Automatic Detection and Classification of Colorectal Po CNN Features From Nonmedical Domain

IEEE Journal of Biomedical and Health Informatics 21, 41-47 DOI: 10.1109/jbhi.2016.2635662

Citation Report

#	Article	IF	CITATIONS
1	Smart healthcare: Cloud-enabled body sensor networks. , 2017, , .		11
2	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	7.0	7,976
3	Detection of Malignant Melanomas in Dermoscopic Images Using Convolutional Neural Network with Transfer Learning. Communications in Computer and Information Science, 2017, , 404-414.	0.4	8
4	Computer-aided diagnosis for colonoscopy. Endoscopy, 2017, 49, 813-819.	1.0	130
5	Automatic colon polyp detection using Convolutional encoder-decoder model. , 2017, , .		16
6	Gastric precancerous diseases classification using CNN with a concise model. PLoS ONE, 2017, 12, e0185508.	1.1	50
7	Wire Defect Recognition of Spring-Wire Socket Using Multitask Convolutional Neural Networks. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 689-698.	1.4	57
8	Colorectal Polyp Detection Using Feedforward Neural Network with Image Feature Selection. , 2018, , .		1
9	Features Representation for Flue-cured Tobacco Grading Based on Transfer Learning to Hard Sample. , 2018, , .		5
10	Combining Gaussian Mixture Model and HSV Model with Deep Convolution Neural Network for Detecting Smoke in Videos. , 2018, , .		4
11	Classification of Polyps in Capsule Endoscopic Images using CNN. , 2018, , .		4
12	Polyp Segmentation in Colonoscopy Images Using Fully Convolutional Network. , 2018, 2018, 69-72.		123
13	Transfer Learning with Convolutional Neural Network for Early Gastric Cancer Classification on Magnifiying Narrow-Band Imaging Images. , 2018, , .		17
14	Investigating Cross-Dataset Abnormality Detection in Endoscopy with A Weakly-Supervised Multiscale Convolutional Neural Network. , 2018, , .		5
15	RIIS-DenseNet: Rotation-Invariant andÂlmage Similarity Constrained Densely Connected Convolutional Network for Polyp Detection. Lecture Notes in Computer Science, 2018, , 620-628.	1.0	12
16	Automatic Detection of Early Esophageal Cancer with CNNS Using Transfer Learning. , 2018, , .		18
17	Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification. IEEE Transactions on Medical Imaging, 2018, 37, 2196-2210.	5.4	140
18	Deep learning for image-based cancer detection and diagnosis â~' A survey. Pattern Recognition, 2018, 83, 134-149.	5.1	353

TATION RED

#	Article	IF	CITATIONS
19	Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker. Pattern Recognition, 2018, 83, 209-219.	5.1	122
20	Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Scientific Reports, 2018, 8, 7497.	1.6	110
21	TriZ-a rotation-tolerant image feature and its application in endoscope-based disease diagnosis. Computers in Biology and Medicine, 2018, 99, 182-190.	3.9	15
22	Classification of Tumor Epithelium and Stroma by Exploiting Image Features Learned by Deep Convolutional Neural Networks. Annals of Biomedical Engineering, 2018, 46, 1988-1999.	1.3	58
23	An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets. Computerized Medical Imaging and Graphics, 2019, 77, 101645.	3.5	34
24	An Adaptive Regularization Approach to Colonoscopic Polyp Detection Using a Cascaded Structure of Encoder–Decoders. International Journal of Fuzzy Systems, 2019, 21, 2091-2101.	2.3	4
25	Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do?. Medicina (Lithuania), 2019, 55, 473.	0.8	34
26	Artificial Intelligence-Based Classification of Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. Journal of Clinical Medicine, 2019, 8, 986.	1.0	52
27	Colonic Polyp Detection in Endoscopic Videos With Single Shot Detection Based Deep Convolutional Neural Network. IEEE Access, 2019, 7, 75058-75066.	2.6	47
28	Transfer and Association: A Novel Detection Method for Targets without Prior Homogeneous Samples. Remote Sensing, 2019, 11, 1492.	1.8	1
29	Polyp Segmentation using Generative Adversarial Network. , 2019, 2019, 7201-7204.		14
30	Review of Classification Techniques Using Deep Learning for Colorectal Cancer Imaging Modalities. , 2019, , .		5
31	Transferring Ensemble Representations Using Deep Convolutional Neural Networks for Small-Scale Image Classification. IEEE Access, 2019, 7, 168175-168186.	2.6	15
32	Review on the Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images. IEEE Access, 2019, 7, 142053-142069.	2.6	64
33	Cats or CAT scans: Transfer learning from natural or medical image source data sets?. Current Opinion in Biomedical Engineering, 2019, 9, 21-27.	1.8	35
34	Augmentation of CBCT Reconstructed From Under-Sampled Projections Using Deep Learning. IEEE Transactions on Medical Imaging, 2019, 38, 2705-2715.	5.4	52
35	Real-time gastric polyp detection using convolutional neural networks. PLoS ONE, 2019, 14, e0214133.	1.1	86
36	HIC-net: A deep convolutional neural network model for classification of histopathological breast images. Computers and Electrical Engineering, 2019, 76, 299-310.	3.0	40

#	Article	IF	CITATIONS
37	HUMAN INDUCED PLURIPOTENT STEM CELL REGION DETECTION IN BRIGHT-FIELD MICROSCOPY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS. Biomedical Engineering - Applications, Basis and Communications, 2019, 31, 1950009.	0.3	7
38	Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning. Journal of Biophotonics, 2019, 12, e201800435.	1.1	39
39	Deep Learning Applications to Cytopathology: A Study on the Detection of Malaria and on the Classification of Leukaemia Cell-Lines. Smart Innovation, Systems and Technologies, 2019, , 219-257.	0.5	5
40	Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medical Image Analysis, 2019, 54, 280-296.	7.0	545
41	Rectal cancer: Toward fully automatic discrimination of T2 and T3 rectal cancers using deep convolutional neural network. International Journal of Imaging Systems and Technology, 2019, 29, 247-259.	2.7	21
42	Optical Diagnosis of Colorectal Polyps: Recent Developments. Current Treatment Options in Gastroenterology, 2019, 17, 99-114.	0.3	18
43	Automatic colon polyp classification using Convolutional Neural Network: A Case Study at Basque Country. , 2019, , .		11
44	Deep Learning and Automatic Polyp Detection in Colonoscopies: a Review of Recent Contributions and Future Outlook. , 2019, , .		2
45	Polyp Location in Colonoscopy Based on Deep Learning. , 2019, , .		4
46	Upper gastrointestinal anatomy detection with multiâ€ŧask convolutional neural networks. Healthcare Technology Letters, 2019, 6, 176-180.	1.9	13
47	Abnormality Detection in the Renal Ultrasound Images using Ensemble MSVM Model. , 2019, , .		3
48	Machine learning for computer-aided polyp detection using wavelets and content-based image. , 2019, 2019, 961-965.		3
49	Image Features for Automated Colorectal Polyp Classification Based on Clinical Prediction Models. , 2019, , .		3
50	Automated abnormality detection in lower extremity radiographs using deep learning. Nature Machine Intelligence, 2019, 1, 578-583.	8.3	47
51	Look-behind fully convolutional neural network for computer-aided endoscopy. Biomedical Signal Processing and Control, 2019, 49, 192-201.	3.5	43
52	Prostate cancer classification with multiparametric MRI transfer learning model. Medical Physics, 2019, 46, 756-765.	1.6	98
53	Deep learning in medical imaging and radiation therapy. Medical Physics, 2019, 46, e1-e36.	1.6	513
54	Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm. Journal of Medical Systems, 2019, 43, <u>2</u> .	2.2	91

#	Article	IF	Citations
55	Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions. The Lancet Gastroenterology and Hepatology, 2019, 4, 71-80.	3.7	142
56	Analysing the power of deep learning techniques over the traditional methods using medicare utilisation and provider data. Journal of Experimental and Theoretical Artificial Intelligence, 2019, 31, 99-115.	1.8	14
57	Automatic CIN Grades Prediction of Sequential Cervigram Image Using LSTM With Multistate CNN Features. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 844-854.	3.9	26
58	Improving Automatic Polyp Detection Using CNN by Exploiting Temporal Dependency in Colonoscopy Video. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 180-193.	3.9	74
59	Weakly supervised multilabel classification for semantic interpretation of endoscopy video frames. Evolving Systems, 2020, 11, 409-421.	2.4	10
60	Densely Connected Neural Network With Unbalanced Discriminant and Category Sensitive Constraints for Polyp Recognition. IEEE Transactions on Automation Science and Engineering, 2020, 17, 574-583.	3.4	26
61	A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artificial Intelligence Review, 2020, 53, 2635-2707.	9.7	34
64	Application of Deep Learning for Early Screening of Colorectal Precancerous Lesions under White Light Endoscopy. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-8.	0.7	11
65	WCE polyp detection with triplet based embeddings. Computerized Medical Imaging and Graphics, 2020, 86, 101794.	3.5	16
66	A comprehensive review of deep learning in colon cancer. Computers in Biology and Medicine, 2020, 126, 104003.	3.9	125
67	Pathological Image Classification Based on Hard Example Guided CNN. IEEE Access, 2020, 8, 114249-114258.	2.6	7
68	Fine-tuning of pre-trained convolutional neural networks for diabetic retinopathy screening: a clinical study. International Journal of Computational Science and Engineering, 2020, 21, 564.	0.4	2
69	Polyp detection using CNNs in colonoscopy video. IET Computer Vision, 2020, 14, 241-247.	1.3	20
70	Screening for Barrett's Esophagus with Probe-Based Confocal Laser Endomicroscopy Videos. , 2020, 2020, 1659-1663.		4
71	An automated detection system for colonoscopy images using a dual encoder-decoder model. Computerized Medical Imaging and Graphics, 2020, 84, 101763.	3.5	5
72	An online deep convolutional polyp lesion prediction over Narrow Band Imaging (NBI). , 2020, 2020, 2412-2415.		5
73	Multi-Granular Semantic Analysis Based on Nasal Endoscopic Video. IEEE Access, 2020, 8, 158317-158326.	2.6	0
74	A CNN CADx System for Multimodal Classification of Colorectal Polyps Combining WL, BLI, and LCI Modalities. Applied Sciences (Switzerland), 2020, 10, 5040.	1.3	17

	Сіта	CITATION REPORT	
#	Article	IF	Citations
75	Machine Learningâ€Enabled Smart Sensor Systems. Advanced Intelligent Systems, 2020, 2, 2000063.	3.3	83
76	Endoscopy-Driven Pretraining for Classification of Dysplasia in Barrett's Esophagus with Endoscopic Narrow-Band Imaging Zoom Videos. Applied Sciences (Switzerland), 2020, 10, 3407.	1.3	6
77	Improving CNN training on endoscopic image data by extracting additionally training data from endoscopic videos. Computerized Medical Imaging and Graphics, 2020, 86, 101798.	3.5	1
78	Automatic Polyp Recognition in Colonoscopy Images Using Deep Learning and Two-Stage Pyramidal Feature Prediction. IEEE Transactions on Automation Science and Engineering, 2020, , 1-15.	3.4	34
79	Deep learning for the identification of bruised apples by fusing 3D deep features for apple grading systems. Mechanical Systems and Signal Processing, 2020, 145, 106922.	4.4	50
80	Diagnosis of Coronavirus Disease 2019 (COVID-19) With Structured Latent Multi-View Representation Learning. IEEE Transactions on Medical Imaging, 2020, 39, 2606-2614.	5.4	192
81	Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network. Annals of Translational Medicine, 2020, 8, 486-486.	0.7	42
82	Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning. Journal of Clinical Medicine, 2020, 9, 1593.	1.0	33
83	Colorectal Disease Classification Using Efficiently Scaled Dilation in Convolutional Neural Network. IEEE Access, 2020, 8, 99227-99238.	2.6	36
84	Diagnosing Colorectal Polyps in the Wild with Capsule Networks. , 2020, , .		5
85	Deep learning for heterogeneous medical data analysis. World Wide Web, 2020, 23, 2715-2737.	2.7	44
86	Transfer learning for informative-frame selection in laryngoscopic videos through learned features. Medical and Biological Engineering and Computing, 2020, 58, 1225-1238.	1.6	27
87	Adenocarcinoma Recognition in Endoscopy Images Using Optimized Convolutional Neural Networks. Applied Sciences (Switzerland), 2020, 10, 1650.	1.3	13
88	EEG Functional Connection Analysis Based on the Weight Distribution of Convolutional Neural Network. IEEE Access, 2020, , 1-1.	2.6	1
89	Artificial Intelligence and Polyp Detection. Current Treatment Options in Gastroenterology, 2020, 18, 120-136.	0.3	30
90	Gated recurrent unit-based heart sound analysis for heart failure screening. BioMedical Engineering OnLine, 2020, 19, 3.	1.3	25
91	Automated Classification for Visual-Only Postmortem Inspection of Porcine Pathology. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1005-1016.	3.4	9
92	Kudo's Classification for Colon Polyps Assessment Using a Deep Learning Approach. Applied Science (Switzerland), 2020, 10, 501.	S 1.3	27

#	Article	IF	CITATIONS
93	Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomedical Signal Processing and Control, 2020, 60, 101978.	3.5	26
94	Intelligent analysis of coronal alignment in lower limbs based on radiographic image with convolutional neural network. Computers in Biology and Medicine, 2020, 120, 103732.	3.9	18
95	Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482091065.	1.4	90
96	Deep Neural Networks approaches for detecting and classifying colorectal polyps. Neurocomputing, 2021, 423, 721-734.	3.5	65
97	Deep Ensemble Feature Network for Gastric Section Classification. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 77-87.	3.9	12
98	Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN). International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 583-594.	2.7	47
99	Effective and efficient classification of gastrointestinal lesions: combining data preprocessing, feature weighting, and improved ant lion optimization. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 8683-8698.	3.3	12
100	Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Digestive Endoscopy, 2021, 33, 242-253.	1.3	21
101	Deep Reinforcement Learning for Weakly-Supervised Lymph Node Segmentation in CT Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 774-783.	3.9	21
102	Deep learning system for Meyerding classification and segmental motion measurement in diagnosis of lumbar spondylolisthesis. Biomedical Signal Processing and Control, 2021, 65, 102371.	3.5	10
103	Comparison of deep learning and conventional machine learning methods for classification of colon polyp types. The EuroBiotech Journal, 2021, 5, 34-42.	0.5	1
104	Artificial intelligence for identification and characterization of colonic polyps. Therapeutic Advances in Gastrointestinal Endoscopy, 2021, 14, 263177452110146.	1.2	7
105	Unified Analysis Specific to the Medical Field in the Interpretation of Medical Images through the Use of Deep Learning. E-health Telecommunication Systems and Networks, 2021, 10, 41-74.	0.7	5
106	Automated Classification and Segmentation in Colorectal Images Based on Self-Paced Transfer Network. BioMed Research International, 2021, 2021, 1-7.	0.9	13
107	Advanced Endoscopic Imaging Methods. , 2021, , 409-419.		0
108	Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Computer Science, 2021, 179, 423-431.	1.2	169
109	Artificial Intelligence for Disease Identification and Diagnosis. Internet of Things, 2021, , 175-195.	1.3	1
110	Recent Advances in Intelligent Imaging Systems for Early Prediction of Colorectal Cancer: A Perspective. Algorithms for Intelligent Systems, 2021, , 39-61.	0.5	2

#	Article	IF	CITATIONS
111	New polyp image classification technique using transfer learning of network-in-network structure in endoscopic images. Scientific Reports, 2021, 11, 3605.	1.6	9
112	Medical Image Classification Algorithm Based on Visual Attention Mechanism-MCNN. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	14
113	Automated detection of colorectal tumors based on artificial intelligence. BMC Medical Informatics and Decision Making, 2021, 21, 33.	1.5	6
114	Deep learning systems detect dysplasia with human-like accuracy using histopathology and probe-based confocal laser endomicroscopy. Scientific Reports, 2021, 11, 5086.	1.6	12
115	Artificial Intelligence in Colorectal Polyp Detection and Characterization. International Journal of Clinical Research & Trials, 2021, 6, .	1.6	5
116	Application of Deep Convulational Neural Network in Medical Image Classification. , 2021, , .		4
117	A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis, 2021, 69, 101985.	7.0	128
118	Colorectal Histology Tumor Detection Using Ensemble Deep Neural Network. Engineering Applications of Artificial Intelligence, 2021, 100, 104202.	4.3	55
119	The Role and Impact of Deep Learning Methods in Computer-Aided Diagnosis Using Gastrointestinal Endoscopy. Diagnostics, 2021, 11, 694.	1.3	12
120	Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Current Oncology, 2021, 28, 1581-1607.	0.9	78
121	Colon tumor localization using three input variants to Faster Regionâ€based Convolutional Neural Network and lazy snapping. International Journal of Imaging Systems and Technology, 2021, 31, 2123-2135.	2.7	0
122	EFAG-CNN: Effectively fused attention guided convolutional neural network for WCE image classification. , 2021, , .		2
123	Application of Artificial Intelligence in the Detection and Characterization of Colorectal Neoplasm. Gut and Liver, 2021, 15, 346-353.	1.4	3
124	Deep Learning Models for Colorectal Polyps. Information (Switzerland), 2021, 12, 245.	1.7	7
125	Utility of artificial intelligence in colonoscopy. Artificial Intelligence in Gastrointestinal Endoscopy, 2021, 2, 79-88.	0.2	0
126	Progress and prospects of artificial intelligence in colonoscopy. Artificial Intelligence in Gastrointestinal Endoscopy, 2021, 2, 63-70.	0.2	0
127	Utility of artificial intelligence in colonoscopy. Artificial Intelligence in Gastrointestinal Endoscopy, 2021, 2, 78-87.	0.2	0
128	Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches. Computer Methods and Programs in Biomedicine, 2021, 206, 106114.	2.6	24

#	Article	IF	CITATIONS
129	Extreme random forest method for machine fault classification. Measurement Science and Technology, 2021, 32, 114006.	1.4	8
130	Multi-state colposcopy image fusion for cervical precancerous lesion diagnosis using BF-CNN. Biomedical Signal Processing and Control, 2021, 68, 102700.	3.5	10
131	Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives. Neurocomputing, 2021, 444, 92-110.	3.5	143
132	Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images. Diagnostics, 2021, 11, 1373.	1.3	7
133	Lite-Deep : Improved Auto Encoder-Decoder for Polyp Segmentation. , 2021, , .		0
135	Synergy-Net: Artificial Intelligence at theÂService of Oncological Prevention. Intelligent Systems Reference Library, 2022, , 389-424.	1.0	0
136	A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis. Archives of Computational Methods in Engineering, 2022, 29, 2043-2070.	6.0	68
137	White matter structural connectivity as a biomarker for detecting juvenile myoclonic epilepsy by transferred deep convolutional neural networks with varying transfer rates. Journal of Neural Engineering, 2021, 18, 056053.	1.8	4
138	The role of artificial intelligence in cancer diagnostics - a review. Journal of Education, Health and Sport, 2021, 11, 113-122.	0.0	1
139	Deep adversarial domain adaptation for breast cancer screening from mammograms. Medical Image Analysis, 2021, 73, 102147.	7.0	13
140	Automatic polyp detection and segmentation using shuffle efficient channel attention network. AEJ - Alexandria Engineering Journal, 2022, 61, 917-926.	3.4	21
141	Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning. IEEE Access, 2021, 9, 631-640.	2.6	12
142	Al-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices. Npj Digital Medicine, 2020, 3, 73.	5.7	27
143	Application of Artificial Intelligence in Gastrointestinal Endoscopy. Journal of Clinical Gastroenterology, 2021, 55, 110-120.	1.1	12
144	On the Exploitation of Temporal Redundancy to Improve Polyp Detection in Colonoscopy. , 2020, , .		1
145	Fisher encoding of convolutional neural network features for endoscopic image classification. Journal of Medical Imaging, 2018, 5, 1.	0.8	14
146	Generalization error analysis: deep convolutional neural network in mammography. , 2018, , .		2
147	Compression of deep convolutional neural network for computer-aided diagnosis of masses in digital breast tomosynthesis. , 2018, , .		1

#	Article	lF	CITATIONS
148	Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. , 2018, , .		9
149	Automatic detection and segmentation of adenomatous colorectal polyps during colonoscopy using Mask R-CNN. Open Life Sciences, 2020, 15, 588-596.	0.6	13
150	Automated Diagnosis of Various Gastrointestinal Lesions Using a Deep Learning–Based Classification and Retrieval Framework With a Large Endoscopic Database: Model Development and Validation. Journal of Medical Internet Research, 2020, 22, e18563.	2.1	16
151	Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. World Journal of Gastroenterology, 2020, 26, 5090-5100.	1.4	28
152	Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World Journal of Gastroenterology, 2020, 26, 5606-5616.	1.4	20
153	Overview of Deep Learning in Gastrointestinal Endoscopy. Gut and Liver, 2019, 13, 388-393.	1.4	132
154	Lesion-Based Convolutional Neural Network in Diagnosis of Early Gastric Cancer. Clinical Endoscopy, 2020, 53, 127-131.	0.6	24
155	Convolutional Neural Network Technology in Endoscopic Imaging: Artificial Intelligence for Endoscopy. Clinical Endoscopy, 2020, 53, 117-126.	0.6	41
156	Deep Learning Algorithms for Detection and Classification of Gastrointestinal Diseases. Complexity, 2021, 2021, 1-12.	0.9	20
157	The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation. Surgical Endoscopy and Other Interventional Techniques, 2021, , 1.	1.3	6
158	Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions. World Journal of Gastroenterology, 2021, 27, 6399-6414.	1.4	14
159	Self-Organizing Map based Feature Learning in Bio-Signal Processing. Advances in Science, Technology and Engineering Systems, 2017, 2, 505-512.	0.4	0
160	Computer-Aided Diagnosis in Colorectal Cancer: Current Concepts and Future Prospects. Journal of Interdisciplinary Medicine, 2017, 2, 245-249.	0.1	1
161	Robust Prototypical Networks for Small-Intestine Polyp Recognition in Wireless Capsule Endoscopy Images. , 2019, , .		0
162	Utilizing deep learning technology to develop a novel CT image marker for categorizing cervical cancer patients at early stage. , 2019, , .		3
163	Classification of Cotton and Flax Fiber Images Based on Inductive Transfer Learning. Lecture Notes in Networks and Systems, 2020, , 865-871.	0.5	0
164	A CNN-based Cleanliness Evaluation for Bowel Preparation in Colonoscopy. , 2019, , .		2
165	Bladder Tumor Grading and Staging Prediction of Magnetic Resonance Imaging Based on Transfer Learning. , 2019, , .		0

		15	0
#	ARTICLE	IF	CITATIONS
166	polyps. World Chinese Journal of Digestology, 2021, 29, 1201-1206.	0.0	1
167	Real-time landmark detection for precise endoscopic submucosal dissection via shape-aware relation network. Medical Image Analysis, 2022, 75, 102291.	7.0	4
168	Scope of Artificial Intelligence in Gastrointestinal Oncology. Cancers, 2021, 13, 5494.	1.7	9
169	A Review on Multi-organ Cancer Detection Using Advanced Machine Learning Techniques. Current Medical Imaging, 2021, 17, 686-694.	0.4	11
170	Wearable Sensors and Deep Learning for the Management of Acute Pancreatitis in Precision Medicine. , 2021, , .		0
171	Ensembles of Deep Learning Framework for Stomach Abnormalities Classification. Computers, Materials and Continua, 2022, 70, 4357-4372.	1.5	1
172	Application of Convolutional Neural Networks in Gastrointestinal and Liver Cancer Images: A Systematic Review. Intelligent Systems Reference Library, 2020, , 183-211.	1.0	0
174	Machine Intelligent Techniques for COVID-19 Detection: A Critical Review and Analysis. , 2021, , .		0
175	Detecting colon polyps in endoscopic images using artificial intelligence constructed with automated collection of annotated images from an endoscopy reporting system. Digestive Endoscopy, 2022, 34, 1021-1029.	1.3	3
176	The role of artificial intelligence in colon polyps detection. Gastroenterology and Hepatology From Bed To Bench, 2020, 13, 191-199.	0.6	1
177	Application of artificial intelligence to the diagnosis and therapy of colorectal cancer. American Journal of Cancer Research, 2020, 10, 3575-3598.	1.4	14
178	Nodules detection by deep convolutional neural network and its application. , 2021, , .		0
179	Semi-Supervised Learning and Deep Neural Network on Detection of Roadway Cracking Using Unmanned Aerial System Imagery. SSRN Electronic Journal, 0, , .	0.4	0
180	Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2075-2085.	3.9	30
181	Dilated CNN for abnormality detection in wireless capsule endoscopy images. Soft Computing, 2022, 26, 1231-1247.	2.1	31
182	Convolutionalâ€capsule network for gastrointestinal endoscopy image classification. International Journal of Intelligent Systems, 2022, 37, 5796-5815.	3.3	17
183	Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning. Journal of Biophotonics, 2022, 15, e202100349.	1.1	9
184	Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Informatics in Medicine Unlocked, 2022, 29, 100911.	1.9	15

#	Article	IF	Citations
185	Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Current Oncology, 2022, 29, 1773-1795.	0.9	26
186	Polyp detection in video colonoscopy using deep learning. Journal of Intelligent and Fuzzy Systems, 2022, 43, 1751-1759.	0.8	2
187	Colorectal polyp classification using confidence-calibrated convolutional neural networks. , 2022, , .		6
188	Transfer learning for medical images analyses: A survey. Neurocomputing, 2022, 489, 230-254.	3.5	60
189	Exploring Optimised Capsule Network on Complex Images for Medical Diagnosis. , 2021, , .		4
190	Artificial intelligence-assisted colonoscopy: A review of current state of practice and research. World Journal of Gastroenterology, 2021, 27, 8103-8122.	1.4	30
191	Transfer learning for medical image classification: a literature review. BMC Medical Imaging, 2022, 22, 69.	1.4	181
192	Detection and Classification of Colorectal Polyp Using Deep Learning. BioMed Research International, 2022, 2022, 1-9.	0.9	17
193	Adaptive aggregation with selfâ€attention network for gastrointestinal image classification. IET Image Processing, 2022, 16, 2384-2397.	1.4	9
194	Computer-Aided Image Enhanced Endoscopy Automated System to Boost Polyp and Adenoma Detection Accuracy. Diagnostics, 2022, 12, 968.	1.3	1
195	Automatic Polyp Detection by Combining Conditional Generative Adversarial Network and Modified You-Only-Look-Once. IEEE Sensors Journal, 2022, 22, 10841-10849.	2.4	11
196	An Ensemble-Based Deep Convolutional Neural Network for Computer-Aided Polyps Identification From Colonoscopy. Frontiers in Genetics, 2022, 13, 844391.	1.1	18
197	The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we going. GastroenterologÃa Y HepatologÃa, 2023, 46, 203-213.	0.2	1
198	A deep ensemble learning method for colorectal polyp classification with optimized network parameters. Applied Intelligence, 2023, 53, 2410-2433.	3.3	20
199	Non-optical polyp-based resect and discard strategy: A prospective clinical study. World Journal of Gastroenterology, 2022, 28, 2137-2147.	1.4	2
200	A Survey on the Applications of Image Classification Based on Convolution Neural Network. , 2022, , .		2
201	Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy. Clinical Endoscopy, 2022, 55, 594-604.	0.6	7
202	Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases. Sensors, 2022, 22, 4079.	2.1	27

#	Article	IF	CITATIONS
203	An end-to-end tracking method for polyp detectors in colonoscopy videos. Artificial Intelligence in Medicine, 2022, 131, 102363.	3.8	6
204	Efficient Bag of Deep Visual Words Based features to classify CRC Images for Colorectal Tumor Diagnosis. , 2022, , .		25
205	Diagnostic Accuracy of Artificial Intelligence for Detecting Gastroenterological Pathologies: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
206	Diabetic retinopathy screening using improved support vector domain description: a clinical study. Soft Computing, 0, , .	2.1	0
207	Stage-independent biomarkers for Alzheimer's disease from the living retina: an animal study. Scientific Reports, 2022, 12, .	1.6	7
208	UC-NfNet: Deep learning-enabled assessment of ulcerative colitis from colonoscopy images. Medical Image Analysis, 2022, 82, 102587.	7.0	10
209	FFCNet: Fourier Transform-Based Frequency Learning andÂComplex Convolutional Network forÂColon Disease Classification. Lecture Notes in Computer Science, 2022, , 78-87.	1.0	4
210	Explainable Multitask Shapley Explanation Networks for Real-Time Polyp Diagnosis in Videos. IEEE Transactions on Industrial Informatics, 2023, 19, 7780-7789.	7.2	3
211	A CAD System forÂReal-Time Characterization ofÂNeoplasia inÂBarrett's Esophagus NBI Videos. Lecture Notes in Computer Science, 2022, , 89-98.	1.0	2
212	Robust Colorectal Polyp Characterization Using aÂHybrid Bayesian Neural Network. Lecture Notes in Computer Science, 2022, , 108-117.	1.0	1
213	A Bounding-Box Regression Model for Colorectal Tumor Detection in CT Images Via Two Contrary Networks. , 2022, , .		2
214	Comprehensive review of publicly available colonoscopic imaging databases for artificial intelligence research: availability, accessibility, and usability. Gastrointestinal Endoscopy, 2023, 97, 184-199.e16.	0.5	10
215	Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network. Applied Intelligence, 2023, 53, 12632-12646.	3.3	3
216	Attention augmented residual autoencoder for efficient polyp segmentation. International Journal of Imaging Systems and Technology, 0, , .	2.7	0
217	Colon cancer stage detection in colonoscopy images using YOLOv3 MSF deep learning architecture. Biomedical Signal Processing and Control, 2023, 80, 104283.	3.5	6
218	Diagnostic accuracy of artificial intelligence for detecting gastrointestinal luminal pathologies: A systematic review and meta-analysis. Frontiers in Medicine, 0, 9, .	1.2	1
219	Gastrointestinal tract disease recognition based on denoising capsule network. Cogent Engineering, 2022, 9, .	1.1	4
220	Highlight removal for endoscopic images based on accelerated adaptive non-convex RPCA decomposition. Computer Methods and Programs in Biomedicine, 2023, 228, 107240.	2.6	2

#	Article	IF	CITATIONS
221	Classification of Colorectal Cancer Polyps via Transfer Learning and Vision-Based Tactile Sensing. , 2022, , .		9
222	Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis. Frontiers in Oncology, 0, 12, .	1.3	3
223	Spatio-temporal classification for polyp diagnosis. Biomedical Optics Express, 2023, 14, 593.	1.5	1
224	Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach. Frontiers in Genetics, 0, 13, .	1.1	8
225	Applications of Artificial Intelligence in Medical Images Analysis. EAI/Springer Innovations in Communication and Computing, 2023, , 287-308.	0.9	0
226	Al Tools Offering Cancer Clinical Applications for Risk Predictor, Early Detection, Diagnosis, and Accurate Prognosis: Perspectives in Personalised Care. , 2023, , 293-312.		1
227	Classification of spinal curvature types using radiography images: deep learning versus classical methods. Artificial Intelligence Review, 2023, 56, 13259-13291.	9.7	3
228	FRCNN-AA-CIF: An automatic detection model of colon polyps based on attention awareness and context information fusion. Computers in Biology and Medicine, 2023, 158, 106787.	3.9	4
229	Multi-scale high and low feature fusion attention network for intestinal image classification. Signal, Image and Video Processing, 0, , .	1.7	0
230	Radiomics approach with deep learning for predicting T4 obstructive colorectal cancer using CT image. Abdominal Radiology, 2023, 48, 1246-1259.	1.0	1
231	Exploring fusion model for the detection and localization of colorectal polyps. , 2022, , .		0
232	Real-time Barrett's neoplasia characterization in NBI videos using an int8-based quantized neural network. , 2023, , .		0
233	The application of artificial intelligence in improving colonoscopic adenoma detection rate: Where are we and where are we going. GastroenterologÃa Y HepatologÃa (English Edition), 2023, 46, 203-213.	0.0	0
234	Automated classification of polyps using deep learning architectures and few-shot learning. BMC Medical Imaging, 2023, 23, .	1.4	6
235	An intelligent deep learning approach for colon cancer diagnosis. , 2023, , 195-214.		0
237	Colon Cancer Tissue Classification Using ML. , 2023, , .		7
241	Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks. , 2023, , .		3
243	Classification of Gastrointestinal Cancer through Explainable AI and Ensemble Learning. , 2023, , .		0

#	Article	IF	Citations
244	A Study of Instrument Playing Action Recommendation Scheme with Al Vision Technology. , 2023, , .		0
247	Early Detection of Colon Cancer Using Deep Learning Techniques. , 2023, , .		0
250	A Comparative Study ofÂVideo-Based Analysis Using Machine Learning forÂPolyp Classification. Lecture Notes in Computer Science, 2023, , 144-156.	1.0	0
251	Machine Learning Techniques in Computer-Aided Diagnosis for Effective Detection of Malignant Tissues. , 2023, , 1-18.		0
256	On the Potentials of Surface Tactile Imaging and Dilated Residual Networks for Early Detection of Colorectal Cancer Polyps. , 2023, , .		2
260	Explainable AI For Colorectal Lesion Classification Using Deep Learning Models With Attention Mechanism. , 2023, , .		0
261	A Residual Learning Approach Towards theÂDiagnosis ofÂColorectal Disease Effectively. Communications in Computer and Information Science, 2024, , 160-172.	0.4	0