Imaging Protocols in Clinical Studies in Advanced Age-I

Ophthalmology 124, 464-478 DOI: 10.1016/j.ophtha.2016.12.002

Citation Report

#	Article	IF	CITATIONS
2	Probing the Role of Inflammation in Age-Related Macular Degeneration. JAMA Ophthalmology, 2017, 135, 843.	2.5	7
4	New Treatment Modalities for Geographic Atrophy. Asia-Pacific Journal of Ophthalmology, 2017, 6, 508-513.	2.5	9
5	The Role of New Imaging Methods in Managing Age-Related Macular Degeneration. Asia-Pacific Journal of Ophthalmology, 2017, 6, 498-507.	2.5	6
6	Green-Light Autofluorescence Versus Combined Blue-Light Autofluorescence and Near-Infrared Reflectance Imaging in Geographic Atrophy Secondary to Age-Related Macular Degeneration. , 2017, 58, BIO121.		50
7	Characterizing Disease Burden and Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology, 2018, 125, 842-849.	5.2	78
8	Geographic Atrophy Trials. Ophthalmology Retina, 2018, 2, 515-517.	2.4	11
9	Linking OCT, Angiographic, and Photographic Lesion Components in Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 481-493.	2.4	10
10	Splitting the Lumps: The Importance of Phenotyping Drusen. Ophthalmology, 2018, 125, 6-7.	5.2	4
11	MACULAR ATROPHY AND MACULAR MORPHOLOGY IN AFLIBERCEPT-TREATED NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2018, 38, 1743-1750.	1.7	26
12	The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology, 2018, 125, 369-390.	5.2	308
13	DETECTION OF TREATMENT-NAIVE CHOROIDAL NEOVASCULARIZATION IN AGE-RELATED MACULAR DEGENERATION BY SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina, 2018, 38, 2143-2149.	1.7	24
14	RELIABILITY OF CONFOCAL WHITE-LIGHT FUNDUS IMAGING FOR MEASUREMENT OF RETINA PIGMENT EPITHELIAL ATROPHY IN AGE-RELATED MACULAR DEGENERATION. Retina, 2018, 38, 1930-1936.	1.7	5
15	Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT. Ophthalmology, 2018, 125, 537-548.	5.2	485
16	Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Science Translational Medicine, 2018, 10, .	12.4	111
17	Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. , 2018, 59, AMD160.		198
18	Autofluorescence Imaging. ESASO Course Series, 2018, , 65-87.	0.1	2
19	Topographic Correspondence of Macular Atrophy With Choroidal Neovascularization in Ranibizumab-treated Eyes of the TREX-AMD Trial. American Journal of Ophthalmology, 2018, 192, 84-90.	3.3	5
20	The Border of Macular Atrophy in Age-Related Macular Degeneration: A Clinicopathologic Correlation. American Journal of Ophthalmology, 2018, 193, 166-177.	3.3	32

#	Article	IF	CITATIONS
21	Progression of Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology, 2018, 125, 1913-1928.	5.2	127
22	Multimodal Imaging of Nonneovascular Age-Related Macular Degeneration. , 2018, 59, AMD48.		56
23	Precision medicine for age-related macular degeneration: current developments and prospects. Expert Review of Precision Medicine and Drug Development, 2018, 3, 249-263.	0.7	2
24	Multimodal Imaging Patterns for Development of Central Atrophy Secondary to Age-Related Macular Degeneration. , 2018, 59, AMD1.		19
25	HISTOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2018, 38, 1937-1953.	1.7	108
26	Choroidal Flow Signal in Late-Onset Stargardt Disease and Age-Related Macular Degeneration: An OCT-Angiography Study. , 2018, 59, AMD122.		38
28	Green emission fluorophores in eyes with atrophic age-related macular degeneration: a colour fundus autofluorescence pilot study. British Journal of Ophthalmology, 2018, 102, 827-832.	3.9	24
29	Comparison of short-wavelength blue-light autofluorescence and conventional blue-light autofluorescence in geographic atrophy. British Journal of Ophthalmology, 2019, 103, 610-616.	3.9	22
30	PROGNOSTIC VALUE OF SHAPE-DESCRIPTIVE FACTORS FOR THE PROGRESSION OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2019, 39, 1527-1540.	1.7	44
31	Foveal Sparing in Central Retinal Dystrophies. , 2019, 60, 3456.		24
32	Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration. Scientific Reports, 2019, 9, 11132.	3.3	37
33	The Evolution of Fibrosis and Atrophy and Their Relationship with Visual Outcomes in Asian Persons with Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2019, 3, 1045-1055.	2.4	28
34	Light Sensitivity Within Areas of Geographic Atrophy Secondary to Age-Related Macular Degeneration. , 2019, 60, 3992.		17
35	Microperimetry for geographic atrophy secondary to age-related macular degeneration. Survey of Ophthalmology, 2019, 64, 353-364.	4.0	27
36	En Face Imaging of Geographic Atrophy Using Different Swept-Source OCT Scan Patterns. Ophthalmology Retina, 2019, 3, 122-132.	2.4	18
37	Quantifying Retinal Pigment Epithelium Dysmorphia and Loss of Histologic Autofluorescence in Age-Related Macular Degeneration. , 2019, 60, 2481.		49
38	Distribution of OCT Features within Areas of Macular Atrophy or Scar after 2 Years of Anti-VEGF Treatment for Neovascular AMD in CATT. Ophthalmology Retina, 2019, 3, 316-325.	2.4	17
39	Precursors and Development of Geographic Atrophy with Autofluorescence Imaging. Ophthalmology Retina, 2019, 3, 724-733.	2.4	12

#	Article	IF	CITATIONS
40	Therapeutic Approaches with Intravitreal Injections in Geographic Atrophy Secondary to Age-Related Macular Degeneration: Current Drugs and Potential Molecules. International Journal of Molecular Sciences, 2019, 20, 1693.	4.1	35
41	Best Clinical Practice for Age-Related Macular Degeneration Imaging. Journal of Vitreoretinal Diseases, 2019, 3, 167-171.	0.7	4
42	Macular Atrophy of the Retinal Pigment Epithelium in Patients with Neovascular Age-Related Macular Degeneration: What is the Link? Part I: A Review of Disease Characterization and Morphological Associations. Ophthalmology and Therapy, 2019, 8, 235-249.	2.3	13
43	Semiâ€automated quantification of geographic atrophy with blueâ€light autofluorescence and spectralâ€domain optical coherence tomography: a comparison between the region finder and the advanced retinal pigment epithelium tool in the clinical setting. Acta Ophthalmologica, 2019, 97, e887-e895.	1.1	8
44	Retinal Pathologic Features on OCT among Eyes of Older Adults Judged Healthy by Color Fundus Photography. Ophthalmology Retina, 2019, 3, 670-680.	2.4	5
45	Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmology Retina, 2019, 3, 478-488.	2.4	90
46	Core outcomes for geographic atrophy trials. British Journal of Ophthalmology, 2019, 104, bjophthalmol-2019-314949.	3.9	5
47	Geographic Atrophy and micronutritional supplements: A complex relationship. Journal Francais D'Ophtalmologie, 2019, 42, 1111-1115.	0.4	3
48	CLINICOPATHOLOGIC CORRELATION OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2019, 39, 802-816.	1.7	38
49	Onset of Retinal Pigment Epithelium Atrophy Subsequent to Anti-VEGF Therapy in Patients with Neovascular Age-Related Macular Degeneration. Ophthalmologica, 2019, 241, 154-160.	1.9	7
50	Future clinical applicability of optical coherence tomography angiography. Australasian journal of optometry, The, 2019, 102, 260-269.	1.3	33
51	MINIMAL OPTICAL COHERENCE TOMOGRAPHY B-SCAN DENSITY FOR RELIABLE DETECTION OF INTRARETINAL AND SUBRETINAL FLUID IN MACULAR DISEASES. Retina, 2019, 39, 150-156.	1.7	6
52	MESOPIC AND DARK-ADAPTED TWO-COLOR FUNDUS-CONTROLLED PERIMETRY IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 169-180.	1.7	37
53	Macular Atrophy in Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 198-210.	5.2	51
54	Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 394-409.	5.2	153
55	Prognostic Value of Retinal Layers in Comparison with Other Risk Factors for Conversion of Intermediate Age-related Macular Degeneration. Ophthalmology Retina, 2020, 4, 31-40.	2.4	11
56	Prevalence and Associated Factors of Age-Related Macular Degeneration in a Russian Population: The Ural Eye and Medical Study. American Journal of Ophthalmology, 2020, 210, 146-157.	3.3	11
57	Optometry Australia's chairside reference for the diagnosis and management of ageâ€related macular degeneration. Australasian journal of optometry, The, 2020, 103, 254-264.	1.3	12

#	Article	IF	CITATIONS
58	Natural History of Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 769-783.	5.2	49
59	Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data. Ophthalmology, 2020, 127, 616-636.	5.2	417
60	The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells, 2020, 9, 39.	4.1	25
61	Ritonavir associated maculopathy– multimodal imaging and electrophysiology findings. American Journal of Ophthalmology Case Reports, 2020, 19, 100783.	0.7	4
62	Geographic Atrophy: Confocal Scanning Laser Ophthalmoscopy, Histology, and Inflammation in the Region of Expanding Lesions. , 2020, 61, 15.		23
63	<p>Multimodal Evaluation of Visual Function in Geographic Atrophy versus Normal Eyes</p> . Clinical Ophthalmology, 2020, Volume 14, 1533-1545.	1.8	11
64	Identification of Novel Serum MicroRNAs in Age-Related Macular Degeneration. Translational Vision Science and Technology, 2020, 9, 28.	2.2	12
65	Ageâ€related macular degeneration (<scp>AMD</scp>): More than meets the eye. The role of multimodal imaging in today's management of <scp>AMD</scp> —A review. Clinical and Experimental Ophthalmology, 2020, 48, 983-995.	2.6	26
66	TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3. Cell Biology International, 2020, 44, 2213-2219.	3.0	17
67	Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Correlation with Macular Function. Journal of Clinical Medicine, 2020, 9, 2973.	2.4	6
68	NEI-Supported Age-Related Macular Degeneration Research: Past, Present, and Future. Translational Vision Science and Technology, 2020, 9, 49.	2.2	7
69	An In-Vitro Cell Model of Intracellular Protein Aggregation Provides Insights into RPE Stress Associated with Retinopathy. International Journal of Molecular Sciences, 2020, 21, 6647.	4.1	7
70	Subthreshold Exudative Choroidal Neovascularization Associated With Age-Related Macular Degeneration Identified by Optical Coherence Tomography Angiography. Journal of Vitreoretinal Diseases, 2020, 4, 377-385.	0.7	3
71	Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods. BMC Ophthalmology, 2020, 20, 196.	1.4	34
72	Age-Related Macular Degeneration Staging by Color Fundus Photography vs. Multimodal Imaging—Epidemiological Implications (The Coimbra Eye Study—Report 6). Journal of Clinical Medicine, 2020, 9, 1329.	2.4	9
73	Macular Atrophy Incidence and Progression in Eyes with Neovascular Age-Related Macular Degeneration Treated with Vascular Endothelial Growth Factor Inhibitors Using a Treat-and-Extend or a Pro Re Nata Regimen. Ophthalmology, 2020, 127, 1663-1673.	5.2	23
74	Prevalence and Pattern of Geographic Atrophy in Asia. Ophthalmology, 2020, 127, 1371-1381.	5.2	34
75	Major Predictive Factors for Progression of Early to Late Age-Related Macular Degeneration. Ophthalmologica, 2020, 243, 444-452.	1.9	10

#	Article	IF	CITATIONS
76	Hyperreflective Foci and Specks Are Associated with Delayed Rod-Mediated Dark Adaptation in Nonneovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 4, 1059-1068.	2.4	32
77	Near-Infrared Reflectance Imaging for Quantification of Atrophy Associated with Age-Related Macular Degeneration. American Journal of Ophthalmology, 2020, 212, 169-174.	3.3	14
79	Fundus autofluorescence imaging. Progress in Retinal and Eye Research, 2021, 81, 100893.	15.5	57
80	Quantification of Geographic Atrophy Using Spectral Domain OCT in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 41-48.	2.4	21
81	Ocular Imaging for Enhancing the Understanding, Assessment, and Management of Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2021, 1256, 33-66.	1.6	2
82	The Diagnostic Capability of Swept Source OCT Angiography in Treatment-Naive Exudative Neovascular Age-Related Macular Degeneration. Journal of Ophthalmology, 2021, 2021, 1-8.	1.3	1
83	Oligomeric AÎ ² 1-42 Induces an AMD-Like Phenotype and Accumulates in Lysosomes to Impair RPE Function. Cells, 2021, 10, 413.	4.1	8
84	Progression of Geographic Atrophy with Subsequent Exudative Neovascular Disease in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 108-117.	2.4	9
85	Reliability of Retinal Pathology Quantification in Age-Related Macular Degeneration: Implications for Clinical Trials and Machine Learning Applications. Translational Vision Science and Technology, 2021, 10, 4.	2.2	16
86	Retinal layer thicknesses and neurodegeneration in early age-related macular degeneration: insights from the Coimbra Eye Study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 2545-2557.	1.9	7
87	Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: Toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1135-1148.	4.4	11
89	CLINICAL UTILITY OF MORPHOFUNCTIONAL CORRELATION OF MICROPERIMETRY AND OPTICAL COHERENCE TOMOGRAPHY. Retina, 2021, 41, 1026-1036.	1.7	4
90	Age-related macular degeneration. Nature Reviews Disease Primers, 2021, 7, 31.	30.5	340
91	Diagnostic ability of confocal near-infrared reflectance fundus imaging to detect retrograde microcystic maculopathy from chiasm compression. A comparative study with OCT findings. PLoS ONE, 2021, 16, e0253323.	2.5	3
92	Retro mode illumination for detecting and quantifying the area of geographic atrophy in non-neovascular age-related macular degeneration. Eye, 2022, 36, 1560-1566.	2.1	8
93	Outer retinal tubulation formation and clinical course of advanced age-related macular degeneration. Scientific Reports, 2021, 11, 14735.	3.3	7
94	Age-related ocular surface modifications assessment combining thermal infrared and deep learning approach. , 2021, , .		0
95	Hyperreflective Foci, Optical Coherence Tomography Progression Indicators in Age-Related Macular Degeneration, Include Transdifferentiated Retinal Pigment Epithelium. , 2021, 62, 34.		53

#	Article	IF	CITATIONS
96	COMPARISON OF SINGLE DRUSEN SIZE ON COLOR FUNDUS PHOTOGRAPHY AND SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRAPHY. Retina, 2021, 41, 1715-1722.	1.7	9
97	Progression of geographic atrophy. Expert Review of Ophthalmology, 2021, 16, 343-356.	0.6	1
98	Modeling of atrophy size trajectories: variable transformation, prediction and age-of-onset estimation. BMC Medical Research Methodology, 2021, 21, 170.	3.1	2
99	Imaging Features Associated with Progression to Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology Retina, 2021, 5, 855-867.	2.4	70
100	Natural history of incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration. Canadian Journal of Ophthalmology, 2021, 56, 325-334.	0.7	19
101	Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study. The Lancet Digital Health, 2021, 3, e665-e675.	12.3	44
102	Diagnosis of age-related macular degeneration. , 2022, , 77-101.		0
103	Current Management of Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2021, 1256, 295-314.	1.6	6
105	Ophthalmic Diagnostic Imaging: Retina. , 2019, , 87-106.		12
106	Structural Features Associated With the Development and Progression of RORA Secondary to Maternally Inherited Diabetes and Deafness. American Journal of Ophthalmology, 2020, 218, 136-147.	3.3	7
107	Natural history of central sparing in geographic atrophy secondary to non-exudative age-related macular degeneration. British Journal of Ophthalmology, 2022, 106, 689-695.	3.9	10
108	Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration. , 2017, 58, BIO211-BIO226.		96
109	Quantitative Fundus Autofluorescence in Non-Neovascular Age-Related Macular Degeneration. Ophthalmic Surgery Lasers and Imaging Retina, 2018, 49, S34-S42.	0.7	27
110	Artificial Intelligence in Age-Related Macular Degeneration (AMD). , 2021, , 101-112.		3
111	A perspective on the evolving field of vitreoretinal diseases. Indian Journal of Ophthalmology, 2018, 66, 1668.	1.1	1
112	Visual Function and Integrity of Depolarization Measured by Polarization-sensitive Optical Coherence Tomography in Patients With Neovascular Age-related Macular Degeneration. Japanese Orthoptic Journal, 2019, 48, 89-95.	0.1	0
113	Study on feature analysis used for designing hand-held retina vessels extraction sensor. , 2019, , .		0
114	Neovascular AMD: Clinical Features and Imaging. , 2020, , 73-97.		2

#	Article	IF	CITATIONS
116	Multimodal Imaging, OCT B-Scan Localization, and En Face OCT Detection of Macular Hyperpigmentation in Eyes with Intermediate Age-Related Macular Degeneration. Ophthalmology Science, 2022, 2, 100116.	2.5	13
117	Image enhancement of color fundus photographs for age-related macular degeneration: the Shanghai Changfeng Study. International Journal of Ophthalmology, 2022, 15, 268-275.	1.1	5
118	Advanced retinal imaging and applications for clinical practice: A consensus review. Survey of Ophthalmology, 2022, 67, 1373-1390.	4.0	10
119	Histology and Clinical Lifecycle of Acquired Vitelliform Lesion, a Pathway to Advanced Age-Related Macular Degeneration. American Journal of Ophthalmology, 2022, 240, 99-114.	3.3	8
120	Long-term Retinal Morphology and Functional Associations in Treated Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 664-675.	2.4	4
121	Correlation between Fundus Autofluorescence and En Face OCT Measurements of Geographic Atrophy. Ophthalmology Retina, 2022, 6, 676-683.	2.4	13
122	Retinal Progression Biomarkers of Early and Intermediate Age-Related Macular Degeneration. Life, 2022, 12, 36.	2.4	9
123	Multimodal Imaging and En Face OCT Detection of Calcified Drusen in Eyes with Age-Related Macular Degeneration. Ophthalmology Science, 2022, 2, 100162.	2.5	14
124	Machine Learning OCT Predictors of Progression from Intermediate Age-Related Macular Degeneration to Geographic Atrophy and Vision Loss. Ophthalmology Science, 2022, 2, 100160.	2.5	6
125	Indocyanine Green Angiography. , 2022, , 2683-2711.		0
126	Prevalence and Area of Retinal Pigment Epithelium and Outer Retinal Atrophy in eyes with Non-Exudative Macular Neovascularization. Ophthalmologica, 0, , .	1.9	0
127	The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey. Bioengineering, 2022, 9, 366.	3.5	6
128	A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT. Ophthalmology Retina, 2023, 7, 127-141.	2.4	5
129	Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning. Scientific Reports, 2022, 12, .	3.3	10
130	Uncertainty-Aware Geographic Atrophy Progression Prediction from Fundus Autofluorescence. Lecture Notes in Computer Science, 2022, , 29-38.	1.3	0
131	Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging. Ophthalmology Retina, 2023, 7, 243-252.	2.4	11
132	Impact of the Aging Lens and Posterior Capsular Opacification on Quantitative Autofluorescence Imaging in Age-Related Macular Degeneration. Translational Vision Science and Technology, 2022, 11, 23.	2.2	6
199	An Exploratory Study Provides Insights into MMP9 and Al² Levels in the Vitreous and Blood across Different Ages and in a Subset of AMD Patients, International Journal of Molecular Sciences, 2022, 23,	4.1	0

#	Article	IF	CITATIONS
135	Future perspectives for treating patients with geographic atrophy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 1525-1531.	1.9	6
136	Endpoints for clinical trials in ophthalmology. Progress in Retinal and Eye Research, 2023, 97, 101160.	15.5	10
137	Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17). American Journal of Ophthalmology, 2023, 250, 157-170.	3.3	3
139	Retinal Pigment Epithelial Abnormality and Choroidal Large Vascular Flow Imbalance Are Associated with Choriocapillaris Flow Deficits in Age-Related Macular Degeneration in Fellow Eyes. Journal of Clinical Medicine, 2023, 12, 1360.	2.4	1
140	Comparison of the 2-Year Results of Photodynamic Therapy with Aflibercept and Aflibercept Monotherapy for Polypoidal Choroidal Vasculopathy. Clinical Ophthalmology, 0, Volume 17, 571-577.	1.8	1
141	Serum miRNA modulations indicate changes in retinal morphology. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	0
142	Sequential structural and functional change in geographic atrophy on multimodal imaging in non-exudative age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 0, , .	1.9	0
143	Deep phenotyping of PROM1-associated retinal degeneration. British Journal of Ophthalmology, 0, , bjo-2022-322036.	3.9	4
144	Prevalence of Macular Atrophy in the MARINA Study of Ranibizumab versus Sham for Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2023, 7, 661-671.	2.4	5
145	Drusen morphometrics on optical coherence tomography in eyes with age-related macular degeneration and normal aging. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 2525-2533.	1.9	1
146	Subretinal Pseudocysts: A Comprehensive Analysis of this Novel OCT Finding. Ophthalmology and Therapy, 2023, 12, 2035-2048.	2.3	0
147	Identifying Imaging Predictors of Intermediate Age-Related Macular Degeneration Progression. Translational Vision Science and Technology, 2023, 12, 22.	2.2	1
148	Retro-mode: a newer insight into dry age-related macular degeneration (AMD). Lasers in Medical Science, 2023, 38, .	2.1	0
150	Diagnostic accuracy of self-reported age-related macular degeneration in the ASPREE Longitudinal Study of Older Persons. Eye, 2024, 38, 698-706.	2.1	0
151	Classification and Growth Rate of Chorioretinal Atrophy after Voretigene Neparvovec-Rzyl for RPE65-Mediated Retinal Degeneration. Ophthalmology Retina, 2024, 8, 42-48.	2.4	2
152	Editorial: Transcription regulation — Brain development and homeostasis — A finely tuned and orchestrated scenario in physiology and pathology, volume II. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	0
153	Evaluating the Effects of C3 Inhibition on Geographic Atrophy Progression from Deep-Learning OCT Quantification: A Split-Person Study. Ophthalmology and Therapy, 0, , .	2.3	0
154	A Deep-Learning Algorithm to Predict Short-Term Progression to Geographic Atrophy on Spectral-Domain Optical Coherence Tomography. JAMA Ophthalmology, 0, , .	2.5	0

#	Article	IF	CITATIONS
155	Treating patients with geographic atrophy: are we there yet?. International Journal of Retina and Vitreous, 2023, 9, .	1.9	1
156	Multimodal imaging and deep learning in geographic atrophy secondary to ageâ€related macular degeneration. Acta Ophthalmologica, 2023, 101, 881-890.	1.1	0
157	Geographic atrophy: pathophysiology and current therapeutic strategies. Frontiers in Ophthalmology, 0, 3, .	0.5	1
158	Recent Advances in Imaging Macular Atrophy for Late-Stage Age-Related Macular Degeneration. Diagnostics, 2023, 13, 3635.	2.6	0
159	Advances in Imaging Techniques for Geographic Atrophy. Ophthalmic Surgery Lasers and Imaging Retina, 2023, 54, 682-685.	0.7	0
160	Morphological changes of macular neovascularization during long-term anti-VEGF-therapy in neovascular age-related macular degeneration. PLoS ONE, 2023, 18, e0288861.	2.5	1
161	Therapies for Geographic Atrophy. International Ophthalmology Clinics, 2024, 64, 5-20.	0.7	1
162	OCT Prognostic Biomarkers for Progression to Late Age-related Macular Degeneration. Ophthalmology Retina, 2023, , .	2.4	0
164	Geographic atrophy: current and future therapeutic agents and practical considerations for retinal specialists. Current Opinion in Ophthalmology, 2024, 35, 165-169.	2.9	0