Charging and Discharging of Plug-In Electric Vehicles (I Systems: A Cyber Insurance-Based Model

IEEE Access 5, 732-754 DOI: 10.1109/access.2017.2649042

Citation Report

#	Article	IF	CITATIONS
1	Study on Self-Tuning Tyre Friction Control for Developing Main-Servo Loop Integrated Chassis Control System. IEEE Access, 2017, 5, 6649-6660.	2.6	200
2	Reliability Oriented Modeling and Analysis of Vehicular Power Line Communication for Vehicle to Grid (V2G) Information Exchange System. IEEE Access, 2017, 5, 12449-12457.	2.6	30
3	The impact of the time delay on the load frequency control system in microgrid with plug-in-electric vehicles. Sustainable Cities and Society, 2017, 35, 365-377.	5.1	68
4	Applications of Economic and Pricing Models for Wireless Network Security: A Survey. IEEE Communications Surveys and Tutorials, 2017, 19, 2735-2767.	24.8	36
5	Optimal Cost-Based Cyber Insurance Policy Management for Mobile Services. , 2017, , .		0
6	Three phase off-board bi-directional charger for EV with V2G functionality. , 2017, , .		17
7	Design and implementation of a novel energy management algorithm in vehicle to grid system design. , 2017, , .		0
8	Secure Plug-in Electric Vehicle (PEV) Charging in a Smart Grid Network. Energies, 2017, 10, 1024.	1.6	9
9	A Comprehensive Study of Implemented International Standards, Technical Challenges, Impacts and Prospects for Electric Vehicles. IEEE Access, 2018, 6, 13866-13890.	2.6	250
10	Managing Risk in Electric Distribution Networks. Power Systems, 2018, , 1-36.	0.3	0
11	Robust Massively Parallel Dynamic State Estimation of Power Systems Against Cyber-Attack. IEEE Access, 2018, 6, 2984-2995.	2.6	106
12	EVaaS: A Novel On-Demand Outage Mitigation Framework for Electric Vehicle Enabled Microgrids. , 2018, , .		4
13	Towards developing a large energy store using small scale distributed batteries. , 2018, , .		0
14	MDP-Based Resource Allocation Scheme Towards a Vehicular Fog Computing with Energy Constraints. , 2018, , .		7
15	Optimal Plug-in Electric Vehicles Charging Coordination in Electrical Distribution Networks. , 2018, , .		3
16	Bi-level Day Ahead Optimization of V2G Dispatch Strategy Based on the Dynamic Discharging Electricity Price. IFAC-PapersOnLine, 2018, 51, 462-467.	0.5	4
17	Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation. Energies, 2018, 11, 3188.	1.6	32
18	A Bidirectional Buffered Charging Unit for EV's (BBCU). , 2018, ,		1

#	Article	IF	CITATIONS
19	Theoretical Game Approach for Mobile Users Resource Management in a Vehicular Fog Computing Environment. , 2018, , .		18
20	A stochastic programming approach for risk management in mobile cloud computing. , 2018, , .		2
21	Unleash Narrowband Technologies for Industrial Internet of Things Services. IEEE Network, 2019, 33, 16-22.	4.9	8
22	Optimal charging of Electric Vehicles in residential area. Sustainable Energy, Grids and Networks, 2019, 19, 100240.	2.3	37
23	Electric Vehicles Beyond Energy Storage and Modern Power Networks: Challenges and Applications. IEEE Access, 2019, 7, 99031-99064.	2.6	70
24	Energy management strategy of a photovoltaic electric vehicle charging station. , 2019, , .		10
25	Valley-Period Dispatched Strategy of Electric Vehicles in Charging Station. , 2019, , .		3
26	Load Guided Signal-Based Two-Stage Charging Coordination of Plug-In Electric Vehicles for Smart Buildings. IEEE Access, 2019, 7, 144548-144560.	2.6	11
27	Power Interchange Analysis for Reliable Vehicle-to-Grid Connectivity. IEEE Communications Magazine, 2019, 57, 105-111.	4.9	8
28	Reinforcement Learning for Hybrid and Plug-In Hybrid Electric Vehicle Energy Management: Recent Advances and Prospects. IEEE Industrial Electronics Magazine, 2019, 13, 16-25.	2.3	160
29	Time-of-use pricing model based on power supply chain for user-side microgrid. Applied Energy, 2019, 248, 35-43.	5.1	39
30	Decentralised optimal vehicleâ€toâ€grid coordination with forecast errors. IET Generation, Transmission and Distribution, 2019, 13, 989-996.	1.4	4
31	Optimal Dispatching Strategy for Shared Battery Station of Electric Vehicle by Divisional Battery Control. IEEE Access, 2019, 7, 38224-38235.	2.6	28
32	Rooftop Solar PV System for Commercial Office Buildings for EV Charging Load. , 2019, , .		8
33	Demand side expectations of cyber insurance. , 2019, , .		5
34	A High Step-down DC-DC Converter with Matrix-Transformer and Wide Voltage Gain for Vehicle Power Supply Applications. , 2019, , .		7
36	Stackelberg Differential Game Based Charging Control of Electric Vehicles in Smart Grid. EAI/Springer Innovations in Communication and Computing, 2019, , 203-213.	0.9	2
37	Efficient, Secure, and Privacy-Preserving PMIPv6 Protocol for V2G Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 19-33.	3.9	20

#	Article	IF	CITATIONS
38	Coordinated dispatch of the wind-thermal power system by optimizing electric vehicle charging. Cluster Computing, 2019, 22, 8835-8845.	3.5	5
39	Decentralized Charging Coordination of Large-scale Plug-in Electric Vehicles in Power Systems. , 2020, , .		2
40	Decentralized Charging and Discharging Coordination. , 2020, , 131-161.		0
41	Differential Privacy Techniques for Cyber Physical Systems: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 746-789.	24.8	335
42	Waiting Time Minimized Charging and Discharging Strategy Based on Mobile Edge Computing Supported by Software-Defined Network. IEEE Internet of Things Journal, 2020, 7, 6088-6101.	5.5	47
43	En route of electric vehicles with the vehicle to grid technique in distribution networks: Status and technological review. Energy Storage, 2020, 2, e115.	2.3	33
44	PV-Powered Charging Station for Electric Vehicles: Power Management with Integrated V2G. Applied Sciences (Switzerland), 2020, 10, 6500.	1.3	18
45	A Multifunctional Single-Phase EV On-Board Charger With a New V2V Charging Assistance Capability. IEEE Access, 2020, 8, 116812-116823.	2.6	32
46	Cyber risk research in business and actuarial science. European Actuarial Journal, 2020, 10, 303-333.	0.5	30
47	Solar PV parking lots to maximize charge operator profit for EV charging with minimum grid power purchase Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-11.	1.2	5
48	Research on multiâ€objective optimisation coordination for largeâ€scale V2G. IET Renewable Power Generation, 2020, 14, 445-453.	1.7	8
49	A Stochastic Theoretical Game Approach for Resource Allocation in Vehicular Fog Computing. , 2020, , \cdot		6
50	Intelligent Vehicle To Grid Based Plug-in Electric Vehicle with Cloud Computing. , 2020, , .		3
51	Towards Incentive for Electrical Vehicles Demand Response With Location Privacy Guaranteeing in Microgrids. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 131-148.	3.7	16
52	Optimization of power losses in electric vehicle battery by wireless charging method with consideration of the laser optic effect. Measurement and Control, 2020, 53, 441-453.	0.9	4
53	Optimization of Bi-Directional V2G Behavior With Active Battery Anti-Aging Scheduling. IEEE Access, 2020, 8, 11186-11196.	2.6	34
54	Charging Control of Electric Vehicles in Smart Grid: a Stackelberg Differential Game Based Approach. Mobile Networks and Applications, 2021, 26, 562-570.	2.2	3
55	Impact of V2G Communication on Grid Node Voltage at Charging Station in a Smart Grid Scenario. IEEE Systems Journal, 2021, 15, 3749-3758.	2.9	12

#	Article	IF	CITATIONS
56	Resource Efficient Vehicle-to-Grid (V2G) Communication Systems for Electric Vehicle Enabled Microgrids. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4171-4180.	4.7	10
57	Multiobjective optimization-based energy management system considering renewable energy, energy storage systems, and electric vehicles. , 2021, , 471-485.		5
58	Fair and Privacy-Aware EV Discharging Strategy Using Decentralized Whale Optimization Algorithm for Minimizing Cost of EVs and the EV Aggregator. IEEE Systems Journal, 2021, 15, 5571-5582.	2.9	10
59	How Regional Trust Cues Could Drive Decentralisation in the Energy Sector—An Exploratory Approach. Sustainability, 2021, 13, 3010.	1.6	1
60	Single-phase and Three-phase Reactive Power Support for Microgrids by Grid connected Electric Vehicle. , 2021, , .		1
61	Dynamic control analysis of charging and discharging power for electric vehicles with adaptive optimal fuzzy control. Journal of Intelligent and Fuzzy Systems, 2021, , 1-8.	0.8	1
62	A dispatching strategy for electric vehicle aggregator combined price and incentive demand response. IET Energy Systems Integration, 2021, 3, 508-519.	1.1	9
63	Privacy-Preserving Blockchain-Based Energy Trading Schemes for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2021, 70, 9369-9384.	3.9	61
64	Interconnected and Complex Electric Power and Transportation Systems: a SWOT Analysis. Current Sustainable/Renewable Energy Reports, 0, , 1.	1.2	0
65	Incentives and concerns on vehicle-to-grid technology expressed by Australian employees and employers. Transportation Research, Part D: Transport and Environment, 2021, 98, 102986.	3.2	7
66	An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle. Energy, 2021, 236, 121337.	4.5	23
67	Investigation of the micro energy grid operation under energy price uncertainty with inclusion of electric vehicles. Sustainable Operations and Computers, 2021, 2, 12-19.	6.3	11
68	A Comprehensive State-of-the-Art Review of Wired/Wireless Charging Technologies for Battery Electric Vehicles: Classification/Common Topologies/Future Research Issues. IEEE Access, 2021, 9, 19572-19585.	2.6	73
69	Cyber-Physical Review of a Battery Electric Vehicle Power Train: Vulnerabilities and Challenges. , 2021, , .		1
70	Control Methods for Performance Improvement of an Integrated On-Board Battery Charger in Hybrid Electric Vehicles. Electronics (Switzerland), 2021, 10, 2506.	1.8	4
71	A Secure Discharging Protocol for Plug in Electric Vehicle (SDP-V2G) in Smart Grid. Communications in Computer and Information Science, 2017, , 15-26.	0.4	0
73	Design of a Portable Solar Desalination System. , 2020, , .		1
74	Rule-Based Enhanced Energy Management Scheme for Electric Vehicles Fast-Charging Workplace Using Battery Stacks and Solar Power. , 2020, , .		4

#	Article	IF	CITATIONS
75	Long-time scale vehicle-to-grid scheduling strategy considering psychological effect based on Weber-Fechner law. International Journal of Electrical Power and Energy Systems, 2022, 136, 107709.	3.3	6
76	Fog Computing for Smart Grid Transition: Requirements, Prospects, Status Quos, and Challenges. EAI/Springer Innovations in Communication and Computing, 2021, , 47-61.	0.9	2
77	Combined economic emission based resource allocation for electric vehicle enabled microgrids. IET Smart Grid, 2020, 3, 768-776.	1.5	2
78	The Influence of Spread-Spectrum Modulation on the G3-PLC Performance. , 2021, , .		1
79	Application Error Analysis of SOC Estimation of Pure Electric Vehicles Based on Kalman Signal Big Data Algorithm. Advances in Multimedia, 2021, 2021, 1-9.	0.2	4
80	Performance Analysis of IPT with DC to DC Converter for E-Vehicle Application. Lecture Notes in Electrical Engineering, 2022, , 283-290.	0.3	0
81	Cyber Insurance Against Cyberattacks on Electric Vehicle Charging Stations. IEEE Transactions on Smart Grid, 2022, 13, 1529-1541.	6.2	14
82	Hidden Markov Models-Based Anomaly Correlations for the Cyber-Physical Security of EV Charging Stations. IEEE Transactions on Smart Grid, 2022, 13, 3903-3914.	6.2	17
83	A Study of Reduced Battery Degradation Through State-of-Charge Pre-Conditioning for Vehicle-to-Grid Operations. IEEE Access, 2021, 9, 155871-155896.	2.6	20
84	Power management system in the microgrid with the proper electric vehicle data preprocessing. , 2020, , .		1
85	An Extreme Value Theory-Based Catastrophe Bond Design for Cyber Risk Management of Power Systems. IEEE Transactions on Smart Grid, 2022, 13, 1516-1528.	6.2	5
86	A Review of Charging Schemes and Machine Learning Techniques for Intelligent Management of Electric Vehicles in Smart Grid. , 2022, , 51-71.		2
87	Optimal pricing for bidirectional wireless charging lanes in coupled transportation and power networks. Transportation Research Part C: Emerging Technologies, 2022, 135, 103419.	3.9	6
88	Vehicle to grid connected technologies and charging strategies: Operation, control, issues and recommendations. Journal of Cleaner Production, 2022, 339, 130587.	4.6	42
89	A Review on Integration of Electric Vehicle in Smart Grid: Operational modes, Issues and Challenges. , 2022, , .		3
90	Learning based cost optimal energy management model for campus microgrid systems. Applied Energy, 2022, 311, 118630.	5.1	7
91	A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation. International Journal of Electrical Power and Energy Systems, 2022, 140, 108090.	3.3	19
92	Motor Power Calculation for Power-Train of Electric Vehicles and Estimation of its Performance Parameters Using MATLAB/Simulink. , 2021, , .		1

#	Article	IF	CITATIONS
93	A Copula-Based Attack Prediction Model for Vehicle-to-Grid Networks. Applied Sciences (Switzerland), 2022, 12, 3830.	1.3	2
94	Electric Vehicle User Data-Induced Cyber Attack on Electric Vehicle Charging Station. IEEE Access, 2022, 10, 55856-55867.	2.6	0
95	State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renewable and Sustainable Energy Reviews, 2022, 166, 112574.	8.2	36
96	Role of Communication Networks on Vehicle-to-Grid (V2C) System in a Smart Grid Environment. , 2022, , .		0
97	Barriers and enablers to adoption of cyber insurance in developing countries: An exploratory study of Malaysian organizations. Computers and Security, 2022, 122, 102893.	4.0	1
98	En-Route Charging Strategy for Wirelessly Charged Electric Bus Considering Time-of-Use Price. IEEE Access, 2022, 10, 94063-94073.	2.6	3
99	Machine Learning-Enabled Cyber Attack Prediction and Mitigation for EV Charging Stations. , 2022, , .		1
100	Electric Vehicle as a Service (EVaaS): Applications, Challenges and Enablers. Energies, 2022, 15, 7207.	1.6	8
101	Impact of Transportation Electrification on the Electricity Grid—A Review. Vehicles, 2022, 4, 1042-1079.	1.7	11
102	A review on unidirectional converters for on-board chargers in electric vehicle. Frontiers in Energy Research, 0, 10, .	1.2	4
103	Multi-objective Bi-directional V2G Behavior Optimization and Strategy Deployment. Recent Advancements in Connected Autonomous Vehicle Technologies, 2023, , 135-152.	0.1	2
104	Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery. Sustainability, 2022, 14, 13856.	1.6	25
105	Central Aggregator Intrusion Detection System for Denial of Service Attacks. Computers, Materials and Continua, 2023, 74, 2363-2377.	1.5	0
106	Six Generation Load Cells Solution Based Congestion Management Control燩urpose. Computers, Materials and Continua, 2023, 74, 6445-6460.	1.5	0
107	Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model. Energies, 2023, 16, 1309.	1.6	4
108	Advanced Energy Management Strategies for Plug-In Hybrid Electric Vehicles via Deep Reinforcement Learning. , 0, , .		1
109	Impact of Open Communication Networks on Load Frequency Control with Plug-In Electric Vehicles By Cyber-Physical Dynamic Co-simulation. , 2023, , .		2
110	An Effective Strategy for the Charging Period of the Batteries in Electric Vehicles. , 2022, , .		0

#	Article	IF	CITATIONS
111	Admission Control Mechanism ofÂWireless Virtual Network Assisted byÂVehicular Fog Computing. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 149-162.	0.2	0
113	Electric vehicle controllers for sustainable energy management: recommendations and challenges. Environment, Development and Sustainability, 0, , .	2.7	1
115	Threats, Vulnerabilities, and Mitigation in V2G Networks. Green Energy and Technology, 2023, , 1-30.	0.4	0
116	Cyber-Attack Event Analysis for EV Charging Stations. , 2023, , .		1
119	A V2G Charging and Discharging Control Strategy for EVs Based on the Demands of the Grid and Users. , 2023, , .		0
120	A Feasible Automotive Bi-Directional Power Converter and V2G Control Strategy Based on Differential Evolutionary Algorithm. , 2023, , .		0
121	Coil Optimization using Metaheuristic Techniques for Wireless Charging of Electric Vehicles - A Comparative Analysis , 2023, , .		0