A semisynthetic organism engineered for the stable exp

Proceedings of the National Academy of Sciences of the Unite 114, 1317-1322

DOI: 10.1073/pnas.1616443114

Citation Report

#	Article	IF	CITATIONS
3	Chemical Stabilization of Unnatural Nucleotide Triphosphates for the in Vivo Expansion of the Genetic Alphabet. Journal of the American Chemical Society, 2017, 139, 2464-2467.	6.6	26
4	Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities. Current Opinion in Biotechnology, 2017, 48, 153-158.	3.3	9
5	Photochemical Reactivity of dTPT3: A Crucial Nucleobase Derivative in the Development of Semisynthetic Organisms. Journal of Physical Chemistry Letters, 2017, 8, 2387-2392.	2.1	12
6	On the enzymatic incorporation of an imidazole nucleotide into DNA. Organic and Biomolecular Chemistry, 2017, 15, 4449-4455.	1.5	35
7	Baseâ€Modified Nucleic Acids as a Powerful Tool for Synthetic Biology and Biotechnology. Chemistry - A European Journal, 2017, 23, 9560-9576.	1.7	28
8	Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair. Angewandte Chemie - International Edition, 2017, 56, 12000-12003.	7.2	30
9	Toward an Expanded Genome: Structural and Computational Characterization of an Artificially Expanded Genetic Information System. Accounts of Chemical Research, 2017, 50, 1375-1382.	7.6	20
10	Engineering and application of polymerases for synthetic genetics. Current Opinion in Biotechnology, 2017, 48, 168-179.	3.3	41
11	Mechanism Underlying the Nucleobase-Distinguishing Ability of Benzopyridopyrimidine (BPP). Journal of Physical Chemistry A, 2017, 121, 8267-8279.	1.1	0
	or Physical Chemistry A, 2017, 121, 0207-0279.		
12	Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60.	13.7	579
		13.7 13.8	579 54
12	Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews		
12 13	Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews Chemistry, 2017, 1, . Helix instability and self-pairing prevent unnatural base pairs from expanding the genetic alphabet.	13.8	54
12 13 14	 Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews Chemistry, 2017, 1, . Helix instability and self-pairing prevent unnatural base pairs from expanding the genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6476-E6477. Reply to Hettinger: Hydrophobic unnatural base pairs and the expansion of the genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6476-E6477. 	13.8 3.3	54 6
12 13 14 15	 Expanding and reprogramming the genetic code. Nature, 2017, 550, 53-60. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nature Reviews Chemistry, 2017, 1, . Helix instability and self-pairing prevent unnatural base pairs from expanding the genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6476-E6477. Reply to Hettinger: Hydrophobic unnatural base pairs and the expansion of the genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6476-E6477. Keply to Hettinger: Hydrophobic unnatural base pairs and the expansion of the genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6478-E6479. <i><i></i></i>		

#	ARTICLE	IF	CITATIONS
21	Synthetic Biology Parts for the Storage of Increased Genetic Information in Cells. ACS Synthetic Biology, 2017, 6, 1834-1840.	1.9	16
22	Evolving Aptamers with Unnatural Base Pairs. Current Protocols in Chemical Biology, 2017, 9, 315-339.	1.7	10
23	Nucleic Acid Aptamers: Emerging Applications in Medical Imaging, Nanotechnology, Neurosciences, and Drug Delivery. International Journal of Molecular Sciences, 2017, 18, 2430.	1.8	71
24	Future of the Genetic Code. Life, 2017, 7, 10.	1.1	5
25	â€~Alien' DNA makes proteins in living cells for the first time. Nature, 2017, 551, 550-551.	13.7	1
26	EXPANDING THE GENETIC ALPHABET. BioTechniques, 2017, 62, 252-253.	0.8	1
27	Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angewandte Chemie - International Edition, 2018, 57, 9891-9895.	7.2	42
28	Aptamer chemistry. Advanced Drug Delivery Reviews, 2018, 134, 3-21.	6.6	258
29	Semisynthetic Organisms with Expanded Genetic Codes. Biochemistry, 2018, 57, 2177-2178.	1.2	8
30	Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46, e51-e51.	6.5	32
31	QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base. Physical Chemistry Chemical Physics, 2018, 20, 5067-5073.	1.3	11
32	A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria. Journal of the American Chemical Society, 2018, 140, 1447-1454.	6.6	34
33	Playing with the Molecules of Life. ACS Chemical Biology, 2018, 13, 854-870.	1.6	270
34	Reprograming the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet. Journal of the American Chemical Society, 2018, 140, 758-765.	6.6	42
35	Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catalysis, 2018, 8, 1851-1863.	5.5	79
36	Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angewandte Chemie, 2018, 130, 10039-10043.	1.6	10
37	Biological standards for the Knowledge-Based BioEconomy: What is at stake. New Biotechnology, 2018, 40, 170-180.	2.4	46
38	Genetic alphabet expansion biotechnology by creating unnatural base pairs. Current Opinion in Biotechnology, 2018, 51, 8-15.	3.3	36

CITATION REPORT

	CITATION R	EPORT	
#	ARTICLE DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA	IF	CITATIONS
39	stabilization method. Biochimie, 2018, 145, 15-21.	1.3	33
40	Expansion of the Genetic Alphabet: A Chemist's Approach to Synthetic Biology. Accounts of Chemical Research, 2018, 51, 394-403.	7.6	81
41	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	23.3	1,268
42	Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions. ChemPhysChem, 2018, 19, 67-74.	1.0	16
43	MOLECULAR DYNAMICS STUDY OF NON-HYDROGEN-BONDING BASE-PAIR DNA DUPLEX d(GTCDNAM) Tj ETQq Sciences, 2018, 10, 109.	0 0 0 rgBT 0.3	/Overlock 10 0
44	Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet. Journal of the American Chemical Society, 2018, 140, 16115-16123.	6.6	38
45	Whole genome engineering by synthesis. Science China Life Sciences, 2018, 61, 1515-1527.	2.3	20
47	Therapeutic applications of genetic code expansion. Synthetic and Systems Biotechnology, 2018, 3, 150-158.	1.8	50
48	Artificially Expanded Genetic Information Systems for New Aptamer Technologies. Biomedicines, 2018, 6, 53.	1.4	55
49	Expansion of the genetic code via expansion of the genetic alphabet. Current Opinion in Chemical Biology, 2018, 46, 196-202.	2.8	49
50	Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands. AIP Conference Proceedings, 2018, , .	0.3	1
51	Deoxynucleoside Triphosphate Containing Pyridazin-3-one Aglycon as a Thymidine Triphosphate Substitute for Primer Extension and Chain Elongation by Klenow Fragments. Journal of Organic Chemistry, 2018, 83, 8353-8363.	1.7	8
52	Selfâ€Priming Enzymatic Fabrication of Multiply Modified DNA. Chemistry - A European Journal, 2018, 24, 15267-15274.	1.7	5
53	Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Current Opinion in Chemical Biology, 2018, 46, 108-114.	2.8	46
54	Next-generation genetic code expansion. Current Opinion in Chemical Biology, 2018, 46, 203-211.	2.8	57
55	Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake inEscherichia coli. ACS Synthetic Biology, 2018, 7, 1565-1572.	1.9	14
56	Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. Journal of Biological Engineering, 2018, 12, 13.	2.0	26
57	Photochemical and Photodynamical Properties of Sulfur‣ubstituted Nucleic Acid Bases,. Photochemistry and Photobiology, 2019, 95, 33-58.	1.3	89

#	Article	IF	CITATIONS
58	The Role of Orthogonality in Genetic Code Expansion. Life, 2019, 9, 58.	1.1	16
60	On the Enzymatic Formation of Metal Base Pairs with Thiolated and pKaâ€Perturbed Nucleotides. ChemBioChem, 2019, 20, 3032-3040.	1.3	15
61	Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society, 2019, 141, 10644-10653.	6.6	52
63	Synthetic Biology: The Chemist's Approach. Israel Journal of Chemistry, 2019, 59, 91-94.	1.0	2
64	A Spotlight on Viruses—Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules, 2019, 24, 481.	1.7	34
65	Towards Reverse Transcription with an Expanded Genetic Alphabet. ChemBioChem, 2019, 20, 1642-1645.	1.3	9
66	A Pragmatist Account of Functions in Synthetic Biology. Grazer Philosophische Studien, 2019, 96, 171-186.	0.6	1
67	Reprint of: Non Canonical Genetic Material. Current Opinion in Biotechnology, 2019, 60, 259-267.	3.3	10
68	Nucleotide Transport and Metabolism in Diatoms. Biomolecules, 2019, 9, 761.	1.8	6
69	Progress toward Eukaryotic Semisynthetic Organisms: Translation of Unnatural Codons. Journal of the American Chemical Society, 2019, 141, 20166-20170.	6.6	30
70	Non canonical genetic material. Current Opinion in Biotechnology, 2019, 57, 25-33.	3.3	30
71	Ten Years On: A Review of the First Global Conservation Horizon Scan. Trends in Ecology and Evolution, 2019, 34, 139-153.	4.2	32
72	Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. Journal of Inorganic Biochemistry, 2019, 191, 154-163.	1.5	31
73	Morphogenesis Deconstructed. The Frontiers Collection, 2020, , .	0.1	2
74	Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chemical Biology, 2020, 15, 2872-2884.	1.6	21
75	Genetic alphabet expansion technology by creating unnatural base pairs. Chemical Society Reviews, 2020, 49, 7602-7626.	18.7	74
76	Enzymatic Construction of Artificial Base Pairs: The Effect of Metal Shielding. ChemBioChem, 2020, 21, 3398-3409.	1.3	10
77	Electroanalysis of unnatural base pair content in plasmid DNA generated in a semi-synthetic organism. Electrochimica Acta, 2020, 364, 137298.	2.6	2

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
78	Proton Transfer and Nitro Rotation Tuned Photoisomerization of Artificial Base Pair-ZP. Frontiers in Chemistry, 2020, 8, 605117.	1.8	15
79	Modified nucleoside triphosphates in bacterial research for <i>in vitro</i> and live-cell applications. RSC Chemical Biology, 2020, 1, 333-351.	2.0	13
80	Synthetic Life with Alternative Nucleic Acids as Genetic Materials. Molecules, 2020, 25, 3483.	1.7	22
81	Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biology, 2020, 18, 112.	1.7	77
82	De Novo Nucleic Acids: A Review of Synthetic Alternatives to DNA and RNA That Could Act as Bio-Information Storage Molecules. Life, 2020, 10, 346.	1.1	10
83	Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in <i>E.Âcoli</i> . ACS Synthetic Biology, 2020, 9, 3052-3066.	1.9	18
84	Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology, 2020, 24, 142-152.	1.3	5
85	Sanger Gap Sequencing for Genetic Alphabet Expansion of DNA. ChemBioChem, 2020, 21, 2287-2296.	1.3	5
86	Tautomeric Equilibria of Nucleobases in the Hachimoji Expanded Genetic Alphabet. Journal of Chemical Theory and Computation, 2020, 16, 2766-2777.	2.3	22
87	Transcription of DNA duplex containing deoxypseudouridine and deoxypseudoisocytidine, and inhibition of transcription by triplex forming oligonucleotide that recognizes the modified duplex. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 892-904.	0.4	2
88	New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology, 2020, 16, 570-576.	3.9	67
89	Enzymatic synthesis of biphenyl-DNA oligonucleotides. Bioorganic and Medicinal Chemistry, 2020, 28, 115487.	1.4	5
90	A framework for parsing heritable information. Journal of the Royal Society Interface, 2020, 17, 20200154.	1.5	9
91	How To Quantify a Genetic Firewall? A Polarityâ€Based Metric for Genetic Code Engineering. ChemBioChem, 2021, 22, 1268-1284.	1.3	7
92	Reprogramming the genetic code. Nature Reviews Genetics, 2021, 22, 169-184.	7.7	147
93	Transfer RNAs: diversity in form and function. RNA Biology, 2021, 18, 316-339.	1.5	44
94	Leben erfindet immer neue Ebenen der Sprache. , 2021, , 189-214.		0
95	Addressing Evolutionary Questions with Synthetic Biology. , 2021, , 135-157.		6

		CITATION RE	EPORT	
#	Article		IF	Citations
96	Enzymatic construction of metal-mediated nucleic acid base pairs. Metallomics, 2021, 2	13, .	1.0	12
97	Genetic Code Expansion: Inception, Development, Commercialization. Journal of the An Society, 2021, 143, 4859-4878.	nerican Chemical	6.6	49
98	Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. N Biology, 2021, 17, 906-914.	ature Chemical	3.9	16
99	Genetic Code Expansion: A Brief History and Perspective. Biochemistry, 2021, 60, 3455	-3469.	1.2	63
100	A 68-codon genetic code to incorporate four distinct non-canonical amino acids enable automated orthogonal mRNA design. Nature Chemistry, 2021, 13, 1110-1117.	d by	6.6	38
101	Biopharmaceutical Development in India: Recommendations on Collaboration and Inno Enable Affordable Healthcare. , 2021, , 255-281.	vation to		3
102	Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharr agents. RSC Medicinal Chemistry, 2021, 12, 1640-1649.	nacological	1.7	8
103	Advances in Metalloprotein Design and Engineering: Strategies Employed and Insights 900-928.	Gained. , 2021, ,		Ο
104	Can thiol-based redox systems be utilized as parts for synthetic biology applications?. R 2021, 26, 147-159.	edox Report,	1.4	0
105	Synthetic genomes with altered genetic codes. Current Opinion in Systems Biology, 20	20, 24, 32-40.	1.3	7
106	CodonGenie: optimised ambiguous codon design tools. PeerJ Computer Science, 0, 3, e	120.	2.7	12
107	Creation, Optimization, and Use of Semi-Synthetic Organisms that Store and Retrieve I Information. Journal of Molecular Biology, 2022, 434, 167331.	ncreased Genetic	2.0	9
108	What Is a New Object? Case Studies of Classification Problems and Practices at the Inte and Biotechnology SSRN Electronic Journal, 0, , .	ersection of Law	0.4	0
111	SYNTHETIC BIOLOGY AND GENETIC MANIPULATION: Risks, promises and responsibilitie Sociedade, 0, 23, .	s. Ambiente &	0.5	0
112	New Research Area, Xenobiology, by Integrating Chemistry and Biology. Yuki Gosei Kag Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 465-475.	aku	0.0	0
113	Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molec from electronic structure calculations. Physical Chemistry Chemical Physics, 2021, 23, 2	cules: insights 27124-27149.	1.3	8
114	Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cas Biocatalysts: Recent Progress and Perspective. Frontiers in Bioengineering and Biotech 792489.	cade 10logy, 2021, 9,	2.0	10
115	Access to Photostability-Enhanced Unnatural Base Pairs via Local Structural Modificatic Synthetic Biology, 2022, 11, 334-342.	ns. ACS	1.9	7

#	Article	IF	CITATIONS
117	Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Frontiers in Molecular Biosciences, 0, 9, .	1.6	8
118	Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microbial Cell Factories, 2022, 21, .	1.9	3
119	Improving the Efficiency and Orthogonality of Genetic Code Expansion. Biodesign Research, 2022, 2022, .	0.8	4
120	Mechanism Insight into Photoâ€induced Damages of Unnatural Base Pair. Chemistry - A European Journal, 0, , .	1.7	1
121	From polymerase engineering to semi-synthetic life: artificial expansion of the central dogma. RSC Chemical Biology, 2022, 3, 1173-1197.	2.0	6
122	Current advances of biocontainment strategy in synthetic biology. Chinese Journal of Chemical Engineering, 2023, 56, 141-151.	1.7	3
123	Enzymatic Synthesis of the Unnatural Nucleotide 2′â€Deoxyisoguanosine 5′â€Monophosphate. ChemBioChem, 0, , .	1.3	1
124	Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Advanced Drug Delivery Reviews, 2022, 190, 114460.	6.6	2
125	Site-specific unnatural base excision <i>via</i> visible light. Chemical Communications, 2022, 58, 11717-11720.	2.2	1
126	Probing the Electronic Relaxation Pathways and Photostability of the Synthetic Nucleobase Z via Laser Interfaced Mass Spectrometry. Physical Chemistry Chemical Physics, 0, , .	1.3	0
127	Two-step spin crossover by guest-disorder induced local symmetry breaking within a 3D Hofmann-like framework. Chemical Communications, 0, , .	2.2	0
128	Amplification, Enrichment, and Sequencing of Mutagenic Methylated DNA Adduct through Specifically Pairing with Unnatural Nucleobases. Journal of the American Chemical Society, 2022, 144, 20165-20170.	6.6	3
129	In vitro evolution of ribonucleases from expanded genetic alphabets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
130	Interactions of small molecules with DNA junctions. Nucleic Acids Research, 2022, 50, 12636-12656.	6.5	11
131	Ultraviolet C Irradiation-Induced Dehybridization of Double-Stranded Oligonucleotides: Mechanism Investigation and Label-Free Measurement of the Photodamage Level. Langmuir, 2022, 38, 15190-15197.	1.6	1
132	Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase. ACS Synthetic Biology, 2022, 11, 4142-4155.	1.9	8
133	Discovery, implications and initial use of semi-synthetic organisms with an expanded genetic alphabet/code. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	5
134	Unnatural Base Pairs to Expand the Genetic Alphabet and Code. , 2023, , 1-21.		0

~			_
$C1^{-}$	ΓΔΤΙ	ON	Report
\sim			KLI OKI

#	Article	IF	CITATIONS
135	Life Invents Ever New Levels of Language. , 2023, , 171-195.		0
136	Genetic Alphabet Expansion of Nucleic Acids. , 2023, , 1-34.		0
137	Locating, tracingÂand sequencing multiple expanded genetic letters in complex DNA context via a bridge-base approach. Nucleic Acids Research, 0, , .	6.5	0
139	Genetic Alphabet Expansion of Nucleic Acids. , 2023, , 1335-1368.		Ο
140	Unnatural Base Pairs to Expand the Genetic Alphabet and Code. , 2023, , 1369-1389.		0