"Learning†**C**an Improve the Blood Glucose Contro Mellitus

Diabetes Technology and Therapeutics

19, 41-48

DOI: 10.1089/dia.2016.0328

Citation Report

#	Article	IF	CITATIONS
1	Unified Architecture of Active Fault Detection and Partial Active Fault-Tolerant Control for Incipient Faults. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1688-1700.	5.9	27
2	Semisupervised Incremental Support Vector Machine Learning Based on Neighborhood Kernel Estimation. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2677-2687.	5.9	22
3	Predictive Low-Glucose Suspend to Prevent Hypoglycemia. Diabetes Technology and Therapeutics, 2017, 19, 271-276.	2.4	7
4	Insulin Infusion Sets and Continuous Glucose Monitoring Sensors: Where the Artificial Pancreas Meets the Patient. Diabetes Technology and Therapeutics, 2017, 19, 206-208.	2.4	0
5	Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator – in silico evaluation under intra-day variability. Computer Methods and Programs in Biomedicine, 2017, 146, 125-131.	2.6	51
6	Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia. Diabetes Care, 2017, 40, 1719-1726.	4.3	68
7	Iterative learning control for linear delay systems with deterministic and random impulses. Journal of the Franklin Institute, 2018, 355, 2473-2497.	1.9	8
8	Multimodule, Multivariable Artificial Pancreas for Patients with Type 1 Diabetes: Regulating Glucose Concentration Under Challenging Conditions. IEEE Control Systems, 2018, 38, 105-124.	1.0	31
9	Model-fusion-based online glucose concentration predictions in people with type 1 diabetes. Control Engineering Practice, 2018, 71, 129-141.	3.2	27
10	Evaluation of an artificial pancreas in in silico patients with online-tuned internal model control. Biomedical Signal Processing and Control, 2018, 41, 198-209.	3.5	11
11	Customization of home closed-loop insulin delivery in adult patients with type 1 diabetes, assisted with structured remote monitoring: the pilot WP7 Diabeloop study. Acta Diabetologica, 2018, 55, 549-556.	1.2	30
12	Fault diagnosis based on the integration of exponential discriminant analysis and local linear embedding. Canadian Journal of Chemical Engineering, 2018, 96, 463-483.	0.9	14
13	Norm Optimal Iterative Learning Control for General Spatial Path Following Problem. , 2018, , .		3
14	A Multivariate Bayesian Optimization Framework for Long-Term Controller Adaptation in Artificial Pancreas. , 2018, , .		3
15	Consensus Tracking in Multi-Node Systems Using Iterative Learning Control Based on Delay Exponential Matrix. Unmanned Systems, 2018, 06, 209-219.	2.7	5
16	Creating smooth SI. B-spline basis function representations of insulin sensitivity. Biomedical Signal Processing and Control, 2018, 44, 270-278.	3.5	5
17	Technology in the management of type 1 diabetes mellitus — current status and future prospects. Nature Reviews Endocrinology, 2018, 14, 464-475.	4.3	103
18	ISPAD Clinical Practice Consensus Guidelines 2018: Diabetes technologies. Pediatric Diabetes, 2018, 19, 302-325.	1.2	170

CITATION REPORT

#	Article	IF	CITATIONS
19	Dataâ€Ðriven Performance Monitoring for Model Predictive Control Using a mahalanobis distance based overall index. Asian Journal of Control, 2019, 21, 891-907.	1.9	4
20	Variable Gain Feedback \$PD^{alpha}\$ -Type Iterative Learning Control for Fractional Nonlinear Systems With Time-Delay. IEEE Access, 2019, 7, 90106-90114.	2.6	6
21	Iterative Learning Control Design of Switched Systems With Markovian Jump Parameters via Fuzzy Approach. IEEE Access, 2019, 7, 118162-118172.	2.6	1
22	Energy-Optimal Time Allocation in Point-to-Point ILC With Specified Output Tracking. IEEE Access, 2019, 7, 122595-122604.	2.6	15
23	Adaptive Distributed Control of a Flexible Manipulator Using an Iterative Learning Scheme. IEEE Access, 2019, 7, 145934-145943.	2.6	7
24	<i>110th Anniversary:</i> An Overview on Learning-Based Model Predictive Control for Batch Processes. Industrial & Engineering Chemistry Research, 2019, 58, 17164-17173.	1.8	30
25	Iterative Learning Control for Discrete Distributed Parameter Systems With Randomly Varying Trial Lengths. IEEE Access, 2019, 7, 115583-115593.	2.6	1
26	2D Terminal Constrained Model Predictive Iterative Learning Control of Batch Processes With Time Delay. IEEE Access, 2019, 7, 126842-126856.	2.6	7
27	Controlling the AP Controller: Controller Performance Assessment and Modification. Journal of Diabetes Science and Technology, 2019, 13, 1091-1104.	1.3	6
28	Integrating Economic Model Predictive Control and Event-Triggered Control: Application to Bi-Hormonal Artificial Pancreas System. IEEE Access, 2019, 7, 3790-3799.	2.6	5
29	Multiple-signal artificial pancreas systems. , 2019, , 219-235.		1
30	Model Learning Predictive Control for Batch Processes: A Reactive Batch Distillation Column Case Study. Industrial & Engineering Chemistry Research, 2019, 58, 13737-13749.	1.8	14
31	Feedback control algorithms for automated glucose management in T1DM: the state of the art. , 2019, , 1-27.		1
32	Linear Quadratic Predictive Fault-Tolerant Control for Multi-Phase Batch Processes. IEEE Access, 2019, 7, 33598-33609.	2.6	11
33	Seizure Control by a Learning Type Active Disturbance Rejection Approach. IEEE Access, 2019, 7, 164792-164802.	2.6	6
34	Multivariate learning framework for longâ€ŧerm adaptation in the artificial pancreas. Bioengineering and Translational Medicine, 2019, 4, 61-74.	3.9	22
35	Twoâ€layer model predictive control for chemical process model with integrating controlled variables. Canadian Journal of Chemical Engineering, 2020, 98, 237-253.	0.9	7
36	Generalized Iterative Learning Control Using Successive Projection: Algorithm, Convergence, and Experimental Verification. IEEE Transactions on Control Systems Technology, 2020, 28, 2079-2091.	3.2	27

#	Article	IF	CITATIONS
37	Robust LPV control design for blood glucose regulation considering daily life factors. Biomedical Signal Processing and Control, 2020, 57, 101830.	3.5	17
38	Observerâ€based cooperative distributed faultâ€tolerant model predictive control with imperfect network communication and asynchronous measurements. International Journal of Robust and Nonlinear Control, 2020, 30, 4531-4549.	2.1	9
39	Clucose outcomes of a learning-type artificial pancreas with an unannounced meal in type 1 diabetes. Computer Methods and Programs in Biomedicine, 2020, 191, 105416.	2.6	10
40	Use of Machine Learning and Hybrid Closed Loop Insulin Delivery at Diabetes Camps. Diabetes Technology and Therapeutics, 2020, 22, 535-537.	2.4	3
41	A predictive control method to improve pressure tracking precision and reduce valve switching for pneumatic brake systems. IET Control Theory and Applications, 2021, 15, 1389-1403.	1.2	10
42	Fixed-time synergetic control for chaos suppression in endocrine glucose–insulin regulatory system. Control Engineering Practice, 2021, 108, 104723.	3.2	8
43	Parents' experiences on the combined use of continuous subcutaneous insulin infusion and realâ€ŧime continuous glucose monitoring to manage Type 1 diabetes in their children: AÂsystematic review and metaâ€synthesis of qualitative studies. Nursing Open, 2022, 9, 2532-2551.	1.1	3
44	Regulation of Blood Glucose Using Auto-Tuned PID Controller in Healthcare Systems. Algorithms for Intelligent Systems, 2022, , 263-271.	0.5	0
45	Closed loop variable gain ILC for a class of nonlinear parabolic distributed parameter systems with moving boundaries. Optimal Control Applications and Methods, 2023, 44, 1200-1214.	1.3	2
46	Dynamic Insulin Basal Needs Estimation and Parameters Adjustment in Type 1 Diabetes. Sensors, 2021, 21, 5226.	2.1	1
47	A Blood Glucose Control Framework Based on Reinforcement Learning With Safety and Interpretability: In Silico Validation. IEEE Access, 2021, 9, 105756-105775.	2.6	11
48	Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems. Journal of Diabetes Science and Technology, 2022, 16, 19-28.	1.3	16
49	Incorporating Sparse and Quantized Carbohydrates Suggestions in Model Predictive Control for Artificial Pancreas in Type 1 Diabetes. IEEE Transactions on Control Systems Technology, 2023, 31, 570-586.	3.2	4
50	Insulin infusion rate control using information theoretic–based nonlinear model predictive control for type 1 diabetes patients. Transactions of the Institute of Measurement and Control, 0, , 014233122211196.	1.1	0