Materials for next-generation molecularly selective syn

Nature Materials 16, 289-297 DOI: 10.1038/nmat4805

Citation Report

#	Article	IF	CITATIONS
1	From water to organics in membrane separations. Nature Materials, 2017, 16, 276-279.	13.3	358
2	The state of flux. Nature Materials, 2017, 16, 275-275.	13.3	2
3	Mixedâ€Matrixâ€Membranen. Angewandte Chemie, 2017, 129, 9420-9439.	1.6	69
4	Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2017, 56, 9292-9310.	7.2	545
5	Highly CO ₂ Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2017, 9, 35936-35946.	4.0	14
6	A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. ACS Nano, 2017, 11, 10816-10824.	7.3	99
7	Diamine-Appended Mg ₂ (dobpdc) Nanorods as Phase-Change Fillers in Mixed-Matrix Membranes for Efficient CO ₂ /N ₂ Separations. Nano Letters, 2017, 17, 6828-6832.	4.5	28
8	Novel ZIF-300 Mixed-Matrix Membranes for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 38575-38583.	4.0	63
9	Synthesis and characterization of a microporous 6FDA-polyimide made from a novel carbocyclic pseudo Tröger's base diamine: Effect ofAbicyclic bridge on gas transport properties. Polymer, 2017, 130, 182-190.	1.8	40
10	Purification of Aggressive Supercritical Natural Gas Using Carbon Molecular Sieve Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2017, 56, 10482-10490.	1.8	36
11	Thermo-mechanical properties of mixed-matrix membranes encompassing zeolitic imidazolate framework-90 and polyvinylidine difluoride: ZIF-90/PVDF nanocomposites. APL Materials, 2017, 5, .	2.2	25
12	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie - International Edition, 2017, 56, 14246-14251.	7.2	121
13	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie, 2017, 129, 14434-14439.	1.6	13
14	Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nature Communications, 2017, 8, 406.	5.8	233
15	Multiscale-architectured functional membranes utilizing inverse opal structures. Journal of Materials Chemistry A, 2017, 5, 17111-17134.	5.2	43
16	Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties. Advanced Materials, 2017, 29, 1701631.	11.1	129
17	Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Tröger's Base-Derived Dianhydrides for Membrane Gas Separation Applications. Macromolecules, 2017, 50, 5850-5857.	2.2	56
18	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77

TATION REDO

#	Article	IF	CITATIONS
19	Mass diffusion cloaking and focusing with metamaterials. Applied Physics Letters, 2017, 111, .	1.5	24
20	Poly(ether imide sulfone) Membranes from Solutions in Ionic Liquids. Industrial & Engineering Chemistry Research, 2017, 56, 14914-14922.	1.8	16
21	Ultrathin graphene-based membrane with preciseÂmolecular sieving and ultrafast solventÂpermeation. Nature Materials, 2017, 16, 1198-1202.	13.3	549
22	Metal–organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46, 7124-7144.	18.7	557
23	Enabling Widespread Use of Microporous Materials for Challenging Organic Solvent Separations. Chemistry of Materials, 2017, 29, 9863-9876.	3.2	50
24	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
25	Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. Journal of Chemical Physics, 2017, 147, 020901.	1.2	154
26	Selective Blocking Property of Microporous Polymer Membranes Fabricated by Chemical Vapor Deposition. Scientific Reports, 2017, 7, 15596.	1.6	2
27	Sorption-enhanced membrane materials for gas separation: a road less traveled. Current Opinion in Chemical Engineering, 2018, 20, 50-59.	3.8	28
28	Influence of Filler Pore Structure and Polymer on the Performance of MOFâ€Based Mixedâ€Matrix Membranes for CO ₂ Capture. Chemistry - A European Journal, 2018, 24, 7949-7956.	1.7	44
29	Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185, 231-242.	1.9	35
30	Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport. Science Advances, 2018, 4, eaao6724.	4.7	96
31	High-throughput production of nanodisperse hybrid membranes on various substrates. Journal of Membrane Science, 2018, 552, 177-188.	4.1	6
32	Replica Ornstein–Zernike Theory Applied for Studying the Equilibrium Distribution of Electrolytes across Model Membranes. Journal of Physical Chemistry B, 2018, 122, 5500-5507.	1.2	0
33	Highâ€Flux Membranes Based on the Covalent Organic Framework COFâ€LZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	7.2	584
34	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	13.3	449
35	Post modification of acetylene functional poly(oxindole biphenylylene) by photoinduced CuAAC. European Polymer Journal, 2018, 100, 298-307.	2.6	8
36	Intelligent environmental nanomaterials. Environmental Science: Nano, 2018, 5, 811-836.	2.2	54

#	Article	IF	CITATIONS
37	Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity. Environmental Science and Technology Letters, 2018, 5, 123-130.	3.9	260
38	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	5.8	364
39	Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COFâ€LZU1 für die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	1.6	35
40	MOFwich: Sandwiched Metal–Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2018, 10, 6820-6824.	4.0	34
41	Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 2018, 9, 569.	5.8	197
42	Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations. ACS Applied Materials & Interfaces, 2018, 10, 5586-5593.	4.0	87
43	Carbon Molecular Sieve Membranes Derived from Tröger's Baseâ€Based Microporous Polyimide for Gas Separation. ChemSusChem, 2018, 11, 916-923.	3.6	74
44	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
45	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
46	Novel inorganic membrane for the percrystallization of mineral, food and pharmaceutical compounds. Journal of Membrane Science, 2018, 550, 407-415.	4.1	24
47	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	11.8	56
48	Cause and effects of hyperskin features on carbon molecular sieve (CMS) membranes. Journal of Membrane Science, 2018, 551, 113-122.	4.1	40
49	Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews, 2018, 47, 322-356.	18.7	372
50	Optimal design of graphene nanopores for seawater desalination. Journal of Chemical Physics, 2018, 148, 014703.	1.2	30
51	Thin porphyrin composite membranes with enhanced organic solvent transport. Journal of Membrane Science, 2018, 563, 684-693.	4.1	26
52	Graphene oxide membrane for molecular separation: challenges and opportunities. Science China Materials, 2018, 61, 1021-1026.	3.5	33
53	Integrated gas hydrate-membrane system for natural gas purification. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	22
54	Coarse-grained molecular dynamics study of membrane distillation through meso-size graphene channels. Journal of Membrane Science, 2018, 558, 34-44.	4.1	28

#	Article	IF	CITATIONS
55	Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance. ACS Applied Materials & Interfaces, 2018, 10, 13903-13913.	4.0	37
56	Star polymer-assembled thin film composite membranes with high separation performance and low fouling. Journal of Membrane Science, 2018, 555, 369-378.	4.1	37
57	In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018, 1, .	2.0	20
58	Single- to Few-Layered, Graphene-Based Separation Membranes. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 17-39.	3.3	24
59	Highly CO2 perm-selective metal-organic framework membranes through CO2 annealing post-treatment. Journal of Membrane Science, 2018, 555, 97-104.	4.1	14
60	Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals. Journal of Membrane Science, 2018, 554, 385-394.	4.1	127
61	Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90. Journal of Physical Chemistry C, 2018, 122, 7203-7209.	1.5	19
62	Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	16.0	253
63	Molecular sieve membranes for N ₂ /CH ₄ separation. Journal of Materials Research, 2018, 33, 32-43.	1.2	53
64	Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. Journal of Membrane Science, 2018, 548, 309-318.	4.1	130
65	Carbon Hollow Fiber-Supported Metal-Organic Framework Composites for Gas Adsorption. Energy Technology, 2018, 6, 694-701.	1.8	36
66	Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H ₂ /CO ₂ separation. Energy and Environmental Science, 2018, 11, 94-100.	15.6	115
67	A New Pentiptyceneâ€Based Dianhydride and Its Highâ€Freeâ€Volume Polymer for Carbon Dioxide Removal. ChemSusChem, 2018, 11, 472-482.	3.6	26
68	Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549, 670-679.	4.1	41
69	Next generation membranes —using tailored carbon. Carbon, 2018, 127, 688-698.	5.4	92
70	Mechanical Properties in Metal–Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications. Advanced Materials, 2018, 30, e1704124.	11.1	165
71	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	5.2	377
72	Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Materials Today Nano, 2018, 3, 69-95.	2.3	214

#	Article	IF	CITATIONS
73	Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes, 2018, 8, 128.	1.4	15
74	Improved thermal and oxidation stability of bis(triethoxysilyl)ethane (BTESE)-derived membranes, and their gas-permeation properties. Journal of Materials Chemistry A, 2018, 6, 23378-23387.	5.2	29
75	Defining the optimal criterion for separating gases using polymeric membranes. Soft Matter, 2018, 14, 9847-9850.	1.2	1
76	Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. Journal of the American Chemical Society, 2018, 140, 17203-17210.	6.6	204
77	A Review on the Progress in Nanoparticle/C Hybrid CMS Membranes for Gas Separation. Membranes, 2018, 8, 134.	1.4	26
78	Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & Interfaces, 2018, 10, 36475-36482.	4.0	58
79	Advances in Organic Solvent Nanofiltration Rely on Physical Chemistry and Polymer Chemistry. Frontiers in Chemistry, 2018, 6, 511.	1.8	68
80	Impact of Endometallofullerene on P84 Copolyimide Transport and Thermomechanical Properties. Polymers, 2018, 10, 1108.	2.0	3
81	Polyester Nanofilms with Enhanced Polyhydroxyl Architectures for the Separation of Metal Ions from Aqueous Solutions. ACS Applied Nano Materials, 2018, 1, 6176-6186.	2.4	7
82	Mixed Matrix Membranes for CO2 Separations. , 2018, , 103-153.		3
83	ROMP for Metal–Organic Frameworks: An Efficient Technique toward Robust and High-Separation Performance Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34640-34645.	4.0	42
84	Controlling Interlayer Spacing of Graphene Oxide Membranes by External Pressure Regulation. ACS Nano, 2018, 12, 9309-9317.	7.3	178
85	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie - International Edition, 2018, 57, 14811-14816.	7.2	176
86	Enabling Fluorinated MOFâ€Based Membranes for Simultaneous Removal of H ₂ S and CO ₂ from Natural Gas. Angewandte Chemie, 2018, 130, 15027-15032.	1.6	17
87	A Facile and Scalable Route to the Preparation of Catalytic Membranes with in Situ Synthesized Supramolecular Dendrimer Particle Hosts for Pt(0) Nanoparticles Using a Low-Generation PAMAM Dendrimer (G1-NH2) as Precursor. ACS Applied Materials & Interfaces, 2018, 10, 33238-33251.	4.0	9
88	Gas concentration polarization and transport mechanism transition near thin polymeric membranes. Journal of Membrane Science, 2018, 567, 1-6.	4.1	8
89	Breaking separation limits in membrane technology. Journal of Membrane Science, 2018, 566, 301-306.	4.1	28

# 91	ARTICLE Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes. ACS Applied Materials & Interfaces, 2018, 10, 20182-20188.	IF 4.0	Citations 33
92	Outlook for graphene-based desalination membranes. Npj Clean Water, 2018, 1, .	3.1	142
93	Highly Compatible Hydroxyl-Functionalized Microporous Polyimide-ZIF-8 Mixed Matrix Membranes for Energy Efficient Propylene/Propane Separation. ACS Applied Nano Materials, 2018, 1, 3541-3547.	2.4	89
94	Separation and purification using GO and r-GO membranes. RSC Advances, 2018, 8, 23130-23151.	1.7	80
95	Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry - A European Journal, 2018, 24, 12796-12800.	1.7	24
96	Setting the Stage for Fabrication of Self-Assembled Structures in Compact Geometries: Inside-Out Isoporous Hollow Fiber Membranes. ACS Macro Letters, 2018, 7, 840-845.	2.3	17
97	Metal–Organic Frameworks for Separation. Advanced Materials, 2018, 30, e1705189.	11.1	835
98	Composite Carbon Molecular Sieve Hollow Fiber Membranes: Resisting Support Densification via Silica Particle Stabilization. Industrial & Engineering Chemistry Research, 2018, 57, 16051-16058.	1.8	19
99	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	1.4	66
100	Enhanced CO ₂ /CH ₄ Separation Performance of a Mixed Matrix Membrane Based on Tailored MOFâ€Polymer Formulations. Advanced Science, 2018, 5, 1800982.	5.6	88
101	Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes. Journal of Membrane Science, 2018, 564, 404-414.	4.1	45
102	Advanced Porous Materials in Mixed Matrix Membranes. Advanced Materials, 2018, 30, e1802401.	11.1	229
103	Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. Journal of Membrane Science, 2018, 564, 878-886.	4.1	69
104	Metal-organic framework adsorbents and membranes for separation applications. Current Opinion in Chemical Engineering, 2018, 20, 122-131.	3.8	77
105	Morphological Map of ZIF-8 Crystals with Five Distinctive Shapes: Feature of Filler in Mixed-Matrix Membranes on C ₃ H ₆ /C ₃ H ₈ Separation. Chemistry of Materials, 2018, 30, 3467-3473.	3.2	94
106	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Interfaces, 2018, 10, 17301-17308.	4.0	120
107	Strong Adhesion of Graphene Oxide Coating on Polymer Separation Membranes. Langmuir, 2018, 34, 10569-10579.	1.6	26
108	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239

#	Article	IF	CITATIONS
109	Sandwich membranes through a two-dimensional confinement strategy for gas separation. Materials Chemistry Frontiers, 2018, 2, 1911-1919.	3.2	12
110	Zeolite-like MOF nanocrystals incorporated 6FDA-polyimide mixed-matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2018, 565, 186-193.	4.1	64
111	Ultra-high selectivity COF-based membranes for biobutanol production. Journal of Materials Chemistry A, 2018, 6, 17602-17611.	5.2	56
112	Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Applied Materials & Interfaces, 2018, 10, 21381-21389.	4.0	55
113	Macrocycle crosslinked mesoporous polymers for ultrafast separation of organic dyes. Chemical Communications, 2018, 54, 7362-7365.	2.2	39
114	Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean Journal of Chemical Engineering, 2018, 35, 1577-1600.	1.2	108
115	Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO2 separation. Journal of Membrane Science, 2018, 563, 229-237.	4.1	11
116	Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture. ACS Applied Materials & Interfaces, 2019, 11, 32398-32407.	4.0	7
117	The origin of size-selective gas transport through polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2019, 7, 20121-20126.	5.2	63
118	Ionic cross-linking of cellulose nanofibers: an approach to enhance mechanical stability for dynamic adsorption. Environmental Science and Pollution Research, 2019, 26, 28842-28851.	2.7	5
119	Polymeric membrane materials for nitrogen production from air: A process synthesis study. Chemical Engineering Science, 2019, 207, 1196-1213.	1.9	36
120	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie, 2019, 131, 12776-12784.	1.6	20
121	Electrically Poreâ€Sizeâ€Tunable Polypyrrole Membrane for Antifouling and Selective Separation. Advanced Functional Materials, 2019, 29, 1903081.	7.8	45
122	Sorptionâ€Enhanced Mixed Matrix Membranes with Facilitated Hydrogen Transport for Hydrogen Purification and CO ₂ Capture. Advanced Functional Materials, 2019, 29, 1904357.	7.8	45
123	Biomimetic Nanocones that Enable High Ion Permselectivity. Angewandte Chemie - International Edition, 2019, 58, 12646-12654.	7.2	47
124	Mixed-Matrix Membranes Formed from Imide-Functionalized UiO-66-NH ₂ for Improved Interfacial Compatibility. ACS Applied Materials & amp; Interfaces, 2019, 11, 31257-31269.	4.0	108
125	Highly Propylene-Selective Mixed-Matrix Membranes by in Situ Metal–Organic Framework Formation Using a Polymer-Modification Strategy. ACS Applied Materials & Interfaces, 2019, 11, 25949-25957.	4.0	32
126	Entropic selectivity in air separation <i>via</i> a bilayer nanoporous graphene membrane. Physical Chemistry Chemical Physics, 2019, 21, 16310-16315.	1.3	3

#	ARTICLE	IF	CITATIONS
127	Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nature Communications, 2019, 10, 2911.	5.8	90
128	Permeabilities and selectivities in anisotropic planar membranes for gas separations. Separation and Purification Technology, 2019, 228, 115762.	3.9	4
129	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
130	Insights into CO ₂ /N ₂ Selectivity in Porous Carbons from Deep Learning. , 2019, 1, 558-563.		34
131	Hyperaging Tuning of a Carbon Molecularâ€Sieve Hollow Fiber Membrane with Extraordinary Gasâ€Separation Performance and Stability. Angewandte Chemie, 2019, 131, 11826-11829.	1.6	9
132	2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. Journal of Materials Chemistry A, 2019, 7, 11673-11682.	5.2	88
133	TBN-mediated regio- and stereoselective sulfonylation & oximation (oximosulfonylation) of alkynes with sulfonyl hydrazines in EtOH/H ₂ O. Green Chemistry, 2019, 21, 205-212.	4.6	31
134	Transport Properties of Mixed-Matrix Membranes: A Kinetic Monte Carlo Study. Physical Review Applied, 2019, 12, .	1.5	12
137	Innovative Gas Treatment Solutions for Offshore Systems. , 2019, , .		0
139	Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach. AICHE Journal, 2019, 65, e16773.	1.8	21
140	Enhanced CO ₂ Capture and Hydrogen Purification by Hydroxy Metal–Organic Framework/Polyimide Mixed Matrix Membranes. ChemSusChem, 2019, 12, 4405-4411.	3.6	28
141	"Induced-Fit Suction―effect: a booster for biofuel storage and separation. Journal of Materials Chemistry A, 2019, 7, 22353-22358.	5.2	4
142	Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nature Communications, 2019, 10, 4204.	5.8	157
143	A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. European Polymer Journal, 2019, 120, 109262.	2.6	40
144	Self-assembly of block copolymers during hollow fiber spinning: an <i>in situ</i> small-angle X-ray scattering study. Nanoscale, 2019, 11, 7634-7647.	2.8	14
145	Highly efficient CO ₂ capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. Journal of Materials Chemistry A, 2019, 7, 4549-4560.	5.2	108
146	Cellulose nanocrystal-assembled reverse osmosis membranes with high rejection performance and excellent antifouling. Journal of Materials Chemistry A, 2019, 7, 3992-4001.	5.2	52
147	Electric field modulated metastable state magnetization in (Fe/Pt)4/PMN-PT multilayers. Journal of Alloys and Compounds, 2019, 785, 214-219.	2.8	0

#	Article	IF	CITATIONS
148	Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Science Advances, 2019, 5, eaaw5459.	4.7	106
149	A model to predict adsorption of mixtures coupled with SAFT-VR Mie Equation of state. Fluid Phase Equilibria, 2019, 496, 61-68.	1.4	18
150	Characterization of Interfacial Microâ€6tructures of Explosiveâ€8inder Composites by Gas Permeation. Propellants, Explosives, Pyrotechnics, 2019, 44, 1160-1166.	1.0	5
151	Creation of Wellâ€Defined "Midâ€&ized―Micropores in Carbon Molecular Sieve Membranes. Angewandte Chemie - International Edition, 2019, 58, 13259-13265.	7.2	75
152	Nanomaterials for Desalination. , 2019, , 227-262.		2
153	Creation of Wellâ€Defined "Midâ€&ized―Micropores in Carbon Molecular Sieve Membranes. Angewandte Chemie, 2019, 131, 13393-13399.	1.6	30
154	Incorporation of an ionic liquid into a midblock-sulfonated multiblock polymer for CO2 capture. Journal of Membrane Science, 2019, 588, 117193.	4.1	35
155	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	7.6	60
156	Diffusion of large particles through small pores: From entropic to enthalpic transport. Journal of Chemical Physics, 2019, 150, 211102.	1.2	18
157	Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chemical Society Reviews, 2019, 48, 3811-3841.	18.7	334
158	Hyperaging Tuning of a Carbon Molecularâ€Sieve Hollow Fiber Membrane with Extraordinary Gasâ€Separation Performance and Stability. Angewandte Chemie - International Edition, 2019, 58, 11700-11703.	7.2	56
159	An Atomistic Simulation Study on POC/PIM Mixed-Matrix Membranes for Gas Separation. Journal of Physical Chemistry C, 2019, 123, 15113-15121.	1.5	22
160	Thermodynamic Insights into the Characteristics of Unary and Mixture Permeances in Microporous Membranes. ACS Omega, 2019, 4, 9512-9521.	1.6	9
161	Hydrogenâ€Bonded Polyimide/Metalâ€Organic Framework Hybrid Membranes for Ultrafast Separations of Multiple Gas Pairs. Advanced Functional Materials, 2019, 29, 1903243.	7.8	78
162	Effect of Pendant Dioxolane Rings in Polymers on Gas Transport Characteristics. ACS Applied Polymer Materials, 2019, 1, 1641-1647.	2.0	7
163	A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols. Chemical Engineering Science, 2019, 206, 489-498.	1.9	16
164	Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. Journal of Materials Chemistry A, 2019, 7, 14089-14096.	5.2	45
165	Temperature―and Lightâ€Regulated Gas Transport in a Liquid Crystal Polymer Network. Advanced Functional Materials, 2019, 29, 1900857.	7.8	12

#	Article	IF	CITATIONS
166	Confined growth of skin layer for high performance reverse osmosis membrane. Journal of Membrane Science, 2019, 585, 208-217.	4.1	46
167	Sorption of CO2/CH4 mixtures in TZ-PIM, PIM-1 and PTMSP: Experimental data and NELF-model analysis of competitive sorption and selectivity in mixed gases. Journal of Membrane Science, 2019, 585, 136-149.	4.1	37
168	Suppression of crystallization in thin films of cellulose diacetate and its effect on CO2/CH4 separation properties. Journal of Membrane Science, 2019, 586, 7-14.	4.1	27
169	Electropolymerization of Molecularâ€6ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie, 2019, 131, 8860-8864.	1.6	20
170	The positive/negative effects of bentonite on O2/N2 permeation of carbon molecular sieving membranes. Microporous and Mesoporous Materials, 2019, 285, 142-149.	2.2	12
171	Electropolymerization of Molecularâ€6ieving Polythiophene Membranes for H ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 8768-8772.	7.2	39
172	A Costâ€Effective Mixed Matrix Polyethylene Porous Membrane for Longâ€Cycle High Power Density Alkaline Zincâ€Based Flow Batteries. Advanced Functional Materials, 2019, 29, 1901674.	7.8	20
173	Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving. ACS Applied Materials & amp; Interfaces, 2019, 11, 16729-16736.	4.0	19
174	Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chemical Engineering Science, 2019, 204, 151-160.	1.9	49
175	Anisotropic membrane materials for gas separations. AICHE Journal, 2019, 65, e16599.	1.8	4
176	Polydopamine-Modified Metal–Organic Framework Membrane with Enhanced Selectivity for Carbon Capture. Environmental Science & Technology, 2019, 53, 3764-3772.	4.6	93
177	High-Frequency Mechanical Behavior of Pure Polymer-Grafted Nanoparticle Constructs. ACS Macro Letters, 2019, 8, 294-298.	2.3	27
178	Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 2019, 13, 458-474.	2.3	27
179	Facile preparation of polyacrylonitrile-co-methylacrylate based integrally skinned asymmetric nanofiltration membranes for sustainable molecular separation: An one-step method. Journal of Colloid and Interface Science, 2019, 546, 251-261.	5.0	24
180	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	5.4	50
181	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	3.5	312
182	Synthesis of Soluble Metal Organic Framework Composites for Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2019, 11, 15638-15645.	4.0	9
183	Ultraâ€thin skin carbon hollow fiber membranes for sustainable molecular separations. AICHE Journal, 2019, 65, e16611.	1.8	36

#	Article	IF	CITATIONS
184	Starâ€shaped siloxane polymers with various cyclic cores: Synthesis and properties. Journal of Polymer Science Part A, 2019, 57, 1233-1246.	2.5	24
185	A Robust Zeolitic Imidazolate Framework Membrane with High H ₂ /CO ₂ Separation Performance under Hydrothermal Conditions. ACS Applied Materials & Interfaces, 2019, 11, 15748-15755.	4.0	27
186	Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582, 414-422.	4.1	146
187	110th Anniversary: High Performance Carbon Molecular Sieve Membrane Resistance to Aggressive Feed Stream Contaminants. Industrial & Engineering Chemistry Research, 2019, 58, 6740-6746.	1.8	5
188	A new ZIF molecular-sieving membrane for high-efficiency dye removal. Chemical Communications, 2019, 55, 3505-3508.	2.2	19
189	Polyimides in membrane gas separation: Monomer's molecular design and structural engineering. Progress in Polymer Science, 2019, 91, 80-125.	11.8	237
190	Conformationâ€Controlled Molecular Sieving Effects for Membraneâ€Based Propylene/Propane Separation. Advanced Materials, 2019, 31, e1807513.	11.1	117
191	High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the <i>in situ</i> oxidation of MXene. Journal of Materials Chemistry A, 2019, 7, 6475-6481.	5.2	130
192	Microporous Polyimides from Ladder Diamines Synthesized by Facile Catalytic Arene–Norbornene Annulation as High-Performance Membranes for Gas Separation. Chemistry of Materials, 2019, 31, 1767-1774.	3.2	62
193	Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field. Journal of Chemical Theory and Computation, 2019, 15, 2127-2141.	2.3	20
194	MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Separation and Purification Technology, 2019, 217, 229-239.	3.9	128
195	Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2019, 11, 47365-47372.	4.0	63
196	Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification. Journal of Membrane Science, 2019, 573, 301-308.	4.1	41
197	Continuously Tunable Pore Size for Gas Separation via a Bilayer Nanoporous Graphene Membrane. ACS Applied Nano Materials, 2019, 2, 379-384.	2.4	34
198	Zeolitic Imidazolate Framework Membranes for Light Olefin/Paraffin Separation. Crystals, 2019, 9, 14.	1.0	23
199	High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. Journal of Membrane Science, 2019, 573, 455-464.	4.1	74
200	Selective Gas Permeation in Mixed Matrix Membranes Accelerated by Hollow Ionic Covalent Organic Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 1564-1573.	3.2	26
201	An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient. Nano Energy, 2019, 57, 783-790.	8.2	58

#	Article	IF	CITATIONS
202	Membrane Separation in Organic Liquid: Technologies, Achievements, and Opportunities. Advanced Materials, 2019, 31, e1806090.	11.1	178
203	Fabrication and application of nanoporous polymer ion-track membranes. Nanotechnology, 2019, 30, 052001.	1.3	33
204	Membrane Filtration with Liquids: A Global Approach with Prior Successes, New Developments and Unresolved Challenges. Angewandte Chemie, 2019, 131, 1908-1918.	1.6	10
205	Porous Graphene Oxide/Porous Organic Polymer Hybrid Nanosheets Functionalized Mixed Matrix Membrane for Efficient CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 4338-4344.	4.0	56
206	Micro-/Nano-Dual-Scale Porous Composite Membranes for the Separation of Nanopollutants from Water. ACS Applied Nano Materials, 2019, 2, 806-811.	2.4	6
207	Nanoporous framework "reservoir―maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture. Journal of Membrane Science, 2019, 570-571, 278-285.	4.1	55
208	Membrane Filtration with Liquids: A Global Approach with Prior Successes, New Developments and Unresolved Challenges. Angewandte Chemie - International Edition, 2019, 58, 1892-1902.	7.2	46
209	Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. Journal of Membrane Science, 2019, 572, 61-72.	4.1	52
210	Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52.	4.1	22
211	High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573, 425-438.	4.1	42
212	Sequence-defined multifunctional polyethers via liquid-phase synthesis with molecular sieving. Nature Chemistry, 2019, 11, 136-145.	6.6	64
213	Metal–organic framework membranes: Production, modification, and applications. Progress in Materials Science, 2019, 100, 21-63.	16.0	169
214	Pore structure characterization and gas transport property of the penetrating layer in composite membranes. Separation and Purification Technology, 2019, 211, 252-258.	3.9	12
215	Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures. Separation and Purification Technology, 2019, 214, 2-10.	3.9	59
216	Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chinese Journal of Chemical Engineering, 2020, 28, 90-97.	1.7	10
217	Preparation of PEEK Membranes with Excellent Stability Using Common Organic Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 5218-5226.	1.8	26
218	Combining tannic acid-modified support and a green co-solvent for high performance reverse osmosis membranes. Journal of Membrane Science, 2020, 595, 117474.	4.1	41
219	Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2020, 235, 116150.	3.9	97

#	Article	IF	CITATIONS
220	High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method. Journal of Membrane Science, 2020, 595, 117480.	4.1	27
221	Manufacturing Nanoporous Materials for Energy-Efficient Separations. , 2020, , 33-81.		8
222	Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. Small, 2020, 16, e1903940.	5.2	101
223	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	4.1	39
224	Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small Molecules and Ions. Advanced Materials, 2020, 32, e1902009.	11.1	134
225	Nanohybrid thin-film composite carbon molecular sieve membranes. Materials Today Nano, 2020, 9, 100065.	2.3	25
226	Cross-Linkable Semi-Rigid 6FDA-Based Polyimide Hollow Fiber Membranes for Sour Natural Gas Purification. Industrial & Engineering Chemistry Research, 2020, 59, 5333-5339.	1.8	19
227	Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. Journal of Membrane Science, 2020, 595, 117586.	4.1	22
228	Impact of Post-Synthetic Modification Routes on Filler Structure and Performance in Metal–Organic Framework-Based Mixed-Matrix Membranes. Industrial & Engineering Chemistry Research, 2020, 59, 5432-5438.	1.8	17
229	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	1.8	21
230	High gas permselectivity in ZIFâ€302/polyimide selfâ€consistent mixedâ€matrix membrane. Journal of Applied Polymer Science, 2020, 137, 48513.	1.3	31
231	Envisioned role of slit bypass pores in physical aging of carbon molecular sieve membranes. Carbon, 2020, 157, 385-394.	5.4	39
232	Ultrafast waterâ€selective permeation through graphene oxide membrane with water transport promoters. AICHE Journal, 2020, 66, e16812.	1.8	44
233	Plasticization-Resistant Carboxyl-Functionalized 6FDA-Polyimide of Intrinsic Microporosity (PIM–PI) for Membrane-Based Gas Separation. Industrial & Engineering Chemistry Research, 2020, 59, 5247-5256.	1.8	58
234	Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein-based cardo poly(arylene ether ketone). Journal of Membrane Science, 2020, 598, 117824.	4.1	18
235	Sharply promoted CO2 diffusion in a mixed matrix membrane with hierarchical supra-nanostructured porous coordination polymer filler. Journal of Membrane Science, 2020, 597, 117772.	4.1	23
236	Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. Journal of Membrane Science, 2020, 597, 117775.	4.1	68
237	Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology, 2020, 238, 116448.	3.9	97

#	Article	IF	CITATIONS
238	Perspective on Gas Separation Membrane Materials from Process Economics Point of View. Industrial & Engineering Chemistry Research, 2020, 59, 556-568.	1.8	44
239	Graphene oxide/methylene blue composite membrane for dyes separation: Formation mechanism and separation performance. Applied Surface Science, 2020, 505, 144145.	3.1	38
240	Mixed matrix membranes consisting of ZIF-8 in rubbery amphiphilic copolymer: Simultaneous improvement in permeability and selectivity. Chemical Engineering Research and Design, 2020, 153, 175-186.	2.7	11
241	Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route. Journal of Membrane Science, 2020, 597, 117758.	4.1	46
242	Novel carbon-based separation membranes composed of integrated zero- and one-dimensional nanomaterials. Journal of Materials Chemistry A, 2020, 8, 1084-1090.	5.2	20
243	Multi-criteria design of membrane cascades: Selection of configurations and process parameters. Separation and Purification Technology, 2020, 237, 116349.	3.9	9
245	Preparation of molecular selective GO/DTiO2-PDA-PEI composite nanofiltration membrane for highly pure dye separation. Journal of Membrane Science, 2020, 601, 117727.	4.1	49
246	High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation. Journal of Membrane Science, 2020, 596, 117735.	4.1	39
247	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 3840-3845.	7.2	109
248	Metal-organic framework membranes for wastewater treatment and water regeneration. Coordination Chemistry Reviews, 2020, 404, 213116.	9.5	265
249	Defective analcime/geopolymer composite membrane derived from fly ash for ultrafast and highly efficient filtration of organic pollutants. Journal of Hazardous Materials, 2020, 388, 121736.	6.5	34
250	Polyamide Membranes with Net-Like Nanostructures Induced by Different Charged MOFs for Elevated Nanofiltration. ACS Applied Polymer Materials, 2020, 2, 585-593.	2.0	38
251	Robust underwater superoleophobic membranes with bio-inspired carrageenan/laponite multilayers for the effective removal of emulsions, metal ions, and organic dyes from wastewater. Chemical Engineering Journal, 2020, 391, 123585.	6.6	61
252	Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Applied Surface Science, 2020, 508, 144788.	3.1	16
253	In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation. Journal of Membrane Science, 2020, 596, 117689.	4.1	35
254	Progress and prospects of two-dimensional materials for membrane-based water desalination. Materials Today Advances, 2020, 8, 100108.	2.5	27
255	Organic Solvent Forward Osmosis of Graphene Oxide-Based Membranes for Enrichment of Target Products. Industrial & Engineering Chemistry Research, 2020, 59, 19012-19019.	1.8	7
256	Design and fabrication of highly selective and permeable polymer membranes. Journal of Applied Physics, 2020, 128, .	1.1	10

#	Article	IF	CITATIONS
257	Breakthroughs on tailoring pervaporation membranes for water desalination: A review. Water Research, 2020, 187, 116428.	5.3	114
258	Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. Journal of the American Chemical Society, 2020, 142, 18503-18512.	6.6	86
259	Applications of tannic acid in membrane technologies: A review. Advances in Colloid and Interface Science, 2020, 284, 102267.	7.0	181
260	<i>N</i> -Aryl–linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science, 2020, 369, 310-315.	6.0	139
261	Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings. Journal of Membrane Science, 2020, 601, 117880.	4.1	16
262	Molecularly engineering polymeric membranes for <scp>H₂</scp> / <scp>CO₂</scp> separation at 100–300 °C. Journal of Polymer Science, 2020, 58, 2467-2481.	2.0	41
263	Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes, 2020, 10, 328.	1.4	5
264	Tuning Selectivities in Gas Separation Membranes Based on Polymer-Grafted Nanoparticles. ACS Nano, 2020, 14, 17174-17183.	7.3	55
265	Vertically-Oriented Ti ₃ C ₂ T _{<i>x</i>} MXene Membranes for High Performance of Electrokinetic Energy Conversion. ACS Nano, 2020, 14, 16654-16662.	7.3	47
266	Graphene oxide based SPR sensor for sensing of sea water concentration. Results in Optics, 2020, 1, 100011.	0.9	11
267	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	5.6	105
268	Nano-confinement-inspired metal organic framework/polymer composite separation membranes. Journal of Materials Chemistry A, 2020, 8, 17212-17218.	5.2	18
269	Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society, 2020, 142, 14399-14416.	6.6	444
270	What Fluorine Can Do in CO ₂ Chemistry: Applications from Homogeneous to Heterogeneous Systems. ChemSusChem, 2020, 13, 6182-6200.	3.6	18
271	Effects of the Growth Kinetics on Solute Diffusion in Porous Films. Journal of Physical Chemistry C, 2020, 124, 19101-19111.	1.5	0
272	Synergistic CO ₂ ‣ieving from Polymer with Intrinsic Microporosity Masking Nanoporous Single‣ayer Graphene. Advanced Functional Materials, 2020, 30, 2003979.	7.8	43
273	Characterization of the polymer/particle interphase in composite materials by molecular probing. Polymer, 2020, 205, 122792.	1.8	19
274	Modified-MOF-808-Loaded Polyacrylonitrile Membrane for Highly Efficient, Simultaneous Emulsion Separation and Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2020, 12, 39227-39235.	4.0	109

#	Article	IF	CITATIONS
275	Beyond Solution-Based Protocols: MOF Membrane Synthesis in Supercritical Environments for an Elegant Sustainability Performance Balance. , 2020, 2, 1142-1147.		16
276	One-Pot Single-Step Route toward Bicontinuous Nanoporous Membranes of an Organic–Inorganic Core–Shell Network. Chemistry of Materials, 2020, 32, 8318-8324.	3.2	9
277	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	5.2	43
278	Metal–organic framework <scp>â€based mixedâ€matrix</scp> membranes for gas separation: An overview. Journal of Polymer Science, 2020, 58, 2518-2546.	2.0	41
279	Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Frontiers in Chemistry, 2020, 8, 694.	1.8	36
280	A new route to porous metal–organic framework crystal–glass composites. Chemical Science, 2020, 11, 9910-9918.	3.7	21
281	Metal–Organic Framework Nanosheets for Thin-Film Composite Membranes with Enhanced Permeability and Selectivity. ACS Applied Nano Materials, 2020, 3, 9238-9248.	2.4	57
282	Property Characterization and Mechanism Analysis of Polyoxometalates-Functionalized PVDF Membranes by Electrochemical Impedance Spectroscopy. Membranes, 2020, 10, 214.	1.4	5
283	Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. Membranes, 2020, 10, 297.	1.4	17
284	Flexible, fouling-resistant and self-cleaning Ti3C2Tx-derivated hydrophilic nanofiltration membrane for highly efficient rejection of organic molecules from wastewater. Journal of Materials Research and Technology, 2020, 9, 11675-11686.	2.6	17
285	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie - International Edition, 2020, 59, 14877-14883.	7.2	69
286	The mixture effect on ionic selectivity and permeability of nanotubes. Nanoscale Advances, 2020, 2, 3834-3840.	2.2	1
287	Solvent-Less Vapor-Phase Fabrication of Membranes for Sustainable Separation Processes. Engineering, 2020, 6, 1432-1442.	3.2	12
288	Crosslinked microporous polyarylate membranes with high Kr/Xe separation performance and high stability under irradiation. Journal of Membrane Science, 2020, 611, 118280.	4.1	9
289	Molecularly Engineered 6FDAâ€Based Polyimide Membranes for Sour Natural Gas Separation. Angewandte Chemie, 2020, 132, 14987-14993.	1.6	4
290	Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. Journal of Membrane Science, 2020, 608, 118191.	4.1	39
291	Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 2020, 6, eaaz4301.	4.7	132
292	Optimal process design of biogas upgrading membrane systems: Polymeric vs high performance inorganic membrane materials. Chemical Engineering Science, 2020, 225, 115769.	1.9	37

#	Article	IF	CITATIONS
293	Multifunctional ternary deep eutectic solvent-based membranes for the cost-effective ethylene/ethane separation. Journal of Membrane Science, 2020, 610, 118243.	4.1	29
294	Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability. Journal of Membrane Science, 2020, 610, 118253.	4.1	33
295	Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. ACS Applied Materials & Interfaces, 2020, 12, 30796-30804.	4.0	20
296	<scp>PDMS</scp> mixedâ€matrix membranes with molecular fillers via reactive incorporation and their application for bioâ€butanol recovery from aqueous solution. Journal of Polymer Science, 2020, 58, 2634-2643.	2.0	8
297	Negative Charge Confined Amine Carriers within the Nanowire Network for Stable and Efficient Membrane Carbon Capture. Advanced Functional Materials, 2020, 30, 2002804.	7.8	14
298	Ultrathin water-stable metal-organic framework membranes for ion separation. Science Advances, 2020, 6, eaay3998.	4.7	179
299	Obtainment and Characterization of Hydrophilic Polysulfone Membranes by N-Vinylimidazole Grafting Induced by Gamma Irradiation. Polymers, 2020, 12, 1284.	2.0	6
300	Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations. ACS Applied Materials & Interfaces, 2020, 12, 16922-16929.	4.0	19
301	Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects. Renewable and Sustainable Energy Reviews, 2020, 123, 109771.	8.2	70
302	Ion-gated carbon molecular sieve gas separation membranes. Journal of Membrane Science, 2020, 604, 118013.	4.1	15
303	High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. Journal of the American Chemical Society, 2020, 142, 6872-6877.	6.6	217
304	Modification of Polymer Membranes for Use in Organic Solvents. Russian Journal of Applied Chemistry, 2020, 93, 14-24.	0.1	9
305	Gas Separation via Hybrid Metal–Organic Framework/Polymer Membranes. Trends in Chemistry, 2020, 2, 254-269.	4.4	71
306	Preparation of a novel zwitterionic striped surface thin-film composite nanofiltration membrane with excellent salt separation performance and antifouling property. RSC Advances, 2020, 10, 16168-16178.	1.7	17
307	A Selfâ€Consistent Model for Sorption and Transport in Polyimideâ€Derived Carbon Molecular Sieve Gas Separation Membranes. Angewandte Chemie - International Edition, 2020, 59, 20343-20347.	7.2	29
308	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755
309	Cardo-type porous organic nanospheres: Tailoring interfacial compatibility in thermally rearranged mixed matrix membranes for improved hydrogen purification. Journal of Membrane Science, 2020, 612, 118414.	4.1	6
310	A Selfâ€Consistent Model for Sorption and Transport in Polyimideâ€Derived Carbon Molecular Sieve Gas Separation Membranes. Angewandte Chemie, 2020, 132, 20523-20527.	1.6	10

#	Article	IF	CITATIONS
311	Competitive sorption in CO2/CH4 separations: the case of HAB-6FDA polyimide and its TR derivative and a general analysis of its impact on the selectivity of glassy polymers at multicomponent conditions. Journal of Membrane Science, 2020, 612, 118374.	4.1	32
312	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	5.8	62
313	Hydrocarbon separations by glassy polymer membranes. Journal of Polymer Science, 2020, 58, 2482-2517.	2.0	29
314	Carbon membranes for CO2 removal: Status and perspectives from materials to processes. Chemical Engineering Journal, 2020, 401, 126084.	6.6	124
315	Tunable sour gas separations: Simultaneous H2S and CO2 removal from natural gas via crosslinked telechelic poly(ethylene glycol) membranes. Journal of Membrane Science, 2020, 602, 117947.	4.1	44
316	Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. Nano Letters, 2020, 20, 2209-2218.	4.5	41
317	GrenzflÃ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
318	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
319	Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. Journal of the American Chemical Society, 2020, 142, 4472-4480.	6.6	304
320	High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation. Dalton Transactions, 2020, 49, 1822-1829.	1.6	14
321	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	18.7	242
322	Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation. Journal of Natural Gas Science and Engineering, 2020, 75, 103156.	2.1	33
323	Surpassing Robeson Upper Limit for CO2/N2 Separation with Fluorinated Carbon Molecular Sieve Membranes. CheM, 2020, 6, 631-645.	5.8	73
324	lon partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 2020, 277, 102107.	7.0	47
325	Interlocking a synthesized polymer and bifunctional filler containing the same polymer's monomer for conformable hybrid membrane systems. Journal of Materials Chemistry A, 2020, 8, 3942-3955.	5.2	21
326	Fabrication of a Hydrogenâ€Bonded Organic Framework Membrane through Solution Processing for Pressureâ€Regulated Gas Separation. Angewandte Chemie, 2020, 132, 3868-3873.	1.6	20
327	Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Research, 2020, 173, 115557.	5.3	230
328	Twoâ€Dimensional Membranes: New Paradigms for Highâ€Performance Separation Membranes. Chemistry - an Asian Journal, 2020, 15, 2241-2270.	1.7	36

#	Article	IF	CITATIONS
329	Phosphonium Modification Leads to Ultrapermeable Antibacterial Polyamide Composite Membranes with Unreduced Thickness. Advanced Materials, 2020, 32, e2001383.	11.1	150
330	High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid. Journal of Membrane Science, 2020, 608, 118202.	4.1	64
331	Etched ZIFâ€8 as a Filler in Mixedâ€Matrix Membranes for Enhanced CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2020, 26, 7918-7922.	1.7	22
332	Molecular simulations of liquid separations in polymer membranes. Current Opinion in Chemical Engineering, 2020, 28, 66-74.	3.8	22
333	Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. Journal of Membrane Science, 2020, 606, 118122.	4.1	22
334	Polyelectrolyte Grafted MOFs Enable Conjugated Membranes for Molecular Separations in Dual Solvent Systems. Cell Reports Physical Science, 2020, 1, 100034.	2.8	25
335	Facile Synthesis and Study of Microporous Catalytic Arene-Norbornene Annulation–Tröger's Base Ladder Polymers for Membrane Air Separation. ACS Macro Letters, 2020, 9, 680-685.	2.3	57
336	Vertically Transported Graphene Oxide for Highâ€Performance Osmotic Energy Conversion. Advanced Science, 2020, 7, 2000286.	5.6	78
337	Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chemistry of Materials, 2020, 32, 3680-3700.	3.2	62
338	Applications of MXene-based membranes in water purification: A review. Chemosphere, 2020, 254, 126821.	4.2	166
339	Balancing the Grain Boundary Structure and the Framework Flexibility through Bimetallic Metal–Organic Framework (MOF) Membranes for Gas Separation. Journal of the American Chemical Society, 2020, 142, 9582-9586.	6.6	58
340	Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger's-Base Derived Polymers of Intrinsic Microporosity. Membranes, 2020, 10, 62.	1.4	21
341	Porous Graphene-based Membranes: Preparation and Properties of a Unique Two-dimensional Nanomaterial Membrane for Water Purification. Separation and Purification Reviews, 2021, 50, 262-282.	2.8	29
342	Natural gas purification by asymmetric membranes: An overview. Green Energy and Environment, 2021, 6, 176-192.	4.7	51
343	An Extrinsicâ€Poreâ€Containing Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie - International Edition, 2021, 60, 1323-1331.	7.2	11
344	Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates. Journal of Membrane Science, 2021, 617, 118640.	4.1	12
345	An Extrinsicâ€Poreâ€Containing Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie, 2021, 133, 1343-1351.	1.6	4
346	Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chemical Engineering Journal, 2021, 405, 127004.	6.6	147

#	Article	IF	CITATIONS
347	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	4.1	88
348	Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations. Journal of Membrane Science, 2021, 621, 118785.	4.1	40
349	Metal Soap Membranes for Gas Separation. Advanced Functional Materials, 2021, 31, 2005629.	7.8	2
350	Deep spatial representation learning of polyamide nanofiltration membranes. Journal of Membrane Science, 2021, 620, 118910.	4.1	13
351	Fabrication of zeolitic imidazolate frameworks based mixed matrix membranes and mass transfer properties of C 4 H 6 and N 2 in membrane separation. AICHE Journal, 2021, 67, e17114.	1.8	7
352	Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. Journal of Membrane Science, 2021, 620, 118923.	4.1	53
353	<i>In situ</i> knitted microporous polymer membranes for efficient CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 2126-2134.	5.2	4
354	Surprising olefin/paraffin separation performance recovery of highly aged carbon molecular sieve hollow fiber membranes by a super-hyperaging treatment. Journal of Membrane Science, 2021, 620, 118701.	4.1	32
355	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
356	Organic solvent reverse osmosis membranes for organic liquid mixture separation: A review. Journal of Membrane Science, 2021, 620, 118882.	4.1	65
357	Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chemical Engineering, 2021, 2, 86-95.	3.3	15
358	Spatially Controlled Permeability and Stiffness in Photopatterned Two-Stage Reactive Polymer Films for Enhanced CO ₂ Barrier and Mechanical Toughness. Macromolecules, 2021, 54, 44-52.	2.2	4
359	Grapheneâ€Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2006949.	7.8	81
360	M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. Journal of Membrane Science, 2021, 620, 118852.	4.1	39
361	Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nature Nanotechnology, 2021, 16, 77-84.	15.6	105
362	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	7.8	43
363	Stepped enhancement of <scp>CO₂</scp> adsorption and separation in <scp>ILâ€ZIFâ€iL</scp> composites with shellâ€interlayerâ€core structure. AICHE Journal, 2021, 67, e17112.	1.8	16
364	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32

#	Article	IF	CITATIONS
365	Artificial channels for confined mass transport at the sub-nanometre scale. Nature Reviews Materials, 2021, 6, 294-312.	23.3	263
366	Selective filling of n-hexane in a tight nanopore. Nature Communications, 2021, 12, 310.	5.8	21
367	Differentiating Solutes with Precise Nanofiltration for Next Generation Environmental Separations: A Review. Environmental Science & Technology, 2021, 55, 1359-1376.	4.6	156
368	Hydrogen separation and purification with MOF-based materials. Materials Chemistry Frontiers, 2021, 5, 4022-4041.	3.2	23
369	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
370	Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: precise molecular sieving with polymer-grafted metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 23793-23801.	5.2	41
371	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-39.	0.3	0
372	Universal and tunable liquid–liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nature Communications, 2021, 12, 80.	5.8	32
373	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2021, , 1527-1555.		0
374	Integration of Material and Process Design for Kinetic Adsorption Separation. Industrial & Engineering Chemistry Research, 2021, 60, 2536-2546.	1.8	6
376	Is Porosity at the MOF/Polymer Interface Necessarily an Obstacle to Optimal Gas-Separation Performances in Mixed Matrix Membranes?. , 2021, 3, 344-350.		24
377	Facilely Cross-Linking Polybenzimidazole with Polycarboxylic Acids to Improve H ₂ /CO ₂ Separation Performance. ACS Applied Materials & Interfaces, 2021, 13, 12521-12530.	4.0	29
378	Ionâ€5elective MXeneâ€Based Membranes: Current Status and Prospects. Advanced Materials Technologies, 2021, 6, 2001189.	3.0	31
379	Rapid Fabrication by Lyotropic Self-Assembly of Thin Nanofiltration Membranes with Uniform 1 Nanometer Pores. ACS Nano, 2021, 15, 8192-8203.	7.3	33
380	Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and nâ€Butane/iâ€Butane Separations. Angewandte Chemie, 2021, 133, 10191-10199.	1.6	5
381	Delayed Linker Addition (DLA) Synthesis for Hybrid SOD ZIFs with Unsubstituted Imidazolate Linkers for Propylene/Propane and nâ€Butane/iâ€Butane Separations. Angewandte Chemie - International Edition, 2021, 60, 10103-10111.	7.2	23
382	A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. Reactive and Functional Polymers, 2021, 160, 104825.	2.0	13
383	Fibre-based composites from the integration of metal–organic frameworks and polymers. Nature Reviews Materials, 2021, 6, 605-621.	23.3	128

ARTICLE IF CITATIONS Bioinspired and biomimetic membranes for water purification and chemical separation: A review. 384 3.3 26 Frontiers of Environmental Science and Engineering, 2021, 15, 1. Remarkably enhanced gas separation properties of PIM-1 at sub-ambient temperatures. Journal of Membrane Science, 2021, 623, 119091. 4.1 Defect Repair of Polyelectrolyte Bilayers Using SDS: The Action of Micelles Versus Monomers. 386 2 1.6 Langmuir, 2021, 37, 5306-5310. Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. Journal of Membrane Science, 2021, 623, 119039. Surface wettability switching of a zeolitic imidazolate frameworkâ€deposited membrane for selective efficient oil/water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering 388 2.3 20 Aspects, 2021, 614, 126204. Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Advanced Composites and Hybrid Materials, 2021, 4, 562-573. 390 Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature, 2021, 592, 225-231. 13.7 83 Ultrafast Poly(sodium methacrylate)-Grafted UiO-66-Incorporated Nanocomposite Membranes Enable Excellent Active Pharmaceutical Ingredient Concentration. Industrial & amp; Engineering Chemistry 1.8 19 Research, 2021, 60, 6287-6297. Application Overview of Membrane Separation Technology in Coal Mine Water Resources Treatment in 392 0.9 11 Western China. Mine Water and the Environment, 2021, 40, 510-519. Thermally rearranged semi-interpenetrating polymer network (TR-SIPN) membranes for gas and 4.1 olefin/paraffin separation. Journal of Membrane Science, 2021, 625, 119157. Covalent organic frameworks as robust materials for mitigation of environmental pollutants. 394 92 4.2 Chemosphere, 2021, 270, 129523. Enhanced proton transport properties of sulfonated polyarylene ether nitrile (SPEN) with moniliform nanostructure UiO-66-NH₂/CNT. High Performance Polymers, 2021, 33, 0.8 1035-1046. Recent Advances of Pervaporation Separation in DMF/H2O Solutions: A Review. Membranes, 2021, 11, 396 1.4 13 455. Penetrant competition and plasticization in membranes: How negatives can be positives in natural gas 4.1 sweetening. Journal of Membrane Science, 2021, 627, 119201. Development of a P84/ZCC Composite Carbon Membrane for Gas Separation of 398 20 1.6 H₂/CO₂ and H₂/CH₄. ACS Omega, 2021, 6, 15637-15650. Aramid Nanofiber Membranes Reinforced by MXene Nanosheets for Recovery of Dyes from Textile 2.4 29 Wastewater. ACS Applied Nano Materials, 2021, 4, 6328-6336. ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation. Separation and 400 3.9 40 Purification Technology, 2021, 264, 118431. Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie, 2021, 133, 21474-21479.

#	Article	IF	CITATIONS
402	Polycrystalline zeolite and metal-organic framework membranes for molecular separations. Coordination Chemistry Reviews, 2021, 437, 213794.	9.5	52
403	Coordination Polymer Glasses with Lava and Healing Ability for Highâ€Performance Gas Sieving. Angewandte Chemie - International Edition, 2021, 60, 21304-21309.	7.2	33
404	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	7.8	29
405	Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules, 2021, 26, 3331.	1.7	26
406	Mixed Dimensional Nanostructure (UiOâ€66â€Decorated MWCNT) as a Nanofiller in Mixedâ€Matrix Membranes for Enhanced CO ₂ /CH ₄ Separation. Chemistry - A European Journal, 2021, 27, 11132-11140.	1.7	9
407	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie, 2021, 133, 15669-15675.	1.6	11
408	Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions. Angewandte Chemie - International Edition, 2021, 60, 15541-15547.	7.2	51
409	Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyneâ€Functionalized Nickel(II)â€Pyrazolateâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 11837-11844.	1.7	10
410	Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymers, 2021, 13, 2539.	2.0	27
411	Selfâ€Assembled Facilitated Transport Membranes with Tunable Carrier Distribution for Ethylene/Ethane Separation. Advanced Functional Materials, 2021, 31, 2104349.	7.8	12
412	Emerging graphitic carbon nitride-based membranes for water purification. Water Research, 2021, 200, 117207.	5.3	53
413	Thermally Cross-Linked Amidoxime-Functionalized Polymers of Intrinsic Microporosity Membranes for Highly Selective Hydrogen Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 9426-9435.	3.2	14
414	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2100049.	6.9	62
415	The Phase Structural Evolution and Gas Separation Performances of Cellulose Acetate/Polyimide Composite Membrane from Polymer to Carbon Stage. Membranes, 2021, 11, 618.	1.4	7
416	Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations. Water Research, 2021, 201, 117311.	5.3	20
417	Freezing assisted in situ growth of nano-confined ZIF-8 composite membrane for dye removal from water. Journal of Membrane Science, 2021, 632, 119352.	4.1	17
418	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	5.6	83
419	MILâ€101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification. Chemistry - an Asian Journal, 2021, 16, 3162-3169.	1.7	11

		15	0
#	ARTICLE Facile Defect Engineering of Zeolitic Imidazolate Frameworks towards Enhanced	15	CITATIONS
420	Functional Materials, 2021, 31, 2105577.	7.0	20
421	Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nature Energy, 2021, 6, 882-891.	19.8	115
422	Low-Temperature H ₂ S/CO ₂ /CH ₄ Separation in Mixed-Matrix Membranes Containing MFU-4. Chemistry of Materials, 2021, 33, 6825-6831.	3.2	11
423	Key Features of Polyimideâ€Derived Carbon Molecular Sieves. Angewandte Chemie, 2021, 133, 22496-22505.	1.6	0
424	Facile preparation of Porous aromatic frameworks PAF-56 membranes for nanofiltration of dyes solutions. Separation and Purification Technology, 2022, 280, 119845.	3.9	7
425	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	2.0	13
426	Fabrication of Ultrathin Membranes Using 2Dâ€MOF Nanosheets for Tunable Gas Separation. Chemistry - an Asian Journal, 2021, 16, 3413-3418.	1.7	6
427	Enhanced molecular selectivity and plasticization resistance in ring-opened Tröger's base polymer membranes. Journal of Membrane Science, 2021, 634, 119399.	4.1	19
428	Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine. Journal of Membrane Science, 2021, 634, 119406.	4.1	26
429	Ultrathin Covalent Organic Framework Membranes via a Multiâ€Interfacial Engineering Strategy for Gas Separation. Advanced Materials, 2022, 34, e2104946.	11.1	82
430	Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials. Advanced Composites and Hybrid Materials, 2021, 4, 1092-1101.	9.9	39
431	Solubility selectivity-enhanced SIFSIX-3-Ni-containing mixed matrix membranes for improved CO2/CH4 separation efficiency. Journal of Membrane Science, 2021, 633, 119390.	4.1	13
432	Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membraneâ€Based Fluid Separations. Small Structures, 2021, 2, 2170026.	6.9	8
433	Key Features of Polyimideâ€Derived Carbon Molecular Sieves. Angewandte Chemie - International Edition, 2021, 60, 22322-22331.	7.2	59
434	Enhanced propylene/propane separation in facilitated transport membranes containing multisilver complex. AICHE Journal, 2022, 68, e17410.	1.8	16
435	Ultra-permeable zeolitic imidazolate frameworks-intercalated graphene oxide membranes for unprecedented ultrafast molecular separation. Chemical Engineering Journal, 2021, 419, 129507.	6.6	27
436	Zeolite-like performance for xylene isomer purification using polymer-derived carbon membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
437	Poly(aryl ether ketone) membrane with controllable degree of sulfonation for organic solvent nanofiltration. Separation and Purification Technology, 2021, 273, 118956.	3.9	15

#	Article	IF	CITATIONS
438	Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture. Journal of Membrane Science, 2021, 636, 119595.	4.1	26
439	The effect of chain rigidity and microporosity on the sub-ambient temperature gas separation properties of intrinsic microporous polyimides. Journal of Membrane Science, 2021, 635, 119439.	4.1	29
440	Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors. Journal of Membrane Science, 2021, 635, 119541.	4.1	49
441	Unprecedented gas separation performance of ITTB/CNT nanocomposite membranes at low temperature by strong interfacial interaction enhanced rigidity. Journal of Membrane Science, 2021, 636, 119590.	4.1	14
442	Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. Journal of Membrane Science, 2021, 635, 119440.	4.1	26
443	Pervaporation membrane materials: Recent trends and perspectives. Journal of Membrane Science, 2021, 636, 119557.	4.1	140
444	Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. Journal of Membrane Science, 2021, 638, 119698.	4.1	6
445	Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Progress in Polymer Science, 2021, 122, 101450.	11.8	90
446	Soluble polymeric metal-organic frameworks toward crystalline membranes for efficient cation separation. Journal of Membrane Science, 2021, 639, 119757.	4.1	8
447	Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Separation and Purification Technology, 2021, 277, 119449.	3.9	47
448	Novel highly stable Guanazole-incorporated ultrathin loose nanofiltration membrane with superior permeability for water desalination and purification. Desalination, 2021, 520, 115335.	4.0	30
449	Oriented 2D metal organic framework coating on bacterial cellulose for nitrobenzene removal from water by filtration. Separation and Purification Technology, 2021, 276, 119366.	3.9	10
450	Facile synthesis of Bi-functionalized intrinsic microporous polymer with fully carbon backbone for gas separation application. Separation and Purification Technology, 2021, 279, 119681.	3.9	7
451	A superb water permeable membrane for potential applications in CO2 to liquid fuel process. Journal of Membrane Science, 2021, 639, 119682.	4.1	8
452	Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Separation and Purification Technology, 2021, 278, 119513.	3.9	44
453	Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal. Chemical Engineering Journal, 2022, 427, 131668.	6.6	159
454	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	4.1	18
455	Synthesis and gas permeation properties of tetraoxidethianthrene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2021, 9, 2840-2849.	5.2	17

#	Article	IF	CITATIONS
456	Hydrogen sulfide removal from natural gas using membrane technology: a review. Journal of Materials Chemistry A, 2021, 9, 20211-20240.	5.2	37
457	Metal–organic cages for molecular separations. Nature Reviews Chemistry, 2021, 5, 168-182.	13.8	227
458	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
459	Engineering membranes with macrocycles for precise molecular separations. Journal of Materials Chemistry A, 2021, 9, 18102-18128.	5.2	28
460	Microscopically tuning the graphene oxide framework for membrane separations: a review. Nanoscale Advances, 2021, 3, 5265-5276.	2.2	12
461	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	5.2	26
462	Two-Dimensional-Material Membranes: Manipulating the Transport Pathway for Molecular Separation. Accounts of Materials Research, 2021, 2, 114-128.	5.9	89
463	MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nature Communications, 2021, 12, 38.	5.8	212
464	High efficient thin-film composite membrane: Ultrathin hydrophilic polyamide film on macroporous superhydrophobic polytetrafluoroethylene substrate. Applied Materials Today, 2017, 8, 54-59.	2.3	12
465	Plasticization- and aging-resistant membranes with venation-like architecture for efficient carbon capture. Journal of Membrane Science, 2020, 609, 118215.	4.1	12
466	MXene Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport. Environmental Science & Technology, 2021, 55, 1270-1278.	4.6	102
467	Chapter 1. Current State-of-the-art Membrane Based Filtration and Separation Technologies. RSC Nanoscience and Nanotechnology, 2018, , 1-13.	0.2	6
468	Graphene-based Membranes. RSC Nanoscience and Nanotechnology, 2018, , 14-42.	0.2	1
469	Review of Basics Reverse Osmosis Process Modeling: A New Combined Fouling Index Proposed. Membrane Journal, 2017, 27, 291-312.	0.2	1
470	Revealing photonic Lorentz force as the microscopic origin of topological photonic states. Nanophotonics, 2020, 9, 3217-3226.	2.9	10
471	Continuous Porous Aromatic Framework Membranes with Modifiable Sites for Optimized Gas Separation. Angewandte Chemie, 0, , .	1.6	1
472	Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nature Communications, 2021, 12, 6140.	5.8	49
473	In Situ Derived Hybrid Carbon Molecular Sieve Membranes with Tailored Ultramicroporosity for Efficient Gas Separation. Small, 2021, 17, e2104698.	5.2	19

#	Article	IF	CITATIONS
474	Microporous Polymers for Gas Separation Membranes: Overview and Advances. , 2020, , 1-29.		1
475	Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration. Journal of Membrane Science, 2022, 643, 120013.	4.1	30
476	Crosslinked Matrimid®-like polyimide membranes with unimodal network structure for enhanced stability and gas separation performance. Polymer, 2021, 237, 124323.	1.8	16
477	High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. Journal of Membrane Science, 2022, 642, 119978.	4.1	13
478	Printed graphene oxide-based membranes for gas separation and carbon capture. Chemical Engineering Journal, 2022, 430, 132942.	6.6	36
479	Microscopic dynamics of highly permeable super glassy polynorbornenes revealed by quasielastic neutron scattering. Journal of Membrane Science, 2022, 642, 119972.	4.1	3
480	Bimetallic polyphenol networks structure modified polyethersulfone membrane with hydrophilic and anti-fouling properties based on reverse thermally induced phase separation method. Chemosphere, 2022, 288, 132537.	4.2	8
481	State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes. Current Opinion in Chemical Engineering, 2022, 35, 100755.	3.8	34
482	Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve. Journal of Membrane Science, 2022, 642, 119963.	4.1	6
483	Continuous Porous Aromatic Framework Membranes with Modifiable Sites for Optimized Gas Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
484	Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes. Environmental Science & Technology, 2021, 55, 14863-14875.	4.6	26
485	Highly Selective Benzimidazole-Based Polyimide/Ionic Polyimide Membranes for Pure- and Mixed-Gas CO2/CH4 Separation. Separation and Purification Technology, 2022, 282, 120091.	3.9	14
486	Tunable Supramolecular Cavities Molecularly Homogenized in Polymer Membranes for Ultraefficient Precombustion CO ₂ Capture. Advanced Materials, 2022, 34, e2105156.	11.1	22
487	A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels. , 2021, 1, 100014.		19
488	Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation. Journal of Membrane Science, 2022, 644, 120115.	4.1	22
489	Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS Central Science, 2021, 7, 2092-2098.	5.3	8
490	The Selective Transport of Ions in Charged Nanopore with Combined Multi-Physics Fields. Materials, 2021, 14, 7012.	1.3	9
491	Triple-ligand zeolitic imidazolate frameworks for highly CO2 selective mixed matrix membranes. Chemical Engineering Journal, 2022, 433, 133606.	6.6	11

#	Article	IF	CITATIONS
493	Conformational-change-induced selectivity enhancement of CAU-10-PDC membrane for H2/CH4 and CO2/CH4 separation. , 2021, 1, 100005.		7
494	Simultaneously enhanced CO2 permeability and CO2/N2 selectivity at sub-ambient temperature from two novel functionalized intrinsic microporous polymers. Journal of Membrane Science, 2022, 644, 120086.	4.1	8
495	Controlling Chemical Waves by Transforming Transient Mass Transfer. Advanced Theory and Simulations, 2022, 5, 2100375.	1.3	12
496	Tunable arrangement of hydrogel and cyclodextrin-based metal organic frameworks suitable for drug encapsulation and release. Carbohydrate Polymers, 2022, 278, 118915.	5.1	18
497	Novel Polymers with Ultrapermeability Based on Alternately Planar and Contorted Units for Gas Separation. , 2022, 4, 61-67.		6
498	The role of skin layer defects in organic solvent reverse osmosis membranes. , 2021, 1, 100004.		3
499	Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives. , 2021, 1, 100011.		16
500	Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science, 2022, 644, 120140.	4.1	28
501	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	4.2	43
502	Overlooked glassy polymer attributes illustrated by asymmetric polyimide hollow fibers. , 2022, 2, 100011.		0
503	Gas adsorption in the topologically disordered Fe-BTC framework. Journal of Materials Chemistry A, 2021, 9, 27019-27027.	5.2	7
504	Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration. Nano Letters, 2022, 22, 1039-1046.	4.5	37
505	Tailoring the Salt Transport Flux of Solar Evaporators for a Highly Effective Salt-Resistant Desalination with High Productivity. ACS Nano, 2022, 16, 2511-2520.	7.3	64
506	Inorganicâ€Organic Hybrid Membrane based on Pillarareneâ€intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie, 0, , .	1.6	1
507	Mixed matrix membranes for gas separation. , 2022, , 203-254.		0
508	Ultrapermeable nanofiltration membranes with tunable selectivity fabricated with polyaniline nanofibers. Journal of Materials Chemistry A, 2022, 10, 4392-4401.	5.2	13
509	Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 2022, 8, eabl5771.	4.7	45
510	Construction of visible light responsive ZnO/N-g-C3N4 composite membranes for antibiotics degradation. Journal of Materials Research and Technology, 2022, 17, 1696-1706.	2.6	18

#	Article	IF	CITATIONS
511	Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes, 2022, 12, 71.	1.4	37
512	Inorganic–Organic Hybrid Membrane Based on Pillarareneâ€Intercalated MXene Nanosheets for Efficient Water Purification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
513	Heterostructured membranes with selective solvent-capture coatings and low-resistance 2D nanochannels for efficient mixed solvent separation. Separation and Purification Technology, 2022, 283, 120217.	3.9	2
514	Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. , 2022, 2, 100027.		13
515	Nanostructured membranes for gas and vapor separation. , 2022, , 139-201.		0
516	Induced polymer crystallinity in mixed matrix membranes by metal-organic framework nanosheets for gas separation. , 2022, 2, 100017.		5
517	Small-Pore Zeolite Membranes: A Review of Gas Separation Applications and Membrane Preparation. Separations, 2022, 9, 47.	1.1	15
518	Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration. Journal of Membrane Science, 2022, 648, 120358.	4.1	23
519	Hydrothermal method of synthesis, characterization and TFN FO membrane performances of silverton-type anion with 1, 3, 5-triazine hybrid material. Chemical Engineering Research and Design, 2022, 180, 190-199.	2.7	3
520	Advances, challenges, and perspectives of biogas cleaning, upgrading, and utilisation. Fuel, 2022, 317, 123085.	3.4	63
522	Biomimetic Redox-Responsive Smart Coatings with Resistance-Release Functions for Reverse Osmosis Membranes. SSRN Electronic Journal, 0, , .	0.4	0
523	Effects of Polysaccharides' Molecular Structure on Membrane Fouling and the Related Mechanisms. SSRN Electronic Journal, 0, , .	0.4	0
524	Polymer based membranes for propylene/propane separation: CMS, MOF and polymer electrolyte membranes. AIMS Materials Science, 2022, 9, 184-213.	0.7	1
525	Surface Modification of Matrimid® 5218 Polyimide Membrane with Fluorine-Containing Diamines for Efficient Gas Separation. Membranes, 2022, 12, 256.	1.4	11
526	How to Get the Best Gas Separation Membranes from State-of-the-Art Glassy Polymers. Macromolecules, 2022, 55, 1457-1473.	2.2	16
527	Tailoring sub-3.3 Ã ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen production. Science Advances, 2022, 8, eabl8160.	4.7	49
528	Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 2022, 8, eabm9436.	4.7	50
529	<scp>UTSA</scp> â€280 metal–organic framework incorporated <scp>6FDA</scp> â€polyimide mixedâ€matrix membranes for ethylene/ethane separation. AICHE Journal, 2022, 68, .	1.8	17

#	Article	IF	CITATIONS
531	Metal–Organic Framework Membranes: Advances, Fabrication, and Applications. Small Structures, 2022, 3, .	6.9	14
532	Porous solid inspired hyper-crosslinked polymer liquids with highly efficient regeneration for gas purification. Science China Materials, 2022, 65, 1937-1942.	3.5	3
533	Recent progress and new perspective of MXene-based membranes for water purification: A review. Ceramics International, 2022, 48, 16477-16491.	2.3	23
534	Gas Separations using Nanoporous Atomically Thin Membranes: Recent Theoretical, Simulation, and Experimental Advances. Advanced Materials, 2022, 34, e2201472.	11.1	28
535	Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
536	Ionic Liquid Stabilizes Olefin Facilitated Transport Membranes Against Reduction. Angewandte Chemie, 2022, 134, .	1.6	2
537	Ultrafast seawater desalination with covalent organic framework membranes. Nature Sustainability, 2022, 5, 518-526.	11.5	126
538	Understanding Gas Transport in Polymer-Grafted Nanoparticle Assemblies. Macromolecules, 2022, 55, 3011-3019.	2.2	9
539	Tailoring the Structure of Carbon Molecular Sieves Derived from an Aromatic Polyamide. Industrial & Engineering Chemistry Research, 0, , .	1.8	6
540	Facile synthesis of flower-like carbon microspheres for carbon dioxide capture. Microporous and Mesoporous Materials, 2022, 335, 111801.	2.2	7
541	An integrated materials approach to ultrapermeable and ultraselective CO ₂ polymer membranes. Science, 2022, 376, 90-94.	6.0	81
542	Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes. Separation and Purification Technology, 2022, 289, 120699.	3.9	10
543	Preparation of highly selective reverse osmosis membranes by introducing a nonionic surfactant in the organic phase. Journal of Membrane Science, 2022, 651, 120453.	4.1	13
544	Chemical vapor deposition of guest-host dual metal-organic framework heterosystems for high-performance mixed matrix membranes. Applied Materials Today, 2022, 27, 101462.	2.3	2
545	Polyamide@GO microporous membrane with enhanced permeability for the molecular sieving of nitrogen over VOC. Journal of Membrane Science, 2022, 652, 120443.	4.1	6
546	Organic solvent nanofiltration membranes based on polymers of intrinsic microporosity. Current Opinion in Chemical Engineering, 2022, 36, 100804.	3.8	28
547	Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chemical Engineering Journal, 2022, 439, 135657.	6.6	20
548	Room-temperature synthesis of defect-engineered Zirconium-MOF membrane enabling superior CO2/N2 selectivity with zirconium-oxo cluster source. Journal of Membrane Science, 2022, 653, 120496.	4.1	34

#	Article	IF	CITATIONS
550	High Performance Pps-Ngo/Mxene Membrane Overcoming the Trade-Off Effect for Harsh Environment Wastewater Treatment. SSRN Electronic Journal, 0, , .	0.4	0
551	Unravelling pore network and gas dynamics in highly adaptive rubbery organic frameworks. Chemical Science, 0, , .	3.7	Ο
552	Impact of zinc salt counterion on poly(ethylene oxide) solution viscosity, conductivity, and ability to generate electrospun MOF/nanofiber composites. Polymer, 2022, 252, 124816.	1.8	5
553	Strategies in constructing covalent organic framework membranes for molecular sieving. Science China Chemistry, 2022, 65, 836-839.	4.2	5
554	Zeolitic Imidazolate Framework Membranes: Novel Synthesis Methods and Progress Toward Industrial Use. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 529-555.	3.3	14
555	Hydrogenâ€Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogen ontaining Functional Group. Chemistry - A European Journal, 2022, 28, .	1.7	20
556	Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers, 2022, 14, 1604.	2.0	10
557	Capturing CO ₂ by a Fixed-Site-Carrier Polyvinylamine-/Matrimid-Facilitated Transport Membrane. ACS Applied Polymer Materials, 2022, 4, 3380-3393.	2.0	8
558	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	11.1	39
559	Effects of alkali on the polyester membranes based on cyclic polyphenols for nanofiltration. Desalination, 2022, 533, 115774.	4.0	8
560	Molecular mobility in highâ€performance polynorbornenes: A combined broadband dielectric, advanced calorimetry, and neutron scattering investigation. Polymer Engineering and Science, 0, , .	1.5	2
561	Dependable Performance of Thin Film Composite Nanofiltration Membrane Tailored by Capsaicin-Derived Self-Polymer. Polymers, 2022, 14, 1671.	2.0	5
562	CO2 separation performance for PIM based mixed matrix membranes embedded by superbase ionic liquids. Journal of Molecular Liquids, 2022, , 119375.	2.3	3
563	Highly antifouling porous EVAL/F127 blend membranes with hierarchical surface structures. Reactive and Functional Polymers, 2022, 175, 105291.	2.0	2
564	Fabrication of stable polyelectrolyte complexed membrane for dye/salt separation via dynamic self-assembly coupled ice-templating technique. Desalination, 2022, 535, 115803.	4.0	6
565	Effects of polysaccharides' molecular structure on membrane fouling and the related mechanisms. Science of the Total Environment, 2022, 836, 155579.	3.9	41
566	The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chemical Society Reviews, 2022, 51, 4537-4582.	18.7	70
567	High-performance carbon molecular sieving membrane derived from a novel hydroxyl-containing polyetherimide precursor for CO2 separations. Journal of Membrane Science, 2022, 656, 120639.	4.1	17

#	Article	IF	CITATIONS
568	Mixed matrix membrane comprising glycine grafted CuBTC for enhanced CO2 separation performances with excellent stability under humid atmosphere. Separation and Purification Technology, 2022, 295, 121287.	3.9	13
569	The Future of Membrane Separation Processes: A Prospective Analysis. Frontiers in Chemical Engineering, 2022, 4, .	1.3	7
570	Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS ₂ Nanosheets via Precise Thickness Control. Environmental Science & Technology, 2022, 56, 8807-8818.	4.6	27
571	Not so rigid capsids based on cyclodextrin complexes: Keys to design. Journal of Colloid and Interface Science, 2022, 623, 938-946.	5.0	3
572	Polystyrene sulfonate (PSS) stabilized polyethylenimine (PEI) membranes fabricated by spray coating for highly effective CO2/N2 separation. Journal of Membrane Science, 2022, 657, 120617.	4.1	5
573	Sustainable, Room Temperature, Acid-Free Processibility of Polyaryletherketones for Membrane Applications. SSRN Electronic Journal, 0, , .	0.4	0
574	Nonâ€Covalent Crossâ€Linking Does the Job: Why PIMâ€1/Silicaliteâ€1 Mixed Matrix Membranes Perform Well Notwithstanding Silicaliteâ€1. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
575	State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. Membranes, 2022, 12, 539.	1.4	22
576	The potential of calixarenes for membrane separation. Chemical Engineering Research and Design, 2022, 183, 538-545.	2.7	12
577	Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science, 2022, 376, 1080-1087.	6.0	160
578	Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation. Science, 2022, 376, 1105-1110.	6.0	44
579	Recent development in machine learning of polymer membranes for liquid separation. Molecular Systems Design and Engineering, 2022, 7, 856-872.	1.7	7
580	Data mining for predicting gas diffusivity in zeolitic-imidazolate frameworks (ZIFs). Journal of Materials Chemistry A, 2022, 10, 13697-13703.	5.2	11
581	Significantly Enhanced Gas Separation Properties of Microporous Membranes by Precisely Tailoring Their Ultra-Microporosity Through Bromination/Debromination. SSRN Electronic Journal, 0, , .	0.4	0
582	Acid-free fabrication of polyaryletherketone membranes. Journal of Membrane Science, 2022, 660, 120798.	4.1	10
583	Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt Selectivity. Environmental Science & Technology, 2022, 56, 10279-10288.	4.6	27
584	Side-Chain Length and Dispersity in ROMP Polymers with Pore-Generating Side Chains for Gas Separations. Jacs Au, 2022, 2, 1610-1615.	3.6	9
585	Scalable Pillar[5]arene-Integrated Poly(arylate-amide) Molecular Sieve Membranes to Separate Light Gases. Chemistry of Materials, 2022, 34, 6559-6567.	3.2	7

	CHANON	LPORT	
#	Article	IF	CITATIONS
586	Synthesis and oxygen permselectivity of multi-stranded graft copolymers. Polymer, 2022, 255, 125092.	1.8	0
587	Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations. Journal of Membrane Science, 2022, 659, 120769.	4.1	19
588	Carbon molecular sieve gas separation membranes from crosslinkable bromomethylated 6FDA-DAM polyimide. Journal of Membrane Science, 2022, 659, 120781.	4.1	23
589	Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Separation and Purification Technology, 2022, 299, 121729.	3.9	12
590	Engineering MOF surface defects in mixed matrix membranes: An effective strategy to enhance MOF/polymer adhesion and control interfacial gas transport. , 2022, 2, 100029.		9
591	Single-gas and mixed-gas permeation of N ₂ /CH ₄ in thermally-rearranged TR-PBO membranes and their 6FDA-bisAPAF polyimide precursor studied by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 18667-18683.	1.3	4
592	Highly Permeable Sulfonated Graphene-Based Composite Membranes for Electrochemically Enhanced Nanofiltration. Polymers, 2022, 14, 3068.	2.0	0
593	Interafacially grown ultrathin high flux polymeric nanofilm for molecular separation: An improved trade-off between permeance and selectivity. European Polymer Journal, 2022, 179, 111508.	2.6	2
597	Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17, 911-923.	15.6	156
599	Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation. Journal of CO2 Utilization, 2022, 64, 102163.	3.3	20
600	Chemically tailored microporous nanocomposite membranes with multi-channels for intensified solvent permeation. Journal of Membrane Science, 2022, 660, 120877.	4.1	7
601	Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination. Chemical Engineering Journal, 2023, 451, 138513.	6.6	16
602	Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects. Membranes, 2022, 12, 884.	1.4	13
603	Hollow fiber composite membranes of poly(paraterphenyl-3-bromo-1,1,1-trifluoroacetone) and PVA/glycine for ethanol dehydration. Journal of Membrane Science, 2022, 662, 121025.	4.1	0
604	Polyimide-derived carbon molecular sieve membranes for high-efficient hydrogen purification: The development of a novel phthalide-containing polyimide precursor. Separation and Purification Technology, 2022, 301, 121982.	3.9	12
605	Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. Journal of Membrane Science, 2022, 661, 120959.	4.1	15
606	Relationship between the Hansen solubility parameter and changes in membrane mass-transfer channels: A quantitative model. Chemical Engineering Science, 2022, 263, 118071.	1.9	0
607	High-performance carbon molecular sieve membrane for C2H4/C2H6 separation: Molecular insight into the structure-property relationships. Carbon, 2023, 201, 24-36.	5.4	14

ARTICLE IF CITATIONS Facilitated transport membrane with functionalized ionic liquid carriers for CO₂/N₂, CO₂/O₂, and CO₂/air 608 2.8 4 separations. Nanoscale, 2022, 14, 12638-12650. Advances in metal–organic framework-based membranes. Chemical Society Reviews, 2022, 51, 8300-8350. 609 18.7 98 Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews, 2022, 51, 610 18.7 76 7427-7508. Assembling ionic liquids in MOF "Monomer―based membranes to trigger 3.2 CO₂/CH₄ separation. Materials Chemistry Frontiers, 2022, 6, 3555-3566. Field Grand Challenge for Membrane Science and Technology., 0, 1, . 612 4 Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature, 2022, 609, 58-64. 13.7 Networkâ€Nanostructured ZIFâ€8 to Enable Percolation for Enhanced Gas Transport. Advanced 614 7.8 16 Functional Materials, 2022, 32, . Ultrathin ZIFâ€8 Membrane through Inhibited Ostwald Ripening for Highâ€Flux C₃H₆/C₃H₈ Separation. Advanced Functional 7.8 Materials, 2022, 32, . Hierarchical nanostructure investigation of Zeolitic Imidazolate Frameworks (ZIF-8 and ZIF-67) 616 multilayers using depth dependent Doppler broadening spectroscopy. Journal of Solid State 1.4 4 Chemistry, 2022, 316, 123601. Feasibility of thin film nanocomposite membranes for clean energy using pressure retarded osmosis 3.3 and reverse electrodialysis. Energy Nexus, 2022, 7, 100141. New Insights into Physical Agingâ€Induced Structure Evolution in Carbon Molecular Sieve Membranes. 618 7.2 13 Angewandte Chemie - International Edition, 2022, 61, . New Insights into Physical Agingâ€Induced Structure Evolution in Carbon Molecular Sieve Membranes. 1.6 Angewandte Chemie, 2022, 134, . Molecularly Homogenized Composite Membranes Containing Solvent-Soluble Metallocavitands for CO₂/CH₄ Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 620 3.2 2 13534-13544. Microphase-separated morphology controlled polyimide graft copolymer membranes for CO2 separation. Separation and Purification Technology, 2023, 304, 122315. Fabrication of antifouling two-dimensional MoS2 layered PVDF membrane: Experimental and density 622 3.9 5 functional theory calculation. Separation and Purification Technology, 2022, 303, 122226. Fabrication of mixed matrix membranes with regulated MOF fillers<i>via</i>incorporating guest molecules for optimizing light hydrocarbon separation performance. CrystEngComm, 2022, 24, 7658-7668. Identifying porous cage subsets in the Cambridge Structural Database using topological data analysis. 624 3.7 3 Chemical Science, 2022, 13, 13507-13523. Pentiptycene-Containing Polybenzoxazole Membranes with a Crosslinked Unimodal Network 3.2 Structure for High-Temperature Hydrogen Separations. Chemistry of Materials, 2022, 34, 9577-9588.

#	Article	IF	CITATIONS
626	Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. Journal of Membrane Science, 2023, 666, 121133.	4.1	14
627	Coordination-driven structure reconstruction in polymer of intrinsic microporosity membranes for efficient propylene/propane separation. Innovation(China), 2022, 3, 100334.	5.2	2
628	Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation. Journal of Membrane Science, 2022, 663, 121069.	4.1	11
629	Mixed matrix membranes for H2/CO2 gas separation- a critical review. Fuel, 2023, 333, 126285.	3.4	27
630	Preparation of amorphous carbon membranes synthesized via a glucose-solution hydrothermal method. Ceramics International, 2022, , .	2.3	1
631	Solvent-induced microstructure of polyimide membrane to enhance CO2/CH4 separation. Journal of Membrane Science, 2023, 666, 121199.	4.1	3
632	Solvent-resistant porous membranes using poly(ether—ether ketone): preparation and application. Frontiers of Chemical Science and Engineering, 2022, 16, 1536-1559.	2.3	7
633	Biogas upgrading technologies – Recent advances in membrane-based processes. International Journal of Hydrogen Energy, 2023, 48, 3965-3993.	3.8	23
634	Theoretical Pathway toward Improved Reverse Osmosis Membrane Selectivity for Neutral Solutes: Inspiration from Gas Separations. Journal of Physical Chemistry C, 2022, 126, 19496-19506.	1.5	0
635	Covalent organic framework membranes for efficient separation of monovalent cations. Nature Communications, 2022, 13, .	5.8	55
636	Interface engineering in MOF/crosslinked polyimide mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Journal of Membrane Science, 2023, 667, 121182.	4.1	10
637	Heteroâ€Polycrystalline Membranes with Narrow and Rigid Pores for Molecular Sieving. Small, 2023, 19,	5.2	5
638	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
639	A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO2 separation. Chemical Engineering Research and Design, 2023, 170, 709-719.	2.7	13
640	Nanoengineered ZIF fillers for mixed matrix membranes with enhanced CO2/CH4 selectivity. Separation and Purification Technology, 2023, 307, 122737.	3.9	7
641	In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668, 121267.	4.1	10
642	Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance. Journal of Membrane Science, 2023, 668, 121238.	4.1	7
643	Synthesis of phenolphthalein/bisphenol Aâ€based poly(arylene ether nitrile) copolymers: Preparation and properties of films. Journal of Applied Polymer Science, 2023, 140, .	1.3	0

#	Article	IF	CITATIONS
644	Advanced Covalent Organic Frameworkâ€Based Membranes for Recovery of Ionic Resources. Small, 2023, 19, .	5.2	12
645	Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS Nano, 2022, 16, 21139-21151.	7.3	2
646	Precise Hydrogen Sieving by Carbon Molecular Sieve Membranes Derived from Solution-Processable Aromatic Polyamides. , 2023, 5, 243-248.		11
647	Enhancement of H ₂ Separation Performance in Ring-Opened Tröger's Base Incorporating Modified MOFs. Industrial & Engineering Chemistry Research, 2022, 61, 18537-18544.	1.8	3
648	Solution-processable amorphous microporous polymers for membrane applications. Progress in Polymer Science, 2023, 137, 101636.	11.8	13
649	Truly combining the advantages of polymeric and zeolite membranes for gas separations. Science, 2022, 378, 1189-1194.	6.0	37
650	Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nature Materials, 2023, 22, 109-116.	13.3	32
651	Ion-Selective Separation Using MXene-Based Membranes: A Review. , 2023, 5, 341-356.		25
652	Ionic Microporous Polymer Membranes for Advanced Gas Separations. Industrial & Engineering Chemistry Research, 2023, 62, 1764-1775.	1.8	6
653	Integrated membrane material design and system synthesis. Chemical Engineering Science, 2023, 269, 118406.	1.9	1
654	Postâ€synthesis amination of polymer of intrinsic microporosity membranes for <scp>CO₂</scp> separation. AICHE Journal, 2023, 69, .	1.8	5
655	Carbon molecular sieve membranes for selective CO2 separation at elevated temperatures and pressures. Journal of CO2 Utilization, 2023, 68, 102378.	3.3	5
656	Fine tune gas separation property of intrinsic microporous polyimides and their carbon molecular sieve membranes by gradient bromine substitution/removal. Journal of Membrane Science, 2023, 669, 121310.	4.1	12
657	Uncertainty in Composite Membranes: From Defect Engineering to Film Processing. Journal of the American Chemical Society, 2023, 145, 830-840.	6.6	12
658	MOF mixed matrix membranes for syngas purification. , 2023, , 307-323.		0
659	Selective Ion Transport in Twoâ€Dimensional Lamellar Nanochannel Membranes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
660	MOF/polymer hybrids through <i>in situ</i> free radical polymerization in metal-organic frameworks. Materials Horizons, 2023, 10, 1301-1308.	6.4	10
661	From academia to industry: Success criteria for upscaling nanofiltration membranes for water and solvent applications. Journal of Membrane Science, 2023, 675, 121393.	4.1	18

#	Article	IF	CITATIONS
662	Selective Ion Transport in Twoâ€Dimensional Lamellar Nanochannel Membranes. Angewandte Chemie, 2023, 135, .	1.6	1
663	2D lamellar membrane with MXene hetero-intercalated small sized graphene oxide for harsh environmental wastewater treatment. Separation and Purification Technology, 2023, 311, 123248.	3.9	17
664	Light controls edge functional groups to enhance membrane permeability. Frontiers in Physics, 0, 11, .	1.0	0
665	A Zeoliteâ€Like Metal–Organic Framework Based Membrane for Reverse Selective Hydrogen Separation and Butane Isomer Sieving. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
666	Highly (2 2 2)-oriented flexible hollow fiber-supported metal-organic framework membranes for ultra-permeable and selective H2/CO2 separation. Chemical Engineering Journal, 2023, 461, 141976.	6.6	6
667	Finely tuning the microporosity in phosphoric acid doped triptycene-containing polybenzimidazole membranes for highly permselective helium and hydrogen recovery. Journal of Membrane Science, 2023, 672, 121474.	4.1	11
668	Coordination enhancement of hydrogen and helium recovery in polybenzimidazole-based carbon molecular sieve membranes. Separation and Purification Technology, 2023, 315, 123691.	3.9	8
669	Crosslinking two-dimensional metalloporphyrin (Me-TCPP) nanosheet with poly(ethylene) glycol semi-interpenetrating polymer network for ultrahigh CO2/N2 separation selectivity via "rubber-band― straightening effect. Journal of Membrane Science, 2023, 676, 121537.	4.1	4
670	Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance. Journal of Membrane Science, 2023, 675, 121485.	4.1	12
671	Mixed-matrix membranes containing zero-dimension porphyrin-based complex for propylene/propane separation. Separation and Purification Technology, 2023, 314, 123656.	3.9	2
672	Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes. Chemical Engineering Journal, 2023, 465, 142873.	6.6	4
673	Ester-crosslinked polymers of intrinsic microporosity membranes with enhanced plasticization resistance for CO2 separation. Separation and Purification Technology, 2023, 314, 123623.	3.9	19
674	Tailoring the microporosity and gas separation property of soluble polybenzoxazole membranes derived from different regioisomer monomers. Separation and Purification Technology, 2023, 311, 123340.	3.9	4
675	Self‣tanding Covalent Organic Framework Membranes for H ₂ /CO ₂ Separation. Advanced Functional Materials, 2023, 33, .	7.8	8
676	Zeolite/polyimide mixed-matrix membranes with enhanced natural gas purification performance: Importance of filler structural integrity. Journal of Membrane Science, 2023, 672, 121462.	4.1	4
677	Sub-nanometer scale tailoring of the microstructures of composite organosilica membranes for efficient pervaporation of toluene/n-heptane mixtures. Journal of Membrane Science, 2023, 672, 121469.	4.1	2
678	A Zeoliteâ€Like Metal–Organic Framework Based Membrane for Reverse Selective Hydrogen Separation and Butane Isomer Sieving. Angewandte Chemie, 2023, 135, .	1.6	1
679	Challenges in Developing MOF-Based Membranes for Gas Separation. Langmuir, 2023, 39, 2871-2880.	1.6	25

#	Article	IF	Citations
680	Extreme pHâ€Resistant, Highly Cationâ€Selective Poly(Quaternary Ammonium) Membranes Fabricated via Menshutkin Reactionâ€Based Interfacial Polymerization. Advanced Functional Materials, 2023, 33, .	7.8	8
681	Towards the realisation of high permi-selective MoS2 membrane for water desalination. Npj Clean Water, 2023, 6, .	3.1	10
682	Charged Boron Nitride Nanosheet Membranes for Improved Organic Solvent Nanofiltration. ACS Applied Materials & Interfaces, 2023, 15, 12524-12533.	4.0	6
683	Pyrolysis temperature-regulated gas transport and aging properties in 6FDA-DAM polyimide-derived carbon molecular sieve membranes. Separation and Purification Technology, 2023, 313, 123459.	3.9	9
684	Hierarchically microporous membranes for highly energy-efficient gas separations. , 2023, 1, 376-387.		9
685	Mixed-Matrix Membranes Containing Porous Materials for Gas Separation: From Metal–Organic Frameworks to Discrete Molecular Cages. Engineering, 2023, 23, 40-55.	3.2	8
686	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
687	Research Progress on Synthesis and Application of MOF/COF Composites. Material Sciences, 2023, 13, 103-110.	0.0	1
688	Grand challenge in membrane applications: Liquid. , 0, 2, .		0
689	Ultrathin ionic COF Membrane via Polyelectrolyteâ€Mediated Assembly for Efficient CO ₂ Separation. Advanced Functional Materials, 2023, 33, .	7.8	21
690	Model reduction for molecular diffusion in nanoporous media. Physical Review Materials, 2023, 7, .	0.9	0
691	Aligned Metal–Organic Framework Nanoplates in Mixedâ€Matrix Membranes for Highly Selective CO ₂ /CH ₄ Separation. Advanced Materials Interfaces, 2023, 10, .	1.9	3
692	Porous aromatic frameworks with engineered properties for gas separation membranes. Trends in Chemistry, 2023, 5, 446-459.	4.4	5
693	Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nature Communications, 2023, 14, .	5.8	32
694	Metalâ€Organic Framework Based Polymer Fibers: Review on Synthesis and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	2
695	Free-Standing Metal–Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2023, 15, 19241-19249.	4.0	9
696	Engineering silica membranes for separation performance, hydrothermal stability, and production scalability. , 2023, 3, 100064.		1
697	Grand Challenges in Membrane Applications—Gas and Vapor. , 0, 1, .		1

#	Article	IF	CITATIONS
698	Highly propylene-selective asymmetric mixed-matrix membranes by polymer phase-inversion in sync with in-situ ZIF-8 formation. Chemical Engineering Journal, 2023, 466, 143048.	6.6	5
699	Carbon molecular sieve membranes derived from hydrogen-bonded organic frameworks for CO2/CH4 separation. Journal of Membrane Science, 2023, 678, 121674.	4.1	6
705	The separation membranes in artificial organs. Materials Chemistry Frontiers, 2023, 7, 3455-3474.	3.2	2
725	Advanced stimuli-responsive membranes for smart separation. Chemical Society Reviews, 2023, 52, 4173-4207.	18.7	12
727	Single-Molecule Fluorescence Investigations of Solute Transport Dynamics in Nanostructured Membrane Separation Materials. Journal of Physical Chemistry B, 2023, 127, 5733-5741.	1.2	0
743	An introduction to green membrane technology. , 2023, , 1-7.		0
746	2D materials towards energy conversion processes in nanofluidics. Physical Chemistry Chemical Physics, 2023, 25, 24264-24277.	1.3	1
753	Use of Metal–Organic Frameworks in the Separation/Identification Stage of Analysis. , 2023, , 201-227.		0
793	Carbon Capture With Hybrid Membranes. , 2023, , .		0
811	Responsive Polymeric Materials: Advances in Membrane-based Technologies for Water Treatment Processes. , 2024, , 155-182.		0
813	Polyimide-derived carbon molecule sieve membranes for gas separations. , 2024, 1, 119-123.		0
816	Ion transport in nanofluidics under external fields. Chemical Society Reviews, 2024, 53, 2972-3001.	18.7	0