-derived density-adjustable hierarchical porous carbon frameworks for high-performance lithium-sulfur batteries. Materials Letters, 2023, 331, 133537.	2.6	2
511	Synchronized partial metal leaching and amphoteric N–P modification in MnO ₂ and VO _{<i>x</i>} pseudocapacitor beyond its energy density limit. Journal of Materials Chemistry A, 2023, 11, 676-690.	10.3	3
512	Improving the intrinsic conductivity of δ-MnO ₂ by indium doping for high-performance neutral aqueous sodium-ion supercapacitors with commercial-level mass-loading. Journal of Materials Chemistry A, 2023, 11, 2133-2144.	10.3	8
513	Hollow polyhedral MnCoNi-LDH derived from metal-organic frameworks for high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2023, 928, 117051.	3.8	5
514	Construction of hierarchical and porous cellulosic wood with high mechanical strength towards directional Evaporation-driven electrical generation. Chemical Engineering Journal, 2023, 455, 140568.	12.7	3
515	Metal Selenides Anode Materials for Sodium Ion Batteries: Synthesis, Modification, and Application. Small, 2023, 19, .	10.0	22
516	Unveiling electrical anisotropy of hierarchical pyrolytic biocarbons from wood cellulose. Journal of Materials Science, 2022, 57, 21980-21995.	3.7	2
517	Interface Engineering of Biomassâ€Derived Carbon used as Ultrahighâ€Energyâ€Density and Practical Massâ€Loading Supercapacitor Electrodes. Advanced Functional Materials, 2023, 33, .	14.9	29
518	Synthesis, characterization and electrochemical investigation on Nickel Manganese Oxide - Polybutylene Sebacate composite electrode of biodegradable nature for micro capacitor applications. Journal of the Indian Chemical Society, 2023, 100, 100896.	2.8	2
519	Synthetic porous carbons for clean energy storage and conversion. EnergyChem, 2023, 5, 100099.	19.1	6
520	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	14.9	66
521	Heterostructured Mo ₂ N–Mo ₂ C Nanoparticles Coupled with Nâ€Đoped Carbonized Wood to Accelerate the Hydrogen Evolution Reaction. Small Structures, 2023, 4, .	12.0	17
522	Effect of precursor selection on the structure and Li-storage properties of wood-based hard carbon thick electrodes. Industrial Crops and Products, 2023, 198, 116664.	5.2	6
523	Facile synthesis of dense porous carbon derived from Linum usitatissimum L. root for high mass loading supercapacitors. Journal of Energy Storage, 2023, 63, 107039.	8.1	8

#	Article	IF	CITATIONS
524	In situ growth of N/O-codoped carbon nanotubes in wood-derived thick carbon scaffold to boost the capacitive performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 131018.	4.7	22
525	Ultrahigh coulombic efficiency in alkali metal incorporated biomass derived carbon electrode. Journal of Electroanalytical Chemistry, 2023, 931, 117193.	3.8	5
526	A facile "thick to thin―strategy for integrating high volumetric energy density and excellent flexibility into MXene/wood free-standing electrode for supercapacitors. Chemical Engineering Journal, 2023, 460, 141733.	12.7	5
527	Recent Advancements and Perspectives of Biodegradable Polymers for Supercapacitors. Advanced Functional Materials, 2023, 33, .	14.9	11
528	Recent Progress and Future Directions of Biomass-Derived Hierarchical Porous Carbon: Designing, Preparation, and Supercapacitor Applications. Energy & Fuels, 2023, 37, 3523-3554.	5.1	28
529	Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 088801.	0.5	0
530	Recent advances in wood-based electrode materials for supercapacitors. Green Chemistry, 2023, 25, 3322-3353.	9.0	14
531	Modification of micro/nanoscaled manganese dioxide-based materials and their electrocatalytic applications toward oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 6688-6746.	10.3	13
532	High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Research, 2023, 16, 7696-7709.	10.4	16
533	Hydrangea-like NiCo-layered double hydroxide core-shell structure growing on licorice porous carbon for high-performance supercapacitors. Diamond and Related Materials, 2023, 135, 109876.	3.9	6
534	Woodâ€Derived Continuously Oriented Threeâ€Phase Interfacial Channels for Highâ€Performance Quasiâ€Solidâ€State Alkaline Zinc Batteries. Advanced Materials, 2023, 35, .	21.0	11
535	A review on the recent progress of the plant-based porous carbon materials as electrodes for high-performance supercapacitors. Journal of Materials Science, 2023, 58, 6516-6555.	3.7	9
536	3Dâ€Printed Graded Electrode with Ultrahigh MnO ₂ Loading for Nonâ€Aqueous Electrochemical Energy Storage. Advanced Energy Materials, 2023, 13, .	19.5	3
537	Layered double hydroxides as electrode materials for flexible energy storage devices. Journal of Semiconductors, 2023, 44, 041601.	3.7	26
538	Pivotal factors of wood-derived electrode for supercapacitor: Component striping, specific surface area and functional group at surface. Carbon, 2023, 210, 118090.	10.3	7
539	Simulation of a Transparent Wood-Based Surface Plasmon Resonance Sensor with Silver Nano Disks for Measuring the Refractive Index of Crude Oil. Plasmonics, 0, , .	3.4	0
540	A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors. Frontiers of Chemical Science and Engineering, 2023, 17, 1208-1220.	4.4	0
541	Graph Theory Design of 3D Printed Conductive Lattice Electrodes. Advanced Materials Technologies, 2023, 8, .	5.8	2

#	ARTICLE	IF	CITATIONS
543	Plant-inspired multi-environmentally adaptive, flexible, and washable solar steam generation fabric. Chemical Engineering Journal, 2023, 471, 144286.	12.7	1
544	Key Limitations of Biomass-Derived Carbon Nanostructures for Energy Application. Green Energy and Technology, 2023, , 75-97.	0.6	0
545	Metal Doped Nanostructures Derived from Biomass for Supercapacitor Applications: Effect of Doping on Cyclability. Green Energy and Technology, 2023, , 245-269.	0.6	0
546	Inspired by Wood: Thick Electrodes for Supercapacitors. ACS Nano, 2023, 17, 8866-8898.	14.6	38
547	Current scenario and future perspective of food waste into Li-ion based batteries—A critical review. Journal of Hazardous Materials Advances, 2023, 10, 100317.	3.0	0
548	Sustainable bacterial cellulose derived composites for high-efficiency hydrogen evolution reaction. International Journal of Biological Macromolecules, 2023, 242, 125173.	7.5	5
549	Facile synthesis of hierarchical porous carbon electrodes with 3D self-supporting structure and N/S self-doping for advanced energy storage device. Journal of Energy Storage, 2023, 72, 108218.	8.1	1
550	Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35, 108817.	9.0	3
551	Kuarternize Karboksimetil Selüloz Esaslı Farklı Ahşap Kaplamaların Antimikrobiyal ve Yüzey Özelliklerinin İncelenmesi. Bartın Orman Fakültesi Dergisi, 0, , .	0.3	0
552	Hierarchical porous carbons with honeycomb-like macrostructure derived from steamed-rice for high performance supercapacitors. Materials Today Sustainability, 2023, 24, 100480.	4.1	1
554	Intelligent designs from nature: Biomimetic applications in wood technology. Progress in Materials Science, 2023, 139, 101164.	32.8	6
555	MXene@ carbonized wood monolithic electrode with hierarchical porous framework for high-performance supercapacitors. Applied Surface Science, 2023, 638, 158130.	6.1	4
556	Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules, 2023, 28, 6377.	3.8	1
557	Target-modulated mineralization of wood channels as enzyme-free electrochemical sensors for detecting amyloid-Î ² species. Analytica Chimica Acta, 2023, 1279, 341759.	5.4	1
558	Carbon Dot/Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrid on Carbon Cloth as a Flexible and Binderâ€Free Supercapacitor Electrode with Commercial Scale Mass Loading. Energy Technology, 2023, 11, .	3.8	0
559	Wood Derived Flexible and Spongy Architectures for Advanced Electrochemical Energy Storage and Conversion. Advanced Sustainable Systems, 0, , .	5.3	0
560	Powerful puffing carbonization pretreatment prepared porous carbon for high-performance supercapacitors. Diamond and Related Materials, 2023, 139, 110369.	3.9	1
561	Cellulose supported and strengthened shear stiffening gel with enhanced impact-resistant performance. Chemical Engineering Journal, 2023, 473, 145435.	12.7	1

#	Article	IF	CITATIONS
562	Improving bifunctional catalytic activity of biochar via in-situ growth of nickel-iron hydroxide as cathodic catalyst for zinc-air batteries. Biochar, 2023, 5, .	12.6	2
563	Electrochemically Finely Regulated NiCo‣DH/NiCoOOH Nanostructured Films for Supercapacitors with Record High Mass Loading, Areal Capacity, and Energy Density. Advanced Functional Materials, 2023, 33, .	14.9	5
564	Graphene Synthesis from Organic Substrates: A Review. Industrial & Engineering Chemistry Research, 2023, 62, 17314-17327.	3.7	1
565	"In-N-out―design enabling high-content triethyl phosphate-based non-flammable and high-conductivity electrolytes for lithium-ion batteries. Science China Chemistry, 2024, 67, 724-731.	8.2	2
566	Wood-structured, hydrophilic, low-tortuosity thick electrode enables high-performance supercapacitor. Industrial Crops and Products, 2023, 205, 117507.	5.2	1
567	Advance of manganese dioxide-based electrocatalyst for water splitting. Journal of Solid State Chemistry, 2024, 329, 124369.	2.9	0
568	Perspectives of Wood-Inspired Electro-Fenton Catalysis for Energy-Efficient Wastewater Decontamination. Energy & Fuels, 0, , .	5.1	1
569	Bamboo-based self-supporting electrodes via green activation for high-performance supercapacitors. Diamond and Related Materials, 2023, 140, 110521.	3.9	1
570	Facile synthesis of O and P co-doped hierarchical porous carbon nanosheets from biomass for high-performance supercapacitors. Diamond and Related Materials, 2023, 140, 110531.	3.9	0
571	One-step fabrication of N/O self-doped porous carbon derived from 2-MelM for high-performance supercapacitor electrode. Journal of Energy Storage, 2023, 74, 109263.	8.1	1
572	Bioâ€Derived Woodâ€Based Gas Diffusion Electrode for Highâ€Performance Aluminum–Air Batteries: Insights into Pore Structure. Advanced Materials Interfaces, 2024, 11, .	3.7	0
573	Flexible wood-based triboelectric nanogenerator for versatile self-powered sensing. Sustainable Materials and Technologies, 2023, 38, e00771.	3.3	0
574	New Emerging Fast Charging Microscale Electrode Materials. Small, 0, , .	10.0	0
575	N-doped porous carbon network anchoring on hollow wooden carbon fibers for high-performance electrode materials in supercapacitors. Biomass Conversion and Biorefinery, 0, , .	4.6	1
576	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0
577	Oleaster (Elaeagnus angustifolia L.) fruit peel as a novel natural separator in supercapacitors. Journal of Industrial and Engineering Chemistry, 2024, 132, 212-219.	5.8	0
578	All Plantâ€Based Compact Supercapacitor in Living Plants. Small, 0, , .	10.0	0
579	Coâ€Adjusting dâ€Band Center of Fe to Accelerate Proton Coupling for Efficient Oxygen Electrocatalysis. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
580	Wood-derived freestanding integrated electrode with robust interface-coupling effect boosted bifunctionality for rechargeable zinc-air batteries. Green Energy and Environment, 2023, , .	8.7	0
581	Efficient Nobleâ€Metalâ€Free Integration Electrolysis for Solar H ₂ and Supercapacitor Electrode Coproduction in Acidic Water. ChemSusChem, 0, , .	6.8	1
582	Bioactive and Biodegradable Supercapacitors: Recent Advances, Challenges, and Future Perspectives. , 2023, , 240-261.		0
583	Recent advances in hydrophobic nanocellulose aerogels for oil spill applications: A review. Marine Pollution Bulletin, 2024, 199, 116024.	5.0	0
584	Rise of wood-based catalytic electrodes for large-scale hydrogen production. Materials Chemistry Frontiers, 2024, 8, 1591-1610.	5.9	0
585	A review of fiber-based supercapacitors and sensors for energy-autonomous systems. Journal of Power Sources, 2024, 595, 234069.	7.8	2
586	A critical review of recent advancements in high-temperature supercapacitors: Thermal kinetics, interfacial dynamics, employed strategies, and prospective trajectories. Energy Storage Materials, 2024, 66, 103217.	18.0	1
587	Heterostructures of NiFe-MOF/PBAs with high-performance supercapacitors obtained by compounding Prussian blue analogues on bimetallic organic frames. Electrochimica Acta, 2024, 476, 143749.	5.2	0
588	Chitosan modified graphene oxide with MnO2 deposition for high energy density flexible supercapacitors. International Journal of Biological Macromolecules, 2024, 259, 129223.	7.5	0
589	High-performance supercapacitors based on self-supporting thick carbon electrodes from renewable biomass wood. Sustainable Materials and Technologies, 2024, 40, e00824.	3.3	0
590	Efficient electro-demulsification of O/W emulsions and simultaneous oil removal enabled by a multiscale porous biocarbon electrode. Chemical Engineering Journal, 2024, 481, 148655.	12.7	0
591	Structural designs of advanced wood-based thick electrodes for high-performance eco-supercapacitors. Nano Today, 2024, 55, 102154.	11.9	0
592	Soil-Powered Computing. , 2023, 7, 1-40.		0
593	Hydrothermal regulation of MnO2 on a wood-based RGO composite for achieving wide voltage windows and high energy density supercapacitors. IScience, 2024, 27, 109228.	4.1	0
594	Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. Nano-Micro Letters, 2024, 16, .	27.0	0
595	Nanoarchitectonics of self-supporting porous carbon electrode with heteroatoms co-doped: For high-performance supercapacitors. Journal of Energy Storage, 2024, 85, 111048.	8.1	0
596	Fabrication of nickel ferrite@MWCNTs for super-capacitor applications. Journal of Applied Electrochemistry, 0, , .	2.9	0
597	A robust, biodegradable and recyclable all-cellulose ionogel from low-value wood. Chemical Engineering Journal, 2024, 486, 150121.	12.7	0

#	Article	IF	CITATIONS
598	Cellulose nanofiber-coated delignified wood as an efficient filter for microplastic removal. Progress in Natural Science: Materials International, 2024, 34, 162-171.	4.4	0
599	Biohybrid Energy Storage Circuits Based on Electronically Functionalized Plant Roots. ACS Applied Materials & Interfaces, 0, , .	8.0	0
601	Use of carbon-based advanced materials for energy conversion and storage applications: Recent Development and Future Outlook. Fuel, 2024, 367, 131295.	6.4	0
602	Efficient fabrication of anisotropic regenerated cellulose films from bamboo via a facile wet extrusion strategy. International Journal of Biological Macromolecules, 2024, 265, 130966.	7.5	0