A simple and sensitive liquid chromatography–tande trans -ε-viniferin quantification in mouse plasma and study in mice

Journal of Pharmaceutical and Biomedical Analysis 134, 116-121

DOI: 10.1016/j.jpba.2016.11.044

Citation Report

#	Article	IF	CITATIONS
1	Quantitative determination of carfilzomib in mouse plasma by liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 2017, 146, 341-346.	1.4	6
2	In Vitro Glucuronidation and Sulfation of ε-Viniferin, a Resveratrol Dimer, in Humans and Rats. Molecules, 2017, 22, 733.	1.7	17
3	Tissular Distribution and Metabolism of trans-Îμ-Viniferin after Intraperitoneal Injection in Rat. Nutrients, 2018, 10, 1660.	1.7	12
4	Pharmacokinetics and Bioavailability Study of Tubeimoside I in ICR Mice by UPLC-MS/MS. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-9.	0.7	10
5	Pharmacokinetics and Bioavailability Study of Monocrotaline in Mouse Blood by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. BioMed Research International, 2018, 2018, 1-10.	0.9	17
6	A review of dietary stilbenes: sources and bioavailability. Phytochemistry Reviews, 2018, 17, 1007-1029.	3.1	118
7	Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor. Viruses, 2019, 11, 890.	1.5	17
8	Quantitative determination of talatisamine and its pharmacokinetics and bioavailability in mouse plasma by UPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1124, 180-187.	1.2	9
9	Screening of Natural Stilbene Oligomers from Vitis vinifera for Anticancer Activity on Human Hepatocellular Carcinoma Cells. Antioxidants, 2020, 9, 469.	2.2	21
10	In Vivo Genotoxicity Evaluation of a Stilbene Extract Prior to Its Use as a Natural Additive: A Combination of the Micronucleus Test and the Comet Assay. Foods, 2021, 10, 439.	1.9	14
11	Encapsulation of Îμ-Viniferin into Multi-Lamellar Liposomes: Development of a Rapid, Easy and Cost-Efficient Separation Method to Determine the Encapsulation Efficiency. Pharmaceutics, 2021, 13, 566.	2.0	10
12	Ĵμ-Viniferin and α-viniferin alone or in combination induced apoptosis and necrosis in osteosarcoma and non-small cell lung cancer cells. Food and Chemical Toxicology, 2021, 158, 112617.	1.8	3
13	Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients, 2021, 13, 4212.	1.7	4
14	In the shadow of resveratrol: biological activities of epsilon-viniferin. Journal of Physiology and Biochemistry, 2022, 78, 465-484.	1.3	10
15	α-Viniferin and ε-Viniferin Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition, Migration and Invasion in Lung Cancer Cells through Downregulation of Vimentin Expression. Nutrients, 2022, 14, 2294.	1.7	6
16	Trans-ε-viniferin as an inhibitor of TMEM16A preventing intestinal smooth muscle contraction. Journal of Asian Natural Products Research, 2023, 25, 867-879.	0.7	0
17	Beneficial Effects of ε-Viniferin on Obesity and Related Health Alterations. Nutrients, 2023, 15, 928.	1.7	3