ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP

Cell 168, 427-441.e21 DOI: 10.1016/j.cell.2016.12.044

Citation Report

#	Article	IF	CITATIONS
1	Apolipoprotein E and Alzheimer's disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. Journal of Lipid Research, 2017, 58, 824-836.	2.0	159
2	TNFα-induced DLK activation contributes to apoptosis in the beta-cell line HIT. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 813-825.	1.4	10
3	Stem cell models of Alzheimer's disease: progress and challenges. Alzheimer's Research and Therapy, 2017, 9, 42.	3.0	112
4	Co-injection of Aβ1-40 and ApoE4 impaired spatial memory and hippocampal long-term potentiation in rats. Neuroscience Letters, 2017, 648, 47-52.	1.0	5
5	Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Progress in Neurobiology, 2017, 156, 1-68.	2.8	112
6	Apolipoprotein E ε4 and Risk Factors for Alzheimer Disease—Let's Talk About Sex. JAMA Neurology, 2017, 74, 1167.	4.5	12
7	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	6.6	1,741
8	Transcriptional regulation of APP by apoE: To boldly go where no isoform has gone before. BioEssays, 2017, 39, 1700062.	1.2	9
9	Co-Expression of Glia Maturation Factor and Apolipoprotein E4 in Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2017, 61, 553-560.	1.2	22
10	RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network. Journal of Integrative Bioinformatics, 2017, 14, .	1.0	13
11	Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. Journal of Alzheimer's Disease, 2017, 61, 1-15.	1.2	17
12	Amyloid plaques beyond AÎ ² : a survey of the diverse modulators of amyloid aggregation. Biophysical Reviews, 2017, 9, 405-419.	1.5	74
13	Increased Release of Apolipoprotein E in Extracellular Vesicles Following Amyloid-β Protofibril Exposure of Neuroglial Co-Cultures. Journal of Alzheimer's Disease, 2017, 60, 305-321.	1.2	44
14	Human Induced Pluripotent Stem Cells and the Modelling of Alzheimer's Disease: The Human Brain Outside the Dish. The Open Neurology Journal, 2017, 11, 27-38.	0.4	15
15	Microglia in Alzheimer's disease. Journal of Clinical Investigation, 2017, 127, 3240-3249.	3.9	622
16	Human Apolipoprotein E Genotype Differentially Affects Olfactory Behavior and Sensory Physiology in Mice. Neuroscience, 2018, 380, 103-110.	1.1	15
17	Targeting Alzheimer's disease with gene and cell therapies. Journal of Internal Medicine, 2018, 284, 2-36.	2.7	42
18	Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nature Biomedical Engineering, 2018, 2, 540-554.	11.6	78

		EPORT	
#	Article	IF	CITATIONS
19	Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 2018, 24, 647-657.	15.2	288
20	Oxidative stress and altered mitochondrial protein expression in the absence of amyloid-β and tau pathology in iPSC-derived neurons from sporadic Alzheimer's disease patients. Stem Cell Research, 2018, 27, 121-130.	0.3	107
21	The serine protease HtrA1 contributes to the formation of an extracellular 25-kDa apolipoprotein E fragment that stimulates neuritogenesis. Journal of Biological Chemistry, 2018, 293, 4071-4084.	1.6	19
22	The Interplay Between Apolipoprotein E4 and the Autophagic–Endocytic–Lysosomal Axis. Molecular Neurobiology, 2018, 55, 6863-6880.	1.9	21
23	Intrinsic Neuronal Stress Response Pathways in Injury and Disease. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 93-116.	9.6	34
24	Profiles of β-Amyloid Peptides and Key Secretases in Brain Autopsy Samples Differ with Sex and APOE ε4 Status: Impact for Risk and Progression of Alzheimer Disease. Neuroscience, 2018, 373, 20-36.	1.1	45
25	Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie, 2018, 147, 13-24.	1.3	95
26	Impact of late-onset Alzheimer's genetic risk factors on beta-amyloid endocytic production. Cellular and Molecular Life Sciences, 2018, 75, 2577-2589.	2.4	37
27	Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biological Psychiatry, 2018, 83, 347-357.	0.7	265
28	Microglia-Mediated Neuroprotection, TREM2 , and Alzheimer's Disease: Evidence From OpticalÂImaging. Biological Psychiatry, 2018, 83, 377-387.	0.7	84
29	Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury. Experimental Neurology, 2018, 299, 97-108.	2.0	28
30	Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity. Protein and Cell, 2018, 9, 298-309.	4.8	18
31	Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 5243-5254.	1.9	46
32	Hyperlipidemias and Obesity. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2018, , 331-548.	0.1	10
33	Genetics of Alzheimer's Disease. Dementia and Neurocognitive Disorders, 2018, 17, 131.	0.4	50
34	3 .Neuropathologie und molekulare Mechanismen. , 2018, , 35-122.		1
35	Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. International Journal of Molecular Sciences, 2018, 19, 3650.	1.8	202
36	Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. International Journal of Molecular Sciences, 2018, 19, 3594.	1.8	48

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
37	Somatic APP gene recombination in Alzheimer's disease and normal neurons. Nature, 2018, 563, 639-645.	13.7	179
38	Phytochemicals from Achillea fragrantissima are Modulators of AβPP Metabolism. Journal of Alzheimer's Disease, 2018, 66, 1425-1435.	1.2	5
39	Neuroinflammatory Cytokines Induce Amyloid Beta Neurotoxicity through Modulating Amyloid Precursor Protein Levels/Metabolism. BioMed Research International, 2018, 2018, 1-8.	0.9	78
40	Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochemical Research, 2018, 43, 2179-2198.	1.6	27
41	The Early Events That Initiate β-Amyloid Aggregation in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2018, 10, 359.	1.7	85
42	Stem Cells, Genome Editing, and the Path to Translational Medicine. Cell, 2018, 175, 615-632.	13.5	105
44	APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer's Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron, 2018, 98, 1141-1154.e7.	3.8	665
45	Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis. Oncology Letters, 2018, 15, 9361-9368.	0.8	10
46	The Transcriptional Regulatory Properties of Amyloid Beta 1–42 may Include Regulation of Genes Related to Neurodegeneration. NeuroMolecular Medicine, 2018, 20, 363-375.	1.8	16
47	The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 2018, 10, .	5.8	79
48	An axonal stress response pathway: degenerative and regenerative signaling by DLK. Current Opinion in Neurobiology, 2018, 53, 110-119.	2.0	49
49	Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet?. Journal of Alzheimer's Disease, 2018, 65, 321-344.	1.2	17
50	Iron metabolism in diabetes-induced Alzheimer's disease: a focus on insulin resistance in the brain. BioMetals, 2018, 31, 705-714.	1.8	20
51	Application of Metabolomics in Alzheimer's Disease. Frontiers in Neurology, 2017, 8, 719.	1.1	178
52	2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 2018, 13, 27.	4.4	157
53	ApoE isoforms and carboxyl-terminal-truncated apoE4 forms affect neuronal BACE1 levels and AÎ ² production independently of their cholesterol efflux capacity. Biochemical Journal, 2018, 475, 1839-1859.	1.7	19
54	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	21.5	370
55	Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. Journal of Medicinal Chemistry, 2018, 61, 8078-8087.	2.9	38

#	Article	IF	CITATIONS
56	Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells?. Alcoholism: Clinical and Experimental Research, 2018, 42, 1572-1590.	1.4	11
57	Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS ONE, 2018, 13, e0193867.	1.1	40
58	Prion-like mechanisms in Alzheimer disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 303-319.	1.0	42
59	APOE and Alzheimer's Disease: Evidence Mounts that Targeting APOE4 may Combat Alzheimer's Pathogenesis. Molecular Neurobiology, 2019, 56, 2450-2465.	1.9	140
60	Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurology, 2019, 15, 501-518.	4.9	734
61	Targeting the Interaction Between Apolipoprotein E and Amyloid Precursor Protein: A Novel Alzheimer's Disease Therapy. Biological Psychiatry, 2019, 86, 169-170.	0.7	2
62	All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Frontiers in Neuroscience, 2019, 13, 582.	1.4	39
63	Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Journal of Neuroscience, 2019, 39, 7408-7427.	1.7	85
64	Cellular Senescence and Iron Dyshomeostasis in Alzheimer's Disease. Pharmaceuticals, 2019, 12, 93.	1.7	68
65	Lipid-Binding Proteins in Brain Health and Disease. Frontiers in Neurology, 2019, 10, 1152.	1.1	19
66	Multitasking: Dual Leucine Zipper–Bearing Kinases in Neuronal Development and Stress Management. Annual Review of Cell and Developmental Biology, 2019, 35, 501-521.	4.0	25
67	Unravelling Alzheimer's Disease: It's Not the Whole Story, but Aβ Still Matters. FASEB Journal, 2019, 33, 9701-9705.	0.2	5
68	ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles. Pharmaceutical Research, 2019, 36, 161.	1.7	48
69	Long-Term Effects of Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 72, 161-180.	1.2	18
70	Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019, 179, 312-339.	13.5	1,675
71	LRP1 activation attenuates white matter injury by modulating microglial polarization through Shc1/PI3K/Akt pathway after subarachnoid hemorrhage in rats. Redox Biology, 2019, 21, 101121.	3.9	92
72	ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nature Medicine, 2019, 25, 496-506.	15.2	200
73	Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiology of Disease, 2019, 130, 104503.	2.1	24

_			_	
			Report	
<u> </u>	IAI	ION.	REPORT	

#	Article	IF	CITATIONS
74	Mosaic <i>APP</i> Gene Recombination in Alzheimer's Disease—What's Next?. Journal of Experimental Neuroscience, 2019, 13, 117906951984966.	2.3	8
75	Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier. Neuroscience Letters, 2019, 708, 134306.	1.0	38
76	Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12524-12533.	3.3	82
77	Endo-lysosomal dysregulations and late-onset Alzheimer's disease: impact of genetic risk factors. Molecular Neurodegeneration, 2019, 14, 20.	4.4	144
78	High-throughput microscopy exposes a pharmacological window in which dual leucine zipper kinase inhibition preserves neuronal network connectivity. Acta Neuropathologica Communications, 2019, 7, 93.	2.4	15
79	Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease. Neurobiology of Disease, 2019, 130, 104509.	2.1	46
80	Characterization of Covalent Pyrazolopyrimidine–MKK7 Complexes and a Report on a Unique DFC-in/Leu-in Conformation of Mitogen-Activated Protein Kinase Kinase 7 (MKK7). Journal of Medicinal Chemistry, 2019, 62, 5541-5546.	2.9	12
81	Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer's disease-like pathology. Experimental Neurology, 2019, 318, 145-156.	2.0	17
82	A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction With N-terminal Amyloid Precursor Protein, Reduces β-Amyloid-Associated Pathology, and Improves Cognition. Biological Psychiatry, 2019, 86, 208-220.	0.7	29
83	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 608-641.	2.1	22
84	Repetitive transcranial magnetic stimulation protects mice against 6-OHDA-induced Parkinson's disease symptoms by regulating brain amyloid β1–42 level. Molecular and Cellular Biochemistry, 2019, 458, 71-78.	1.4	13
85	Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10031-10038.	3.3	53
86	FunSPU: A versatile and adaptive multiple functional annotation-based association test of whole-genome sequencing data. PLoS Genetics, 2019, 15, e1008081.	1.5	16
87	Cognitive decline is related to high blood glucose levels in older Chinese adults with the ApoE ε3/ε3 genotype. Translational Neurodegeneration, 2019, 8, 12.	3.6	13
88	The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells, 2019, 8, 242.	1.8	14
89	Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Annals of Neurology, 2019, 85, 726-739.	2.8	84
90	A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron, 2019, 101, 820-838.	3.8	338
91	The Dichotomy of Alzheimer's Disease Pathology: Amyloid-β and Tau. Journal of Alzheimer's Disease, 2019, 68, 77-83.	1.2	14

#	Article	IF	CITATIONS
92	Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. , 2019, 199, 173-187.		90
93	Senescence in aging and disorders of the central nervous system. Translational Medicine of Aging, 2019, 3, 17-25.	0.6	17
94	<i>KLOTHO</i> heterozygosity attenuates <i>APOE4</i> -related amyloid burden in preclinical AD. Neurology, 2019, 92, e1878-e1889.	1.5	40
95	Formaldehyde, Epigenetics, and Alzheimer's Disease. Chemical Research in Toxicology, 2019, 32, 820-830.	1.7	43
96	Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer's disease. Acta Neuropathologica, 2019, 137, 801-823.	3.9	61
97	Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Al^2 accumulation. Immunity and Ageing, 2019, 16, 2.	1.8	13
98	Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Human Molecular Genetics, 2019, 28, 2014-2029.	1.4	5
99	The Role of Apolipoprotein E Isoforms in Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 459-471.	1.2	21
100	Synaptic Elimination in Neurological Disorders. Current Neuropharmacology, 2019, 17, 1071-1095.	1.4	63
101	The Radiogenomics of Late-onset Alzheimer Disease. Topics in Magnetic Resonance Imaging, 2019, 28, 325-334.	0.7	2
102	Differential Methylation Levels in CpGs of the BIN1 Gene in Individuals With Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2019, 33, 321-326.	0.6	14
103	Understanding the Role of ApoE Fragments in Alzheimer's Disease. Neurochemical Research, 2019, 44, 1297-1305.	1.6	51
104	New APOE-related therapeutic options for Alzheimer's disease. AIP Conference Proceedings, 2019, , .	0.3	4
105	CDT2â€controlled cell cycle reentry regulates the pathogenesis of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 217-231.	0.4	28
106	Correlation between <i>Apolipoprotein E</i> genotype and brain metabolism in amyotrophic lateral sclerosis. European Journal of Neurology, 2019, 26, 306-312.	1.7	8
107	Striking while the iron is hot: Iron metabolism and ferroptosis in neurodegeneration. Free Radical Biology and Medicine, 2019, 133, 221-233.	1.3	312
108	A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Molecular Psychiatry, 2020, 25, 629-639.	4.1	42
109	Macromolecular complex in recognition and proteolysis of amyloid precursor protein in Alzheimer's disease. Current Opinion in Structural Biology, 2020, 61, 1-8.	2.6	15

#	ARTICLE	IF	CITATIONS
110	DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors and Promote SARM1-Dependent Axon Degeneration. Molecular Neurobiology, 2020, 57, 1146-1158.	1.9	59
111	The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer's Disease. Neuroscience, 2020, 424, 184-202.	1.1	23
112	Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy. Molecular Neurobiology, 2020, 57, 1986-2001.	1.9	9
113	APOE in the normal brain. Neurobiology of Disease, 2020, 136, 104724.	2.1	84
114	Alzheimer's disease: The derailed repair hypothesis. Medical Hypotheses, 2020, 136, 109516.	0.8	4
115	Ceniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMCB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice. European Journal of Pharmacology, 2020, 869, 172857.	1.7	35
116	Association of lysophosphatidic acids with cerebrospinal fluid biomarkers and progression to Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 124.	3.0	12
117	Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance. Alzheimer's Research and Therapy, 2020, 12, 125.	3.0	70
118	Vitamin D deficiency exacerbates Alzheimer-like pathologies by reducing antioxidant capacity. Free Radical Biology and Medicine, 2020, 161, 139-149.	1.3	32
119	Sex difference in Alzheimer's disease: An updated, balanced and emerging perspective on differing vulnerabilities. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 175, 261-273.	1.0	52
120	From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Research Reviews, 2020, 64, 101126.	5.0	31
121	Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/Caspase-1/GSDMD Pathway in MPTP-Induced Mice Model of Parkinson's Disease. International Journal of Neuropsychopharmacology, 2020, 23, 762-773.	1.0	94
122	Catalytic Domain Plasticity of MKK7 Reveals Structural Mechanisms of Allosteric Activation and Diverse Targeting Opportunities. Cell Chemical Biology, 2020, 27, 1285-1295.e4.	2.5	19
123	Integrated Bioinformatics Analysis Identifies ELAVL1 and APP as Candidate Crucial Genes for Crohn's Disease. Journal of Immunology Research, 2020, 2020, 1-20.	0.9	11
124	ADNC-RS, a clinical-genetic risk score, predicts Alzheimer's pathology in autopsy-confirmed Parkinson's disease and Dementia with Lewy bodies. Acta Neuropathologica, 2020, 140, 449-461.	3.9	7
125	Dual Leucine Zipper Kinase Is Constitutively Active in the Adult Mouse Brain and Has Both Stress-Induced and Homeostatic Functions. International Journal of Molecular Sciences, 2020, 21, 4849.	1.8	8
126	Clusterin as a Potential Biomarker of Obesity-Related Alzheimer's Disease Risk. Biomarker Insights, 2020, 15, 117727192096410.	1.0	12
127	Deep proteomics and phosphoproteomics reveal novel biological pathways perturbed by morphine, morphineâ€3â€glucuronide and morphineâ€6â€glucuronide in human astrocytes. Journal of Neuroscience Research, 2022, 100, 220-236.	1.3	10

#	Article	IF	CITATIONS
128	Amyloid-β1–43 cerebrospinal fluid levels and the interpretation of APP, PSEN1 and PSEN2 mutations. Alzheimer's Research and Therapy, 2020, 12, 108.	3.0	17
129	Sex-dependent effect of <i>APOE</i> on Alzheimer's disease and other age-related neurodegenerative disorders. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	49
130	Allelic Distribution of Genes for Apolipoprotein E and MTHFR in Patients with Alzheimer's Disease and Their Epistatic Interaction. Journal of Alzheimer's Disease, 2020, 77, 1095-1105.	1.2	3
131	Iron-responsive-like elements and neurodegenerative ferroptosis. Learning and Memory, 2020, 27, 395-413.	0.5	21
132	Î ³ -Secretase Modulatory Proteins: The Guiding Hand Behind the Running Scissors. Frontiers in Aging Neuroscience, 2020, 12, 614690.	1.7	12
133	Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics, 2020, 12, 1216.	2.0	42
134	C/EBPβ is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer's disease. Molecular Psychiatry, 2021, 26, 6002-6022.	4.1	32
135	Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 140.	3.0	61
136	APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 63.	4.4	110
137	Apolipoprotein E Signals via TLR4 to Induce CXCL5 Secretion by Asthmatic Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 185-197.	1.4	12
138	Mosaic Somatic Gene Recombination as a Potentially Unifying Hypothesis for Alzheimer's Disease. Frontiers in Genetics, 2020, 11, 390.	1.1	14
139	Commentary: Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer's Disease Risk. Frontiers in Aging Neuroscience, 2020, 12, 127.	1.7	1
140	Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 1992.	1.8	25
141	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71
142	Apolipoprotein E2 modulates cell cycle function to promote proliferation in pancreatic cancer cells via regulation of the c-Myc–p21Waf1signalling pathway. Biochemistry and Cell Biology, 2020, 98, 191-202.	0.9	13
143	Association of <i>APOE</i> With Primary Open-Angle Glaucoma Suggests a Protective Effect for <i>APOE ε4</i> . , 2020, 61, 3.		23
144	Upregulation of Alzheimer's Disease Amyloid-β Protein Precursor in Astrocytes Both in vitro and in vivo. Journal of Alzheimer's Disease, 2020, 76, 1071-1082.	1.2	18
145	Apolipoprotein E isoforms differentially regulate matrix metallopeptidase 9 function in Alzheimer's disease. Neurobiology of Aging, 2020, 95, 56-68.	1.5	13

#	Article	IF	CITATIONS
146	Pulsed SILAM Reveals In Vivo Dynamics of Murine Brain Protein Translation. ACS Omega, 2020, 5, 13528-13540.	1.6	3
147	Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handbook of Experimental Pharmacology, 2020, 265, 111-141.	0.9	11
148	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	2.1	23
149	The multiplex model of the genetics of Alzheimer's disease. Nature Neuroscience, 2020, 23, 311-322.	7.1	291
150	Validation of a novel and accurate ApoE4 assay for automated chemistry analyzers. Scientific Reports, 2020, 10, 2138.	1.6	5
151	Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition, 2020, 11, 100176.	0.8	26
152	Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 8.	4.4	89
153	Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. Journal of Controlled Release, 2020, 323, 225-239.	4.8	129
154	Apolipoprotein E Facilitates Amyloid-Î ² Oligomer-Induced Tau Phosphorylation. Journal of Alzheimer's Disease, 2020, 74, 521-534.	1.2	9
155	The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Frontiers in Immunology, 2020, 11, 754.	2.2	100
156	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
157	Amyloidâ€Î² oligomers in cellular models of Alzheimer's disease. Journal of Neurochemistry, 2020, 155, 348-369.	2.1	50
158	Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer's disease. Journal of Neurochemistry, 2020, 155, 448-461.	2.1	49
159	The Genetics of Alzheimer's Disease in the Chinese Population. International Journal of Molecular Sciences, 2020, 21, 2381.	1.8	10
160	Reelin signaling modulates GABA B receptor function in the neocortex. Journal of Neurochemistry, 2021, 156, 589-603.	2.1	12
161	Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Molecular Psychiatry, 2021, 26, 309-321.	4.1	47
162	Photoaffinity Labeling and Quantitative Chemical Proteomics Identify LXRÎ ² as the Functional Target of Enhancers of Astrocytic apoE. Cell Chemical Biology, 2021, 28, 148-157.e7.	2.5	12
163	β-amyloid: The known unknowns. Ageing Research Reviews, 2021, 65, 101212.	5.0	27

#	Article	IF	CITATIONS
164	Apolipoprotein E: Structural Insights and Links to Alzheimer Disease Pathogenesis. Neuron, 2021, 109, 205-221.	3.8	139
165	Harnessing the paradoxical phenotypes of APOE É>2 and APOE É>4 to identify genetic modifiers in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 831-846.	0.4	14
166	Cognitive Impairment in Older Adults and Therapeutic Strategies. Pharmacological Reviews, 2021, 73, 152-162.	7.1	24
167	A simple Ca2+-imaging approach to neural network analyses in cultured neurons. Journal of Neuroscience Methods, 2021, 349, 109041.	1.3	21
168	Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. ELife, 2021, 10, .	2.8	8
169	APOE: The New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer's. International Journal of Molecular Sciences, 2021, 22, 1244.	1.8	23
170	DeepIDA: Predicting Isoform-Disease Associations by Data Fusion and Deep Neural Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2166-2176.	1.9	8
171	Alzheimer's disease: a tale of two diseases?. Neural Regeneration Research, 2021, 16, 1958.	1.6	15
172	ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Reports, 2021, 34, 108572.	2.9	137
173	Stem cell-derived three-dimensional (organoid) models of Alzheimer's disease: a precision medicine approach. Neural Regeneration Research, 2021, 16, 1546.	1.6	3
174	Application of CRISPR-Cas systems in neuroscience. Progress in Molecular Biology and Translational Science, 2021, 178, 231-264.	0.9	5
175	A logical network-based drug-screening platform for Alzheimer's disease representing pathological features of human brain organoids. Nature Communications, 2021, 12, 280.	5.8	88
176	Genetics of Alzheimer's disease. Wiener Medizinische Wochenschrift, 2021, 171, 249-256.	0.5	11
177	Mitochondriaâ€associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse, 2021, 75, e22196.	0.6	8
178	Gene-based therapies for neurodegenerative diseases. Nature Neuroscience, 2021, 24, 297-311.	7.1	83
179	Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Science Advances, 2021, 7, .	4.7	141
180	APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics. Frontiers in Neuroscience, 2021, 15, 630502.	1.4	129
181	Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. European Journal of Pharmacology, 2021, 895, 173873.	1.7	24

#	Article	IF	CITATIONS
182	Tumor resistance to radiotherapy is triggered by an ATM/TAK1-dependent-increased expression of the cellular prion protein. Oncogene, 2021, 40, 3460-3469.	2.6	14
183	Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacological Research, 2021, 165, 105469.	3.1	21
184	The effects of proton pump inhibitors on neuropsychological functioning. Applied Neuropsychology Adult, 2021, , 1-10.	0.7	4
185	An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells, 2021, 10, 546.	1.8	11
188	APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Molecular Psychiatry, 2021, 26, 5715-5732.	4.1	13
189	Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biology, 2021, 40, 101865.	3.9	16
190	Endothelial genetic deletion of CD147 induces changes in the dual function of the bloodâ€brain barrier and is implicated in Alzheimer's disease. CNS Neuroscience and Therapeutics, 2021, 27, 1048-1063.	1.9	7
192	The Potential of Induced Pluripotent Stem Cells to Treat and Model Alzheimer's Disease. Stem Cells International, 2021, 2021, 1-16.	1.2	4
193	Regulation of dual leucine zipper kinase activity through its interaction with calcineurin. Cellular Signalling, 2021, 82, 109953.	1.7	3
195	Interactions between Apolipoprotein E Metabolism and Retinal Inflammation in Age-Related Macular Degeneration. Life, 2021, 11, 635.	1.1	14
196	High Apolipoprotein E Levels Predict Adverse Limb Events in Patients with Peripheral Artery Disease Due to Peripheral Artery Disease Undergoing Endovascular Treatment and On-Statin Treatment. International Heart Journal, 2021, 62, 872-878.	0.5	0
197	APOE Genotype and Alzheimer's Disease: The Influence of Lifestyle and Environmental Factors. ACS Chemical Neuroscience, 2021, 12, 2749-2764.	1.7	37
198	ApoE4 activates C/EBPβ/Î^-secretase with 27-hydroxycholesterol, driving the pathogenesis of Alzheimer's disease. Progress in Neurobiology, 2021, 202, 102032.	2.8	24
199	Apolipoprotein E and Alzheimer's Disease: Findings, Hypotheses, and Potential Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 73-99.	9.6	81
201	Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules, 2021, 11, 1261.	1.8	3
202	Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes, 2021, 12, 1247.	1.0	9
203	Transcription Factor-Based Strategies to Generate Neural Cell Types from Human Pluripotent Stem Cells. Cellular Reprogramming, 2021, 23, 206-220.	0.5	7
204	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478

#	Article	IF	CITATIONS
205	Transcriptional and Post-Transcriptional Regulations of Amyloid-Î ² Precursor Protein (APP) mRNA. Frontiers in Aging, 2021, 2, .	1.2	5
206	Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proceedings of the United States of America, 2021, 118, .	3.3	138
207	Developmental Perfluorooctanesulfonic acid (PFOS) exposure as a potential risk factor for late-onset Alzheimer's disease in CD-1 mice and SH-SY5Y cells. NeuroToxicology, 2021, 86, 26-36.	1.4	14
208	Apolipoprotein E isoform-dependent effects on the processing of Alzheimer's amyloid-β. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158980.	1.2	14
209	APOE4 Affects Basal and NMDAR-Mediated Protein Synthesis in Neurons by Perturbing Calcium Homeostasis. Journal of Neuroscience, 2021, 41, 8686-8709.	1.7	16
210	APOE4-carrying human astrocytes oversupply cholesterol to promote neuronal lipid raft expansion and AÎ ² generation. Stem Cell Reports, 2021, 16, 2128-2137.	2.3	52
211	An update on Alzheimer's disease: Immunotherapeutic agents, stem cell therapy and gene editing. Life Sciences, 2021, 282, 119790.	2.0	9
212	Comprehensive Identification of Potential Crucial Genes and miRNA-mRNA Regulatory Networks in Papillary Thyroid Cancer. BioMed Research International, 2021, 2021, 1-25.	0.9	13
213	Aging-Dependent Mitophagy Dysfunction in Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 2362-2378.	1.9	25
214	Systems Biology Methods for Alzheimer's Disease Research Toward Molecular Signatures, Subtypes, and Stages and Precision Medicine: Application in Cohort Studies and Trials. Methods in Molecular Biology, 2018, 1750, 31-66.	0.4	36
215	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33597-33607.	3.3	19
218	Monocyte-derived alveolar macrophage apolipoprotein E participates in pulmonary fibrosis resolution. JCl Insight, 2020, 5, .	2.3	39
219	Sex differences in gene expression patterns associated with the APOE4 allele. F1000Research, 2019, 8, 387.	0.8	28
220	ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer's Disease. Molecules and Cells, 2019, 42, 739-746.	1.0	54
221	Fragmentation of brain apolipoprotein E (ApoE) and its relevance in Alzheimer's disease. Reviews in the Neurosciences, 2020, 31, 589-603.	1.4	3
222	Genetically Engineering the Nervous System with CRISPR-Cas. ENeuro, 2020, 7, ENEURO.0419-19.2020.	0.9	12
223	The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging, 2020, 12, 1792-1807.	1.4	15
224	Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease. Current Alzheimer Research, 2020, 16, 1163-1174.	0.7	11

#	Article	IF	CITATIONS
225	Generation of Human Neurons and Oligodendrocytes from Pluripotent Stem Cells for Modeling Neuron-Oligodendrocyte Interactions. Journal of Visualized Experiments, 2020, , .	0.2	7
226	Do polystyrene nanoplastics aggravate the toxicity of single contaminants (okadaic acid)? Using AGS cells as a biological model. Environmental Science: Nano, 2021, 8, 3186-3201.	2.2	7
227	Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer's disease: a systematic review. Ageing Research Reviews, 2021, 72, 101496.	5.0	131
228	The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines, 2021, 9, 1449.	1.4	18
229	Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. Journal of Medicinal Chemistry, 2022, 65, 1525-1535.	2.9	18
230	APOE4 genotype exacerbates the depression-like behavior of mice during aging through ATP decline. Translational Psychiatry, 2021, 11, 507.	2.4	15
234	Sex differences in gene expression patterns associated with the APOE4 allele. F1000Research, 2019, 8, 387.	0.8	18
238	Isoform-Specific Effects of Apolipoprotein E on Hydrogen Peroxide-Induced Apoptosis in Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Neurons. International Journal of Molecular Sciences, 2021, 22, 11582.	1.8	7
239	Neurotoxic Astrocytes Secreted Glypican-4 Drives Alzheimer's Tau Pathology. SSRN Electronic Journal, 0, , .	0.4	1
241	Review of How Genetic Research on Segmental Progeroid Syndromes Has Documented Genomic Instability as a Hallmark of Aging But Let Us Now Pursue <i>Antigeroid Syndromes</i> !. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 253-259.	1.7	6
242	Targeting Alzheimer's disease and related dementias with CRISPR and human pluripotent stem cell technologies. , 2022, , 65-80.		0
244	Microglia and its Genetics in Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 676-688.	0.7	10
247	MKK7-mediated phosphorylation of JNKs regulates the proliferation and apoptosis of human spermatogonial stem cells. World Journal of Stem Cells, 2021, 13, 1797-1812.	1.3	2
248	Elevated expression of RIT1 hyperactivates RAS/MAPK signal and sensitizes hepatocellular carcinoma to combined treatment with sorafenib and AKT inhibitor. Oncogene, 2022, 41, 732-744.	2.6	12
249	MKK7-mediated phosphorylation of JNKs regulates the proliferation and apoptosis of human spermatogonial stem cells. World Journal of Stem Cells, 2021, 13, 1798-1813.	1.3	0
250	MKK7-mediated phosphorylation of JNKs regulates the proliferation and apoptosis of human spermatogonial stem cells. World Journal of Stem Cells, 2021, 13, 1800-1815.	1.3	0
251	RTN4/NoGo-receptor binding to BAI adhesion-GPCRs regulates neuronal development. Cell, 2021, 184, 5869-5885.e25.	13.5	45
252	Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Molecular Medicine, 2022, 28, 11.	1.9	61

#	Article	IF	CITATIONS
253	<i>APOE</i> ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies. Alzheimer's and Dementia, 2022, 18, 2151-2166.	0.4	16
255	The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cellular and Molecular Neurobiology, 2023, 43, 177-191.	1.7	22
256	APP accumulates with presynaptic proteins around amyloid plaques: A role for presynaptic mechanisms in Alzheimer's disease?. Alzheimer's and Dementia, 2022, 18, 2099-2116.	0.4	21
257	Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. , 2022, 13, 87.		16
258	Selective reduction of astrocyte apoE3 and apoE4 strongly reduces AÎ ² accumulation and plaque-related pathology in a mouse model of amyloidosis. Molecular Neurodegeneration, 2022, 17, 13.	4.4	44
259	Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer's disease?. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232210816.	1.1	8
260	Predicting Brain Amyloid-β PET Grades with Graph Convolutional Networks Based on Functional MRI and Multi-Level Functional Connectivity. Journal of Alzheimer's Disease, 2022, 86, 1679-1693.	1.2	4
261	The APOEε3/ε4 Genotype Drives Distinct Gene Signatures in the Cortex of Young Mice. Frontiers in Aging Neuroscience, 2022, 14, 838436.	1.7	14
262	Single molecule, long-read Apoer2 sequencing identifies conserved and species-specific splicing patterns. Genomics, 2022, 114, 110318.	1.3	7
263	Potential role of chitinaseâ€3â€like protein 1 (CHI3L1/YKLâ€40) in neurodegeneration and Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 9-24.	0.4	35
264	Mitigating Effect of Estrogen in Alzheimer's Disease-Mimicking Cerebral Organoid. Frontiers in Neuroscience, 2022, 16, 816174.	1.4	10
265	Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 884667.	1.4	3
266	Application of CRISPR/Cas9 in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 803894.	1.4	17
267	Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate AÎ ² production. Cell Death and Disease, 2021, 12, 1137.	2.7	11
268	Human APOER2 isoforms have differential cleavage events and synaptic properties. Journal of Neuroscience, 2022, , JN-RM-1800-21.	1.7	5
269	Impact of APOE genotype on prion-type propagation of tauopathy. Acta Neuropathologica Communications, 2022, 10, 57.	2.4	4
271	A multiâ€hit hypothesis for an <i>APOE4</i> â€dependent pathophysiological state. European Journal of Neuroscience, 2022, 56, 5476-5515.	1.2	8
272	Nutrient-Response Pathways in Healthspan and Lifespan Regulation. Cells, 2022, 11, 1568.	1.8	3

#	Article	IF	CITATIONS
273	Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. Journal of Molecular Neuroscience, 2022, , 1.	1.1	6
274	Alzheimer's neuroinflammation: A crosstalk between immune checkpoint PD1-PDL1 and ApoE-Heparin interactions?. Medical Hypotheses, 2022, 164, 110865.	0.8	0
275	The role of H3K9 acetylation and gene expression in different brain regions of Alzheimer's disease patients. Epigenomics, 2022, 14, 651-670.	1.0	7
276	ZNF384: A Potential Therapeutic Target for Psoriasis and Alzheimer's Disease Through Inflammation and Metabolism. Frontiers in Immunology, 0, 13, .	2.2	7
277	Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	15
278	Association of Rare <i>APOE</i> Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurology, 2022, 79, 652.	4.5	31
280	Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer's Disease. Frontiers in Neuroscience, 0, 16, .	1.4	7
281	Calcium-dependent cytosolic phospholipase A2 activation is implicated in neuroinflammation and oxidative stress associated with ApoE4. Molecular Neurodegeneration, 2022, 17, .	4.4	16
282	CDiP technology for reverse engineering of sporadic Alzheimer's disease. Journal of Human Genetics, 0, , .	1.1	1
283	The Role of Astrocytes in Synapse Loss in Alzheimer's Disease: A Systematic Review. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	16
284	ceRNA Network Analysis Reveals AP-1 Transcription Factor Components as Potential Biomarkers for Alzheimer's Disease. Current Alzheimer Research, 2022, 19, 387-406.	0.7	3
285	Vascular Dysfunction Is Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. International Journal of Molecular Sciences, 2022, 23, 7106.	1.8	5
286	APOE ε4 in Depression-Associated Memory Impairment—Evidence from Genetic and MicroRNA Analyses. Biomedicines, 2022, 10, 1560.	1.4	7
287	Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	4
288	Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer's Disease Risk. Environmental Health Perspectives, 2022, 130, .	2.8	6
289	APOE4 drives inflammation in human astrocytes via TAGLN3 repression and NF- $\hat{I}^{o}B$ activation. Cell Reports, 2022, 40, 111200.	2.9	31
290	Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. International Journal of Molecular Sciences, 2022, 23, 9892.	1.8	16
291	APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Molecular Neurodegeneration, 2022, 17, .	4.4	62

#	Article	IF	CITATIONS
293	Apolipoprotein E loss of function: Influence on murine brain markers of physiology and pathology. Aging Brain, 2022, 2, 100055.	0.7	1
294	Exploring the Role of Lipid-Binding Proteins and Oxidative Stress in Neurodegenerative Disorders: A Focus on the Neuroprotective Effects of Nutraceutical Supplementation and Physical Exercise. Antioxidants, 2022, 11, 2116.	2.2	5
295	Signaling abnormality leading to excessive/aberrant synaptic plasticity in Alzheimer's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	0
296	Synaptogenic effect of <i>APP</i> -Swedish mutation in familial Alzheimer's disease. Science Translational Medicine, 2022, 14, .	5.8	29
297	Potential of astrocytes in targeting therapy for Alzheimer's disease. International Immunopharmacology, 2022, 113, 109368.	1.7	2
298	Liposome: A potential drug delivery vector to treat dementia. , 2023, , 149-168.		0
299	Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. International Journal of Molecular Sciences, 2022, 23, 13886.	1.8	6
300	APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature, 2022, 611, 769-779.	13.7	144
301	A Review of CRISPR Cas9 for Alzheimer's Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer's Disease?. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 745-757.	0.1	1
302	Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review). International Journal of Molecular Medicine, 2022, 51, .	1.8	7
304	Sex and APOE Genotype Alter the Basal and Induced Inflammatory States of Primary Astrocytes from Humanized Targeted Replacement Mice. ASN Neuro, 2023, 15, 175909142211445.	1.5	2
305	Cross interactions between Apolipoprotein E and amyloid proteins in neurodegenerative diseases. Computational and Structural Biotechnology Journal, 2023, 21, 1189-1204.	1.9	4
306	Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1–42 in Alzheimer's disease. Scientific Reports, 2023, 13, .	1.6	3
307	Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Molecular Psychiatry, 2023, 28, 3343-3354.	4.1	2
308	Easy Not Easy: Comparative Modeling with High-Sequence Identity Templates. Methods in Molecular Biology, 2023, , 83-100.	0.4	0
309	Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	1.4	0
310	Relationship of Apolipoprotein E with Alzheimer's Disease and Other Neurological Disorders: An Updated Review. Neuroscience, 2023, 514, 123-140.	1.1	3
311	DeepAD: A deep learning application for predicting amyloid standardized uptake value ratio through PET for Alzheimer's prognosis. Frontiers in Artificial Intelligence, 0, 6, .	2.0	2

#	Article	IF	CITATIONS
312	New Perspectives of Taxifolin in Neurodegenerative Diseases. Current Neuropharmacology, 2023, 21, 2097-2109.	1.4	1
314	Heparan sulfate proteoglycan in Alzheimer's disease: aberrant expression and functions in molecular pathways related to amyloid-β metabolism. American Journal of Physiology - Cell Physiology, 2023, 324, C893-C909.	2.1	5
315	Alzheimer's Disease and Alzheimer's Disease-Related Dementias in African Americans: Focus on Caregivers. Healthcare (Switzerland), 2023, 11, 868.	1.0	2
317	Novel Insight into Functions of Transcription Factor EB (TFEB) in Alzheimer's Disease and Parkinson's Disease. , 2023, 14, 652.		6
318	Differential and substrate-specific inhibition of Î ³ -secretase by the C-terminal region of ApoE2, ApoE3, and ApoE4. Neuron, 2023, 111, 1898-1913.e5.	3.8	5
319	Vector enabled CRISPR gene editing $\hat{a} \in$ " A revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	9.5	0
323	Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cellular and Molecular Neurobiology, 2023, 43, 3115-3136.	1.7	7
325	Modeling Cellular Crosstalk of Neuroinflammation Axis by Tri-cultures of iPSC-Derived Human Microglia, Astrocytes, and Neurons. Methods in Molecular Biology, 2023, , 79-87.	0.4	1
330	Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Communications Biology, 2023, 6, .	2.0	3
365	Nanotechnology-based delivery for CRISPR-Cas 9 cargo in Alzheimer's disease. , 2024, , 139-152.		0