3D Bioprinting for Tissue and Organ Fabrication

Annals of Biomedical Engineering 45, 148-163

DOI: 10.1007/s10439-016-1612-8

Citation Report

#	Article	IF	CITATIONS
1	Towards engineering integrated cardiac organoids: beating recorded. Journal of Thoracic Disease, 2016, 8, E1683-E1687.	1.4	6
2	Mimicking the Kidney: A Key Role in Organ-on-Chip Development. Micromachines, 2016, 7, 126.	2.9	32
3	Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Engineering and Regenerative Medicine, 2016 , 13 , 622 - 635 .	3.7	47
4	Transplantology: Challenges for Today. Archivum Immunologiae Et Therapiae Experimentalis, 2016, 64, 37-45.	2.3	12
5	Bioprinting the Cancer Microenvironment. ACS Biomaterials Science and Engineering, 2016, 2, 1710-1721.	5.2	194
6	From Microscale Devices to 3D Printing. Circulation Research, 2017, 120, 150-165.	4.5	71
7	Building a bioartificial heart: Obstacles and opportunities. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 748-750.	0.8	11
8	Interplay between materials and microfluidics. Nature Reviews Materials, 2017, 2, .	48.7	236
9	Three-dimensional bioprinting for bone tissue regeneration. Current Opinion in Biomedical Engineering, 2017, 2, 22-28.	3.4	52
10	Current developments in 3D bioprinting for tissue engineering. Current Opinion in Biomedical Engineering, 2017, 2, 76-82.	3.4	29
11	A short discourse on vascular tissue engineering. Npj Regenerative Medicine, 2017, 2, .	5.2	116
12	Extrusion Bioprinting of Shearâ€Thinning Gelatin Methacryloyl Bioinks. Advanced Healthcare Materials, 2017, 6, 1601451.	7.6	352
13	Novel bioprinting method using a pectin based bioink. Technology and Health Care, 2017, 25, 651-655.	1.2	30
14	4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication, 2017, 9, 012001.	7.1	271
15	Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discovery, 2017, 22, 456-472.	2.7	617
17	Comparison of biomaterial-dependent and -independent bioprinting methods for cardiovascular medicine. Current Opinion in Biomedical Engineering, 2017, 2, 124-131.	3.4	16
18	Making human cardiomyocytes up to date: Derivation, maturation state and perspectives. International Journal of Cardiology, 2017, 241, 379-386.	1.7	101
19	A Design and Fabrication Method for a Heterogeneous Model of 3D Bio-Printing. IEEE Access, 2017, 5, 5347-5353.	4.2	7

#	Article	IF	CITATIONS
20	Three-Dimensional Cell Cultures in Drug Discovery and Development. SLAS Discovery, 0, , 247255521769679.	2.7	10
21	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	7.6	385
22	Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. Journal of 3D Printing in Medicine, 2017, 1, 245-268.	2.0	8
23	Three-Dimensional Printing Technology Combined with Materials Drives Meniscal and Cartilaginous Regeneration. ACS Symposium Series, 2017, , 253-272.	0.5	0
24	4D Biofabrication Using Shapeâ€Morphing Hydrogels. Advanced Materials, 2017, 29, 1703443.	21.0	315
25	Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids. Journal of Visualized Experiments, 2017, , .	0.3	25
26	3D Printing for Cell Therapy Applications. Molecular and Translational Medicine, 2017, , 227-248.	0.4	6
27	3D bioprinted skin: the first †to-be' successful printed organ?. Journal of 3D Printing in Medicine, 2017, 1, 143-144.	2.0	2
28	High-resolution 3D Bioprinting System for Fabricating Cell-laden Hydrogel Scaffolds with High Cellular Activities. Procedia CIRP, 2017, 65, 219-224.	1.9	16
29	Nanocellulosic materials as bioinks for 3D bioprinting. Biomaterials Science, 2017, 5, 1988-1992.	5.4	77
30	3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes and Diseases, 2017, 4, 185-195.	3.4	452
31	Visit to intensive care of 2050. Intensive Care Medicine, 2017, 43, 97-100.	8.2	5
32	New Frontiers in Biomaterials. Oral and Maxillofacial Surgery Clinics of North America, 2017, 29, 105-115.	1.0	21
33	Additive Manufacturing of Biomaterials, Tissues, and Organs. Annals of Biomedical Engineering, 2017, 45, 1-11.	2.5	301
34	The opportunity of electrospinning as a form of additive manufacturing in biotechnology., 2017,,.		2
35	An Implantable Micro-Caged Device for Direct Local Delivery of Agents. Scientific Reports, 2017, 7, 17624.	3.3	28
36	Telemedicine, eHealth and Remote Care Systems., 2017,, 168-194.		5
37	The Role of Microfluidics for Organ on Chip Simulations. Bioengineering, 2017, 4, 39.	3.5	56

#	Article	IF	CITATIONS
38	Bioengineered in vitro models of thrombosis: methods and techniques. Cardiovascular Diagnosis and Therapy, 2017, 7, S329-S335.	1.7	19
39	Bioinks for 3D bioprinting: an overview. Biomaterials Science, 2018, 6, 915-946.	5.4	828
40	3D printing for cardiovascular tissue engineering: a review. Materials Technology, 2018, 33, 433-442.	3.0	31
41	Biopolymers and polymers in the search of alternative treatments for meniscal regeneration: State of the art and future trends. Applied Materials Today, 2018, 12, 51-71.	4.3	76
42	Biotechnology Challenges to InÂVitro Maturation of Hepatic Stem Cells. Gastroenterology, 2018, 154, 1258-1272.	1.3	78
43	Micro―and Macrobioprinting: Current Trends in Tissue Modeling and Organ Fabrication. Small Methods, 2018, 2, 1700318.	8.6	12
44	Recent advances in 3D bioprinting for the regeneration of functional cartilage. Regenerative Medicine, 2018, 13, 73-87.	1.7	30
45	Ophthalmic gels: Past, present and future. Advanced Drug Delivery Reviews, 2018, 126, 113-126.	13.7	125
46	3D bioprinting for cell culture and tissue fabrication. Bio-Design and Manufacturing, 2018, 1, 45-61.	7.7	56
47	Biodegradable poly(trimethylene carbonateâ€∢i>bàê(⟨i>Làê(actideâ€∢i>ranàêglycolide)) terpolymers with tailored molecular structure and advanced performance. Polymers for Advanced Technologies, 2018, 29, 1684-1696.	3.2	16
48	3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering. Materials Research Express, 2018, 5, 045403.	1.6	17
49	Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Engineering - Part B: Reviews, 2018, 24, 327-344.	4.8	47
50	Natureâ€Inspired Lightweight Cellular Coâ€Continuous Composites with Architected Periodic Gyroidal Structures. Advanced Engineering Materials, 2018, 20, 1700549.	3.5	72
51	A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples. Journal of Interventional Cardiology, 2018, 31, 375-383.	1.2	36
52	A decade of progress in liver regenerative medicine. Biomaterials, 2018, 157, 161-176.	11.4	89
53	Bioprinting for Neural Tissue Engineering. Trends in Neurosciences, 2018, 41, 31-46.	8.6	138
54	Embedded Multimaterial Extrusion Bioprinting. SLAS Technology, 2018, 23, 154-163.	1.9	68
55	Three-dimensional bioprinting for organ bioengineering: promise and pitfalls. Current Opinion in Organ Transplantation, 2018, 23, 649-656.	1.6	11

#	ARTICLE	IF	CITATIONS
56	Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Design and Manufacturing, 2018, 1, 215-224.	7.7	143
57	ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Advances in Experimental Medicine and Biology, 2018, 1064, 335-353.	1.6	50
58	Current Status of Development and Intellectual Properties of Biomimetic Medical Materials. Advances in Experimental Medicine and Biology, 2018, 1064, 377-399.	1.6	0
59	3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomaterials Science and Engineering, 2018, 4, 4401-4411.	5.2	104
61	3D Printing—Encompassing the Facets of Dentistry. Frontiers in Bioengineering and Biotechnology, 2018, 6, 172.	4.1	134
63	Cardiovascular tissue bioprinting: Physical and chemical processes. Applied Physics Reviews, 2018, 5, 041106.	11.3	36
64	Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innovative Surgical Sciences, 2018, 3, 203-213.	0.7	21
65	Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering. Cells Tissues Organs, 2018, 205, 350-371.	2.3	74
66	Fabrication of Hydrogel Materials for Biomedical Applications. Advances in Experimental Medicine and Biology, 2018, 1077, 197-224.	1.6	21
67	Naturally-Derived Biomaterials for Tissue Engineering Applications. Advances in Experimental Medicine and Biology, 2018, 1077, 421-449.	1.6	62
68	Application of chemical reaction engineering principles to "bodyâ€onâ€aâ€chip―systems. AlCHE Journal, 20 64, 4351-4360.	18 3.6	15
69	Aqueous Twoâ€Phase Emulsion Bioinkâ€Enabled 3D Bioprinting of Porous Hydrogels. Advanced Materials, 2018, 30, e1805460.	21.0	217
70	Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomaterialia, 2018, 74, 131-142.	8.3	45
71	Microfabrication of liver and heart tissues for drug development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170225.	4.0	14
72	Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochimica Acta, 2018, 281, 429-436.	5.2	43
73	Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. Journal of Materials Science, 2018, 53, 11883-11900.	3.7	60
74	Effect of artificial cell miniaturization on urea degradation by immobilized <i>E. coli</i> DH5α (pKAU17). Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 766-775.	2.8	1
7 5	A General Strategy for Extrusion Bioprinting of Bioâ€Macromolecular Bioinks through Alginateâ€Templated Dualâ€Stage Crosslinking. Macromolecular Bioscience, 2018, 18, e1800127.	4.1	60

#	Article	IF	CITATIONS
76	Drug delivery for cardiac regeneration. , 2018, , 283-321.		2
77	Advances in organ-on-a-chip engineering. Nature Reviews Materials, 2018, 3, 257-278.	48.7	690
78	3D bioprinting for cardiovascular regeneration and pharmacology. Advanced Drug Delivery Reviews, 2018, 132, 252-269.	13.7	115
79	Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing. Micromachines, 2018, 9, 86.	2.9	49
80	Addressing Unmet Clinical Needs with 3D Printing Technologies. Advanced Healthcare Materials, 2018, 7, e1800417.	7.6	70
81	A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis. Advances in Experimental Medicine and Biology, 2018, 1089, 23-36.	1.6	45
82	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	21.0	199
83	Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering. Materials, 2018, 11, 1402.	2.9	44
84	Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure—An Approach towards 3D Printing of Aerogels. ACS Applied Materials & Description (2018), 10, 22718-22730.	8.0	114
85	iPSC Bioprinting: Where are We at?. Materials, 2019, 12, 2453.	2.9	32
86	Selfâ∈Healable Materials for Underwater Applications. Advanced Materials Technologies, 2019, 4, 1900081.	5.8	38
87	The emergence of 3D bioprinting in organ-on-chip systems. Progress in Biomedical Engineering, 2019, 1, 012001.	4.9	67
88	Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 2019, 21, 1900524.	3. 5	353
89	Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech, 2019, 20, 256.	3 . 3	31
90	Monitoring Oxygen Levels within Large, Tissue-Engineered Constructs Using Porphyin-Hydrogel Microparticles. ACS Biomaterials Science and Engineering, 2019, 5, 4522-4530.	5. 2	12
91	3D Bioprinting of Cardiovascular Tissue Constructs: Cardiac Bioinks. , 2019, , 63-77.		12
92	Self-Contained Three-Dimensional Bioprinter for Applications in Cardiovascular Research. Journal of Medical Devices, Transactions of the ASME, 2019, 13 , .	0.7	3
93	Hydrogels for Liver Tissue Engineering. Bioengineering, 2019, 6, 59.	3 . 5	60

#	Article	IF	Citations
94	Innovation in Neurosurgery: Integration Between Cutting-Edge Devices and "Old-Fashioned―Surgical Technique. World Neurosurgery, 2019, 131, 311-312.	1.3	6
95	Coaxial Extrusion of Tubular Tissue Constructs Using a Gelatin/GelMA Blend Bioink. ACS Biomaterials Science and Engineering, 2019, 5, 5514-5524.	5.2	55
96	3D Bioprinting Using Cross-Linker-Free Silk–Gelatin Bioink for Cartilage Tissue Engineering. ACS Applied Materials & Company: Interfaces, 2019, 11, 33684-33696.	8.0	177
97	Type I Diabetes Delays Perfusion and Engraftment of 3D Constructs by Impinging on Angiogenesis; Which can be Rescued by Hepatocyte Growth Factor Supplementation. Cellular and Molecular Bioengineering, 2019, 12, 443-454.	2.1	13
98	Hybrid scaffold comprising of nanofibers and extrusion printed PCL for tissue engineering. Materials Today: Proceedings, 2019, 11, 804-812.	1.8	5
99	A miniaturized optical tomography platform for volumetric imaging of engineered living systems. Lab on A Chip, 2019, 19, 550-561.	6.0	14
100	Recent Strategies in Extrusion-Based Three-Dimensional Cell Printing toward Organ Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 1150-1169.	5. 2	86
101	3D Printing Technology of Polymer Composites and Hydrogels for Artificial Skin Tissue Implementations. Lecture Notes in Bioengineering, 2019, , 205-233.	0.4	13
102	Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomaterials Science, 2019, 7, 1179-1187.	5.4	178
103	Smart Bioinks as de novo Building Blocks to Bioengineer Living Tissues. Gels, 2019, 5, 29.	4.5	8
104	Generation of bioartificial hearts using decellularized scaffolds and mixed cells. BioMedical Engineering OnLine, 2019, 18, 71.	2.7	20
105	Regenerative and engineered options for urethroplasty. Nature Reviews Urology, 2019, 16, 453-464.	3.8	32
106	Challenges in Three-Dimensional Printing of Bone Substitutes. Tissue Engineering - Part B: Reviews, 2019, 25, 387-397.	4.8	18
107	Thermal inkjet bioprinting triggers the activation of the VEGF pathway in human microvascular endothelial cells <i>in vitro</i> i>. Biofabrication, 2019, 11, 045005.	7.1	57
108	3D Bioprinting: A Novel Avenue for Manufacturing Tissues and Organs. Engineering, 2019, 5, 777-794.	6.7	133
109	Bioprinting of Human Musculoskeletal Interface. Advanced Engineering Materials, 2019, 21, 1900019.	3.5	19
110	2018 ABME Paper Awards. Annals of Biomedical Engineering, 2019, 47, 1327-1328.	2.5	0
111	Advanced Polymer Designs for Directâ€Inkâ€Write 3D Printing. Chemistry - A European Journal, 2019, 25, 10768-10781.	3.3	171

#	ARTICLE	IF	CITATIONS
112	A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. Renal Replacement Therapy, 2019, 5 , .	0.7	27
113	3D Bioprinting in Skeletal Muscle Tissue Engineering. Small, 2019, 15, e1805530.	10.0	192
114	Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17256-17269.	8.0	115
115	3D Print Technology for Cell Culturing. , 2019, , 83-114.		1
116	3D Bioprinting: from Benches to Translational Applications. Small, 2019, 15, e1805510.	10.0	235
117	BMC Biomedical Engineering: a home for all biomedical engineering research. BMC Biomedical Engineering, 2019, $1,1.$	2.6	8
118	Technology for Technology's Sake No Longer. Annals of Surgery, 2019, 269, e24.	4.2	0
119	Developments in 4D-printing: a review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 2019, 10, 205-224.	4.2	232
120	Microfluidic bioprinting for organ-on-a-chip models. Drug Discovery Today, 2019, 24, 1248-1257.	6.4	105
121	In situ three-dimensional printing for reparative and regenerative therapy. Biomedical Microdevices, 2019, 21, 42.	2.8	61
122	Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. Journal of Materials Science, 2019, 54, 7883-7892.	3.7	31
123	Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovascular Engineering and Technology, 2019, 10, 205-215.	1.6	13
124	Cellular Based Strategies for Microvascular Engineering. Stem Cell Reviews and Reports, 2019, 15, 218-240.	5.6	14
125	3D Printing of Mechanically Stable Calciumâ€Free Alginateâ€Based Scaffolds with Tunable Surface Charge to Enable Cell Adhesion and Facile Biofunctionalization. Advanced Functional Materials, 2019, 29, 1808439.	14.9	62
126	Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds. Acta Biomaterialia, 2019, 88, 540-553.	8.3	16
127	Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomedical Materials (Bristol), 2019, 14, 065010.	3.3	13
128	Next-Generation Liver Medicine Using Organoid Models. Frontiers in Cell and Developmental Biology, 2019, 7, 345.	3.7	48
129	Nanomaterials in 3D bioprinting. , 2019, , 149-172.		3

#	ARTICLE	IF	Citations
130	The ins and outs of engineering functional tissues and organs: evaluating the in-vitro and in-situ processes. Current Opinion in Organ Transplantation, 2019, 24, 590-597.	1.6	12
131	Heart to Heart. IEEE Pulse, 2019, 10, 8-12.	0.3	0
132	2019 ABME Paper Awards. Annals of Biomedical Engineering, 2019, 47, 2349-2350.	2. 5	0
133	Conventional Bioinks., 2019,, 31-40.		1
134	Cell Bioprinting: The 3D-Bioplotterâ,,¢ Case. Materials, 2019, 12, 4005.	2.9	18
135	An insight into biomimetic 4D printing. RSC Advances, 2019, 9, 38209-38226.	3.6	34
136	Regenerative Medicine in the Digital Age. Computers in Health Care, 2019, , 71-83.	0.3	1
137	Controlled dissolution of freeform 3D printed carbohydrate glass scaffolds in hydrogels using a hydrophobic spray coating. Additive Manufacturing, 2019, 26, 193-201.	3.0	9
138	Recent advances in microfluidic cell sorting systems. Sensors and Actuators B: Chemical, 2019, 282, 268-281.	7.8	124
139	Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomaterialia, 2019, 95, 3-31.	8.3	50
140	Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting. ACS Applied Bio Materials, 2019, 2, 796-806.	4.6	67
141	Modeling Tumor Phenotypes InÂVitro with Three-Dimensional Bioprinting. Cell Reports, 2019, 26, 608-623.e6.	6.4	169
142	3D printing assisted finite element analysis for optimising the manufacturing parameters of a lumbar fusion cage. Materials and Design, 2019, 163, 107540.	7.0	40
143	Dentistry: Restorative and Regenerative Approaches. , 2019, , 332-347.		6
144	Functionalizing bioinks for 3D bioprinting applications. Drug Discovery Today, 2019, 24, 198-205.	6.4	114
145	Nanoengineered biomaterials for corneal regeneration. , 2019, , 379-415.		4
146	Processed Tissue–Derived Extracellular Matrices: Tailored Platforms Empowering Diverse Therapeutic Applications. Advanced Functional Materials, 2020, 30, 1900386.	14.9	29
147	Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Applied Materials Today, 2020, 18, 100479.	4.3	266

#	Article	IF	CITATIONS
148	3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. Journal of Hazardous Materials, 2020, 384, 121418.	12.4	104
149	Biointegration of three-dimensional–printed biomaterials and biomedical devices. , 2020, , 433-482.		3
150	Scaffold-free: A developing technique in field of tissue engineering. Computer Methods and Programs in Biomedicine, 2020, 185, 105148.	4.7	26
151	Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Biomaterials Science, 2020, 8, 506-516.	5.4	30
152	Nanotechnology Scaffolds for Alveolar Bone Regeneration. Materials, 2020, 13, 201.	2.9	58
153	Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomaterials Science, 2020, 8, 438-449.	5.4	78
154	Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chemical Society Reviews, 2020, 49, 114-142.	38.1	233
155	Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials, 2020, 232, 119720.	11.4	163
156	The effects of thermoresponsive microgel density on cell adhesion, proliferation, and detachment. Journal of Applied Polymer Science, 2020, 137, 48773.	2.6	9
157	Pancreas whole organ engineering. , 2020, , 527-536.		1
158	A high-throughput approach to compare the biocompatibility of candidate bioink formulations. Bioprinting, 2020, 17, e00068.	5.8	16
159	Conclusions and closing remarks. , 2020, , 259-261.		0
160	Materials and manufacturing perspectives in engineering heart valves: a review. Materials Today Bio, 2020, 5, 100038.	5.5	59
161	3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 2020, 26, 1313-1334.	3.2	67
162	Improving Bioprinted Volumetric Tumor Microenvironments In Vitro. Trends in Cancer, 2020, 6, 745-756.	7.4	38
163	Programmable 3D Selfâ€Folding Structures with Strain Engineering. Advanced Intelligent Systems, 2020, 2, 2000101.	6.1	7
164	3D Bioprinting of Cardiovascular Tissues for In Vivo and In Vitro Applications Using Hybrid Hydrogels Containing Silk Fibroin: State of the Art and Challenges. Current Tissue Microenvironment Reports, 2020, 1, 261-276.	3.2	6
165	Three-Dimensional Bioprinted Hyaluronic Acid Hydrogel Test Beds for Assessing Neural Cell Responses to Competitive Growth Stimuli. ACS Biomaterials Science and Engineering, 2020, 6, 6819-6830.	5. 2	28

#	Article	IF	CITATIONS
166	Electrospinning and <scp>3D</scp> bioprinting for intervertebral disc tissue engineering. JOR Spine, 2020, 3, e1117.	3.2	23
167	Bioink Temperature Influence on Shear Stress, Pressure and Velocity Using Computational Simulation. Processes, 2020, 8, 865.	2.8	15
168	Liver Tissue Engineering. , 2020, , 1-30.		0
169	3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs. , 2020, , .		1
170	Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chemical Reviews, 2020, 120, 10608-10661.	47.7	246
171	Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Advanced Science, 2020, 7, 2001447.	11.2	30
172	Sex and Gender Bias in Kidney Transplantation: 3D Bioprinting as a Challenge to Personalized Medicine. Women S Health Reports, 2020, 1, 218-223.	0.8	8
173	A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, , 1-13.	3.4	9
174	Microtechnology-based methods for organoid models. Microsystems and Nanoengineering, 2020, 6, 76.	7.0	145
175	Biomaterials for Bioprinting Microvasculature. Chemical Reviews, 2020, 120, 10887-10949.	47.7	51
176	3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition, 2022, 62, 272-281.	10.3	88
177	4D Printing: A Review on Recent Progresses. Micromachines, 2020, 11, 796.	2.9	115
178	Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Science Advances, 2020, 6, .	10.3	59
179	3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. Tissue Engineering - Part B: Reviews, 2021, 27, 238-252.	4.8	11
180	3D <i>In Vitro</i> Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. Advances in Polymer Technology, 2020, 2020, 1-41.	1.7	6
181	Perspectives on 3D Bioprinting of Peripheral Nerve Conduits. International Journal of Molecular Sciences, 2020, 21, 5792.	4.1	30
182	Additive Manufacturing for VADs and TAHs - a Review. Journal of Physics: Conference Series, 2020, 1495, 012021.	0.4	0
183	Biomimetic Design for Bio-Matrix Interfaces and Regenerative Organs. Tissue Engineering - Part B: Reviews, 2021, 27, 411-429.	4.8	5

#	ARTICLE	IF	CITATIONS
184	Development of a Disposable Single-Nozzle Printhead for 3D Bioprinting of Continuous Multi-Material Constructs. Micromachines, 2020, 11, 459.	2.9	12
185	Printability Optimization of Gelatin-Alginate Bioinks by Cellulose Nanofiber Modification for Potential Meniscus Bioprinting. Journal of Nanomaterials, 2020, 2020, 1-13.	2.7	19
186	The construction of in vitro tumor models based on 3D bioprinting. Bio-Design and Manufacturing, 2020, 3, 227-236.	7.7	19
187	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	47.7	185
188	Polymeric Systems for Bioprinting. Chemical Reviews, 2020, 120, 10744-10792.	47.7	161
189	Microfluidic Printing of Slippery Textiles for Medical Drainage around Wounds. Advanced Science, 2020, 7, 2000789.	11.2	58
190	Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS Applied Bio Materials, 2020, 3, 3956-3974.	4.6	15
191	Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers, 2020, 12, 1237.	4.5	68
192	Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Annals of Biomedical Engineering, 2020, 48, 1955-1970.	2.5	62
193	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	14.9	51
194	3D Bioprinting and Its Application to Military Medicine. Military Medicine, 2020, 185, e1510-e1519.	0.8	6
195	Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering. Journal of Materials Science: Materials in Medicine, 2020, 31, 36.	3.6	37
196	Nanoclay-functionalized 3D nanofibrous scaffolds promote bone regeneration. Journal of Materials Chemistry B, 2020, 8, 3842-3851.	5.8	28
197	"Allâ€inâ€One―Gel System for Whole Procedure of Stemâ€Cell Amplification and Tissue Engineering. Small, 2020, 16, e1906539.	10.0	26
198	Efficient mineralization and osteogenic gene overexpression of mesenchymal stem cells on decellularized spinach leaf scaffold. Gene, 2020, 757, 144852.	2.2	27
199	An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Science Robotics, 2020, 5, .	17.6	30
200	DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydrate Polymers, 2020, 235, 115970.	10.2	109
201	3D bioprinting and its potential impact on cardiac failure treatment: An industry perspective. APL Bioengineering, 2020, 4, 010903.	6.2	41

#	Article	IF	Citations
202	Engineering Liver Microtissues for Disease Modeling and Regenerative Medicine. Advanced Functional Materials, 2020, 30, 1909553.	14.9	28
203	Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Engineering - Part A, 2020, 26, 318-338.	3.1	104
204	Bioinks and bioprinting: A focused review. Bioprinting, 2020, 18, e00080.	5.8	146
205	Advanced Biomaterials and Processing Methods for Liver Regeneration: Stateâ€ofâ€theâ€Art and Future Trends. Advanced Healthcare Materials, 2020, 9, e1901435.	7.6	36
206	Advances in regenerative medicine for otolaryngology/head and neck surgery. BMJ, The, 2020, 369, m718.	6.0	22
207	Three-dimensional scaffolds. , 2020, , 343-360.		12
208	Preparation and Characterization of PLA Film/3D Printing Composite Scaffold for Tissue Engineering Application. Fibers and Polymers, 2020, 21, 709-716.	2.1	8
209	Highâ€throughput fabrication of vascularized adipose microtissues for 3D bioprinting. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 840-854.	2.7	26
210	100th Anniversary of Macromolecular Science Viewpoint: Macromolecular Materials for Additive Manufacturing. ACS Macro Letters, 2020, 9, 627-638.	4.8	69
211	<scp>3D</scp> bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 6-17.	4.0	22
212	Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review. Cartilage, 2021, 12, 76-92.	2.7	46
213	A review on additive manufacturing of polymers composites. Materials Today: Proceedings, 2021, 44, 4150-4157.	1.8	31
214	Photo-crosslinkable hydrogel and its biological applications. Chinese Chemical Letters, 2021, 32, 1603-1614.	9.0	51
215	Hydrogelâ€based 3D bioprints repair rat small intestine injuries and integrate into native intestinal tissue. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 129-138.	2.7	5
216	Symbiotic Photosynthetic Oxygenation within 3D-Bioprinted Vascularized Tissues. Matter, 2021, 4, 217-240.	10.0	57
217	In-situ stable injectable collagen-based hydrogels for cell and growth factor delivery. Materialia, 2021, 15, 100954.	2.7	26
218	Advances in 3D bioprinting for the biofabrication of tumor models. Bioprinting, 2021, 21, e00120.	5.8	19
219	3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomedical Journal, 2021, 44, 31-42.	3.1	27

#	ARTICLE	IF	CITATIONS
220	Validation of the 1, <scp>4â€butanediol</scp> thermoplastic polyurethane as a novel material for <scp>3D</scp> bioprinting applications. Bioengineering and Translational Medicine, 2021, 6, e10192.	7.1	15
221	Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomaterials Science, 2021, 9, 535-573.	5.4	206
222	Bio-inspired wettability patterns for biomedical applications. Materials Horizons, 2021, 8, 124-144.	12.2	52
223	Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 191-227.	0.3	0
224	Trends in Functional Biomaterials in Tissue Engineering and Regenerative Medicine., 2021,, 215-269.		0
225	Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomaterials Science, 2021, 9, 3465-3484.	5.4	33
226	Fabrication and maturation of integrated biphasic anatomic mesenchymal stromal cell″aden composite scaffolds for osteochondral repair and joint resurfacing. Journal of Orthopaedic Research, 2021, 39, 2323-2332.	2.3	7
227	Tissue repair with natural extracellular matrix (ECM) scaffolds. , 2021, , 11-37.		1
228	Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. Journal of Materials Chemistry B, 2021, 9, 5385-5413.	5.8	51
229	Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications. , 2021, , 347-380.		0
230	Bioprinting. , 2021, , 45-96.		0
231	Liver Tissue Engineering. Reference Series in Biomedical Engineering, 2021, , 143-172.	0.1	0
232	3D-Bioprinting. Learning Materials in Biosciences, 2021, , 201-232.	0.4	1
233	Three-dimensional bioprinting adipose tissue and mammary Organoids feasible for artificial breast structure regeneration. Materials and Design, 2021, 200, 109467.	7.0	20
234	Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels, 2021, 7, 17.	4.5	23
235	The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 2021, 4, 100113.	3.2	47
236	Recent Progress on Biodegradable Tissue Engineering Scaffolds Prepared by Thermally-Induced Phase Separation (TIPS). International Journal of Molecular Sciences, 2021, 22, 3504.	4.1	50
238	Bioinksâ€"materials used in printing cells in designed 3D forms. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1072-1106.	3.5	9

#	Article	IF	Citations
239	An Overview of Recent Trends in Additive Manufacturing with Polymer Powders, Production, Applications and Developments. Asian Journal of Chemistry, 2021, 33, 701-711.	0.3	1
240	3D Printing for Soft Tissue Regeneration and Applications in Medicine. Biomedicines, 2021, 9, 336.	3.2	12
241	Monitoring Anomalies in 3D Bioprinting with Deep Neural Networks. ACS Biomaterials Science and Engineering, 2023, 9, 3945-3952.	5.2	33
242	A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Materials and Design, 2021, 202, 109588.	7.0	62
243	3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. International Journal of Molecular Sciences, 2021, 22, 3971.	4.1	83
244	Microphysiological systems: What it takes for community adoption. Experimental Biology and Medicine, 2021, 246, 1435-1446.	2.4	10
245	Patientâ€Specific Organoid and Organâ€onâ€aâ€Chip: 3D Cellâ€Culture Meets 3D Printing and Numerical Simulation. Advanced Biology, 2021, 5, e2000024.	2.5	31
246	Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules, 2021, 26, 2817.	3.8	9
247	Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous) Tj ETQq0 0 0 rgBT /C)verlock 10 2.6	O Tf 50 422 To
248	The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Frontiers in Cell and Developmental Biology, 2021, 9, 651164.	3.7	9
249	Tissue Engineering Microtissue: Construction, Optimization, and Application. Tissue Engineering - Part B: Reviews, 2022, 28, 393-404.	4.8	7
250	Design, manufacturing and applications of auxetic tubular structures: A review. Thin-Walled Structures, 2021, 163, 107682.	5.3	164
251	Silk nanocoatings of mammalian cells for cytoprotection against mechanical stress. MRS Bulletin, 2021, 46, 795-806.	3.5	1
252	Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. Journal of Biomedical Nanotechnology, 2021, 17, 989-1006.	1.1	9
253	Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Frontiers in Bioengineering and Biotechnology, 2021, 9, 682498.	4.1	16
254	Conductive Nanomaterials used in Bioinks for 3D Bioprinting. Nano LIFE, 2021, 11, 2130005.	0.9	1
255	3D printed polylactic acid and acrylonitrile butadiene styrene fluidic structures for biological applications: Tailoring bio-material interface via surface modification. Materials Today Communications, 2021, 27, 102348.	1.9	8
256	4D printing: Fundamentals, materials, applications and challenges. Polymer, 2021, 228, 123926.	3.8	118

#	Article	IF	CITATIONS
258	Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 629270.	4.1	57
259	Artificial Intelligence in 3D Printing: A Revolution in Health Care. Lecture Notes in Bioengineering, 2022, , 57-79.	0.4	6
260	Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. American Journal of Transplantation, 2021, 21, 3225-3238.	4.7	5
261	Blending with Poly(<scp>l</scp> -lactic acid) Improves the Printability of Poly(<scp>l</scp> -lactide- <i>co</i> -caprolactone) and Enhances the Potential Application in Cartilage Tissue Engineering. ACS Omega, 2021, 6, 18300-18313.	3.5	13
262	ÜÇ BOYUTLU YAZICILARIN DENTAL KULLANIMINDA GÜNCEL PROTETİK YAKLAŞIMLAR. Atatürk Ünivers Hekimliği Fakültesi Dergisi, 0, , 1-1.	itesi DiÅŸ	1
263	3D-Printing of Drug-Eluting Implants: An Overview of the Current Developments Described in the Literature. Molecules, 2021, 26, 4066.	3.8	45
264	Three  D's: Design approach, dimensional printing, and drug delivery systems as promising tools in healthcare applications. Drug Discovery Today, 2021, 26, 2726-2733.	6.4	8
265	Employing Extracellular Matrix-Based Tissue Engineering Strategies for Age-Dependent Tissue Degenerations. International Journal of Molecular Sciences, 2021, 22, 9367.	4.1	11
266	Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications, 2021, 12, 5072.	12.8	87
267	A Bioprinting Process Supplemented with In Situ Electrical Stimulation Directly Induces Significant Myotube Formation and Myogenesis. Advanced Functional Materials, 2021, 31, 2105170.	14.9	12
268	3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Current Medical Imaging, 2021, 17, 832-842.	0.8	7
269	Three-Dimensional Printing Chitosan-Based Bolus Used for Radiotherapy. ACS Applied Bio Materials, 2021, 4, 7094-7102.	4.6	4
270	A super low-cost bioprinter based on DVD-drive components and a raspberry pi as controller. Bioprinting, 2021, 23, e00142.	5.8	9
271	Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes. Trends in Endocrinology and Metabolism, 2021, 32, 609-622.	7.1	18
272	From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. Bio-Design and Manufacturing, 2022, 5, 85-106.	7.7	22
273	Airbrushed nanofibrous membranes to control stem cell infiltration in <scp>3D</scp> â€printed scaffolds. AICHE Journal, 2021, 67, e17475.	3.6	1
274	Engineering microcapsules to construct vascularized human brain organoids. Chemical Engineering Journal, 2021, 424, 130427.	12.7	17
275	The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regenerative Therapy, 2021, 18, 133-145.	3.0	21

#	Article	IF	CITATIONS
276	Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioactive Materials, 2022, 8, 267-295.	15.6	153
277	Challenges and Materials in Artificial Organ Manufacturing. Lecture Notes in Mechanical Engineering, 2021, , 637-653.	0.4	2
278	Projection Microstereolithographic Microbial Bioprinting for Engineered Biofilms. Nano Letters, 2021, 21, 1352-1359.	9.1	33
279	3D Bioprinting Hydrogel for Hard Tissue Regeneration. Biomaterials Science Series, 2021, , 316-338.	0.2	1
280	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 321-338.		6
281	Extrusion-based Bioprinting. Biomaterials Science Series, 2019, , 22-48.	0.2	2
282	Enzymatic degradation study of PLA-based composite scaffolds. Reviews on Advanced Materials Science, 2020, 59, 170-175.	3.3	25
283	3D bioprinting processes: A perspective on classification and terminologyÂ. International Journal of Bioprinting, 2018, 4, 151.	3.4	99
284	Analysis of the knowledge landscape of three-dimensional bioprinting in Latin America. International Journal of Bioprinting, 2019, 5, 240.	3.4	4
285	Digital Light Processing Based Three-dimensional Printing for Medical Applications. International Journal of Bioprinting, 2019, 6, 242.	3.4	138
286	Bioengineered in vitro Vascular Models for Applications in Interventional Radiology. Current Pharmaceutical Design, 2019, 24, 5367-5374.	1.9	3
287	3D Printing for Tissue Engineering Applications. Journal of Polytechnic, 0, , .	0.7	11
289	Medical applications of stereolithography: An overview. International Journal of Academic Medicine, 2018, 4, 252.	0.2	11
290	Three-dimensional cell culture systems as an <i>in vitro</i> platform for cancer and stem cell modeling. World Journal of Stem Cells, 2019, 11, 1065-1083.	2.8	251
291	3D Printed Hydroxyapatite Nanocomposite Biomaterials in Orthopedic Trauma Surgery. Science of Advanced Materials, 2021, 13, 1144-1154.	0.7	3
292	Emerging Technologies in Multiâ€Material Bioprinting. Advanced Materials, 2021, 33, e2104730.	21.0	100
293	3D-Printed Mucoadhesive Collagen Scaffolds as a Local Tetrahydrocurcumin Delivery System. Pharmaceutics, 2021, 13, 1697.	4.5	0
294	3D Liver Tissue Model with Branched Vascular Networks by Multimaterial Bioprinting. Advanced Healthcare Materials, 2021, 10, e2101405.	7.6	31

#	Article	IF	CITATIONS
295	Bioprinting and Biofabrication of Organs. , 2017, , 1-9.		0
296	The Present and Future of the Cancer Microenvironment Bioprinting. The Korean Journal of Urological Oncology, 2017, 15, 103-110.	0.1	0
297	Liver Tissue Engineering. , 2018, , 301-327.		0
298	The New Bench for theÂAcademic Surgeon: Precision Medicine. , 2019, , 187-198.		0
299	Approaches to the development of 3d bioprinted skin models: the case of natura cosmetics. International Journal of Advances in Medical Biotechnology - IJAMB, 2019, 2, 03.	0.2	5
300	Applications of 3D printing in small animal magnetic resonance imaging. Journal of Medical Imaging, 2019, 6, 1.	1.5	1
301	Innovative Biomaterials in Bone Tissue Engineering. Materials International, 2019, 1, 002-012.	0.6	0
303	Application and Development of 3D Printing in Medical Field. Modern Mechanical Engineering, 2020, 10, 25-33.	0.5	12
304	Vascular Tissue Engineering: The Role of 3D Bioprinting. , 2020, , 1-18.		0
305	Advances in polymers for bio-additive manufacturing: A state of art review. Journal of Manufacturing Processes, 2021, 72, 439-457.	5.9	19
306	Evaluation of Dental Models Created by Using A Low-Cost, Three-Dimensional Printer. Kırıkkale Üniversitesi Tıp Fakültesi Dergisi, 2020, 22, 461-469.	0.3	2
307	In vitro disease and organ model. , 2020, , 629-668.		0
308	Additive Manufacturing of Micro-Electro-Mechanical Systems (MEMS). Micromachines, 2021, 12, 1374.	2.9	11
309	Bioprinting of Complex Multicellular Organs with Advanced Functionality—Recent Progress and Challenges Ahead. Advanced Materials, 2022, 34, e2101321.	21.0	31
312	Appropriate Scaffold Selection for CNS Tissue Engineering. Avicenna Journal of Medical Biotechnology, 2020, 12, 203-220.	0.3	2
314	Engineering the niche to differentiate and deploy cardiovascular cells. Current Opinion in Biotechnology, 2022, 74, 122-128.	6.6	2
315	Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds. International Journal of Bioprinting, 2021, 7, 426.	3.4	11
316	Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering. Gels, 2021, 7, 240.	4.5	6

#	ARTICLE	IF	CITATIONS
317	Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues. ACS Biomaterials Science and Engineering, 2021, 7, 5810-5822.	5. 2	33
318	3D-printed montmorillonite nanosheets based hydrogel with biocompatible polymers as excellent adsorbent for Pb(â;) removal. Separation and Purification Technology, 2022, 283, 120176.	7.9	34
320	Optimizing Cell Deformation in Extrusion-Based Bioprinting Process by Importing Inherent Viscoelasticity Using Computational Fluid Dynamic. Lecture Notes in Mechanical Engineering, 2022, , 337-348.	0.4	0
321	Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules, 2022, 23, 619-640.	5.4	36
322	Emerging bioengineering strategies for regulating stem cell fate: Scaffold physical and biochemical cues., 2022,, 125-156.		2
323	Biomimetic models of the glomerulus. Nature Reviews Nephrology, 2022, 18, 241-257.	9.6	22
324	Alternatives to animal testing: concepts, state of art, and regulations., 2022,, 501-529.		0
325	Building Valveless Impedance Pumps From Biological Components: Progress and Challenges. Frontiers in Physiology, 2021, 12, 770906.	2.8	7
326	Fabrication of Antibacterial, Osteoâ€Inductor 3D Printed Aerogelâ€Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Selfâ€Assembled Silk Fibroin Biopolymer. Macromolecular Bioscience, 2022, 22, e2100442.	4.1	16
327	Development of a Hybrid Nanoink for 3D Bioprinting of Heterogeneous Tumor Models. ACS Biomaterials Science and Engineering, 2022, 8, 777-785.	5. 2	12
328	Photoacoustic imaging of 3D-printed vascular networks. Biofabrication, 2022, 14, 025001.	7.1	7
329	Overcoming the barriers of two-dimensional cell culture systems with three-dimensional cell culture systems: techniques, drug discovery, and biomedical applications. , 2022, , 179-229.		0
330	Ultra ompliant Indwelling Elastomer Balloons Improve Stability and Performance of Bioengineered Human Miniâ€Hearts. Advanced Engineering Materials, 0, , .	3 . 5	0
333	Shaping of Metal–Organic Frameworks: A Review. Energy & Fuels, 2022, 36, 2927-2944.	5.1	56
335	3D Bioprinting for Liver Regeneration. , 2022, , 459-488.		0
336	Three-dimensional printing in healthcare. , 2022, , 27-39.		0
337	Portable handâ€held bioprinters promote in situ tissue regeneration. Bioengineering and Translational Medicine, 2022, 7, .	7.1	16
338	Biosurfactant-Stabilized Micropore-Forming GelMA Inks Enable Improved Usability for 3D Printing Applications. Regenerative Engineering and Translational Medicine, 2022, 8, 471-481.	2.9	6

#	Article	IF	CITATIONS
339	A Synthetic Gene Library Yields a Previously Unknown Glycoside Phosphorylase That Degrades and Assembles Poly- \hat{l}^2 -1,3-GlcNAc, Completing the Suite of \hat{l}^2 -Linked GlcNAc Polysaccharides. ACS Central Science, 2022, 8, 430-440.	11.3	7
340	Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels, 2022, 8, 179.	4.5	89
342	Characterization of Alginate–Gelatin–Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds. Polymers, 2022, 14, 1021.	4.5	6
343	A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication, 2022, 14, 024105.	7.1	19
344	Localized Drug Delivery Systems in Highâ€Grade Glioma Therapyâ€"From Construction to Application. Advanced Therapeutics, 2022, 5, .	3.2	5
345	Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials, 2022, 283, 121436.	11.4	20
346	Vascularizing the brain inÂvitro. IScience, 2022, 25, 104110.	4.1	13
347	Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment. Bioactive Materials, 2022, 15, 194-202.	15.6	24
349	A Bibliometric and Trend Analysis of Applied Technologies in Bioengineering for Additive Manufacturing of Human Organs. , $2021, \dots$		0
350	Engineering Complex Anisotropic Scaffolds beyond Simply Uniaxial Alignment for Tissue Engineering. Advanced Functional Materials, 2022, 32, .	14.9	37
351	Advances in 4Dâ€printed physiological monitoring sensors. Exploration, 2021, 1, .	11.0	25
352	Systematic optimization of visible light-induced crosslinking conditions of gelatin methacryloyl (GelMA). Scientific Reports, 2021, 11, 23276.	3.3	32
353	3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Frontiers in Bioengineering and Biotechnology, 2022, 10, 824156.	4.1	51
354	In Situ Crosslinkable Collagen-Based Hydrogels for 3D Printing of Dermis-Mimetic Constructs. ECS Journal of Solid State Science and Technology, 2022, 11, 045014.	1.8	4
355	Design and Modeling of MEMS Microgrippers for Laser-Based Additive Manufacturing. Micro, 2022, 2, 225-239.	2.0	1
357	Nanotechnology Applied to Personalized 3D Dressings for Diabetic Feet., 2022,, 525-547.		0
358	Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Materials Today Bio, 2022, 14, 100269.	5.5	9
359	Correlating Rheological Properties of a Gellan Gum-Based Bioink: A Study of the Impact of Cell Density. Polymers, 2022, 14, 1844.	4.5	6

#	Article	IF	Citations
360	Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Delivery and Translational Research, 2022, 12, 2048-2074.	5.8	19
361	Silk-based nano-hydrogels for futuristic biomedical applications. Journal of Drug Delivery Science and Technology, 2022, 72, 103385.	3.0	7
362	Biomedical applications of threeâ€dimensional bioprinted craniofacial tissue engineering. Bioengineering and Translational Medicine, 2023, 8, .	7.1	16
363	Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. Journal of Molecular and Cellular Cardiology, 2022, 169, 13-27.	1.9	8
364	Bioprinting technologies: an overview. , 2022, , 19-49.		4
365	Latest Advances in 3D Bioprinting of Cardiac Tissues. Advanced Materials Technologies, 2022, 7, .	5.8	17
366	From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines, 2022, 13, 780.	2.9	15
367	Recent Developments on 4D Printings and Applications. , 2022, , 361-388.		2
369	Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future?. Annals of 3D Printed Medicine, 2022, 7, 100066.	3.1	5
370	Vaginosis: Advances in new therapeutic development and microbiome restoration. Microbial Pathogenesis, 2022, 168, 105606.	2.9	9
371	Hydrogels for extrusion-based bioprinting: General considerations. Bioprinting, 2022, 27, e00212.	5.8	8
372	Polymer nanocomposites for biomedical applications. , 2022, , 171-204.		2
373	3D bioprinting: Printing the future and recent advances. Bioprinting, 2022, 27, e00211.	5.8	15
374	The effect of blending poly (l-lactic acid) on in vivo performance of 3D-printed poly(l-lactide-co-caprolactone)/PLLA scaffolds. , 2022, 138, 212948.		7
375	Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. European Polymer Journal, 2022, 174, 111318.	5.4	4
376	Macromolecular crowding tuned extracellular matrix deposition in a bioprinted human rhabdomyosarcoma model. Bioprinting, 2022, 27, e00213.	5.8	1
378	Air-loaded Gas Vesicle Nanoparticles Promote Cell Growth in Three-dimensional Bioprinted Tissue Constructs. International Journal of Bioprinting, 2022, 8, 489.	3.4	2
379	Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocular Surface, 2022, 25, 129-141.	4.4	10

#	Article	IF	CITATIONS
380	Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomaterials Science and Engineering, 2022, 8, 2764-2797.	5.2	34
381	Solidification of Gelatine Hydrogels by Using a Cryoplatform and Its Validation through CFD Approaches. Gels, 2022, 8, 368.	4.5	2
382	A focused review on three-dimensional bioprinting technology for artificial organ fabrication. Biomaterials Science, 2022, 10, 5054-5080.	5.4	20
383	Electrospinning and Three-Dimensional (3D) Printing for Biofabrication. , 2022, , 555-604.		5
384	Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. Micromachines, 2022, 13, 1038.	2.9	9
385	Human Endometriumâ€Derived Adventitial Cell Spheroidâ€Loaded Antimicrobial Microneedles for Uterine Regeneration. Small, 2022, 18, .	10.0	11
386	Recent advances in organoid engineering: A comprehensive review. Applied Materials Today, 2022, 29, 101582.	4.3	8
387	Biomass-based porous composites with heat transfer characteristics: preparation, performance and evaluation - a review. Journal of Porous Materials, 2022, 29, 1667-1687.	2.6	2
388	Three-Dimensional In Vitro Cell Culture Models for Efficient Drug Discovery: Progress So Far and Future Prospects. Pharmaceuticals, 2022, 15, 926.	3.8	26
389	A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. Biomicrofluidics, 2022, 16 , .	2.4	3
390	Three-Dimensional (3D) Printing of Organs according to the Perspective of Islamic Law. Asian Bioethics Review, 0, , .	1.3	0
391	Matrix Metalloproteases from Adipose Tissue-Derived Stromal Cells Are Spatiotemporally Regulated by Hydrogel Mechanics in a 3D Microenvironment. Bioengineering, 2022, 9, 340.	3.5	10
392	Preparation of 3D Printing PLGA Scaffold with BMP-9 and P-15 Peptide Hydrogel and Its Application in the Treatment of Bone Defects in Rabbits. Contrast Media and Molecular Imaging, 2022, 2022, 1-8.	0.8	4
393	3D Printed Biohybrid Microsystems. Advanced Materials Technologies, 2023, 8, .	5.8	5
394	Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. Small, 2022, 18, .	10.0	21
395	Smart materials for four-dimensional printing: An overview. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 571-579.	2.5	1
396	Bioprinting/Biofabrication with Alginate/Gelatin-Based Bioinks. , 2022, , 1-10.		0
397	4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives. Reactive and Functional Polymers, 2022, 179, 105374.	4.1	72

#	Article	IF	Citations
398	The emerging role of 3D-printing in ocular drug delivery: Challenges, current status, and future prospects. Journal of Drug Delivery Science and Technology, 2022, 76, 103798.	3.0	3
399	Porous biomaterials for tissue engineering: a review. Journal of Materials Chemistry B, 2022, 10, 8111-8165.	5.8	27
400	History and Evolution of Additive Manufacturing. , 2022, , 19-51.		0
401	A Roadmap to Fabricate Geometrically Accurate Three-Dimensional Scaffolds CO-Printed by Natural and Synthetic Polymers. Journal of Micro and Nano-Manufacturing, 2022, 10, .	0.7	1
402	4D printing: A detailed review of materials, techniques, and applications. Microelectronic Engineering, 2022, 265, 111874.	2.4	15
404	Tissues and organ printing: An evolution of technology and materials. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, 236, 1695-1710.	1.8	6
406	3D printing applications for healthcare research and development. Global Health Journal (Amsterdam,) Tj ETQq0 (0 0 rgBT /0 3.6	Overlock 10 T
407	Stem Cell Applications in Cardiac Tissue Regeneration. , 2022, , 769-797.		0
408	Design and Fabrication of Mature Engineered Pre-Cardiac Tissue Utilizing 3D Bioprinting Technology and Enzymatically Crosslinking Hydrogel. Materials, 2022, 15, 7928.	2.9	7
409	Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. International Journal of Bioprinting, 2022, 9, 637.	3.4	12
410	Use of ozone on regeneration of 3D critical size bone defects. , 0, , 94-100.		0
411	Development and systematic characterization of GelMA/alginate/PEGDMA/xanthan gum hydrogel bioink system for extrusion bioprinting. Biomaterials, 2023, 293, 121969.	11.4	12
412	Application of Ultrashort Lasers in Developmental Biology: A Review. Photonics, 2022, 9, 914.	2.0	4
413	Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering. Polymers, 2022, 14, 5068.	4.5	2
414	3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics, 2022, 14, 2596.	4. 5	10
415	Hydrogel Nanocomposite Adsorbents and Photocatalysts for Sustainable Water Purification. Advanced Materials Interfaces, 2023, 10, .	3.7	38
416	Emerging trends in humidity-responsive 4D bioprinting. Chemical Engineering Journal, 2023, 455, 140550.	12.7	11
417	Laser-Induced Forward Transfer on Regenerative Medicine Applications. , 2023, 1, 5-20.		3

#	Article	IF	CITATIONS
418	Recent advances in bioengineered scaffold for in vitro meat production. Cell and Tissue Research, 2023, 391, 235-247.	2.9	7
419	3D Bioprinting for Cancer Models. , 2023, , 103-114.		0
420	Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Frontiers in Pharmacology, 0, 13, .	3.5	1
421	Electrospun hybrid nanofibers: Fabrication, characterization, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	22
422	3D-Printed Janus Piezoelectric Patches for Sonodynamic Bacteria Elimination and Wound Healing. Research, 2023, 6, .	5.7	12
423	The Renaissance of Male Infertility Management in the Golden Age of Andrology. World Journal of Men?s Health, 2023, 41, 237.	3.3	11
424	3D Printing for Improved Congenital Cardiovascular Pre-Procedural Assessment. , 2022, , .		0
425	Bioprinting of cartilage. , 2023, , 69-94.		0
426	3D bioprinting: An innovative technique for biofabrication applied to regenerative medicine and tissue engineering., 2023,, 195-232.		0
427	3D printed pharmaceutical products. , 2023, , 199-223.		0
428	Electrically conductive nanomaterials for advanced cardiac tissue regeneration., 2023,, 529-549.		0
429	Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Advanced Healthcare Materials, 2023, 12, .	7.6	2
430	Vat photopolymerization bioprinting with a dynamic support bath. Additive Manufacturing, 2023, 69, 103533.	3.0	3
431	Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials and Design, 2023, 229, 111885.	7.0	4
432	Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting, 2023, 32, e00274.	5.8	8
433	Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. International Journal of Biological Macromolecules, 2023, 232, 123450.	7.5	40
434	Design and bioprinting for tissue interfaces. Biofabrication, 2023, 15, 022002.	7.1	3
435	Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. International Journal of Biological Macromolecules, 2023, 232, 123476.	7. 5	27

#	Article	IF	CITATIONS
436	Recent Advances in Biomaterialsâ€Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromolecular Bioscience, 2023, 23, .	4.1	7
437	Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Advanced Healthcare Materials, 2023, 12, .	7.6	15
438	3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling. Handbook of Experimental Pharmacology, 2023, , .	1.8	0
439	A Systematic Review on 4D Printing Technology. Materials Today: Proceedings, 2023, , .	1.8	2
440	Recent Advances in Organâ€onâ€Chips Integrated with Bioprinting Technologies for Drug Screening. Advanced Healthcare Materials, 2023, 12, .	7.6	8
442	Urethral Reconstruction Using Cell-Based Tissue Engineering Approaches. European Medical Journal Urology, 0, , 74-81.	0.0	1
443	3D printing of cell-delivery scaffolds for tissue regeneration. Regenerative Biomaterials, 2023, 10, .	5.6	6
444	Newer approaches to dry eye therapy: Nanotechnology, regenerative medicine, and tissue engineering. Indian Journal of Ophthalmology, 2023, 71, 1292-1303.	1.1	4
445	Engineering Neurovascular Unit and Blood–Brain Barrier for Ischemic Stroke Modeling. Advanced Healthcare Materials, 2023, 12, .	7.6	3
446	Infantile hemangioma models: is the needle in a haystack?. Journal of Translational Medicine, 2023, 21, .	4.4	1
447	Physics-based and data-driven modeling for biomanufacturing 4.0. Manufacturing Letters, 2023, 36, 91-95.	2.2	2
448	Naturally Derived Maleic Chitosan/Thiolated Sodium Hyaluronate Hydrogels as Potential 3D Printing Tissue Engineering Materials. Macromolecular Materials and Engineering, 2023, 308, .	3.6	2
449	Mechanical Properties of Three-Dimensional Printed Provisional Resin Materials for Crown and Fixed Dental Prosthesis: A Systematic Review. Bioengineering, 2023, 10, 663.	3.5	4
450	3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector?. Annals of Biomedical Engineering, 2023, 51, 1683-1712.	2.5	27
451	Multiscale polymeric fibers for drug delivery and tissue engineering., 2024, 5, 60-72.		8
452	Advantage of Alginate Bioinks in Biofabrication for Various Tissue Engineering Applications. International Journal of Polymer Science, 2023, 2023, 1-20.	2.7	3
453	Three-dimensional bioprinting vascularized bone tissue. MRS Bulletin, 2023, 48, 668-675.	3.5	2
454	Aspects of a Suspended Bioprinting System Affect Cell Viability and Support Bath Properties. Tissue Engineering - Part A, 0, , .	3.1	1

#	Article	IF	Citations
455	The Evaluation of Cartilage Regeneration Efficacy of Three-Dimensionally Biofabricated Human-Derived Biomaterials on Knee Osteoarthritis: A Single-Arm, Open Label Study in Egypt. Journal of Personalized Medicine, 2023, 13, 748.	2.5	1
456	Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Frontiers in Oncology, 0, 13 , .	2.8	5
457	Extrusionâ€Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks. Advanced Biology, 2023, 7, .	2.5	5
458	The Impact of 3D Bioprinting Innovation on IP Ecosystem and Patent law: An Indian and US Perspective. SSRN Electronic Journal, 0, , .	0.4	0
459	A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels, 2023, 9, 430.	4. 5	8
460	Imparting High Conductivity to 3D Printed PEDOT:PSS. ACS Applied Polymer Materials, 2023, 5, 3989-3998.	4.4	2
461	Decellularized Tissue-Derived Materials as Advanced Bioinks. , 2023, , 1-43.		0
462	Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics, 2023, 15, 1877.	4.5	6
463	Importance of 3D Printing Techniques in Cartilage Tissue Engineering. , 2023, , 355-389.		0
464	Micro-extrusion 3D printing of articular cartilage substitutes with a multizonal structure using hydrophilic and rapidly curing silicone-based ink materials. Additive Manufacturing, 2023, 73, 103691.	3.0	2
465	Bioprinting in Personalized Medications. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 257-282.	0.1	0
466	Current advancements in the development of bionic organs using regenerative medicine and 3D tissue engineering. Materials Technology, 2023, 38, .	3.0	3
467	Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. Nanomaterials, 2023, 13, 2455.	4.1	0
468	Application of 3D Bioprinting in Liver Diseases. Micromachines, 2023, 14, 1648.	2.9	3
469	In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell and Tissue Research, 2023, 394, 393-421.	2.9	1
470	Advances of three-dimensional (3D) culture systems for in vitro spermatogenesis. Stem Cell Research and Therapy, 2023, 14, .	5.5	1
471	3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration. Heliyon, 2023, 9, e19363.	3.2	6
472	Development of three-dimensional printed biocompatible materials for cartilage replacement., 2024,, 425-452.		2

#	Article	IF	CITATIONS
473	Smart alginate inks for tissue engineering applications. Materials Today Bio, 2023, 23, 100829.	5.5	1
474	Long-term functional maintenance of primary hepatocytes in vitro using macroporous hydrogels engineered through liquid-liquid phase separation. Nano Research, 2024, 17, 1725-1736.	10.4	0
475	Design and Development of a Magnetic-Steered Minimally Invasive Bioprinting System. IEEE Robotics and Automation Letters, 2023, 8, 6699-6706.	5.1	2
476	Reactive Cell Electrospinning of Anisotropically Aligned and Bilayer Hydrogel Nanofiber Networks. ACS Biomaterials Science and Engineering, 2023, 9, 6490-6503.	5.2	1
477	Decellularized extracellular matrix as a promising biomaterial for musculoskeletal tissue regeneration. Nanotechnology Reviews, 2023, 12, .	5.8	0
478	Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Failure Reviews, 0, , .	3.9	0
479	In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. Journal of Personalized Medicine, 2023, 13, 1575.	2.5	1
480	Mending a broken heart by biomimetic 3D printed natural biomaterial-based cardiac patches: a review. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	3
481	The Material World of 3Dâ€Bioprinted and Microfluidicâ€Chip Models of Human Liver Fibrosis. Advanced Materials, 2024, 36, .	21.0	0
482	Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioactive Materials, 2024, 33, 460-482.	15.6	0
483	Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-12.	3.4	1
485	Platelet-rich-based biopolymeric hydrogel applied to 3D bioprinting for tissue regeneration synthesis and characterization. Revista Caderno Pedag \tilde{A}^3 gico, 2023, 20, 674-690.	0.0	0
486	A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications. Biomaterials, 2024, 304, 122408.	11.4	1
487	Recent advances in the development of bioartificial pancreas using 3D bioprinting for the treatment of type 1 diabetes: a review. Exploration of Medicine, 0, , 886-922.	1.5	1
488	Application of 3D printing in ear reconstruction with autogenous costal cartilage: A systematic review. International Journal of Pediatric Otorhinolaryngology, 2024, 176, 111817.	1.0	0
489	Predicting the hyperelastic properties of alginate-gelatin hydrogels and 3D bioprinted mesostructures. Scientific Reports, 2023, 13, .	3.3	0
490	Alginate–gelatin hydrogel supplemented with platelet concentrates can be used as bioinks for scaffold printing. Asian Biomedicine, 2023, 17, 222-229.	0.3	0
491	Semisolid Extrusion Printing and 3D Bioprinting. AAPS Advances in the Pharmaceutical Sciences Series, 2024, , 195-233.	0.6	0

#	Article	IF	CITATIONS
492	Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS Applied Bio Materials, 2024, 7, 17-43.	4.6	1
493	Precision nephrotoxicity testing using 3D in vitro models. Cell and Bioscience, 2023, 13, .	4.8	0
494	3D Printing in pharmaceutical manufacturing: Current status and future prospects. Materials Today Communications, 2024, 38, 107987.	1.9	0
495	Composite Bioprinted Hydrogels Containing Porous Polymer Microparticles Provide Tailorable Mechanical Properties for 3D Cell Culture. Biomacromolecules, 2024, 25, 829-837.	5.4	0
496	Three-dimensional printing of live cells, tissues, and organs. , 2024, , 49-78.		0
497	Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication, 2024, 16, 025019.	7.1	0
498	3D Foaming Printing Biomimetic Hierarchically Macro–Micronanoporous Hydrogels for Enhancing Cell Growth and Proliferation. ACS Applied Materials & Samp; Interfaces, 2024, 16, 10813-10821.	8.0	0
499	Tissue engineering applications of recombinant human collagen: a review of recent progress. Frontiers in Bioengineering and Biotechnology, $0,12,.$	4.1	0
500	A dual-crosslinking electroactive hydrogel based on gelatin methacrylate and dibenzaldehyde-terminated telechelic polyethylene glycol for 3D bio-printing. Scientific Reports, 2024, 14, .	3.3	0
501	3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite – Physical properties and biocompatibility. Heliyon, 2024, 10, e26071.	3.2	0
502	A review: analysis of technical challenges in cultured meat production and its commercialization. Critical Reviews in Food Science and Nutrition, 0, , 1-18.	10.3	0
503	3D-bioprinting of self-healing hydrogels. European Polymer Journal, 2024, 209, 112864.	5.4	0
504	Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source. ACS Biomaterials Science and Engineering, 2024, 10, 1607-1619.	5.2	0
505	An overview of nasal cartilage bioprinting: from bench to bedside. Journal of Biomaterials Science, Polymer Edition, 0 , 0 , 1 -48.	3.5	0
506	Ink-structing the future of vascular tissue engineering: a review of the physiological bioink design. Bio-Design and Manufacturing, 2024, 7, 181-205.	7.7	0
507	Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Advanced Drug Delivery Reviews, 2024, 208, 115237.	13.7	0