Nitric oxide function in plant abiotic stress

Plant, Cell and Environment 40, 462-472 DOI: 10.1111/pce.12707

Citation Report

#	Article	IF	CITATIONS
1	New Features of the NO/H2S Cross Talk: A Chemical Basis. Signaling and Communication in Plants, 2016, , 289-327.	0.5	2
2	Protein S-Nitrosylation and S-Clutathionylation as Regulators of Redox Homeostasis During Abiotic Stress Response. , 2016, , 365-386.		7
3	Nitric oxide–cytokinin interplay influences selenite sensitivity in Arabidopsis. Plant Cell Reports, 2016, 35, 2181-2195.	2.8	39
4	Nitrite is the driver, phytohormones are modulators while NO and H ₂ O ₂ act as promoters of NO ₂ -induced cell death. Journal of Experimental Botany, 2016, 67, 6337-6349.	2.4	28
5	Attenuation of Sulfur Dioxide Damage to Wheat Seedlings by Co-exposure to Nitric Oxide. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 146-151.	1.3	6
6	The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. Plant, Cell and Environment, 2017, 40, 1074-1085.	2.8	45
7	Rapid responses of plants to temperature changes. Temperature, 2017, 4, 371-405.	1.7	203
8	Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (<i>Oryza sativa</i>) Seedling by Decreasing Endogenous Nitric Oxide Generation. Journal of Agricultural and Food Chemistry, 2017, 65, 7396-7405.	2.4	25
9	Effects of Abscisic Acid and Nitric Oxide on Chilling Resistance and Activation of the Antioxidant System in Walnut Shoots In Vitro. Journal of the American Society for Horticultural Science, 2017, 142, 376-384.	0.5	8
10	Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L Environmental Science and Pollution Research, 2017, 24, 685-700.	2.7	28
11	Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress. Environmental Science and Pollution Research, 2017, 24, 2273-2285.	2.7	201
12	Nitric Oxide (NO) and Physio-biochemical Adaptation in Plants Against Stress. , 2017, , 347-386.		2
13	Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives. Frontiers in Plant Science, 2017, 8, 1582.	1.7	136
14	Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. Frontiers in Plant Science, 2017, 8, 1658.	1.7	146
15	Arsenic Hyperaccumulation Strategies: An Overview. Frontiers in Cell and Developmental Biology, 2017, 5, 67.	1.8	91
16	Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry, 2018, 126, 173-186.	2.8	73
17	Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany, 2018, 69, 3425-3438.	2.4	107
18	Nitric oxide alleviates wheat yield reduction by protecting photosynthetic system from oxidation of ozone pollution. Environmental Pollution, 2018, 236, 296-303.	3.7	23

#	Article	IF	CITATIONS
19	Sulfide alleviates cadmium toxicity in Arabidopsis plants by altering the chemical form and the subcellular distribution of cadmium. Science of the Total Environment, 2018, 627, 663-670.	3.9	93
20	Production of triterpenoids from Ganoderma lucidum : Elicitation strategy and signal transduction. Process Biochemistry, 2018, 69, 22-32.	1.8	18
21	Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain. Plant Physiology and Biochemistry, 2018, 127, 238-247.	2.8	16
22	Nitric oxide-induced saltÂstress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnology Reports, 2018, 12, 77-92.	0.9	184
23	Methylglyoxal – a signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 2018, 122, 96-109.	1.3	117
24	Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere, 2018, 191, 23-35.	4.2	128
25	Nitric oxide synthase-dependent nitric oxide production enhances chilling tolerance of walnut shoots in vitro via involvement chlorophyll fluorescence and other physiological parameter levels. Scientia Horticulturae, 2018, 230, 68-77.	1.7	32
26	Exogenously Applied Nitric Oxide Enhances Salt Tolerance in Rice (Oryza sativa L.) at Seedling Stage. Agronomy, 2018, 8, 276.	1.3	38
27	Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. Frontiers in Plant Science, 2018, 9, 1771.	1.7	369
28	Methyl Jasmonate and Nitric Oxide in Regulation of the Stomatal Apparatus of Arabidopsis thaliana. Cytology and Genetics, 2018, 52, 400-405.	0.2	15
29	Salicylic acid-mediated alleviation in NO2 phytotoxicity correlated to increased expression levels of the genes related to photosynthesis and carbon metabolism in Arabidopsis. Environmental and Experimental Botany, 2018, 156, 141-150.	2.0	12
30	Proteomics analysis reveals that nitric oxide regulates photosynthesis of maize seedlings under water deficiency. Nitric Oxide - Biology and Chemistry, 2018, 81, 46-56.	1.2	7
31	Integration between ROS Regulatory Systems and Other Signals in the Regulation of Various Types of Heat Responses in Plants. International Journal of Molecular Sciences, 2018, 19, 3370.	1.8	54
32	Involvement of Calcium and Calmodulin in Nitric Oxide-Regulated Senescence of Cut Lily Flowers. Frontiers in Plant Science, 2018, 9, 1284.	1.7	19
33	Specificity in nitric oxide signalling. Journal of Experimental Botany, 2018, 69, 3439-3448.	2.4	53
34	Butylated hydroxytoluene induces astaxanthin and lipid production in Haematococcus pluvialis under high-light and nitrogen-deficiency conditions. Bioresource Technology, 2018, 266, 315-321.	4.8	69
35	Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Frontiers in Plant Science, 2018, 9, 273.	1.7	178
36	Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. Planta, 2018, 248, 19-35.	1.6	35

#	Article	IF	CITATIONS
37	On the mechanism of the cell cycle control of suspension-cultured tobacco cells after exposure to static magnetic field. Plant Science, 2018, 277, 139-144.	1.7	12
38	Nitric oxide mitigates the effect of water deficit in Crambe abyssinica. Plant Physiology and Biochemistry, 2018, 129, 310-322.	2.8	33
39	Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L. Environmental and Experimental Botany, 2019, 161, 290-302.	2.0	57
44	Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants. Plant and Cell Physiology, 2019, 60, 2523-2537.	1.5	34
45	Molecular Mechanism and Signaling Response of Heavy Metal Stress Tolerance in Plants. , 2019, , 29-47.		8
46	Revealing on hydrogen sulfide and nitric oxide signals coâ€ordination for plant growth under stress conditions. Physiologia Plantarum, 2020, 168, 301-317.	2.6	77
47	Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiologia Plantarum, 2020, 168, 437-455.	2.6	94
48	Gasotransmitters and Their Role in Adaptive Reactions of Plant Cells. Cytology and Genetics, 2019, 53, 392-406.	0.2	34
49	Interaction between Bean and Colletotrichum gloeosporioides: Understanding Through a Biochemical Approach. Plants, 2019, 8, 345.	1.6	31
50	Nitric Oxide and Hydrogen Sulfide in Higher Plants under Physiological and Stress Conditions. Antioxidants, 2019, 8, 457.	2.2	26
51	Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.) Czern. Vegetos, 2019, 32, 583-592.	0.8	20
52	Regulation of physiological aspects in plants by hydrogen sulfide and nitric oxide under challenging environment. Physiologia Plantarum, 2020, 168, 374-393.	2.6	49
53	The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiology and Biochemistry, 2019, 143, 119-128.	2.8	94
54	Protein <i>S</i> â€Nitrosylation in plants: Current progresses and challenges. Journal of Integrative Plant Biology, 2019, 61, 1206-1223.	4.1	103
55	Nitric oxide and hydrogen sulfide in plants: which comes first?. Journal of Experimental Botany, 2019, 70, 4391-4404.	2.4	206
56	Recent Progress in Protein <i>S</i> -Nitrosylation in Phytohormone Signaling. Plant and Cell Physiology, 2019, 60, 494-502.	1.5	18
57	Nitric oxideâ€mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiologia Plantarum, 2020, 168, 318-344.	2.6	102
58	Current approaches to measure nitric oxide in plants. Journal of Experimental Botany, 2019, 70, 4333-4343.	2.4	28

#	Article	IF	CITATIONS
59	The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany, 2019, 70, 4429-4439.	2.4	37
60	Impact of antimycin A and myxothiazol on cadmium-induced superoxide, hydrogen peroxide, and nitric oxide generation in barley root tip. Protoplasma, 2019, 256, 1375-1383.	1.0	4
61	Novel and conserved functions of S-nitrosoglutathione reductase in tomato. Journal of Experimental Botany, 2019, 70, 4877-4886.	2.4	39
62	Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity. Nanoscale, 2019, 11, 10511-10523.	2.8	60
63	Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide - Biology and Chemistry, 2019, 88, 73-86.	1.2	8
64	Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere, 2019, 225, 627-638.	4.2	265
65	Salicylic acid and nitric oxide signaling in plant heat stress. Physiologia Plantarum, 2020, 168, 241-255.	2.6	85
66	The evolution of nitric oxide signalling diverges between animal and green lineages. Journal of Experimental Botany, 2019, 70, 4355-4364.	2.4	42
67	Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO). , 2019, , 69-90.		4
68	Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. Journal of Experimental Botany, 2019, 70, 4505-4520.	2.4	44
69	Salicylic Acid–Mediated Defense Mechanisms to Abiotic Stress Tolerance. , 2019, , 355-369.		20
70	Insights Into the Nitric Oxide Mediated Stress Tolerance in Plants. , 2019, , 385-406.		6
71	Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany, 2019, 161, 120-133.	2.0	278
72	Considerations of the importance of redox state for reactive nitrogen species action. Journal of Experimental Botany, 2019, 70, 4323-4331.	2.4	23
73	Hydrogen peroxide and nitric oxide are involved in programmed cell death induced by cryopreservation in Dendrobium protocorm-like bodies. Plant Cell, Tissue and Organ Culture, 2019, 137, 553-563.	1.2	23
74	Involvement of Medicago truncatula glutamate receptor-like channels in nitric oxide production under short-term water deficit stress. Journal of Plant Physiology, 2019, 236, 1-6.	1.6	23
75	Plant responses to low-oxygen stress: Interplay between ROS and NO signaling pathways. Environmental and Experimental Botany, 2019, 161, 134-142.	2.0	22
76	Nitric oxide modulating ion balance in Hylotelephium erythrostictum roots subjected to NaCl stress based on the analysis of transcriptome, fluorescence, and ion fluxes. Scientific Reports, 2019, 9, 18317.	1.6	19

#	Article	IF	CITATIONS
77	The effects of hydrogen peroxide and nitric oxide on ion contents and lipid peroxidation levels of pepper callus tissues under salt stress. Acta Horticulturae, 2019, , 123-130.	0.1	1
78	Interactive effects of abscisic acid and nitric oxide on chilling resistance and active oxygen metabolism in peach fruit during cold storage. Journal of the Science of Food and Agriculture, 2019, 99, 3367-3380.	1.7	44
79	Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants. Nitric Oxide - Biology and Chemistry, 2019, 84, 38-44.	1.2	80
80	Cold modulated nuclear S-nitrosoproteome analysis indicates redox modulation of novel Brassicaceae specific, myrosinase and napin in Brassica juncea. Environmental and Experimental Botany, 2019, 161, 312-333.	2.0	15
81	Engineering of a novel gene from a halophyte: Potential for agriculture in degraded coastal saline soil. Land Degradation and Development, 2019, 30, 595-607.	1.8	8
82	Stem cells within the shoot apical meristem: identity, arrangement and communication. Cellular and Molecular Life Sciences, 2019, 76, 1067-1080.	2.4	20
83	Nitric oxide triggered defense network in wheat: Augmenting tolerance and grain-quality related traits under heat-induced oxidative damage. Environmental and Experimental Botany, 2019, 158, 189-204.	2.0	18
84	Strigolactoneâ€nitric oxide interplay in plants: The story has just begun. Physiologia Plantarum, 2019, 165, 487-497.	2.6	27
85	Is nitric oxide a critical key factor in ABA-induced stomatal closure?. Journal of Experimental Botany, 2020, 71, 399-410.	2.4	21
86	Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant, Cell and Environment, 2020, 43, 1-15.	2.8	78
87	Silicon and nitric oxideâ€mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiologia Plantarum, 2022, 174, .	2.6	39
88	Methane-induced lateral root formation requires the participation of nitric oxide signaling. Plant Physiology and Biochemistry, 2020, 147, 262-271.	2.8	8
89	Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiology and Biochemistry, 2020, 147, 161-171.	2.8	50
90	Plasmaâ€activated water to improve the stress tolerance of barley. Plasma Processes and Polymers, 2020, 17, 1900123.	1.6	28
91	Protein S-nitrosylation in plant abiotic stresses. Functional Plant Biology, 2020, 47, 1.	1.1	24
92	Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis) Tj ETQq1	1 9.78431	4 rgBT /Ove
93	Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicology and Environmental Safety, 2020, 206, 111358.	2.9	65
94	Nitric Oxide and Its Interaction with Hydrogen Peroxide Enhance Plant Tolerance to Low Temperatures by Improving the Efficiency of the Calvin Cycle and the Ascorbate–Glutathione Cycle in Cucumber Seedlings. Journal of Plant Growth Regulation, 2021, 40, 2390-2408.	2.8	22

#	Article	IF	CITATIONS
95	Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: A gaseous interactome. Plant Physiology and Biochemistry, 2020, 155, 800-814.	2.8	64
96	Nitric Oxide Signaling in Plants. Plants, 2020, 9, 1550.	1.6	21
97	Multi-Walled Carbon Nanotubes Can Promote Brassica napus L. and Arabidopsis thaliana L. Root Hair Development through Nitric Oxide and Ethylene Pathways. International Journal of Molecular Sciences, 2020, 21, 9109.	1.8	5
98	Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. Journal of Experimental Botany, 2020, 71, 6587-6600.	2.4	31
99	Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry, 2020, 154, 657-664.	2.8	93
100	Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress. Scientific Reports, 2020, 10, 12240.	1.6	32
101	LED light-triggered release of nitric oxide from NTC to delay the ripening of banana. LWT - Food Science and Technology, 2020, 134, 110129.	2.5	6
102	Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiology and Biochemistry, 2020, 157, 244-255.	2.8	68
103	Nitric oxide mitigates salt-induced oxidative stress in Brassica juncea seedlings by regulating ROS metabolism and antioxidant defense system. 3 Biotech, 2020, 10, 499.	1.1	22
104	Nitric Oxide Overproduction by cue1 Mutants Differs on Developmental Stages and Growth Conditions. Plants, 2020, 9, 1484.	1.6	7
105	Insights into the Production and Role of Nitric Oxide in the Antarctic Seaâ€ice Diatom <i>Fragilariopsis cylindrus</i> . Journal of Phycology, 2020, 56, 1196-1207.	1.0	10
106	Mechanisms and Role of Nitric Oxide in Phytotoxicity-Mitigation of Copper. Frontiers in Plant Science, 2020, 11, 675.	1.7	48
108	Proteomics in relation to abiotic stress tolerance in plants. , 2020, , 513-541.		10
109	Nitric oxide under abiotic stress conditions. , 2020, , 735-754.		6
110	Nitrogen Oxide Donor Enhances Cold-Induced Changes in Antioxidant and Osmoprotective Systems of Cereals. Applied Biochemistry and Microbiology, 2020, 56, 219-225.	0.3	3
111	Transcriptional analysis reveals sodium nitroprusside affects alfalfa in response to PEG-induced osmotic stress at germination stage. Protoplasma, 2020, 257, 1345-1358.	1.0	15
112	Interaction between nitric oxide and storage temperature on sphingolipid metabolism of postharvest peach fruit. Plant Physiology and Biochemistry, 2020, 151, 60-68.	2.8	22
113	Enhanced Nitric Oxide Synthesis Through Nitrate Supply Improves Drought Tolerance of Sugarcane Plants. Frontiers in Plant Science, 2020, 11, 970.	1.7	23

#	Article	IF	CITATIONS
114	Strigolactones Interact With Nitric Oxide in Regulating Root System Architecture of Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 1019.	1.7	30
115	NO is involved in H2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3. Planta, 2020, 252, 9.	1.6	20
116	RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Scientific Reports, 2020, 10, 1692.	1.6	42
117	Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant and Soil, 2020, 448, 315-334.	1.8	15
118	Interactions between metabolism and chromatin in plant models. Molecular Metabolism, 2020, 38, 100951.	3.0	49
119	RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis. Journal of Experimental Botany, 2020, 71, 3157-3171.	2.4	17
120	Glutathioneâ€dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H ₂ O ₂ . Plant, Cell and Environment, 2020, 43, 1175-1191.	2.8	22
121	Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. Environmental Pollution, 2020, 259, 113943.	3.7	52
122	Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide - Biology and Chemistry, 2020, 100-101, 7-16.	1.2	60
123	Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. Journal of Hazardous Materials, 2020, 395, 122679.	6.5	66
124	Phytohormonal signaling under abiotic stress. , 2020, , 397-466.		5
125	Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. Journal of Biotechnology, 2020, 316, 35-45.	1.9	82
126	Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots. Plant Physiology and Biochemistry, 2020, 151, 729-742.	2.8	47
127	Nitrate reductase is required for salicylic acidâ€induced water stress tolerance of pepper by upraising the <scp>AsAâ€CSH</scp> pathway and glyoxalase system. Physiologia Plantarum, 2021, 172, 351-370.	2.6	35
128	Blue and UVâ€B light synergistically induce anthocyanin accumulation by coâ€activating nitrate reductase gene expression in Anthocyanin fruit (<i>Aft</i>) tomato. Plant Biology, 2021, 23, 210-220.	1.8	24
129	Nitric Oxide-Mediated Enhancement in Photosynthetic Efficiency, Ion Uptake and Carbohydrate Metabolism that Boosts Overall Photosynthetic Machinery in Mustard Plants. Journal of Plant Growth Regulation, 2021, 40, 1088-1110.	2.8	14
130	Nanomaterial-mediated sustainable hydrogen supply induces lateral root formation via nitrate reductase-dependent nitric oxide. Chemical Engineering Journal, 2021, 405, 126905.	6.6	27
131	Unravelling ties in the nitrogen network: Polyamines and nitric oxide emerging as essential players in signalling roadway. Annals of Applied Biology, 2021, 178, 192-208.	1.3	12

#	Article	IF	CITATIONS
132	Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. BioMetals, 2021, 34, 15-32.	1.8	28
133	WUSCHEL in the shoot apical meristem: old player, new tricks. Journal of Experimental Botany, 2021, 72, 1527-1535.	2.4	33
134	Nitric oxide signaling in the plant nucleus: the function of nitric oxide in chromatin modulation and transcription. Journal of Experimental Botany, 2021, 72, 808-818.	2.4	10
135	The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. Plant Biotechnology Journal, 2021, 19, 785-800.	4.1	25
136	Nitric oxide production and signalling in algae. Journal of Experimental Botany, 2021, 72, 781-792.	2.4	25
137	Nitric Oxide, an Essential Intermediate in the Plant–Herbivore Interaction. Frontiers in Plant Science, 2020, 11, 620086.	1.7	14
138	Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. Plant Biology, 2021, 23, 152-161.	1.8	19
139	Alleviating aluminum toxicity in plants: Implications of reactive oxygen species signaling and crosstalk with other signaling pathways. Physiologia Plantarum, 2021, 173, 1765-1784.	2.6	28
140	Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environmental Pollution, 2021, 273, 116486.	3.7	54
141	Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Frontiers in Plant Science, 2021, 12, 615114.	1.7	181
142	<i>PdGNC</i> confers drought tolerance by mediating stomatal closure resulting from NO and H ₂ O ₂ production via the direct regulation of <i>PdHXK1</i> expression in <i>Populus</i> . New Phytologist, 2021, 230, 1868-1882.	3.5	50
143	Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide. Physiologia Plantarum, 2021, 171, 896-908.	2.6	48
144	Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Reports, 2022, 41, 675-698.	2.8	47
145	Regulation of plant cold and frost resistance by influence of exogenous gasotransmitters and plant hormones. VĬsnik HarkĬvsʹkogo NacĬonalʹnogo Agrarnogo UnĬversitetu SerĬâ BĬologiâ, 2021, 20	2 <mark>9;¹</mark> 32-51.	Ο
146	Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticulture Research, 2021, 8, 71.	2.9	54
147	What signals the glyoxalase pathway in plants?. Physiology and Molecular Biology of Plants, 2021, 27, 2407-2420.	1.4	11
148	Nitric oxide, crosstalk with stress regulators and plant abiotic stress tolerance. Plant Cell Reports, 2021, 40, 1395-1414.	2.8	39
149	Nitric oxide modified growth, nutrient uptake and the antioxidant defense system in tomato seedlings stressed with arsenic. Theoretical and Experimental Plant Physiology, 2021, 33, 205-223.	1.1	9

#	Article	IF	CITATIONS
150	Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. Plant Physiology, 2021, 187, 336-360.	2.3	37
151	A Novel DUF569 Gene Is a Positive Regulator of the Drought Stress Response in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 5316.	1.8	15
152	Leaf arginine spraying improves leaf gas exchange under water deficit and root antioxidant responses during the recovery period. Plant Physiology and Biochemistry, 2021, 162, 315-326.	2.8	15
153	Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. Plants, 2021, 10, 978.	1.6	6
154	Salicylic acid and nitric oxide cross-talks to improve innate immunity and plant vigor in tomato against Fusarium oxysporum stress. Plant Cell Reports, 2021, 40, 1415-1427.	2.8	22
155	Overexpression of SIGSNOR impairs in vitro shoot proliferation and developmental architecture in tomato but confers enhanced disease resistance. Journal of Plant Physiology, 2021, 261, 153433.	1.6	3
156	Impact of Cold Storage on Bioactive Compounds and Their Stability of 36 Organically Grown Beetroot Genotypes. Foods, 2021, 10, 1281.	1.9	3
157	CSNOR Contributes to Demethylation and Expression of Transposable Elements and Stress-Responsive Genes. Antioxidants, 2021, 10, 1128.	2.2	10
158	Roles of Nitric Oxide in Conferring Multiple Abiotic Stress Tolerance in Plants and Crosstalk with Other Plant Growth Regulators. Journal of Plant Growth Regulation, 2021, 40, 2303-2328.	2.8	38
159	Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase <i>S</i> -nitrosylation during controlled aging of elm and Arabidopsis seeds. Journal of Experimental Botany, 2021, 72, 7020-7034.	2.4	5
160	Legume–rhizobium dance: an agricultural tool that could be improved?. Microbial Biotechnology, 2021, 14, 1897-1917.	2.0	23
161	Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. Plant Cell Reports, 2021, 40, 1907-1922.	2.8	17
162	Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. Frontiers in Plant Science, 2021, 12, 670369.	1.7	47
163	Coordinated Role of Nitric Oxide, Ethylene, Nitrogen, and Sulfur in Plant Salt Stress Tolerance. Stresses, 2021, 1, 181-199.	1.8	22
165	Refashioning benzothiadiazole dye as an activatable nanoprobe for biomarker detection with NIR-II fluorescence/optoacoustic imaging. Cell Reports Physical Science, 2022, 3, 100570.	2.8	10
166	Nitric oxide sensing revisited. Trends in Plant Science, 2021, 26, 885-897.	4.3	10
167	Foliar Application of Sodium Nitroprusside Boosts Solanum lycopersicum L. Tolerance to Glyphosate by Preventing Redox Disorders and Stimulating Herbicide Detoxification Pathways. Plants, 2021, 10, 1862.	1.6	8
168	Biotic elicitor induced nitric oxide production in mitigation of Fusarium wilt of tomato. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 960-972.	0.9	7

#	Article	IF	CITATIONS
169	Phenological and physio-biochemical variations in Salicornia brachiata Roxb. under different soil and water treatments (salinity). Aquatic Botany, 2021, 174, 103429.	0.8	1
170	Molecular Mechanisms of Nitric Oxide (NO) Signaling and Reactive Oxygen Species (ROS) Homeostasis during Abiotic Stresses in Plants. International Journal of Molecular Sciences, 2021, 22, 9656.	1.8	56
171	Computational prediction of NO-dependent posttranslational modifications in plants: Current status and perspectives. Plant Physiology and Biochemistry, 2021, 167, 851-861.	2.8	9
172	Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. Plant Physiology and Biochemistry, 2021, 167, 738-747.	2.8	29
173	Involvement of nitric oxide (NO) in plant responses to metalloids. Journal of Hazardous Materials, 2021, 420, 126606.	6.5	10
174	Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napus L.) seedlings tolerance against salinity, drought or cadmium. Ecotoxicology and Environmental Safety, 2021, 224, 112640.	2.9	15
175	Salicylic acid reduces cadmium (Cd) accumulation in rice (Oryza sativa L.) by regulating root cell wall composition via nitric oxide signaling. Science of the Total Environment, 2021, 797, 149202.	3.9	34
176	Small signaling molecules in plant response to cold stress. Journal of Plant Physiology, 2021, 266, 153534.	1.6	24
177	Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicology and Environmental Safety, 2021, 225, 112713.	2.9	16
178	Roles of S-nitrosylation in abiotic stress tolerance in plants. , 2022, , 453-475.		1
179	Nitric oxide signaling and abiotic stress tolerance in plants. , 2022, , 373-390.		0
180	NO and phytohormones cross-talk in plant defense against abiotic stress. , 2022, , 573-596.		0
181	The nitric oxide challenges during metal stress. , 2022, , 503-537.		0
182	NO and ROS crosstalk and acquisition of abiotic stress tolerance. , 2022, , 477-491.		1
183	NO and metabolic reprogramming under phytotoxicity stress. , 2022, , 297-318.		0
184	Nitric oxide production mediated by nitrate reductase in plants. , 2022, , 111-138.		0
185	Mechanism of temperature stress acclimation and the role of transporters in plants. , 2022, , 413-457.		3
186	Role of nickel in regulation of nitrogen metabolism in legume–rhizobium symbiosis under critical conditions. , 2021, , 495-522.		3

#	Article	IF	CITATIONS
187	Effect of priming and different types of drying on the physiological quality of Urochloa ruziziensis seeds. Journal of Seed Science, 0, 43, .	0.7	2
188	Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environmental Science: Nano, 2021, 8, 3294-3311.	2.2	36
189	Hydrogen Sulfide and Posttranslational Modification of Proteins: A Defense Strategy Against Abiotic Stress. Plant in Challenging Environments, 2021, , 215-234.	0.4	0
190	Roles of Mangroves in Combating the Climate Change. , 2021, , 225-255.		0
191	Nitric Oxide as a Signal in Inducing Secondary Metabolites During Plant Stress. Reference Series in Phytochemistry, 2019, , 1-29.	0.2	2
192	Nitric Oxide as a Signal in Inducing Secondary Metabolites During Plant Stress. Reference Series in Phytochemistry, 2020, , 593-621.	0.2	8
193	Nitric oxide-mediated regulation of sub-cellular chromium distribution, ascorbate–glutathione cycle and glutathione biosynthesis in tomato roots under chromium (VI) toxicity. Journal of Biotechnology, 2020, 318, 68-77.	1.9	28
195	A Novel Mechanism Underlying Multi-walled Carbon Nanotube-Triggered Tomato Lateral Root Formation: the Involvement of Nitric Oxide. Nanoscale Research Letters, 2020, 15, 49.	3.1	16
196	Nitric oxide mediated mechanisms adopted by plants to cope with salinity. Biologia Plantarum, 0, 64, 512-518.	1.9	21
197	The role of gasotransmitters in movement of stomata: mechanisms of action and importance for plant immunity. Biologia Plantarum, 0, 64, 623-632.	1.9	10
198	Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2017, 2017, 6-31.	0.1	5
199	Combined effect of salicylic acid and nitric oxide donor on development of hardening-induced frost resistance of wheat seedlings. VĬsnik HarkĬvsʹkogo Nacìonalʹnogo Agrarnogo UnĬversitetu Serìâ BĬologiâ, 2020, 2020, 93-104.	0.1	2
200	Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. International Journal of Molecular Sciences, 2021, 22, 11461.	1.8	17
201	Crosstalk between H 2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops. Plant Biology, 2021, , .	1.8	8
202	Exogenous nitric oxide alleviates manganese toxicity in bean plants by modulating photosynthesis in relation to leaf lipid composition. Protoplasma, 2022, 259, 949-964.	1.0	3
203	Impact of Temperature Fluctuations on Plant Morphological and Physiological Traits. , 2022, , 25-52.		4
204	Protein Persulfidation in Plants: Function and Mechanism. Antioxidants, 2021, 10, 1631.	2.2	11
205	Foliar spraying of biogenic CuO nanoparticles protects the defence system and photosynthetic pigments of lettuce (Lactuca sativa). Journal of Cleaner Production, 2021, 324, 129264.	4.6	18

#	Article	IF	CITATIONS
206	cGMP Signal Transduction in Plant Cells: Metabolisms, Functions, Control of Gene Expression by cGMP and Relationships with NO. Kagaku To Seibutsu, 2018, 56, 104-110.	0.0	0
207	Nitric Oxide Modulates Lead Content during Lead-Induced Cell Killing in Yeast Cells. Polish Journal of Environmental Studies, 2018, 27, 431-438.	0.6	0
208	Antioxidant protection in plants under heat stress. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ BA¬ologiâ, 2019, 2019, 39-60.	0.1	1
209	Donors of nitric oxide and their application for increase in plants resistance to action of abiotic stressors. Vìsnik Harkìvsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ Bìologiâ, 2019, 201	19 <mark>,2</mark> 8-51.	3
210	High Temperature Sensing Mechanisms and Their Downstream Pathways in Plants. Plant in Challenging Environments, 2021, , 49-71.	0.4	0
211	Mechanisms of Arsenic Hyperaccumulation by Plants. , 2020, , 767-785.		1
212	Oxidative Stress in Crop Plants. , 2020, , 349-380.		15
213	Recent Transgenic Approaches for Stress Tolerance in Crop Plants. , 2020, , 533-556.		3
214	Persulfidation of Nitrate Reductase 2 Is Involved in l-Cysteine Desulfhydrase-Regulated Rice Drought Tolerance. International Journal of Molecular Sciences, 2021, 22, 12119.	1.8	18
215	Interplay between gasotransmitters and potassium is a K+ey factor during plant response to abiotic stress. Plant Physiology and Biochemistry, 2021, 169, 322-332.	2.8	10
216	New Insights into the Functional Role of Nitric Oxide and Reactive Oxygen Species in Plant Response to Biotic and Abiotic Stress Conditions. Plant in Challenging Environments, 2021, , 215-235.	0.4	1
217	GSNOR regulates ganoderic acid content in Ganoderma lucidum under heat stress through S-nitrosylation of catalase. Communications Biology, 2022, 5, 32.	2.0	10
218	Brassinosteroids Mitigate Cadmium Effects in Arabidopsis Root System without Any Cooperation with Nitric Oxide. International Journal of Molecular Sciences, 2022, 23, 825.	1.8	15
219	Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate–glutathione cycle and Na+/K+ homeostasis in Nitraria tangutorum Bobr. Plant Physiology and Biochemistry, 2022, 173, 46-58.	2.8	33
220	Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. Journal of Plant Research, 2022, 135, 337-350.	1.2	29
221	Crosstalk Between Brassinosteroids and Nitric Oxide Regulates Plant Improvement During Abiotic Stress. , 2022, , 47-58.		1
222	Multivariate analysis of morpho-physiological traits in Amaranthus tricolor as affected by nitric oxide and cadmium stress. Environmental Science and Pollution Research, 2022, , 1.	2.7	3
223	NLP2-NR Module Associated NO Is Involved in Regulating Seed Germination in Rice under Salt Stress. Plants, 2022, 11, 795.	1.6	13

#	Article	IF	CITATIONS
224	Transcriptome analysis of Tamarix ramosissima leaves in response to NaCl stress. PLoS ONE, 2022, 17, e0265653.	1.1	9
225	Loss of CSNOR increases abiotic stress sensitivity via regulating MAPK-ethylene cascade signaling in Solanum lycopersicum L. Environmental and Experimental Botany, 2022, , 104872.	2.0	0
226	The role of nitric oxide (NO) in plant responses to disturbed zinc homeostasis. Plant Stress, 2022, 4, 100068.	2.7	4
227	Methylglyoxal detoxification pathway - Explored first time for imazethapyr tolerance in lentil (Lens) Tj ETQq1 1 C).784314 r 2.8	gBT/Overloc
228	Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes. Environmental and Experimental Botany, 2022, 197, 104824.	2.0	13
229	Redox priming alleviates dormancy and improves salinity tolerance of seeds and seedlings of medicinal halophyte Zygophyllum simplex L Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 30, 100384.	0.9	2
230	Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation of Their Metabolism and Regulatory Functions in Plants. Frontiers in Agronomy, 2021, 3, .	1.5	12
231	Harnessing the power of hydrogen sulphide (H ₂ S) for improving fruit quality traits. Plant Biology, 2022, 24, 594-601.	1.8	15
232	S-Nitrosoglutathione Reductase Contributes to Thermotolerance by Modulating High Temperature-Induced Apoplastic H2O2 in Solanum lycopersicum. Frontiers in Plant Science, 2022, 13, 862649.	1.7	0
233	A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. Nature Plants, 2022, 8, 434-450.	4.7	20
234	The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. International Journal of Molecular Sciences, 2022, 23, 4272.	1.8	11
241	Role of Nitrate Reductase and Nitrite Reductase in NaCl Tolerance in Eelgrass (<i>Zostera marina</i>) Tj ETQq1	1 0,78431	4 rgBT /Over
242	Alleviating excess boron stress in tomato calli by applying benzoic acid to various biochemical strategies. Plant Physiology and Biochemistry, 2022, 182, 216-226.	2.8	2
245	Combating Salinity Through Natural Plant Extracts Based Biostimulants: A Review. Frontiers in Plant Science, 2022, 13, .	1.7	20
246	Nitric oxide, salicylic acid and oxidative stress: Is it a perfect equilateral triangle?. Plant Physiology and Biochemistry, 2022, 184, 56-64.	2.8	8
247	æ ē ‰©ä,€æ°§åŒ–æ°®å•æ^代谢ä,Žä¿jå•è¼z¬å⁻¼ç"ç©¶èį›å±•ä,Žå±•望. Scientia Sinica Vitae, 2022, , .	0.1	0
248	The Role of Nitric Oxide in the Arabidopsis thaliana Response to Simulated Microgravity and the Involvement of Autophagy in This Process. Cytology and Genetics, 2022, 56, 244-252.	0.2	3
249	Glycogen synthase kinases in model and crop plants – From negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. Frontiers in Plant Science, 0, 13, .	1.7	6

#	Article	IF	CITATIONS
250	ELO2 Participates in the Regulation of Osmotic Stress Response by Modulating Nitric Oxide Accumulation in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	0
251	Role of nitric oxide in adventitious root formation. , 2023, , 329-342.		о
253	Melatonin-Induced Inhibition of Shiraia Hypocrellin A Biosynthesis Is Mediated by Hydrogen Peroxide and Nitric Oxide. Journal of Fungi (Basel, Switzerland), 2022, 8, 836.	1.5	4
254	Cold adaptation strategies in plants—An emerging role of epigenetics and antifreeze proteins to engineer cold resilient plants. Frontiers in Genetics, 0, 13, .	1.1	16
255	Limited Zn supply affects nutrient distribution, carbon metabolism and causes nitro-oxidative stress in sensitive Brassica napus. Environmental and Experimental Botany, 2022, 202, 105032.	2.0	3
256	Role of Nitric Oxide in Postharvest Senescence of Fruits. International Journal of Molecular Sciences, 2022, 23, 10046.	1.8	8
257	Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radical Biology and Medicine, 2022, 191, 137-149.	1.3	8
258	Nitric Oxide Confers Chilling Stress Tolerance by Regulating Carbohydrate Metabolism and the Antioxidant Defense System in Melon (Cucumis melo L.) Seedlings. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 1249-1256.	0.5	1
259	Influence of chitosan and chitosan based nanoparticles against abiotic stress in plants. , 2022, , 297-320.		3
260	An insight into plant heavy metal/metalloid tolerance and detoxification mechanisms: A critical review. , 2022, , 131-158.		2
261	Nitric oxide alleviates cadmium-impeded growth by limiting ROS accumulation in pea seedlings. Biocell, 2022, 46, 2583-2593.	0.4	5
262	Gasotransmitters in Plants: Mechanisms of Participation in Adaptive Responses. Open Agriculture Journal, 2022, 16, .	0.3	9
263	Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2024, 64, 2304-2339.	5.4	10
264	Phytochrome B enhances seed germination tolerance to high temperature by reducing <i>S</i> â€nitrosylation of <scp>HFR1</scp> . EMBO Reports, 2022, 23, .	2.0	9
265	Nitrate–Nitrite–Nitric Oxide Pathway: A Mechanism of Hypoxia and Anoxia Tolerance in Plants. International Journal of Molecular Sciences, 2022, 23, 11522.	1.8	9
266	Comparative physiological, transcriptomic, and WGCNA analyses reveal the key genes and regulatory pathways associated with drought tolerance in Tartary buckwheat. Frontiers in Plant Science, 0, 13, .	1.7	9
267	Nitric oxide overcomes copper and copper oxide nanoparticle-induced toxicity in. Functional Plant Biology, 2023, 50, 183-194.	1.1	2
268	Transgenics and Crop Improvement. , 2022, , 131-347.		0

#	Article	IF	CITATIONS
269	Transcriptome analysis of response strategy in Hemerocallis fulva under drought stress. Genes and Genomics, 0, , .	0.5	1
270	Cereals and Phytohormones Under Heavy Metal Stress. , 2022, , 369-393.		0
271	Melatonin reduces cadmium accumulation via mediating the nitric oxide accumulation and increasing the cell wall fixation capacity of cadmium in rice. Journal of Hazardous Materials, 2023, 445, 130529.	6.5	12
272	Agronomic and physio-biochemical responses of lettuce to exogenous sodium nitroprusside (SNP) applied under different irrigation regimes. Agricultural Water Management, 2023, 277, 108127.	2.4	8
273	Nitric Oxide in Seed Biology. International Journal of Molecular Sciences, 2022, 23, 14951.	1.8	13
274	Origin, evolution, and future of isoprene and nitric oxide interactions within leaves. Journal of Experimental Botany, 2023, 74, 688-706.	2.4	2
275	The hot science in rice research: How rice plants cope with heat stress. Plant, Cell and Environment, 2023, 46, 1087-1103.	2.8	15
276	Biological Functions of Hydrogen Sulfide in Plants. International Journal of Molecular Sciences, 2022, 23, 15107.	1.8	16
277	Linking whole-plant responses to cell physiology in glycophytes exposed to NaCl stress. Acta Physiologiae Plantarum, 2023, 45, .	1.0	1
278	Involvement of Diamine Oxidase in Modification of Plasma Membrane Proton Pump Activity in Cucumis sativus L. Seedlings under Cadmium Stress. International Journal of Molecular Sciences, 2023, 24, 262.	1.8	3
279	Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. Advances in Protein Chemistry and Structural Biology, 2023, , 371-439.	1.0	4
280	Role of nitric oxide in response to high salinity in eelgrass. Current Plant Biology, 2023, 33, 100272.	2.3	4
281	The role of nitric oxide and hydrogen sulfide in regulation of redox homeostasis at extreme temperatures in plants. Frontiers in Plant Science, 0, 14, .	1.7	13
282	Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. Environmental Science and Pollution Research, 2023, 30, 51638-51653.	2.7	6
283	Transcriptome analysis of fiber development under high-temperature stress in flax (Linum) Tj ETQq0 0 0 rgBT /Ov	verlock 10	Tf 50 182 To
284	Molecule fluorescent probes for sensing and imaging analytes in plants: Developments and challenges. Coordination Chemistry Reviews, 2023, 487, 215154.	9.5	18
285	Nitric oxide induces S-nitrosylation of CESA1 and CESA9 and increases cellulose content in Arabidopsis hypocotyls. Plant Physiology and Biochemistry, 2023, 196, 1-9.	2.8	1
286	Direct electrochemical detection of extracellular nitric oxide in Arabidopsis protoplast based on cytochrome P450 55B1 biosensor. Nitric Oxide - Biology and Chemistry, 2023, 132, 8-14.	1.2	2

#	Article	IF	CITATIONS
287	Salicylic Acid: A Phenolic Molecule with Multiple Roles in Salt-Stressed Plants. Journal of Plant Growth Regulation, 2023, 42, 4581-4605.	2.8	8
288	Nitric Oxide and Glutathione Act Synergistically to Improve PSII Activity and PSI Electron Transfer Under Chilling Stress in Cucumber Leaves. Journal of Plant Growth Regulation, 0, , .	2.8	0
290	Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Frontiers in Plant Science, 0, 14, .	1.7	16
291	Exogenous abscisic acid and sodium nitroprusside regulate flavonoid biosynthesis and photosynthesis of Nitraria tangutorum Bobr in alkali stress. Frontiers in Plant Science, 0, 14, .	1.7	3
292	Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	4
293	Functions of nitric oxide-mediated post-translational modifications under abiotic stress. Frontiers in Plant Science, 0, 14, .	1.7	5
294	Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging. Functional Plant Biology, 2023, 50, 416-433.	1.1	1
300	Role of gasotransmitters on physiological responses altered by As in plants. , 2023, , 139-166.		0
301	Role of nitric oxide in regulating physiological and molecular aspects of plants under abiotic stresses. , 2023, , 235-248.		0
302	Gasotransmitters and Omics for Abiotic Stress Tolerance in Plants. Signaling and Communication in Plants, 2023, , 31-54.	0.5	0
303	Advancement in the Biology of Gasotransmitters: H2S, NO and Ethylene. Signaling and Communication in Plants, 2023, , 55-70.	0.5	0
305	Oxidative Stress and Antioxidant Defense in Mitigating Abiotic Stresses in Forage Crops: A Physiological and Biochemical Perspective. , 2023, , 109-135.		1
308	Editorial: Roles of flavonoids in crop quality improvement and response to stresses. Frontiers in Plant Science, 0, 14, .	1.7	1
316	Nitric oxide as a modulator of oxidative stress and antioxidative metabolism in plants. , 2023, , 91-124.		0
317	Nitric oxide biosynthesis under stressful environments. , 2023, , 17-30.		0
318	Role of nitric oxide in regulation of biotic and abiotic stresses tolerance in plants. , 2023, , 135-155.		0
319	Regulatory role of nitric oxide in plants and its crosstalk with phytohormones. , 2023, , 173-200.		0
323	Role of Phytomelatonin in Promoting Ion Homeostasis During Salt Stress. Plant in Challenging Environments, 2023, , 313-342.	0.4	0

#	Article	IF	CITATIONS
326	Nitric oxide mediated post-translational modifications and its significance in plants under abiotic stress. , 2023, , 233-250.		6
328	Exogenous application of biostimulants for As stress tolerance in crop plants. , 2023, , 243-266.		0
330	The role of nitric oxide in systemic responses of plants. , 2023, , 217-231.		0
331	Omics approaches to manipulate nitric oxide responses. , 2023, , 251-260.		Ο
339	Nitric Oxide – A Small Molecule with Big Impacts on Plants Under Heavy Metal Stress. Plant in Challenging Environments, 2023, , 147-173.	0.4	0
341	Reactive oxygen, nitrogen, and sulfur species cellular crosstalk. , 2024, , 247-271.		Ο
342	Mitigation of Plant Abiotic Stress by Plant Growth-Promoting Bacteria, Hormones, and Plant Extracts. , 2023, , 881-901.		0
343	Introductory Chapter: Making Plant Life Easier and Productive under Salinity – Updates and Prospects. , 0, , .		0
344	Interaction of Melatonin with Reactive Oxygen Species in Plants. , 2023, , 137-171.		0
352	Explicating the Role of Melatonin in the Mitigation of Fungal Diseases in Plants. , 2023, , 155-176.		0
355	The multifaceted role of sodium nitroprusside in plants: crosstalk with phytohormones under normal and stressful conditions. Plant Growth Regulation, 0, , .	1.8	0