Optical DNA mapping in nanofluidic devices: principles

Lab on A Chip 17, 579-590 DOI: 10.1039/c6lc01439a

Citation Report

#	Article	IF	CITATIONS
1	Chip-scale alignment of long DNA nanofibers on a patterned self-assembled monolayer. Lab on A Chip, 2017, 17, 3234-3239.	3.1	7
2	Exploring DNA–protein interactions on the single DNA molecule level using nanofluidic tools. Integrative Biology (United Kingdom), 2017, 9, 650-661.	0.6	26
3	Applications of optical DNA mapping in microbiology. BioTechniques, 2017, 62, 255-267.	0.8	19
4	Noise reduction in single time frame optical DNA maps. PLoS ONE, 2017, 12, e0179041.	1.1	3
5	Overview of Nextâ€Generation Sequencing Technologies. Current Protocols in Molecular Biology, 2018, 122, e59.	2.9	519
6	Fluorescence in sub-10 nm channels with an optical enhancement layer. Lab on A Chip, 2018, 18, 568-573.	3.1	13
7	Transverse dielectrophoretic-based DNA nanoscale confinement. Scientific Reports, 2018, 8, 5981.	1.6	23
8	Fluorescence Microscopy of Nanochannel-Confined DNA. Methods in Molecular Biology, 2018, 1665, 173-198.	0.4	2
9	Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis. Journal of Chemical Physics, 2018, 149, 215101.	1.2	9
10	Paving the way to single-molecule protein sequencing. Nature Nanotechnology, 2018, 13, 786-796.	15.6	292
11	A discrete phase hybrid continuum-atomistic model for electrokinetics in nanofluidics. Physics of Fluids, 2018, 30, 072003.	1.6	8
12	Alphaâ€5ynuclein Modulates the Physical Properties of DNA. Chemistry - A European Journal, 2018, 24, 15685-15690.	1.7	29
13	Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach. PLoS ONE, 2018, 13, e0193900.	1.1	15
14	Optical DNA Mapping Combined with Cas9-Targeted Resistance Gene Identification for Rapid Tracking of Resistance Plasmids in a Neonatal Intensive Care Unit Outbreak. MBio, 2019, 10, .	1.8	23
15	Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis. Nanoscale, 2019, 11, 13620-13631.	2.8	21
16	Single molecule analysis in nanofluidic devices. , 2019, , 335-377.		2
17	Enzyme-free optical DNA mapping of the human genome using competitive binding. Nucleic Acids Research, 2019, 47, e89-e89.	6.5	17
18	DNA barcodes for rapid, whole genome, single-molecule analyses. Nucleic Acids Research, 2019, 47, e68-e68.	6.5	18

CITATION REPORT

#	Article	IF	CITATIONS
19	An improved hybrid continuumâ€atomistic fourâ€way coupled model for electrokinetics in nanofluidics. Electrophoresis, 2019, 40, 1678-1690.	1.3	6
20	On-Chip Stretching, Sorting, and Electro-Optical Nanopore Sensing of Ultralong Human Genomic DNA. ACS Nano, 2019, 13, 14388-14398.	7.3	28
21	Recent developments of microfluidics as a tool for biotechnology and microbiology. Current Opinion in Biotechnology, 2019, 55, 60-67.	3.3	63
22	Advances in detection and quantification of methylcytosine and its derivatives. Journal of Separation Science, 2019, 42, 1105-1116.	1.3	2
23	Linearization and Labeling of Single-Stranded DNA for Optical Sequence Analysis. Journal of Physical Chemistry Letters, 2019, 10, 316-321.	2.1	8
24	Analytical epigenetics: single-molecule optical detection of DNA and histone modifications. Current Opinion in Biotechnology, 2019, 55, 151-158.	3.3	19
25	Ionic Diffusion, Nanoparticle Formation and Trapping Within Solâ€Gel Made Pillared Planar Nanochannels in a Simple Microfluidic Device. ChemNanoMat, 2020, 6, 392-403.	1.5	0
26	Optical maps of plasmids as a proxy for clonal spread of MDR bacteria: a case study of an outbreak in a rural Ethiopian hospital. Journal of Antimicrobial Chemotherapy, 2020, 75, 2804-2811.	1.3	15
27	Role of Internal DNA Motion on the Mobility of a Nucleoid-Associated Protein. Journal of Physical Chemistry Letters, 2020, 11, 8424-8429.	2.1	5
28	Free energy of a knotted polymer confined to narrow cylindrical and conical channels. Physical Review E, 2020, 102, 052502.	0.8	3
29	Molecular Epidemiology of OXA-48 and NDM-1 Producing Enterobacterales Species at a University Hospital in Tehran, Iran, Between 2015 and 2016. Frontiers in Microbiology, 2020, 11, 936.	1.5	27
30	Single-molecule analysis of nucleic acid biomarkers – A review. Analytica Chimica Acta, 2020, 1115, 61-85.	2.6	34
31	Detergentâ€Assisted Braking of Peptide Translocation through a Singleâ€Layer Molybdenum Disulfide Nanopore. Small Methods, 2020, 4, 1900822.	4.6	16
32	Cultivation-Free Typing of Bacteria Using Optical DNA Mapping. ACS Infectious Diseases, 2020, 6, 1076-1084.	1.8	14
33	A NOVEL FABRICATION METHOD OF TWO-DIMENSIONAL NANO-MOLD BY COMBINING ULTRAVIOLET LITHOGRAPHY WITH WET ETCHING TECHNOLOGY. Surface Review and Letters, 2021, 28, 2050028.	0.5	1
34	Nanofluidic Devices and Applications for Biological Analyses. Analytical Chemistry, 2021, 93, 332-349.	3.2	35
35	Stable Formation of aqueous/organic parallel two-phase flow in nanochannels with partial surface modification. Analytical Sciences, 2021, 37, 1611-1616.	0.8	0
36	Polyphasic characterization of carbapenem-resistant Klebsiella pneumoniae clinical isolates suggests vertical transmission of the blaKPC-3 gene. PLoS ONE, 2021, 16, e0247058.	1.1	2

CITATION REPORT

#	Article	IF	CITATIONS
37	Aptamer-Gated Ion Channel for Ultrasensitive Mucin 1 Detection. Analytical Chemistry, 2021, 93, 4825-4831.	3.2	38
38	Single-molecule optical mapping of the distribution of DNA phosphorothioate epigenetics. Nucleic Acids Research, 2021, 49, 3672-3680.	6.5	16
39	Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays in Biochemistry, 2021, 65, 51-66.	2.1	25
40	Super-localization of individual fluorophores along a DNA strand in a microchannel. Applied Physics Letters, 2021, 119, 023701.	1.5	1
41	Optical DNA Mapping of Plasmids Reveals Clonal Spread of Carbapenem-Resistant Klebsiella pneumoniae in a Large Thai Hospital. Antibiotics, 2021, 10, 1029.	1.5	5
42	Nanofluidics for sub-single cellular studies: Nascent progress, critical technologies, and future perspectives. Chinese Chemical Letters, 2022, 33, 2799-2806.	4.8	16
43	Principles and applications of the nano-in-nano integration for multidisciplinary nanofluidics. , 2022, , 407-428.		1
44	Equilibrium organization, conformation, and dynamics of two polymers under box-like confinement. Soft Matter, 2021, 17, 5792-5805.	1.2	2
45	The resistomes of six carbapenem-resistant pathogens – a critical genotype–phenotype analysis. Microbial Genomics, 2018, 4, .	1.0	18
46	Intramolecular dynamics of dsDNA confined to a quasi-one-dimensional nanochannel. Physical Review Research, 2020, 2, .	1.3	12
47	A single-molecule counting approach for convenient and ultrasensitive measurement of restriction digest efficiencies. PLoS ONE, 2020, 15, e0244464.	1.1	3
48	A Parallelized Nanofluidic Device for High-Throughput Optical DNA Mapping of Bacterial Plasmids. Micromachines, 2021, 12, 1234.	1.4	3
50	Internal Motion of Chromatin Fibers Is Governed by Dynamics of Uncompressed Linker Strands. Biophysical Journal, 2020, 119, 2326-2334.	0.2	5
51	Real time, in-line optical mapping of single molecules of DNA. Biosensors and Bioelectronics: X, 2021, 9, 100087.	0.9	2
52	Detection of structural variations in densely-labelled optical DNA barcodes: A hidden Markov model approach. PLoS ONE, 2021, 16, e0259670.	1.1	1
53	Optofluidic systems enabling detection in real samples: A review. Analytica Chimica Acta, 2022, 1192, 339307.	2.6	11
54	Combining dense and sparse labeling in optical DNA mapping. PLoS ONE, 2021, 16, e0260489.	1.1	3
55	Automatic Control System of Vacuum Nano Coating Based on AVR Single Chip Microcomputer.	0.2	0

#	Article	IF	CITATIONS
56	High diversity of blaNDM-1-encoding plasmids in Klebsiella pneumoniae isolated from neonates in a Vietnamese hospital. International Journal of Antimicrobial Agents, 2022, 59, 106496.	1.1	6
58	Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nature Methods, 2022, 19, 751-758.	9.0	30
59	A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy. Scientific Reports, 2022, 12, .	1.6	4
60	Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices. Nanotechnology, 0, , .	1.3	5
61	Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes, 2022, 13, 1157.	1.0	2
62	Nanofluidic Trapping of Faceted Colloidal Nanocrystals for Parallel Single-Particle Catalysis. ACS Nano, 2022, 16, 15206-15214.	7.3	2
63	DNA in nanochannels: theory and applications. Quarterly Reviews of Biophysics, 2022, 55, .	2.4	14
64	CRISPR Technologies: A Tool for Engineering Microbes. , 2022, , 145-160.		0
66	Equilibrium behaviour of two cavity-confined polymers: effects of polymer width and system asymmetries. Soft Matter, 2023, 19, 1092-1108.	1.2	2
67	Identification and characterization of plasmids carrying the mobile colistin resistance gene <i>mcr-1</i> using optical DNA mapping. JAC-Antimicrobial Resistance, 2022, 5, .	0.9	0
68	Rare structural variants, aneuploidies, and mosaicism in individuals with Mullerian aplasia detected by optical genome mapping. Human Genetics, 2023, 142, 483-494.	1.8	1
69	Strain-level bacterial typing directly from patient samples using optical DNA mapping. Communications Medicine, 2023, 3, .	1.9	4
70	DeepOM: single-molecule optical genome mapping via deep learning. Bioinformatics, 2023, 39, .	1.8	2
74	On the Capacity of DNA Labeling. , 2023, , .		0

CITATION REPORT